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Abstract
We present a survey and new results on the construction and Gelfand theory of com-
mutative Toeplitz algebras over the standard weighted Bergman and Hardy spaces
over the unit ball in C

n . As an application we discuss semi-simplicity and the spectral
invariance of these algebras. The different function Hilbert spaces are dealt with in
parallel in successive chapters so that a direct comparison of the results is possible.
As a new aspect of the theory we define commutative Toeplitz algebras over spaces of
functions in infinitely many variables and present some structural results. The paper
concludes with a short list of open problems in this area of research.

Keywords Bergman and Hardy space · Gaussian measure in infinite dimensions ·
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1 Introduction

During the last years there has been an intensive study of commutative Banach andC∗
algebras generated by Toeplitz operators acting on different function Hilbert spaces
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such as Bergman, Hardy or Fock spaces, see [3–7, 12, 13, 15, 20, 24–28, 30–34]. We
call them Toeplitz algebras and remark that interesting examples already appear if the
underlying domain is complex one dimensional. As is well known, Toeplitz operators
acting on the Hardy space over the unit circle only commute in rare cases (see [10] for
a precise statement). However, when passing to the standard weighted Bergman space
over the unit disc D in C one discovers a variety of commutative C∗ Toeplitz algebras.
When assuming some “richness” of the symbol class and commutativity of the gen-
erating Toeplitz operators simultaneously in the weight parameter one even obtains a
complete classification of such algebras based on the structure of geodesic pencils in
the Poincaré hyperbolic disc, see [33]. One source of commutativity of a C∗ Toeplitz
algebra over D is the invariance of the symbols of the generating operators under the
action of a maximal commutative subgroup of the automorphism group Aut(D). In
[27] the authors have extended these results to complex domains of dimension n > 1
and studied commutative C∗ algebras generated by Toeplitz operators over the unit
ball B

n in C
n . Again, families of such algebras subordinate to the maximal commuta-

tive subgroups of the automorphism group of the domain could be constructed and a
spectral decomposition of Toeplitz operators in each of these algebras was derived in a
rather explicit form, see [27, 32, 34]. However, a classification result as wasmentioned
in dimension n = 1 is still missing. In the higher dimensional setting n > 1 the depen-
dence of the symbol functions on different (groups of) coordinates is another source of
commutativity and provides additional flexibility in the construction of commutative
Toeplitz C∗ algebras. In [12] the authors extend the results in [27, 33] replacing the
unit ball by a general bounded symmetric domain of higher rank. Based on tools from
representation theory this paper characterizes subgroups of the automorphism group
that induce commutative C∗ Toeplitz algebras generated by operators having symbols
that are constant along the orbits.

Another line of research is concerned with the structure of commutative Toeplitz
Banach algebras which are not C∗. More precisely, symbol classes subordinate to a
given abelian subgroup ofAut(Bn) having the property that the corresponding Toeplitz
operators generate a commutative Banach algebra while the generated C∗ algebra is
non-commutative have been considered [3–7, 32, 34]. Typical problems concern the
structural properties of these algebras, such as a description of their maximal ideal
spaces and Gelfand transform, semi-simplicity or spectral invariance inside the full
algebra of bounded operators.

It is natural to study the existence and structure of the above commutative Toeplitz
algebras for different function Hilbert spaces such as the Hardy space over the unit
sphere [24, 30] or the Fock space of Gaussian square integrable entire functions [4,
13]. In fact, there is an interesting interplay between these cases and the analysis of
one of these spaces may be useful in the study of another.

The aim of this paper is twofold. First, we present a survey of the recent research on
commutative Toeplitz Banach and C∗ algebras for the weighted Bergman spaces and
the Hardy space over the unit ball and the unit sphere in C

n , respectively. By adding
some new results we will complement this survey. However, due to the constantly
growing literature on the subject, not all aspects of the theory can be dealt with in
detail. Secondly, we introduce a new set up in the construction of operator algebras
by considering Toeplitz operators over the Fock space in infinitely many variables.
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Such operators have been introduced in [21, 22] and generalize the notion of Toeplitz
operators on the Fock-Segal-Bargmann space H2(Cn, μ) of Gaussian square inte-
grable entire functions in C

n . New effects in the analysis of Toeplitz operators can be
observed and in parts are a consequence of the infinite dimensional measure theory
of the underlying Hilbert space H = �2(N). Another new feature from a topological
point of view is the non-nuclearity of the compact open topology on the space of entire
functions over H . In the classical setting of the space H2(Cn, μ) commutativeC∗ and
Banach algebras generated by Toeplitz operators were considered in [4, 13, 15].

The main Sects. 3–5 of the paper discuss commutative Toeplitz algebras for the
above mentioned function Hilbert spaces and all sections have the same structure.
This allows to easily compare the results and methods in the different cases.

The structural analysis of commutativeToeplitz algebras is a current topic of interest
in Operator Theory and Complex Analysis. A number of open problems intends to
stimulate further research in the area. Therefore, in the last section we have collected
a (certainly incomplete) list of questions which arose from the analysis presented in
this work.

We now describe the structure of the paper. In Sect. 2 we explain some notation
that are standard in the literature and will be used throughout. Commutative algebras
generated by Toeplitz operators acting on the (weighted) Bergman space over the unit
ball have been studied most intensively (see [3–7, 20, 26, 27, 31–34] and the literature
cited therein) and will be treated in Sect. 3. We introduce various symbol classes
which either are invariant or have a homogeneity property under a torus action on
B
n . The induced Toeplitz operators generate commutative Banach algebras. The main

result concerns the Gelfand theory of such algebras. As an application we discuss
semi-simplicity, description of the radical and spectral invariance in the algebra of all
bounded operators on the Bergman space.

Section 4 carries out the corresponding analysis in case of the classical Hardy space
H2(S2n−1) over the unit sphere S2n−1 in C

n , see [1, 10, 24, 30]. An useful ingredient
to the proofs is a decomposition of Toeplitz operators (with certain symbols) as an
infinite sum of Bergman space Toeplitz operators over B

n−1 with integer weights.
This provides a link to the results in Sect. 3. We present some original results, which
extend and generalize for general dimensions the results regarding the case n = 3,
which was presented in [24].

Section 5 starts with a reminder on the construction of Gaussian measures on
an infinite dimensional separable Hilbert space H [9, 14, 18]. Without restriction
we assume that H = �2(N) is the space of square summable sequences over the
natural numbers N. We introduce the corresponding Fock space, Toeplitz operators
and consider commutative Toeplitz algebras in this set up, see [21, 22]. The structural
results on these algebras are new and therefore we have added some proofs.

Various open questions remain unsolved. In the concluding Sect. 6 we compare
some of the results on operator algebras over different function Hilbert spaces. More-
over, a list of open problems will be mentioned.
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2 Notations

We will often divide n-tuples of numbers in groups as follows. Let m ∈ N and k =
(k1, . . . , km) ∈ N

m such that n = k1 + · · · + km . Given a tuple of complex numbers
u = (u1, . . . , un), we define u( j), j = 1, . . . ,m, by

u(1) = (u1, . . . , uk1)

· · ·
u( j) = (uk1+···+k j−1+1, . . . , uk1+···+k j ), j > 1

· · ·
u(m) = (uk1+···+km−1+1, . . . , un).

Hence we have u = (u(1), . . . , u(m)). We will write u( j) = (u j,1, . . . , u j,k j ) for
the entries of u( j). Throughout the paper we will denote by Z+ the set N ∪ {0} and,
for any integer m > 1, we will repeatedly use the usual multi-index notations for the
elements of Z

m+:

α! = α1! · · · αm !,
|α| = α1 + · · · + αm,

zα = zα11 · · · zαmm , z ∈ C
m .

We denote by B
n the open unit ball of C

n , by S2n−1 = ∂B
n the unit sphere in

C
n and by T = S1 the unit circle. Moreover, τ(Bn) will denote the basis of B

n as a
Reinhardt domain:

τ(Bn) = {(r1, . . . , rn) ∈ R
n+ : r21 + · · · + r2n < 1}.

As usual, we write L(X) for the space of bounded operators acting on a Banach space
X .

2.1 On the Spectrum of an Operator

Since we will constantly deal with different notions of spectrum, we set up the follow-
ing notations. Given an operator S ∈ L(X), we denote by sppt(S) the point-spectrum,
understood as the set of all eigenvalues of S. If S belongs to an algebraA, then σA(S)

means the spectrum of S as an element of A and sp(S) denotes the spectrum of S
as an operator with respect to the algebra L(X). Furthermore, ess-sp(S) denotes the
essential spectrum of S.

IfU is a bounded subset of C
n , the polynomially convex hull ofU is defined as the

set ̂U of all z ∈ C
n such that for every (analytic) polynomial p ∈ C[z1, . . . , zn] we

have

|p(z)| ≤ sup
w∈U

|p(w)|.
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Recall that a set U is called polynomially convex if U = ̂U .
As is well-known, a set is polynomially convex if and only if it is the maximal

ideal space of some finitely generated commutative unital Banach algebra. As a con-
sequence, if A is the commutative unital Banach algebra generated by an operator S,
then σA(S) = ŝp S. For more details consult [16, 23].

3 Bergman Space Over the Unit Ball

3.1 The Bergman Space

For λ > −1 define the (probability) measure dvλ on B
n by

dvλ(z) = cλ(1 − |z|2)λdv(z),

where dv denotes the usual Lebesgue measure on C
n ∼= R

2n and cλ is a normalizing
constant given by

cλ = �(n + λ + 1)

πn�(λ + 1)
.

We denote byA2
λ(B

n) theweighted Bergman space with weight parameter λ, being
the space of all holomorphic functions from L2(Bn, dvλ).

As is well known, the Bergman spaceA2
λ(B

n) is a reproducing kernel Hilbert space,
with a standard orthonormal basis (eα)α∈Zn+ consisting of normalized monomials:

eα(z) =
√

�(n + |α| + λ + 1)

α!�(n + λ + 1)
zα, α ∈ Z

n+. (3.1)

We denote by P the orthogonal projection from L2(Bn, dvλ) onto A2
λ(B

n).
Given m and k as in the previous section, we can decompose the Bergman space

with respect to these data into an orthogonal sum. So, for any κ ∈ Z
m+ consider the

finite dimensional subspace

Hκ = span{eα : |α( j)| = κ j , j = 1, . . . ,m}. (3.2)

Then we have

A2
λ(B

n) =
⊕

κ∈Zm+

Hκ . (3.3)

Given a bounded measurable function ϕ ∈ L∞(Bn)we define the Toeplitz operator
with symbol ϕ as

Tϕ : A2
λ(B

n) −→ A2
λ(B

n) : Tϕ( f ) = P(ϕ f ).
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Our main task is to study certain operator algebras generated by Toeplitz operators
with special symbols. In particular, as it was indicated in the introduction, some symbol
classes subordinate to the maximal abelian subgroups of automorphisms of B

n lead
to Banach algebras that are commutative for each weight parameter λ > −1, but such
that the C∗ algebra generated by them is no longer commutative.

In this work, we present operator algebras that appear when applying such ideas
in case of different function spaces. Since the best understood cases are algebras
associatedwith the so-called quasi-radial symbols, we begin our studywith this setting
and use it as a model case to introduce some of the main ideas.

3.2 Quasi-radial Symbols

A bounded measurable function ϕ = ϕ(z) defined on B
n is called k-quasi-radial if it

only depends on the groupal radii |z( j)|, j = 1, . . . ,m. That is, if there is a bounded
function ϕ̃ defined on τ(Rm+) = {(r1, . . . , rm) ∈ R

m+ : r21 + . . . + r2m < 1} such that

ϕ(z) = ϕ̃(|z(1)|, . . . , |z(m)|), ∀z ∈ B
n .

Alternatively, a bounded measurable function ϕ is k-quasi-radial if and only if it is
invariant under the action of the Cartesian product of unitary groupsU(1) ×· · ·×U(m),
where U( j) = U(Ck j ) denotes the group of unitary k j × k j -matrices and each U( j)

acts on C
k j . This notion interpolates between some well known special cases: ϕ is

radial when m = 1 and separately radial when m = n.
Let L∞

k−qr (B
n) denote the space of all k-quasi-radial functions and Tk-qr the corre-

sponding C∗ algebra generated by Toeplitz operators with symbols in this set.

Lemma 3.1 [32, Lemma 3.1] Given a k-quasi-radial function a = a(r1, . . . , rm),
where r j := |z( j)|, the Toeplitz operator Ta is diagonal with respect to the standard
orthonormal basis (3.1). More precisely, we have

Taz
α = γa,k,λ(α)zα, α ∈ Z

n+,

where

γa,k,λ(α) = γ̃a,k,λ(|α(1)|, . . . , |α(m)|)
= 2m�(n + |α| + λ + 1)

�(λ + 1)
∏m

j=1(k j − 1 + |α( j)|)!
∫

τ(Bm )

a(r1, . . . , rm)(1 − |r |2)λ

×
m
∏

j=1

r
2|α( j)|+2k j−1
j dr j . (3.4)

Since the above formula depends only on the quantities |α( j)|, the functions γ̃a,k,λ

generate an algebra of bounded functions on the set Z
m+. Moreover, as was shown in

[32], this algebra separates points of Z
m+ and thus we can identify Tk-qr with a C∗

algebra of continuous functions on a suitable compactification M(Tk-qr) of Z
m+.
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As was observed in [5], the algebra Tk-qr contains theC∗ algebra of all functions on
Z
m+ having limits at infinity. In particular, it contains all orthogonal projections Pκ from

A2
λ(B

n) onto Hκ , κ ∈ Z
m+. Furthermore, as a non-trivial fact, it turns out to contain

also all orthogonal projections Q( j)
d mapping A2

λ(B
n) onto the infinite dimensional

spaces

H ( j)
d = span{eα : |α( j)| = d}, (d ∈ Z+, j ∈ {1, . . . ,m}) (3.5)

that is, the projections

Q( j)
d =

⊕

κ∈Zm+,κ j=d

Pκ .

Note that for each fixed j ∈ {1, . . . ,m} one obtains an orthogonal decomposition of
the Bergman space:

A2
λ(B

n) =
⊕

d∈Z+
H ( j)
d . (3.6)

Finally, we recall a useful fibration of the compact set M(Tk-qr) of maximal ideals
which was presented in [3]. Consider the set 
 = {0, 1}m and for each θ ∈ 
 define
Jθ = { j : θ j = 1}. We set

Z
θ+ :=

⊕

j∈Jθ

Z+( j) and κθ := {(κ j1, . . . , κ j|θ |) : jp ∈ Jθ },

where Z+( j) denotes a copy of Z+.
Given θ ∈ 
 we set

Mθ :=
{

μ ∈ M(Tk-qr) : μ(Q( j)
d ) =

{

0 for all d ∈ Z+, if θ j = 0

1 for some d ∈ Z+, if θ j = 1

}

.

Thus the set Mθ consists of all points of the maximal ideal space that are reached by
nets (κα) in Z

m+ such that the coordinate (κα) j tends to infinity if and only if θ j = 0.
Since the other entries (κα) j are essentially constant, we can further decompose the
set Mθ as

Mθ =
⋃

κθ∈Zθ+

Mθ (κθ ),

where Mθ (κθ ) := {μ ∈ Mθ : μ(Q( j)
κ j ) = 1 for all j ∈ Jθ }. In particular, we have

M1 = Z
m+ and M1(κ) = {κ} for any κ ∈ Z

m+. Here and subsequently we use the
notation 1 := (1, . . . , 1) ∈ {0, 1}m .

By construction we obtain the following result.
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Lemma 3.2 [3, Lemma 3.13] The compact space of maximal ideals of Tk-qr admits
the following decomposition into mutually disjoints sets

M(Tk-qr) =
⋃

θ∈


Mθ =
⋃

θ∈


⋃

κθ∈Zθ+

Mθ (κθ ). (3.7)

The elements of Tk-qr, being diagonal with respect to the canonical basis, will
customary be written as Dγ , where γ denotes the corresponding eigenvalue function
defined on Z

m+. Furthermore, given an element μ ∈ M(Tk-qr), we will usually write
γ (μ) for μ(Dγ ), i.e. the evaluation of the multiplicative functional μ in Dγ .

3.3 Quasi- and Pseudo-homogeneous Symbols

The next ingredient to the construction of the algebras we are studying is a family
of Toeplitz operators whose symbols are subordinated to the aforementioned group
U(1) × · · · ×U(m) (see [25]).

To introduce these symbols we need some notations. Let z ∈ B
n and recall the

decomposition z = (z(1), . . . , z(m)). We write r j = |z( j)|, for each j = 1, . . . ,m, and
express z( j) as:

z( j) = r jξ( j), ξ( j) ∈ S2k j−1 := ∂B
k j , r j ∈ R+.

Furthermore, we decompose the tuples ξ( j) into polar coordinates as

ξ( j) = (ξ j,1, . . . , ξ j,k j ) = (s j,1t j,1, . . . , s j,k j t j,k j ),

where

s( j) = (s j,1, . . . , s j,k j ) ∈ S
k j−1
+ := Sk j−1 ∩ R

k j
+

and

t( j) = (t j,1, . . . , t j,k j ) ∈ T
k j .

The first version of these symbols was introduced in [32] and developed in [3–
5]. It leads to Toeplitz operators with so-called quasi-homogeneous symbols. These
functions are defined by

φ j (z) = ξ
p( j)

( j) ξ
q( j)

( j) , (3.8)

where j ∈ {1, . . . ,m} and p( j), q( j) ∈ Z
k j
+ are such that p( j) · q( j) = 0 and |p( j)| =

|q( j)|.
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This class of functions was generalized afterwards to the family of pseudo-
homogeneous symbols (see [17, 34]), which are defined as

φ j (z) = b(s( j))t
p( j)

( j) , (3.9)

where b ∈ L∞(S
k j−1
+ ) and p( j) ∈ Z

k j
+ is such that |p( j)| = 0. We remark that a

Toeplitz operator Tφ with symbol φ of the form (3.8) or (3.9) leaves Hκ invariant and
that the restriction Tφ |Hκ is nilpotent for every κ ∈ Z

m . In particular, sp(Tφ |Hκ ) = {0}.
Both classes of functions are invariant under the action of T on C

k j given by

(t, z( j)) ∈ T × C
k j �−→ (t z j,1, . . . , t z j,k j ). (3.10)

It turns out that this condition suffices formuch of the previous results to hold and so
this was the approach in [30], where the so-called generalized pseudo-homogeneous
symbols were introduced. These symbols are defined by

φ j (z) = c(s( j), t( j)), (3.11)

where c ∈ L∞(S
k j−1
+ × T

k j ) is invariant under the aforementioned action of T

(restricted to T
k j ) on its second component.

Finally, as was shown in [25], the most general form of these kind of symbols is
given by adjoining a quasi-radial dependence to (3.11). That is, symbols of the form

φ j (z) = g(|z(1)|, . . . , |z(m)|, s( j), t( j)). (3.12)

Whatever the case may be, it can be shown that the corresponding Toeplitz operator
Tφ j also leaves all subspaces Hκ invariant and so it can be decomposed as

Tφ j =
⊕

κ∈Zm+

Tφ j |Hκ . (3.13)

We note that the symbols of the form (3.11) (and its above particular cases) can
be regarded as functions defined on B

n , B
k j or even C

n and C
k j . To avoid lengthy

notation we will use the same symbol to represent any of these functions.
As an immediate consequence of the decomposition (3.13), the operator Tφ j com-

mutes with all operators from theC∗ algebra Tk-qr. Moreover, summarizing the results
from [25], the action of Tφ j is given by the following proposition.

Proposition 3.3 [25, Corollary 7.7]Let j ∈ {1, . . . ,m},φ j as in (3.12)andα, β ∈ Z
n+.

If κ j := |α( j)| �= |β( j)| or α(l) �= β(l) for some l �= j , then 〈Tφ j eα, eβ〉 = 0. Otherwise
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〈Tφ j eα, eβ〉 = 2m−1�(n + λ + |α| + 1)

πk j �(λ + 1)
√

α( j)!β( j)!∏l �= j (kl + κl − 1)!
×
∫

τ(Bm )×S
k j−1
+ ×T

k j
g(r , s( j), t( j))s

α( j)+β( j)+1k j
( j) t

α( j)−β( j)

( j)

× (1 − |r |2)λ
m
∏

l=1

r2kl+2κl−1
l drlds( j)dt( j), (3.14)

where 1k j := (1, . . . , 1) ∈ Z
k j
+ .

It can be shown that the restriction of such an operator Tφ j to the spaces Hκ is
naturally unitarily equivalent to a tensor product of operators where all factors except
the one at the j th position equal the identity operator. So, for different indices j1, j2 ∈
{1, . . . ,m} the operators Tφ j1

and Tφ j2
, acting on different “positions” with respect to

the tensor product, commute. (See Section 7 from [25] for more details).
As is known, the Bergman space A2

λ(B
n) does not carry a natural tensor product

structure such as the Fock space, and so in general the phenomenon described above
has to be studied locally on Hκ instead of on the whole space. Nevertheless, when we
restrict ourselves to symbols of the form (3.11), we obtain a useful representation for
these operators.

Consider the tensor product of weightless Bergman spaces A2
0(B

k1) ⊗ · · · ⊗
A2

0(B
km ). This is a Hilbert space with a canonical orthonormal basis given by

e(1)
α(1)

⊗ · · · ⊗ e(m)
α(m)

, α ∈ Z
n+,

where e( j)
α( j) is the canonical basic monomial of the space A2

0(B
k j ), see (3.1).

We note that, by identifying the corresponding orthonormal basis, the spaceA2
λ(B

n)

is isomorphic to this tensor product of Bergman spaces. More specifically, we denote
by U : A2

λ(B
n) → A2

0(B
k1) ⊗ · · · ⊗ A2

0(B
km ) the unique unitary operator such that

U (eα(z)) = e(1)
α(1)

⊗ · · · ⊗ e(m)
α(m)

, α ∈ Z
n+.

Lemma 3.4 Let j ∈ {1, . . . ,m} and let φ j be a symbol of the form (3.11). We have

Tφ j = U∗(I ⊗ · · · ⊗ T ( j)
φ j

⊗ · · · ⊗ I )U , (3.15)

where T ( j)
φ j

is the Toeplitz operator with symbol φ j acting on the Bergman space

A2
0(B

k j ).

Although the proof of this lemma is straightforward, one way of understanding
why this representation holds consists of analyzing the action of the corresponding
Toeplitz operators on the Fock space with symbols given by (3.11) (changing trivially
its domain from B

k j to C
k j ). Indeed, since those symbols φ j do not depend on the

quantities |z( j)|, the formulas appearing on the Fock space turn out to be the same
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as the corresponding ones on the Bergman space, so that one can naturally identify
these operators. Then using the inherent tensor product structure of the Fock space
one easily shows that the corresponding Toeplitz operators can be viewed as some
tensor products of operators as in the above lemma. This approach was followed, for
example, in [4] and [33].

We introduce some notations suggested by the tensor product structure mentioned
above. For j ∈ {1, . . . ,m} and d ∈ Z+ let ˜H ( j)

d be the finite-dimensional subspace of
A2

0(B
k j ) defined by

˜H ( j)
d = span{e( j)

α( j)
: |α( j)| = d, α( j) ∈ Z

k j
+ }.

Note that U∗ maps

A2
0(B

k1) ⊗ · · · ⊗ ˜H ( j)
d ⊗ · · · ⊗ A2

0(B
km ),

being ˜H ( j)
d on the j th position, onto the space H ( j)

d given by (3.5).

3.4 Commutative Banach Algebras

We will present the most general setting and explain the particular cases. However, it
is worth mentioning that, although the quasi-homogeneous case is the simplest one
regarding the symbols, it has the interesting property that for each portion j we can
take several generators, which leads to some non-trivial properties of the algebra.

Example 3.5 Suppose n > 1 and consider the case m = 1. Let h ∈ {1, . . . , n − 1} and
let P be the subset of all tuples (p, q) from Z

n+ × Z
n+ such that

ph+1 = · · · = pk1 = q1 = · · · = qh = 0 and |p| = |q|.

For each (p, q) ∈ P , let ψ(p,q) denote the quasi-homogeneous function given by

ψ(p,q)(z) = ξ
p
(1)ξ

q
(1), z �= 0.

Then {Tψ(p,q)
: (p, q) ∈ P} is a commuting set of operators and so the Banach

algebra generated by them together with Tk-qr is a commutative unital Banach algebra.
Furthermore, it can be shown that the infinite set of generators Tψ(p,q)

can be reduced to
a finite set. Although the maximal ideal space of the unital Banach algebra generated
by the operators from {Tψ(p,q)

: (p, q) ∈ P} is known, it is still an open question to find
an explicit description of this set, being the polynomially convex hull of a subset of
C
h(n−h). As a consequence of this, not much can be said about the spectral invariance

of the algebras studied in this context (compare with Proposition 3.12 below). See [3,
5, 32] for more details.

The action of a Toeplitz operator with arbitrary pseudo-homogeneous symbol on
Hκ could be more complicated, as (3.14) indicates. In general, it is no longer possible
to take more than one generator for each portion j without losing commutativity.
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Since much of the results of this section still hold for quasi-homogeneous symbols,
we proceed to describe the Gelfand theory of the corresponding algebras when the
symbols are of the more general form (3.11). Thus fix for each j = 1, . . . ,m a
generalized pseudo-homogeneous symbol φ j of the form (3.11) and let Tph be the
(commutative) unital Banach algebra generated by the Toeplitz operators Tφ j , j =
1, . . . ,m.

3.5 Gelfand Theory

We recall that for j ∈ {1, . . . ,m} one has a decomposition

T ( j)
φ j

=
⊕

d∈Z+
T ( j)

φ j
|
˜H ( j)
d

,

where T ( j)
φ j

is the operator from (3.15). Since each T ( j)
φ j

|
˜H ( j)
d

is an operator on a finite-

dimensional space one has the following result.

Lemma 3.6 (See [30, Section 3.3]). Let j ∈ {1, . . . ,m} and φ j be as in (3.11),

considered as a function on B
k j , and ζ j ∈ sp(T ( j)

φ j
). Then there is a sequence of

unimodular functions ( f ( j)
n )n such that, for all n, f ( j)

n ∈ ˜H ( j)
d(n) for some sequence

(d(n))n, and

lim
n→∞ ‖(T ( j)

φ j
− ζ j ) f

( j)
n ‖ = 0. (3.16)

Moreover, if ζ j ∈ sppt(T
( j)
φ j

) then one can choose d(n) = d for any fixed d such that

ζ j ∈ sppt(T
( j)
φ j

|
˜H ( j)
d

) and if ζ j ∈ ess-sp(T ( j)
φ j

), then one can suppose that d(n) → ∞.

Using a suitable sequence of tensor products of the above functions f ( j)
n one obtains

the following characterization for the maximal ideal space of the algebra Tph.

Proposition 3.7 [29, Proposition 3.5]. The compact set M(Tph) of maximal ideals of
Tph can be identified with the set

M(Tph) = ̂
sp(T (1)

φ1
) × · · · × ̂

sp(T (m)
φm

).

We introduce now our main object of study. Let Tk-qr,ph be the Banach algebra
generated by both algebras Tk-qr and Tph. By our previous discussion, Tk-qr,ph is a
commutative Banach algebra for each weight parameter λ > −1 and, in general, it

is no longer commutative when it is extended to a C∗ algebra. Denote by T̃k-qr,ph the
non-closed dense subalgebra of Tk-qr,ph generated by all finite sums of finite products
of the generators.

Now we proceed to develop the Gelfand theory of this algebra, presenting the main
results and ideas. Since some of the proofs are non-trivial and lenghty, we refer to [29]
for a detailed discussion.
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First, we determine themaximal ideal space of Tk-qr,ph. By restrictingmultiplicative
functionals to the generating subalgebras and applying Proposition 3.7 we obtain the
following inclusion:

M(Tk-qr,ph) ⊂ M(Tk-qr) × M(Tph) = M(Tk-qr) × ̂sp(Tφ1) × · · · × ̂sp(Tφm ).

Thus one needs to determine all points from the Cartesian product that lie in the
maximal ideal space ofTk-qr,ph. For the following remarks and results,we recall decom-
position (3.7) and the notations introduced before it. Furthermore, we will constantly
write ζ for the tuple ζ = (ζ1, . . . , ζm) ∈ C

m .
Roughly speaking (and under some additional conditions) it turns out that the

compact set of maximal ideals M(Tk-qr,ph) consists of (the polynomially convex hull
of) those ordered pairs (μ, ζ ) from the above Cartesian product such that μ ∈ Mθ (κθ )

for θ ∈ {0, 1}m and κ ∈ Z
θ+, and

ζ j ∈
⎧

⎨

⎩

sp(T ( j)
φ j

|
˜H ( j)

κ j
), if j ∈ Jθ

ess-sp(T ( j)
φ j

), otherwise.

Although the first condition holds in general, we have to assume special properties
of the symbols φ j for the second one to hold. As is well known (see for example

[11]), the C∗ algebra T0(C(Bk j )) generated by Toeplitz operators with continuous

symbols on Bk j contains the ideal of compact operators K(A2
0(B

k j )) and the quotient

T0(C(Bk j ))/K(A2
0(B

k j )) is isometrically isomorphic to the C∗ algebra C(∂B
k j ) via

the isomorphism generated by the mapping

Ta + K(A2
0(B

k j )) �−→ a|
∂B

k j .

In particular, for a Toeplitz operator Ta ∈ T0(C(Bk j )), we have

ess-sp(Ta) = a(∂B
k j ).

The compactness of the semi-commutators T|φ j |2 − Tφ j T
∗
φ j

will be an essential
ingredient to our analysis. Therefore, for the rest of the section, we will assume that
the symbols φ j , considered as functions on B

k j , extend continuously to the boundary
of B

k j . This condition was assumed for symbols of the form (3.9) in [17].

Proposition 3.8 [29, Theorem 4.4] The maximal ideal space of Tk-qr,ph can be iden-
tified with the set

⋃

θ∈


⋃

κθ∈Zθ+

Mθ (κθ ) × Mθ,κθ ,1 × · · · × Mθ,κθ ,m, (3.17)
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where with the previous notation κθ = (κ j1, . . . , κ j|θ |), and jl ∈ Jθ

Mθ,κθ , j =
⎧

⎨

⎩

sp(T ( j)
φ j

|
˜H ( j)

κ j
), if j ∈ Jθ

êss-sp(T ( j)
φ j

), otherwise.

Furthermore, the Gelfand transform is generated by the following map on the
generators of the algebra:

∑

ρ∈F
DγρT

ρ �−→
∑

ρ∈F
γρ(μ)ζ ρ, (μ, ζ ) ∈ Mθ (κθ ) × Mθ,κθ ,1 × · · · × Mθ,κθ ,m,

(3.18)

where F ⊂ Z
m+ is a finite subset, T ρ := T ρ1

φ1
· · · T ρm

φm
and the operators Dγρ are

diagonal operators in Tk-qr with eigenvalue sequence γρ .

It is not difficult to recover the knownparticular cases. If n = 2 (and then necessarily
m = 1), we get

M(Tk-qr) = M(1) ∪ M(0) = Z+ ∪ M∞,

where M∞ represents the points at infinity. Since for the quasi-homogeneous
and pseudo-homogeneous cases, all matrices T ( j)

φ1
|
˜H (1)
d

are nilpotent and thus

sp(T (1)
φ1

|
˜H (1)
d

) = {0}, we have

M(Tk-qr,ph) = (Z+ × {0}) ∪ (

M∞ × êss-sp(T (1)
φ1

)
)

,

which coincides with the previous results from [5, 17].

3.6 Applications

We make use of the above results to obtain structural information about the algebra
Tk-qr,ph. A non-trivial problem concerns the characterization of its radical. Since the
first works on this topic, one usually starts the study of the radical by analyzing the

non-closed subalgebra Rad(Tk-qr,ph) ∩ T̃k-qr,ph.
After a short examination one can detect some typical elements of this algebra.

These operators have the form

Dγ

⊕

d∈FL
Q( j)

d p( j)
d (Tφ j ), (3.19)

according to the orthogonal decomposition (3.6). Here, p( j)
d is the polynomial

p( j)
d (z) = (z − ζ1) · · · (z − ζM ),
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where sp(T ( j)
φ j

|
˜H ( j)
d

) = {ζ1, . . . , ζM }, and Dγ ∈ Tk-qr is such that γ (μ) = 0 for any

μ ∈ Mθ with θ j = 0. Moreover, FL = {d ∈ Z+ : | sp(T ( j)
φ j

|
˜H ( j)
d

)| ≤ L}, L ∈ Z+.
Indeed, provided such an element belongs to the algebra Tk-qr,ph, one can easily see

that it is mapped to zero by all multiplicative functionals in Propositon 3.8.
Nevertheless it is still not clear whether such an operator always belong to Tk-qr,ph.

A complete answer to this (and a generalization of Proposition 3.10 below) could
probably be obtained by analyzing the (asymptotical) behaviour of the cardinality of
the finite sets sp(T ( j)

φ j
|
˜H ( j)
d

) in the parameter d. In particular, it would be useful to know

under which conditions on the symbol φ j the quantity | sp(T ( j)
φ j

|
˜H ( j)
d

)| tends to infinity
as d → ∞.

We remark that if φ j is of the form (3.8) or (3.9), then all matrices T ( j)
φ j

|
˜H ( j)
d

are

nilpotent and thus p( j)
d (z) = z for every d ∈ Z+. Hence we have

⊕

d∈FL
Q( j)

d p( j)
d (Tφ j ) = Tφ j ,

so that (3.19) can be written as Dγ Tφ j , recovering the corresponding operators
described in [4, 5].

As we can see, the polynomials p( j)
d above turn out to play an essential role. One

can furthermore characterize semi-simplicity by means of these polynomials:

Proposition 3.9 [29, Proposition 3.9]. The Banach algebra Tk-qr,ph is semi-simple,

i.e. Rad(Tk-qr,ph) = {0}, if and only if all matrices T ( j)
φ j

|
˜H ( j)
d

satisfy the condition

p( j)
d (T ( j)

φ j
|
˜H ( j)
d

) = 0, that is, if and only if all such matrices are diagonalizable in the

sense that their Jordan canonical form is diagonal.

Although a complete characterization of Rad(Tk-qr,ph) ∩ ˜Tk−qr ,qh is still missing
for the most general case, in all examples we know, the operators of the form (3.19)
generate this algebra. We present some important cases:

Proposition 3.10 [29, Proposition 7.4] Assume that one of the following conditions
holds:

(1) m = 1,
(2) All matrices T ( j)

φ j
|
˜H ( j)
d

are nilpotent,

(3) For each j ∈ {1, . . . ,m}, the number of distinct eigenvalues of thematrix T ( j)
φ j

|
˜H ( j)
d

tends to infinity as d → ∞.

Then ˜R := Rad(Tk-qr,ph) ∩ ˜Tk−qr ,qh is the non-closed algebra generated by all oper-
ators of the form (3.19).

As a non-trivial fact, it turns out that the closure of ˜R coincides with the whole
radical:
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Proposition 3.11 [29, Corollary 6.9].Suppose thatφ j is continuous up to the boundary
of B

k j for every j ∈ {1, . . . ,m}. Then

Rad(Tk-qr,ph) = clos
(

Rad(Tk-qr,ph) ∩ T̃k-qr,ph). (3.20)

This result was partially proved for the case n = 2 in [5] and for the casem = 1 (and
any positive integer n) in [4].We remark that it is still valid for the quasi-homogeneous
case taking more than one generator in each division. (See Section 6 from [29]).

Finally, we state an interesting result regarding the spectral invariance, which can
be completely characterized in this setting. We observe a different behaviour from
what was obtained in the quasi-homogeneous case. Recall that an algebra A ⊂ L(X)

of bounded operators acting on some Banach space X , is called spectral invariant or
closed under inversion if the inverse of every invertible operator A ∈ A (invertible
with respect to algebra of all bounded operators L(X)) belongs toA. We may shortly
express this statement in the form

A ∩ L(X)−1 = A−1,

where A−1 denotes the group of invertible elements in A. For a commutative unital
Banach algebraA, spectral invariance is not automatic and can be studied in terms of
its multiplicative functionals. Indeed, given an operator S ∈ A, invertible with respect
to the algebra of bounded operators, its inverse S−1 will also belong to A if and only
if the Gelfand transform of S is nowhere zero.

Proposition 3.12 [29, Proposition 5.1] The algebra Tk-qr,qh is spectral invariant if and
only if the sets ess-sp(T ( j)

φ j
) are polynomially convex for j = 1, . . . ,m.

4 Hardy Space Over the Unit Ball

In this section we construct and analyze families of commutative Banach algebras
generated by Toeplitz operators on the Hardy space over the unit sphere.

One of the first approaches to the study of such algebras is [1]. Partially by adapting
methods in [27] the authors described commutative Toeplitz C∗ algebras by studying
symbols invariant under the action of maximal abelian groups of automorphisms.
However, there is a different approach based on the known Bergman space theory.
In [24], the Hardy space is decomposed into a direct sum of Bergman spaces (with
different integer weight parameters). Then results obtained in the Bergman space
setting can be applied. This approach permits also the study of commutative Toeplitz
Banach algebras as in the preceding section. We recall the ideas and further extend
the analysis in [24].

4.1 The Hardy Space

For the study of the Hardy space we follow the notations and the constructions from
[24].
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Let S2n−1 = ∂B
n denote the unit sphere in C

n and by dσ denote the normalized
surface measure of S2n−1. Denote the points z of S2n−1 as z = (z′, zn), where z′ ∈
B
n−1 and zn ∈ Cwith |zn| = √

1 − |z′|2.
As usual we define the Hardy space H2(S2n−1) as the (closed) subspace of

the Hilbert space L2(S2n−1, dσ) consisting of functions f satisfying the tangential
Cauchy-Riemann equations:

Lk, j f =
(

zk
∂

∂z j
− z j

∂

∂zk

)

f = 0, 1 ≤ k < j ≤ n.

The orthogonal projection from L2(S2n−1, dσ) onto H2(S2n−1) is called the Szegö
projection and will be denoted by P .

There is an interesting relation between the Hardy space and Bergman spaces over
B
n−1 with integer weights:

Proposition 4.1 [24, Theorem 2.1, Corollary 2.2] There is a unitary operator U from
L2(S2n−1, dσ) onto

⊕

p∈Z+
L2(Bn−1, dvp)

under which H2(S2n−1) is mapped onto
⊕

p∈Z+ A2
p(B

n−1).

Given a bounded measurable function ϕ defined on S2n−1 we define the Toeplitz
operator Tϕ acting on the Hardy space H2(S2n−1) as

Tϕ f = P(ϕ f ), f ∈ H2(S2n−1).

To avoid confusion we will denote by T p
ϕ the Toeplitz operator with symbol ϕ ∈

L∞(Bn−1) acting on the Bergman space A2
p(B

n−1). Now let ϕ ∈ L∞(S2n−1) be a
function of the form

ϕ(z) = ϕ(z′, |zn|) = ϕ(z′,
√

1 − |z′|2). (4.1)

Note that to ϕ we can associate a unique function ϕ ∈ L∞(Bn−1) such that

ϕ(z1, . . . , zn−1) = ϕ(z1, . . . , zn−1,
√

1 − |z′|2). (4.2)

Toeplitz operators with that kind of symbols behave well with respect to the decom-
position from Theorem 4.1 as the following result shows.

Proposition 4.2 [24, Theorem 3.1] Let ϕ(z′, |zn|) be a bounded measurable symbol
defined on S2n−1. Under the above isomorphism U, the Toeplitz operator Tϕ , acting
on the Hardy soace H2(S2n−1) is unitarily equivalent to the operator

⊕

p∈Z+ T p
ϕ ,

acting on

⊕

p∈Z+
A2

p(B
n−1),
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where ϕ = ϕ(z′) is of the form (4.2).

By means of Propositions 4.2 and 4.1, one can easily apply our construction in the
setting of the Bergman space to the Hardy space.

Given a weight parameter p ∈ Z+ and κ ∈ Z
m+, let H

p
κ denote the subspace Hκ

of the Bergman spaceA2
p(B

n−1) as defined in (3.2). Then by Proposition 4.1, we can
further decompose the Hardy space as the direct sum

H2(S2n−1) =
⊕

p∈Z+,κ∈Zm+

H p
κ .

Consider a positive integer m and a tuple of positive integers k = (k1, . . . , km)

such that k1 + · · · + km = n − 1. Taking into account our representation of points in
S2n−1 as z = (z′, zn), with z′ ∈ B

n−1, we divide the tuple z′ into m groups as before
(see Sect. 2). Thus we will write z′ = (z(1), . . . , z(m)).

4.2 Quasi-radial Symbols

Let L∞
k−qr (S

2n−1) be the set of all symbols a of the form (4.1) such that the associated

symbol a belongs to L∞
k−qr (B

n−1). By Proposition 4.2 and Lemma 3.1, a Toeplitz

operator Ta with a ∈ L∞
k−qr (S

2n−1) acts as a constant multiple of the identity on all

subspaces H p
κ ,

Ta =
⊕

p∈Z+,κ∈Zm+

γa,k(p, κ)I .

Here γa,k is the function given by γa,k(p, κ) := γa,k,p(κ), where γa,k,p was defined
in (3.4). Thus Ta is a diagonal operator whose eigenvalue set depends on κ as well as
on the weight parameter p ∈ Z+. Again, we denote by Tk-qr the C∗ algebra generated
by Toeplitz operators with symbols from L∞

k−qr (S
2n−1).

First, we present some facts in the particular case m = 1 and k = (k1) = (n − 1).
That is, we consider the space H2(S2k1+1). In this case, for a k-quasi-radial function
a ∈ L∞(0, 1), the eigenvalues γa,k of the corresponding Toeplitz operator have the
form

γa,k(κ, p) = 2m(n + κ + p)!
p!(k1 − 1 + κ)!

∫ 1

0
a(r)(1 − r2)pr2κ+2k1−1dr , (κ, p) ∈ Z

2+.

So, the algebra Tk-qr is isomorphic to an algebra of bounded functions on Z
2+. We

remark that

γa,k(κ, p) = γa,(2)(κ + k1 − 2, p),

where γa,(2) represents the corresponding function for the particular case n = 3
(corresponding to operators acting on H2(S5)). This case was studied in [24, Section
6] and, due to the above relation, one can imitate the analysis done there.
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In particular, we conclude that the algebra Tk-qr separates the points of Z
2+ and,

furthermore, it contains theC∗ algebra C(̂Z2+), where ̂Z2+ = Z
2+ ∪ S∞ is the compact-

ification of Z
2+ by the infinitely far quarter-circle S∞ ∼= {eiθ∞ : θ ∈ [0, π/2]}. Here eiθ∞

is the point reached by sequences ((k�, p�))� with

tan θ = lim
�→∞

k�

p�

.

Finally, we consider the symbol g ∈ L∞(0, 1) (see Section 6 in [24]) given by

g(r) = 1

�(1 + i)
(ln(1 − r−2))−i . (4.3)

As was shown in the aforementioned work, given (κ, p) ∈ Z
2+, we have

γg,(2)(κ, p) = (p + 1)−i
(

dκ+1 + O

(

1

p + 1

))

,

where dκ+1 = dκ(1 + i
κ+1 ) and d1 = 1 + i . By some careful analysis one can show

that indeed O( 1
p+1 ) is a function of (κ, p) that converges uniformly to zero whenever

κ + p → ∞ with κ
p ≤ 1. Moreover, we have limκ→∞ dκ = �(1 + i)−1.

As a consequence, we can separate some of the points of M(Tk-qr)\Z
2+ for different

integer coordinates κ: If (κα, pα) is a net convergent to an element μ in M(Tk-qr) and
κα

pα
≤ 1 for all α, then μ ∈ dκ0+1T if and only if, for some subnet ((καβ , pαβ ))β , we

have καβ = κ0.
Nowwe proceed to examine the general casem ≥ 1 bymeans of the above remarks.

Given j ∈ {1, . . . ,m} and a function a ∈ L∞(0, 1), we denote by a( j) the function
defined on S2n−1 by

a( j)(z) = a(|z( j)|). (4.4)

Lemma 4.3 Let j ∈ {1, . . . ,m} and a ∈ L∞(0, 1). Then

γa( j),k(κ, p) = γa,(k j )(κ j , p + |τ j (κ)|), κ ∈ Z
m+,

where γa,(k j ) is the eigenvalue sequence corresponding to the Toeplitz operator with
radial symbol a acting on the space H2(S2k j+1).

Proof It follows directly from Fubini’s Theorem applied to the representation (3.4) of
eigenvalues and well-known properties of the Beta function. ��

Given (κ, p) ∈ Z
m+ × Z+ consider the following subspaces of the Hardy space

H p
κ = span{epα : |α( j)| = κ j , j = 1, . . . ,m},
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where epα denote the normalized monomials from the Bergman spaceA2
p(B

n−1) given
by (3.1). We denote by P(κ,p) the orthogonal projection from H2(S2n−1) onto H p

κ .

Corollary 4.4 The algebra Tk-qr contains all projections P(κ,p), (κ, p) ∈ Z
m+1+ .

Proof This is clear for the case k = (k1), since all such projections belong to C(̂Z2+).
The general case then follows from Lemma 4.3 by multiplying adequate projections
for each coordinate κ j . ��

According to our previous remarks about g in (4.3), the eigenvalue function γg( j),k ,

defined on Z
m+1+ and corresponding to an Toeplitz operator on H2(S2n−1), has the

property that for every net ((κα, pα))α in Z
m+1+ with

κα
j

pα+|τ j (κα)| ≤ 1 and convergent

in M(Tk-qr) to μ ∈ M(Tk-qr)\Z
m+1+ , we have

γg( j),k(μ) ∈ dρ+k j−1T if and only if lim
α

κα
j = ρ.

We can use this to separate the points of M(Tk-qr)\Z
m+1+ with different “finite” coor-

dinates:

Corollary 4.5 Let j ∈ {1, . . . ,m} and ρ ∈ Z+. Then there is an operator Dh j,ρ ∈ Tk-qr
with h j,ρ(κ, p) ∈ [0, 1] for all (κ, p) ∈ Z

m+1+ and such that, for any net ((κα, pα))α

in Z
m+1+ convergent to μ ∈ M(Tk-qr)\Z

m+1+ ,

h j,ρ(μ) =
{

1 if limα κα
j = ρ

0 otherwise.

Proof Let f1 : C → [0, 1] be a bump function equal to 1 on the set dρ+k j−1T and

equal to 0 outside a sufficiently small neighborhood of this set. Let f2 : ̂Z2+ → [0, 1]
be a bump function with f2(e0·i∞ ) = 1 and equal to 0 outside a sufficiently small
neighborhood of this point.

Then the function f1(Dγg( j),k
)D f2◦ι ∈ Tk-qr has the required properties, where

ι : M(Tk-qr) → ̂

Z
2+

is the inclusion obtained from the inclusion of C∗ algebras C(̂Z2+) ⊂ Tk-qr. ��
For the sake of simplicity, in the following analysis we will denote the weight

parameter p as κm+1, so that the point (κ, p) ∈ Z
m+ × Z+ will be also written as

(κ, p) = (κ1, . . . , κm, κm+1) ∈ Z
m+1+ . As in the previous section, let 
 = {0, 1}m+1

and for every θ ∈ 
 consider the sets Jθ = { j : θ j = 1} and Z
θ+ = ⊕

j∈Jθ Z+( j).
We denote by Mθ the set of all points μ from M(Tk-qr) that are limits of a net

((κα
1 , . . . , κα

m+1))α in Z
m+1+ such that κα

j → ∞ if and only if θ j = 0. Furthermore,
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for each κθ = (κ j1, . . . , κ j|θ |) ∈ Z
θ+ we define the sets Mθ (κθ ) by

Mθ (κθ ) = {

μ ∈ Mθ : μ = lim
α

(κα
1 , . . . , κα

m+1) with κα
j = κ j , for all j ∈ Jθ

}

.

Corollary 4.6 The compact set of maximal ideals of Tk-qr admits the following decom-
position into disjoint sets

M(Tk-qr) =
⋃

θ∈


⋃

κθ∈Zθ+

Mθ (κθ ).

Proof It follows from separating the points by means of the operators from Corollary
4.5 and the projections P(κ,p), (κ, p) ∈ Z

m+1+ , similarly as in the Bergman space
setting. ��

4.3 Commutative Banach Algebras

Note that we can reproduce the construction from Sect. 3.3 for the z′-component of
the tuples (z′, zn) ∈ S2n−1. Thus we can naturally define symbols φ j ∈ L∞(S2n−1)

such that the corresponding functions φ j ∈ L∞(Bn−1) are of the form (3.12).
Moreover, such symbols do not depend on zn , andwith respect to the decomposition

in Proposition 4.2 the corresponding Toeplitz operators Tφ j
decompose as

Tφ j
=

⊕

p∈Z+
T p

φ j
.

Here T p
φ j

is the Toeplitz operator with symbol φ j acting on the Bergman space

A2
p(B

n−1), already studied in Sect. 3.
From the integral expression (3.14) one observes that when the functions φ j are

of the form (3.11), the action of T p
φ j

does not depend on p so that the operator is
essentially the same for different weight parameters. This observation simplifies some
of the calculations. We will consider only this case, leaving the study of symbols of
the form (3.12) for a future work.

4.4 Gelfand Theory and Applications

Fix for each j ∈ {1, . . . ,m} a symbol φ j of the form (3.11) and let Tph be the Banach
algebra generated by the operators Tφ1

, . . . , Tφm
. By the analysis of the previous

section, we note that this is a commutative Banach algebra, which in general is non-
commutative, when extended to a C∗ algebra.

To avoid notation, we will use the Toeplitz operators T ( j)
φ j

acting on the Bergman

spacesA2
0(B

k j ) from Sect. 3.3. Since the action of the operators Tφ j
does not depend

on the weight parameter p, one can see that the maximal ideal space remains the same
as in the Bergman space case:
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Proposition 4.7 The compact space of maximal ideals of the algebra Tph coincides
with the set

M(Tph) = ̂
sp(T (1)

φ1
) × · · · × ̂

sp(T (m)
φm

).

Proof A similar argument as in the Bergman space case. ��
Let Tk-qr,ph be the Banach algebra generated by the algebra Tk-qr and the Toeplitz

operators Tφ1
, . . . , Tφm

. As usual, we denote by M(Tk-qr,ph) its maximal ideal space.
Reasoning as before, we can identify M(Tk-qr,ph) with a subset of the Cartesian

product of the maximal ideal spaces of the generating algebras:

M(Tk-qr,ph) ⊂ M(Tk-qr) × M(Tph) = M(Tk-qr) × ̂
sp(T (1)

φ1
) × · · · × ̂

sp(T (m)
φm

).

Using the same arguments as in the Bergman space case, one can detect almost
all points belonging to the maximal ideal space. There is, however, an interesting
difference compared to the Bergman space setting given by the following proposition.

Proposition 4.8 If (μ, ζ ) ∈ M(Tk-qr,ph), θ ∈ 
 and μ ∈ Mθ (κθ ) (see (3.7)), then

ζ j ∈ sp(T ( j)
φ j

|
˜H ( j)

κ j
) for every j ∈ {1, . . . ,m} with θ j = 1.

Proof Let q be the characteristic polynomial of the matrix (T ( j)
φ j

|
˜H ( j)

κ j
). We assume that

θ �= 0 and distinguish two cases:

(1) If θ = 1, then P(κ,p)q(Tφ j
) = 0 and thus, after evaluating the functional μ, we

get q(ζ j ) = 0.
(2) Otherwise, let j ∈ {1, . . . ,m} with θ j = 1 and write ρ := κ j .

Let I be the closed ideal in Tk-qr,ph generated by the projections P(κ,p), (κ, p) ∈
Z
m+1+ , and let π : Tk-qr,ph −→ Tk-qr,ph/I be the canonical projection. One easily

sees that the multiplicative functional (μ, ζ ) =: ψ(μ,ζ ) can be factorized as

ψ(μ,ζ ) = ˜ψ(μ,ζ ) ◦ π,

where ˜ψ(μ,ζ ) is a multiplicative functional defined on Tk-qr,ph/I.
Consider now the operator S = Dh j,ρq(Tφ j

), where Dh j,ρ is given by Corollary
4.5. By construction, one can check that S + I = 0 and thus

1 · q(ζ j ) = h j,ρ(μ)q(ζ j ) = ψ(μ,ζ )(S) = ˜ψ(μ,ζ )(S + I) = 0.

In both cases (1) and (2) we have q(ζ j ) = 0 and thus ζ j ∈ sp(T ( j)
φ j

|
˜H ( j)

κ j
). ��

As a consequence, we see that for a multiplicative functional (μ, ζ ) ∈ M(Tk-qr,ph)
we have ζ j ∈ ess-sp(T ( j)

φ j
) only when μ ∈ Mθ with θ j = 0, that is, roughly speaking,

when μ has an "infinite j th coordinate". We note that this fact is independent of the
behaviour of the coordinate κm+1 = p, which plays the role of the weight parameter
in the space decomposition in Proposition 4.1.
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Proposition 4.9 The maximal ideal space of Tk-qr,ph coincides with the set

⋃

θ∈


⋃

κθ∈Zθ+

Mθ (κθ ) × Mθ,κθ ,1 × · · · × Mθ,κθ ,m .

where

Mθ,κθ , j =
⎧

⎨

⎩

sp(T ( j)
φ j

|
˜H ( j)

κ j
), if j ∈ Jθ\{m + 1}

êss-sp(T ( j)
φ j

), otherwise.

Furthermore, the Gelfand transform is generated by the following map on the
generators of the algebra Tk-qr,ph:

∑

ρ∈F
DγρT

ρ �−→
∑

ρ∈F
γρ(μ)ζ ρ, (μ, ζ ) ∈ Mθ (κθ ) × Mθ,κθ ,1 × · · · × Mθ,κθ ,m,

(4.5)

where F ⊂ Z
m+ is a finite subset and Tρ := Tρ1

φ1
· · · Tρm

φm
.

Proof It follows from Proposition 4.8 and similar arguments as in the Bergman space
setting. ��

Comparewith [24] for the case n = 3. Although themaximal ideal space has almost
the same form as in the Bergman space setting, it is worth mentioning that, according
to our remarks before the proposition, we have the above set Jθ\{m + 1}, instead of
just Jθ , as in the Bergman space. This will probably change for symbols of the form
(3.12).

We can apply this result to obtain some structural information on the algebra Tk-qr,ph
as in the previous section. However, there is still much work to do in this direction.

As a matter of example, we can search for typical elements of the radical of Tk-qr,ph.
However, such operators seem to be more complicated compared to those found in
the Bergman space case. Indeed, one would consider elements similar to the operator
(3.19), replacing the projections Q( j)

d by operators appearing in Corollary 4.5.
Nevertheless, one can still characterize semi-simplicity, having the same phe-

nomenon as in the Bergman space. (We use for simplicity once again the notations
introduced in that case).

Proposition 4.10 The algebra Tk-qr,ph is semi-simple, i.e. Rad(Tk-qr,ph) = {0}, if and
only if all matrices T ( j)

φ j
|
˜H ( j)
d

satisfy the condition p( j)
d (T ( j)

φ j
|
˜H ( j)
d

) = 0, that is, if and

only if all such matrices are diagonalizable in the sense that their Jordan canonical
form is diagonal.

Proof This follows from the same arguments as in the Bergman space setting. ��
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5 Fock Space Over Infinite Dimensional Hilbert Spaces

In this section we consider Toeplitz operators acting on the Segal-Bargmann space
over an infinite dimensional Hilbert space (see [21, 22]) and commutative Banach
algebras generated by such operators.

We start by recalling the notion of Gaussian measures on a real separable Hilbert
space (H , 〈·, ·〉) (see [18] for further details and proofs). Let (·, ·) be a continuous
scalar product (positive definite bilinear form) in H and by H ′ ∼= H we denote the
dual space consisting of all continuous linear functionals. Then there exists a bounded
self-adjoint, injective and positive operator B on H such

(x, y) = 〈Bx, y〉 for all x, y ∈ H . (5.1)

Let F ⊂ H be a subspace of finite dimension n ∈ N. Bochner’s Theorem implies that
on F there is a unique Radon measure νF with Fourier transform χνF (y) satisfying:

χνF (y) :=
∫

F
ei(x,y)dνF (x) = e− (y,y)

4 for all y ∈ F .

We call νF theGaussian measure on F associated with the inner product (·, ·). Define
the annihilator space

F◦ = {

ϕ ∈ H ′ : ϕ(x) = 0 for x ∈ F
}

and consider the finite dimensional quotient H ′/F◦. Let

π : H ∼= H ′ → H ′/F◦

denote the canonical projection. Given any Borel subset X ⊂ H ′/F◦ we can consider
the preimage NX := π−1(X) ⊂ H . We call NX a cylinder set with base X and
we refer to H ′/F◦ as its generating space. When F runs through the collection of
all finite dimensional subspaces of H then the corresponding cylinder sets form an
algebra denoted by C(H). Moreover, the σ -algebra generated by C(H) coincides with
the Borel σ -algebra B(H) of H . Consider F ⊂ H equipped with the restriction of
(·, ·) as a Hilbert space. There is a canonical isomorphism

IF : F ∼= F ′ −→ H ′/F◦ : v �→ (·, v) + F◦,

which can be applied to define a Radon measure μF on B(H ′/F◦) by

μF (X) := νF
(

I−1
F (X)

)

.

It can be verified that the family of measures (μF )F , where F runs through the finite
dimensional subspaces of H fulfills the following compatibility condition: let G ⊂ H
be finite dimensional with F ⊂ G and consider the canonical map

p : H ′/G◦ → H ′/F◦ : ϕ + G◦ �→ ϕ + F◦.
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Then, for each Borel set X ∈ H ′/F◦ we have:

μF (X) = μG
(

p−1(X)
)

. (5.2)

Condition (5.2) implies that there is a well-defined real valued set function μ on C(H)

such that

μ(NX ) = μF (X) where X ∈ B(H ′/F◦).

Clearly 0 ≤ μ(N ) ≤ 1 for all cylinder sets N ∈ C(H) and μ(H) = 1. We call μ a
Gaussian cylinder measure. It is important to note that a cylinder measure in general
is not σ -additive. It only is defined on the algebra of cylinder sets and may not extend
to a measure on the full Borel σ -algebra B(H). A characterization of the σ -additivity
of cylinder measures in terms of the embedding

(H , 〈·, ·〉) ⊂ (H , (·, ·)) (5.3)

is given by the following result:

Proposition 5.1 [18] The Gaussian cylinder measure μ on C(H) above extends to an
σ -additive Borel measure on B(H) if and only if the operator B in (5.1) is trace class.
In this case the embedding (5.3) is of Hilbert-Schmidt type.

In this section we consider complex separable Hilbert space H . Since H can as well
be seen as a real Hilbert space the above construction of Gaussian measures applies.
The operator B appearing there will be assumed to be complex linear.

To simplify the setting we consider the model case H = �2(N) of all square-
summable complex valued sequences equipped with the standard inner product. Let
[ε j = (δ� j )� ∈ H : j ∈ N] denote the canonical orthonormal basis of H and assume
that B is a positive diagonal nuclear (trace class) operator, i.e.

Bε j = λ jε j where λ j > 0 and
∑

j∈N
λ j = tr(B) < ∞.

We write Z0 ⊂ Z
N+ for the set of all sequences α = (αn)n with non-negative integer

entries such that αn = 0 for all but finitely many n ∈ N. Let z = (z1, z2, . . .) be the
coordinates of H . With α ∈ Z0 we use the usual notation:

zα = zα11 zα22 . . . α! = α1!α2!α3! . . . λα = λ
α1
1 λ

α2
2 λ

α3
3 . . . .

According to Proposition 5.1, the induced Gaussian cylinder measure is a σ -additive
measure on B(H) and will be denoted byμB . Note that the space L2

B := L2(H , dμB)

contains all complex polynomials in H .
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Definition 5.2 We define the Fock space over H induced from B by (see [21, 22]):

A2
B(H) = span

{

eα(z) =
√

1

λαα! z
α : α ∈ Z0

}

⊂ L2
B,

where the closure is taken in L2
B .

It can be checked that the monomials [eα : α ∈ Z0] form an orthonormal basis of
A2

B(H). In the following we call it the standard orthonormal basis.

Remark 5.3 In the classical case where we deal with a finite number of variables (i.e.
H = C

n for some n ∈ N) it is well-known that A2
B(Cn) can be interpreted as a

Hilbert space of (pointwisely defined) entire functions with reproducing kernel. In
fact, well-known apriori estimates (see [35]) imply that L2-convergence in A2

B(Cn)

implies uniform convergence on compact subsets of C
n . In the setting of functions

in infinitely many variables, i.e. H = �2(N), we only have the following weaker

property: let V ⊂ (H , 〈·, ·〉) be an open set and assume that z0 ∈ V ∩ B
1
2 H . We equip

the range H 1
2

:= B
1
2 H with the Hilbert space norm ‖ · ‖ 1

2
:= ‖B− 1

2 · ‖. Then it can
be shown that there is an open neighbourhood Wz0 ⊂ (H 1

2
, ‖ · ‖ 1

2
) of z0 (open in the

topology of H 1
2
) and a constant Cz0 > 0 such that for any holomorphic function f in

V :

sup
{| f (z)| : z ∈ Wz0

} ≤ Cz0

(∫

V
| f (w)|2dμB(w)

) 1
2

.

Hence L2
B-convergence in A2

B(H) implies uniform compact convergence in the sub-
space (H 1

2
, ‖ · ‖ 1

2
) only. In conclusion we may consider elements in the Fock space

A2
B(H) as holomorphic functions on H 1

2
⊂ H . In general they do not extend to holo-

morphic functions on H . Also note that H 1
2
is dense in H of measure μB(H 1

2
) = 0.

Let P : L2
B → A2

B(H) denote the orthogonal projection. Given any bounded mea-
surable function ϕ ∈ L∞(H , μB) we define the Toeplitz operator Tϕ with symbol ϕ

in the usual way:

Tϕ : A2
B(H) → A2

B(H), Tϕ( f ) = P(ϕ f ), f ∈ A2
B(H).

Clearly ‖Tϕ‖ ≤ ‖ϕ‖∞ such that Tϕ defines a bounded operator on the Fock space.
Nowwe pass to operator symbols with additional structure such that the corresponding
Toeplitz operators commute. We are interested in the generated commutative Banach
algebras and, in particular, in extensions of the results in [3–5, 13, 32, 34] we consider
the infinite dimensional setting H = �2(N).
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5.1 Quasi-radial Symbols

Let k = (k j ) j∈N be a fixed integer sequence. We use k to subdivide any
z = (z1, z2, . . .) ∈ H into groups as follows:

z = (z(1), z(2) . . .) where z( j) = (zk1+...+k j−1+1, . . . , zk1+...+k j ) ∈ C
k j , j ∈ N.

Furthermore, we assume that the eigenvalue sequence λ = (λn)n of the operator B in
the above construction is compatible with k. By this we mean that there is a sequence
(u j ) j∈N of positive real numbers such that

λ( j) = (u j , u j , . . . , u j ) ∈ R
k j
+ , ( j ∈ N).

Clearly, in the case where k = (1, 1, 1, . . .) there is no additional assumption on the
sequence λ ∈ �1(N).

Let a : �2(N) → C be a k-quasi-radial measurable and bounded symbol, i.e.
a = a(z) only depends on the infinite vector (|z( j)|) j∈N. Standard arguments from
representation theory show that the Toeplitz operator Ta acts on the standard orthonor-
mal basis EB := [eα : α ∈ Z0] as a diagonal operator with eigenvalues γa . More
precisely:

Taeα = γa(κ)eα where κ = κ(α) = (|α( j)|) j ∈ Z0. (5.4)

In the following we denote by Tk-qr the C∗ algebra in L(A2
B(H)) generated by all

Toeplitz operators with bounded k-quasi-radial symbols. According to (5.4) we can
identify Tk-qr with a C∗ subalgebra of the bounded complex-valued functions Cb(Z0)

on the discrete set Z0. Since the system EB forms an orthonormal basis ofA2
B(H) we

obtain:

γa(κ) = 〈

Taeα, eα

〉 = 〈

aeα, eα

〉 =
∫

H
a|eα|2dμB .

If, in addition, a is cylindrical, k-quasi-radial, i.e. a is of the form

a(z) = ã
(|z(1)|, . . . , |z(L)|

)

(5.5)

with some L ∈ N and ã ∈ L∞(RL+), then we can evaluate γa(κ) more explicitly in
form of a finite dimensional integral:

γa(κ) =
L
∏

j=1

1

(k j − 1 + κ j )!
∫

R
L+
ã
(√

u1r1, . . . ,
√
uLrL

)

rk−1+κ̃e−|r |dr1 . . . drL ,

(5.6)

where 1 = (1, . . . , 1) ∈ Z
L+, κ̃ = (κ1, . . . , κL) and |r | = r1 + . . . + rL .
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Remark 5.4 If a ≥ 0, then the eigenvalue sequence γa(κ) is a moment sequence. Note
that the corresponding moment problem which asks for a characterization of moment
sequences in infinitely many variables via representing measures has been studied in
the literature (cf. [2, 19]). In particular, there is an infinite dimensional generalization
of Haviland’s Theorem.

The final sections of the algebra Tk-qr are well understood (see [13]). More precisely,
consider the natural inclusions Z

n+ ⊂ Z0 with n ∈ N defined via extension by zero,
i.e. ιn : (z1, . . . , zn) �→ (z1, . . . , zn, 0, 0 . . .). Let n = k1 + . . . + kL where L ∈ N

and consider the algebra:

T (L)
k-qr := C∗(γa(κ) : a as in (5.5) and κ = ιL(κ) ∈ Z0). (5.7)

Clearly, for all n ∈ N as above:

T (L)
k-qr ⊂ Tk-qr ⊂ Cb(Z0).

Note that the eigenvalues γa(κ) in (5.7) only depend on κ̃ = (κ1, . . . , κL) ∈ Z
L+.

Hence, we can identity T (L)
k-qr with a subalgebra of Cb(Z

L+).

In [13] the authors define the square root metric ρL on Z
L+ and consider the C∗

subalgebra Cb,u(Z
L+, ρL) in Cb(Z

L+) of all bounded functions on Z
L+ that are uni-

formly continuous with respect to ρL . It is an interesting observation in [13] that the
algebra Cb,u(Z

L+, ρL) in general is strictly larger than the L-fold tensor product of
Cb,u(Z+, ρ1). The main result of [13] (which generalizes [15] to the case L > 1)
immediately implies:

Theorem 5.5 [13, 15] The algebra T (L)
k-qr is isometrically isomorphic to Cb,u(Z

L+, ρL).

For each L ∈ N we can consider the C∗ algebra

TL := {

γ (κ̃, 0, 0 . . .) : γ ∈ Tk-qr, κ̃ = (κ1, . . . , κL) ∈ Z
L+
} ⊂ Cb(Z

L+).

Then, clearly, T (L)
k-qr ⊂ TL . However, one can show more:

Proposition 5.6 Both C∗ algebras above coincide, i.e. T (L)
k-qr = TL .

Proof Let γ ∈ Tk-qr. Then κ �→ γ (κ) uniformly can be approximated by a sequence
(��)�, where �� is a finite sum of finite products of eigenvalues of the form:

γa1(κ)γa2(κ) . . . γak (κ), (k ∈ N).

Each a j for j = 1, . . . , k is a bounded k-quasi-radial function on H = �2(N). Let
L ∈ N be fixed and pick κ̃ = (κ1, . . . , κL) ∈ Z

L+. Choose α ∈ Z0 such that κ =
(κ̃, 0, 0, . . .) = κ(α). Now, we replace a j by a cylindrical function without changing
the eigenvalue γa j (κ). Consider the orthogonal projection

�n : H → span
{

ε j : 1 ≤ j ≤ n
} ⊂ H ,
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where n = k1 + . . . + kL . By Fubini’s Theorem we obtain:

γa j (κ) =
∫

H
a j |eα|2dμB

=
∫

�n H

∫

(I−�n)H
a j (x + y)|eα(x + y)|2dμ(I−�n)B(y)dμ�n B(x)

=
∫

�n H
ã j (x)|eα(x)|2dμ�n B(x) = γã j (κ).

In the last equality we used the definition:

ã j (x) :=
∫

(I−�n)H
a j
(

�nx + y
)

dμ(I−�n)B(y).

Note that ã j is a bounded cylindrical k-quasi-radial function. Hence, for all κ =
(κ̃, 0, . . .) of the above form we can replace �� by an element in T (L)

k-qr which proves
the assertion. ��
Consider now the C∗ algebra:

A :=
{

γ ∈ Cb(Z0) : γ (κ̃, 0, 0, . . .) ∈ T (L)
k-qr for all κ̃ ∈ Z

L+ for all L ∈ N

}

.

(5.8)

From Proposition 5.6 it follows that

Tk-qr ⊂ A. (5.9)

Furthermore, consider the C∗ subalgebra Tc-k-qr ⊂ Tk-qr generated by Toeplitz
operators having cylindrical bounded k-quasi radial symbols, i.e. symbols of the type
(5.5). With L ∈ N define the projections:

πL : Z0 → Z0 : πn(κ) := (κ1, . . . , κL , 0, 0 . . .).

Lemma 5.7 We have the equality

Tc-k-qr = {γ ∈ A : lim
L→∞ γ ◦ πL = γ uniformly on Z0

}

.

Proof Let γ ∈ Tc-k-qr. From Tc-k-qr ⊂ Tk-qr ⊂ A we conclude that γ ∈ A. Let γ̃ be a
finite sum of finite products of eigenvalues of Toeplitz operators with symbols of the
form (5.5). From the expression (5.6) of the eigenvalues we conclude that γ̃ ◦πL = γ̃

for L ∈ N sufficiently large. Hence

lim
L→∞ γ̃ ◦ πL = γ̃ (5.10)
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uniformly on Z0. Since such sequences are uniformly dense in Tc-k-qr we conclude
that γ fulfills (5.10) as well.

Conversely, let γ ∈ A such that limL→∞ γ ◦πL = γ uniformly onZ0. By definition
of A we have γ ◦ πL ∈ T (L)

k-qr ⊂ Tc-k-qr. Hence γ ∈ Tc-k-qr. ��
Example 5.8 We show that the algebra Tc-k-qr contains Toeplitz operators with non-
cylindrical symbols, i.e. functions that depend on infinitely many variables. For
simplicity we only consider the case k = (1, 1, . . .). Let ρ ∈ �1(N) with 1 > ρ j > 0
for all j ∈ N. Consider a sequence ( f�)�∈N of non-constant continuous functions
f� : R+ → R+ such that

1 − ρ� ≤ f�(y) ≤ 1 + ρ� for all y ∈ C, � ∈ N.

Define a k-quasi-radial (non-cylindrical) function F : �2(N) → R+ as the infinite
product:

F(z) = F(z1, z2, . . .) =
∞
∏

�=1

f�(|z�|).

For each L ∈ N put FL = F ◦ �L = ∏L
�=0 f�(|z�|). Then

∣

∣F(z) − FL(z)| = |FL(z)|
∣

∣

∣1 −
∞
∏

�=L+1

f�(|z�|)
∣

∣

∣

≤ exp
(

∞
∑

�=1

log(1 + ρ�)
)∣

∣

∣1 − exp
(

∞
∑

�=L+1

log f�
(|z�|

)

)∣

∣

∣.

Note that for all z ∈ �2(N):

∞
∑

�=L+1

ρ�

ρ� − 1
≤

∞
∑

�=L+1

log(1 − ρ�)

≤ RL(z) :=
∞
∑

�=L+1

log f�
(|z�|

) ≤
∞
∑

�=L+1

log(1 + ρ�) ≤
∞
∑

�=L+1

ρ�.

Since ρ ∈ �1(N)we conclude that limL→∞ RL(z) = 0 uniformly in �2(N). Therefore
limL→∞ FL = F uniformly. It follows that γF = limL→∞ γFL ∈ Tc-k-qr.

Example 5.9 Let k = (1, 1, . . .) and γ ∈ Cb(Z0). We define the generating function
Gγ of γ by:

Gγ (x) =
∑

κ∈Z0

γ (κ)xκ for x ∈ � ⊂ H = �2(N), (5.11)
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where � denotes the domain of convergence of Gγ . Since γ is bounded on Z0 it is
easy to see that

{

x = (x1, x2, . . .) ∈ �1(N) : |x j | < 1, ∀ j ∈ N
} ⊂ �.

Let γ ∈ Cb(Z0) be defined by

γ (κ) :=
{

1 if κ = ε j for some j ∈ N,

0 else.

Note that actually γ ∈ A. Then

Gγ (x) =
∞
∑

j=0

x j where x = (x1, x2, . . .) ∈ � = �1(N) ⊂ �2(N).

In particular, let η ∈ C with |η| < 1 and consider xη := −(η, η2, η3, . . .) ∈ �. Then

Gγ (xη) = −
∞
∑

j=1

η j = η

η − 1

such that the map D := {y ∈ C : |y| < 1} � η → Gγ (xη) extends to a meromorphic
function with a simple pole at η = 1.

We now consider the generating function of an eigenvalue sequences. Let a ∈
L∞(H , μB) be a k-quasi-radial function. Let δ ∈ (0, 1) and consider

�δ := {

x ∈ �1(Z+) : |x j | < δλ j
}

.

From exp{δ‖z‖2} ∈ L1(H , μB) and Lebesgue’s Theorem on dominated convergence
we obtain for all x ∈ �δ:

Gγa (x) =
∑

κ∈Z0

∫

H
a|eκ |2xκdμB

=
∫

H
a(z)

∑

κ∈Z0

|zκ |2xκ

λκκ! dμB(z) =
∫

H
a(z) exp

⎛

⎝

∞
∑

j=1

|z j |2x j
λ j

⎞

⎠ dμB(z).

Note that the integral on the right hand side extends to a holomorphic function on
{x = (x1, x2, . . .) ∈ �2(N) : Re(x j ) ≤ 0, j ∈ N}. Assume that there is δ > 0 such
that

{

η ∈ C : xη ∈ �δ

}
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is an open zero-neighborhood in C. Note that this is the case if, e.g., we choose
λ j := θ j where θ j ∈ (0, 1). Again we consider the map

D � η �→ Gγa (xη) =
∫

H
a(z) exp

⎛

⎝−
∞
∑

j=0

|z j |2η j+1

λ j

⎞

⎠ dμB(z).

The assignment η �→ Gγa (xη) extends to a real analytic function in R+. In particular,
it has no singularity in η = 1. We conclude that there is no bounded k-quasi-radial
function with γa = γ .

To end this subsection, we briefly analyze the maximal ideal space of the algebra
Tk-qr. We introduce a corresponding version of the subspaces used in the previous
sections. Given κ ∈ Z0 denote by Hκ the finite dimensional subspace

Hκ = span
{

eα : ∣

∣α( j)
∣

∣ = κ j , ∀ j ∈ N
}

.

Moreover, Pκ will denote the orthogonal projection from A2
B(H) onto Hκ . On the

other hand, for d ∈ Z+ and j ∈ N we define the infinite dimensional space H ( j)
d by

H ( j)
d = span

{

eα : ∣∣α( j)
∣

∣ = d
}

,

and we denote by Q( j)
d the orthogonal projection from A2

B(H) onto H ( j)
d .

By (5.4) we see that the operators from Tk-qr leave all subspaces H ( j)
d and Hκ

invariant. Furthermore, by Theorem 5.5, we conclude that all projections Q( j)
d belong

to Tk-qr. Nonetheless, it is interesting to note that the orthogonal projections Pκ , being

an infinite product of projections of the form Q( j)
d , may not belong to this algebra. A

proof of this conjecture however is missing.
Let M

(

Tk-qr
)

denote the compact space of maximal ideals of Tk-qr. As in the
Bergman space case, we can decompose M

(

Tk-qr
)

by means of these operators. Let

 be the set of all sequences

(

θ j
)

j∈N with θ j ∈ {0, 1} for all j ∈ N. Given θ ∈ 


we define the set Jθ = {

j : θ j = 1
}

and, in this case, we let Z
θ+ denote the set of all

sequences of integers κθ such that (κθ ) j = 0 for all j /∈ Jθ . Set

Mθ =
{

μ ∈ M
(

Tk-qr
) : μ(Q( j)

d ) =
{

0 for all d ∈ Z0, if θ j = 0
1 for some d ∈ Z0, if θ j = 1

}

,

and

Mθ (κθ ) = {μ ∈ Mθ : μ(Q( j)
(κθ ) j

) = 1 for all j ∈ Jθ }.

Then, as before, we can write M
(

Tk-qr
)

as a disjoint union:

M
(

Tk-qr
) =

⋃

θ∈


Mθ =
⋃

θ∈


⋃

κθ∈


Mθ (κθ ).
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5.2 Commutative Banach Algebras and Gelfand Theory

Finally, we present the corresponding commutative Banach algebras and their Gelfand
theory.

Following our previous constructions we consider a sequence of generalized
pseudo-homogeneous symbols

(

φ j
)

j∈N, where each φ j (formally defined on B
k j )

is a function of the form (3.11). That is, our symbols φ j are formally cylindrical func-
tions defined on H depending only on the coordinates z( j), such that the associated
function on C

k j coincides with the extension of a function (3.11) defined on B
k j . For

the sake of simplicity, we will denote by φ j all of these functions.
Thus, as one easily sees, we have an infinite dimensional version of the tensor

product introduced in Sect. 3.3. That is, for each of the operators Tφ j there is a uniquely

associated Toeplitz operator T ( j)
φ j

acting on the Bergman space A2
0(B

k j ) such that

〈Tφ j eα, eβ〉A2
B (H) =

{

0, if α( j ′) �= β( j ′), for some j ′ ∈ N,

〈T ( j)
φ j

e( j)
α( j) , e

( j)
β( j)

〉A2
0(B

k j )
, otherwise.

Here e( j)
α( j) denotes the canonical basic monomial ofA2

0(B
k j ). Denote by Tph the unital

Banach algebra generated by the operators (Tφ j ) j∈N.

Corollary 5.10 The sequence of operators
(

Tφ j

)

j∈N is a commutative family of oper-
ators. In particular, the Banach algebra Tph is commutative.

Proposition 5.11 The compact set of maximal ideals of Tph can be (topologically)
identified with the following set

M
(

Tph
) =

∏

j∈N
̂sp
(

Tφ j

)

.

Proof This follows from standard arguments as in the Bergman space case. ��
Denote by Tk-qr,ph the Banach algebra generated by the algebras Tk-qr and Tph. To

conclude, we characterize the maximal ideal space of the algebra Tk-qr,ph. As in the
previous sections, we have the following natural inclusion:

M(Tk-qr,ph) ⊂ M(Tk-qr) × M(Tph) = M(Tk-qr) ×
∏

j∈N
̂sp
(

Tφ j

)

.

Although some special care has to be taken in the corresponding calculations, it
is not hard to find the points which belong to the maximal ideal space following the
same methods as before.

Proposition 5.12 The maximal ideal space of Tk-qr,ph coincides with the set
⋃

θ∈


⋃

κθ∈Zθ+

Mθ (κθ ) ×
∏

j∈N
Mθ,κθ , j ,
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where

Mθ,κθ , j =
⎧

⎨

⎩

sp(T ( j)
φ j

|
˜H ( j)

(κθ ) j

), if j ∈ Jθ

êss-sp(T ( j)
φ j

), otherwise.

Furthermore, the Gelfand transform is generated by the following map on the
generators of the algebra:

∑

ρ∈F
DγρT

ρ �−→
∑

ρ∈F
γρ(μ)ζ ρ, (μ, ζ ) ∈ Mθ (κθ ) ×

∏

j∈N
Mθ,κθ , j , (5.12)

where F ⊂ Z0 is a finite subset and T ρ := T ρ1
φ1

· · · T ρm
φm

.

Proof This follows from the same arguments as in the Bergman space setting, approx-
imating operators by finite sums of finite products of the generators. ��

It seems reasonable to expect that Tk-qr,ph shares similar properties with the corre-
sponding algebra on the Bergman space (e.g. being not simple but spectral invariant).
Yet we leave this for future works, as it requires some detailed analysis.

6 Conclusion and Open Problems

To conclude the present work we compare our results for different function Hilbert
spaces. In each sectionwe introduced a commutative Banach algebra Tk-qr,ph generated
by a commutative C∗ algebra Tk-qr and a commutative (not C∗) Banach algebra Tph.
Themodel cases are the corresponding algebras definedon theBergman spaceA2

λ(Bn).
The other cases are somehow infinite extensions of this: an infinite direct sum for the
Hardy space and an infinite tensor product for the Fock space.

The C∗ algebras Tk-qr have already been an interesting object of study in the recent
literature. TheC∗ algebra generated by radial Toeplitz operators on the Bergman space
A2

λ(B
n) was characterized in [8], whereas the corresponding result for C∗ algebras

generated by Toeplitz operators with quasi-radial symbols on the Fock space F2(Cn)

on finitely many variables can be found in [13, 15]. In particular, in both cases it turns
out that the closed linear span of the generators coincides with the corresponding C∗
algebra.

However, a complete characterization of these algebras for all other functionHilbert
spaces and non-radial quasi-radial symbols, presented in this work, remains an open
problem (see Problem 1).

As for the algebras Tph, we have seen that their structure is essentially the same in
all three cases, so that the work done on the Bergman space can be reproduced on the
Hardy and Fock spaces without much effort. This will probably change when studying
symbols of the more general form (3.12), where the corresponding weight parameters
have to be carefully analyzed.

In all three cases, after analyzing individually the generating algebras, we intro-
duced the corresponding algebra Tk-qr,ph and developed its Gelfand theory. In this
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context, much of the work done on the Bergman space can be reproduced on the other
spaces. However, in the case of the Hardy space some careful examination of the set
M(Tk-qr) has to be done to show that the points at infinity are separated. We recall that
this was not necessary in the Bergman and Fock spaces due to the existence of some
particular orthogonal projections inside the algebra.

Finally, in the Bergman space setting, we showed how these results can give struc-
tural information (description of the radical and spectral invariance) of the algebra
Tk-qr,ph. Such an analysis can probably be performed also on the Hardy and Fock
spaces along the same lines and we leave this for future works.

To close this survey, we list some open problems collected along the paper.

(1) Find a characterization of the algebras Tk-qr (e.g. as uniformly bounded continuous
function with respect to some metric) for the remaining cases: (not radial) quasi-
radial symbols on the Bergman space, quasi-radial symbols on the Hardy space
and quasi-radial symbols on the Fock space in infinitely many variables. Does
Tk-qr coincide with the (linear) closure of Toeplitz operators with k-quasi-radial
symbols? Do we have equality in (5.9)? (See Sects. 3.2, 4.2 and 5.1).

(2) Is it possible to determine an asymptotic behaviour for the eigenvalues of the
matrices T ( j)

φ j
|
˜H ( j)
d
? Under which conditions do we have | sp(T ( j)

φ j
|
˜H ( j)
d

)| → ∞ as

d → ∞? (See Sect. 3.6).

(3) Find a description of the algebra Rad(Tk-qr,ph)∩ T̃k-qr,ph for general symbols of the
form (3.11). (See Sect. 3.6).

(4) Develop the Gelfand theory for the corresponding algebras taking more general
symbols φ j such as symbols of the form (3.12) or symbols without the continuity
assumptions. (See Sect. 3.3).
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