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Abstract
For a tuple of square matrices Ay, ..., A, the determinantal hypersurface is defined
as

U(Als cees An)

={iw i) e CP i dern A + o+ x4, =0).
In this paper we develop a local spectral analysis near a regular point of reducibility
of a determinantal hypersurface. We prove a rigidity type theorem for representations

of Coxeter groups as an application.
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1 Introduction and Statements of Results

Given n square N x N matrices, the determinant of their linear combination,
det(x1A1 + -+ - + x,A,), (such linear combination is called a pencil) is a homoge-
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neous polynomial of degree N in variables x1, ..., x,,. Zeros of this polynomial form an
algebraic manifold in the projective space CP"~!. This manifold is called the deter-
minantal manifold (or determinantal hypersurface) for the tuple (A, ..., A;). We
use the following notation

0 (Aq, .y Ay) = {[x1 o xg] €CPTV det(n Ay 4 -+ xpAy) = o}.

An infinite dimensional analog of determinantal manifold, called projective joint
spectrum of a tuple of operators acting on a Hilbert space was introduced in [38]. For

operators Aq, ..., A, acting on a Hilber space H it is defined by
O(A17 cee An)
= {[xl coix, ] €CPTT D xjAL 4 - 4+ X, A, is DOt invertible}.

To avoid trivial redundancies it is frequently assumed that at least one of the oper-
ators is invertible, and, thus, can be assumed to be the identity. In what follows we
always assume that A, | = I. It was shown in [35] that a lot of information can be
obtained from the part of the joint spectrum that lies in the chart {x,+; # 0} (and,
therefore, we can take x,,+1 = —1). We call this part the proper joint spectrum and
denote it o (A1, ..., Ay),

Tp(AL, ... Ay) = {(xl,...,x,,) €C": XA+ 4 xpA, —1

is not invertible}.

When the dimension of H is finite the projective joint spectrum coincides with
the corresponding determinantal manifold. This is why we use the same notation in
both cases. In this paper we concentrate on the finite dimensional case, so we will use
“determinantal manifold” and “projective joint spectrum” interchangiably. Of course,
in the finite dimensional case

(AL ... Ap) = {(xl, e xn) €C i det(n A+ -+ xpAn — 1) =o}.

Matrix pencils have been under investigation for a long time. Ultimately this line
of research led Frobenius to laying out the foundation of representation theory, cf
[17-19].

One of the basic questions regarding determinantal manifolds was when a hyper-
surface in the projective space admits a determinantal representation. The number
of publications in this area is very substantial. Without trying to give an exhaustive
account of the results here we just refer a reader to [4, 9-14, 24, 25, 28, 29, 37] and
references there.

In this paper we investigate joint spectra from a different angle: given that an alge-
braic hypersurface in CP” has a determinantal representation, what does the geometry
of the surface tell us about relations between operators in a representing pencil? This
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line of research was paid much less attention until recently. The only early result we
can mention is the one by Motzkin and Taussky [33]. The situation changed in the last
decade when joint spectra have been intensely scrutinized exactly from this point of
view (see [2, 3, 5, 8, 15, 16, 21-23, 30, 34-36, 38], and references there).

In particular, papers [34, 35] contain a local spectral analysis near the reciprocal of
a spectral point of one of the operators when this point does not belong to the singular
locus of the joint spectrum. Results of this analysis led to a spectral characterization of
representations of non-special finite Coxeter groups in [8] and of Hadamard matrices of
Fourier type in [34]. Non-singularity was essential in these cases. Here we concentrate
on the local spectral analysis in a neighborhood of a point at which the joint spectrum is
reducible, and, therefore, this point belongs to the singular locus of the joint spectrum.
One of the difficulties of carrying out spectral analysis in this setting is that, in general,
spectral projections related to operator families analytically depending on parameters
(in our setting parameters are coordinates (xg, . . ., X, ) of a point in the joint spectrum)
might blow up when approaching a singular point. It turned out that if one of the
matrices is diagonal, and the joint spectrum satisfies regularity conditions (a) and (b)
introduced below, then the limit projections exist when approaching a singular point
along a curve in a spectral component that is non-tangential to the singular locus.

Write

o(Ay, ..., Ap, =) = {Rl(X[, c X, )Cn+1)mI e Ry(xy, ., Xy, xn+l)msv = 0}7 (1.1

where R, ..R; are irreducible polynomials.
Suppose that A € o (A1). We introduce the regularity conditions at A, which we
mentioned above, separately for A # 0 and A = 0..

(1). » £ 0.

In this case
op(Ay, ..., Ay) = {Rl(xl, s X D™MULLR (X, ey X, DTS = 0}. (1.2)

Let us denoted by I, the set of indexes 1 < j < s corresponding to the components
of the proper projective spectrum passing through (1/4, 0, ..., 0, —1):

L={1<j<s:Rj1/x0.,0 1) =0} (1.3)

We call the following conditions the regularity conditions at A:

@ FH(1/2,0,.,0.1) #0, j € Iy
(b) For every pair i # j, i,j € I, the vectors 0R;(1/A,0,...,0,1) and
0R;(1/A,0,...,0, 1) are not proportional, where

oR; oR;
R =—,..., .
0x1 0xy,

2).2=0.
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In this case we pass to the chart {x; # 0} (and we take x| = 1 here). Let us denote
by 6p,1(A1, ..., A,) the part of the projective joint spectrum that lies in this chart:

&p,i(Alv ceey An)

n
= {(xz, e Xy Xpe1) €C" AL+ <ijAj> — Xp+11 1s not invertible}.
j=2

If0eo (A1), then0 € 6,1(AL, ..., Ay), and 6 1 (A1, ..., Ay) is given by
&p,l(Ala v Ap) = {R1(1, x2, ., xn+1)m1-~-Rs(1» X2, eeey xn+l)m'Y = 0}. (1.4)

Similarly, we denote by [ the set of indexes corresponding to the components of (1.4)
passing through the origin

Ip={1<j<s: R;j(1,0,..0) =0} (1.5)

The regularity conditions here are:

~ OR; .

@) 72-(0) #0, j € I,

(b) For every pairi # j, i, j € Iy the vectors R; and dR j at the origin are not
IRy IR ) '

Bxy> " Bt )0

proportional, and here dR; = (
In both cases A # 0 and A = 0 we write X = (x2, ..., X,).
Let O be a small neighborhood of (1/4,0, ...,0) € C", if & # 0, or of the origin
in C", if A = 0. Write
Rj(X1, ooy Xn) = Rj (X1, ooy Xy, 1) if A #0

Rj (X2, ooy Xn, Xnt1) = R(1, X2, ooy X)) if A = 0.

The singular locus of the surface { I jel, R = 0} N O is an algebraic manifold in
O which we denote by . Of course, geometrically ¢/ coincides with singular locus
of op(Ay, ..., Ay) or 6 1(Ay, ..., A,) in O, but they have different multiplicities: the
multiplicity of each regular point of { [T, R; =0} is 1.

Conditions (a) and (b) (Ez) and 15) respectively) imply that &/ has codimension
greater than 1. Let us denote by U the orthogonal projection of I/ onto the hyperplain
{x; = 0} if X # 0, and on the hyperplain {x,4+1 = 0},if L =0,

U={(x2, ..., xp) - Ax1,x2, ..., xp) €U}, 1 #0,
and
U={(x2,....x0) 1 I(x2, ..., Xny1) €U}, 1 =0,

then I{ is a set of positive codimension in the plain {x; = 0} for A # 0, and in the
plain {x,+1 = 0} when L = 0.
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Let j € I,. Since by condition a) when A # 0, (by a), when » = 0),
(/30,00 # 0, (724(0....0) # 0). by the implicit function theorem,
in a small neighborhood of the origin in cr-l, O(€;), the first coordinate x| ( the
(n + 1)st coordinate x,41, respectively) can be expressed as an analytic function
X1,4,;(X) (Xp41,0,j(X) when A = 0), of £ = (x2, ..., x,,) satisfying

x15.j(0) = 1/h, Rj(xp; j(),%) =0, & € O(e)), if & #0,
R;(

Xn+1,0,;(0) = 0, R;(X, xp41,0,;(X)) =0, X € O(¢j), if A =0. (1.6)
Conditions a) and b) (&) and b)) imply thatin O(¢;) we have 1 —x1; ; = O(|%])
(respectively x,,41,0,j = O(|%]) for A = 0), so that there are d; > 0 such that

11 —x14,;(X)] <dj|x], X € O(€j), L #0
|Xnt1,0,; ()| <dj|x], ¥ € O(ej), A =0. (1.7)

LetX € 0(A1), A #0, j € I,. Suppose that

Vi (®) = (x1,,; (), %) (1.8)
is a regular spectral point which belongs to the jth component {R 7 =0}, and §;(x)
is so small that no eigenvalue of xl,,\’j()?)Al +xpAy + -+ + x, A, other than 1 is in
the & (x)-neighborhood of 1, we denote by P; ;(X) the projection

. 1 . -
Pj (%) = — w—(x1, XA+ -+ x,A0) ) dw.  (1.9)
270 Jyw—11=5;(x)

If A = 0 is in the spectrum of Ay, x = (¥, x441,0,j(X) is in the jth component
of 6,,1(A1, ..., Ap), and §;(x) is small enough so that no non-zero eigenvalue of
At +x240+, ..., +x,Ap — Xp41,,0,; (X)) is in the §; (x)-neighborhood of the origin,
the corresponding projection P; o(X) is given by

1

. 1 . -
Pjo(X) = — (W ~+xp41,0,; N — Ay — - —x,A,) ) dw. (1.10)
2708 Jjwi=s; ()

Our first result is

Theorem 1.11 Let (Ay, ..., A,) be a matrix tuple, such that Ay is a normal matrix.
Suppose that . € o(Ay), and that 6,(Ay, ..., Ay), if L #0, or 6, 1(A1, ..., Ap),
if » = 0, satisfies conditions (a) and (b) if . # 0 and respctively conditions a) and
b) if » = 0. Fix % such that the line {t% : t € C} is not tangent to any component
of U at the origin. Then for j € I, each projection P;j,.(tX) for A # 0 and Pj o(t%)
for A = 0, can be extended to t = 0, so, it becomes an analytic function of t in some
neighborhood O of the origin.
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We denote this limit projection by P; ;. (%),

'PJ)L()?) = lim Pj,x(t)?), A # 0,
t—0

Pj,()()?) = lil% Pjy()(l‘)?), A=0. (1.12)
—

Section 2 is devoted to the proof of this result.

We express certain pairwise relations between operators in the tuple in terms of
these limit projections in Sect. 3. The main results here are the following Theorems
formulated for the pair (A1, Az). Of course, when we have only 2 matrices in the tuple,
that is when n = 2, the dependance on 1 is redundant, and we simply write P; ;.

Let A be a normal matrix and

Al= ) 1 (1.13)
reo(Ar)

be its spectral resolution. For A € o (A1) write

Zu
Ty = Z — (1.14)
peo (A1) u#h

Theorem 1.15 Let A| and Ay be N x N matrices with A being normal. Suppose that
the regularity conditions are satisfied at every spectral point of Ay. Further, suppose
that ). € o (A1), and that the multiplicities mj, j € I, are equal to 1. Then the
following relations hold:

PjrA2Pjs + xi,x,j(O)Pj,)» =0, A #0, (1.16)
PioA2Pjo0 — xé,o,j(O)Pj,O =0,A2=0 (1.17)
" X O
P ATy A2Pj s + xug( )'Pj,)\ =0, A #0, (1.18)
" . O
Pj0A2T0A2Pj 0 — x“*zf( )7?]-,0 =0, »=0. (1.19)

Theorem 1.20 Let A € o (A1), A # 0, and both pairs of matrices (A1, Ay) and
(A1, A1 Ap) satisfy the conditions of Theorem 1.15. Then

o2 (x, ) — 22, )
Y, X j X j

PjaAsPj = o

Pj,)\, (1.21)

where z1 = z1,,j(z2) is the local representation of the jth component of
op(A1, A1A2), {Rj(z1,22) = 0}, near (1/4,0)).

Finally, in Sect. 4 we give an application of our technique to representations of
Coxeter groups. Here we prove the following result which might be viewed as a
rigidity type theorem for representations of Coxeter groups.
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Theorem 1.22 Let G be a Coxeter group with Coxeter generators gy, ..., g, and let
p be an m-dimensional linear representation of G. For every 2 < i < n denote by p;
the representation of the Dihedral group D1; generated by g1 and g;, which is induced
by p. Assume that the following condition is satisfied.:

(%) For?2 <i < n no irreducibble representation of Dy; is included in the decompo-
sition of p; with coefficient bigger than 1.

Suppose that Ay, ..., A, are complex matrices in M(N~) such that Ay is normal, ||
Aj =1, j = 2,..,n, and conditions (a)—(b), a) - b) are satisfied for the pairs
(A1, Aj) and (A1, A1Aj), j = 2,...,n at every spectral point of Ay. Also suppose
that

D op(AL, ..., Ap) D op(p(g1), ..., 0(gn))-
(II) J¢ > O such that for every point Cf = @O,.., 1,0,..0) and §j_ =

J
©,..., —=1,0,...,0), j=1,...,n we have
——

J
0p(A1 ey An, AL Az, s A1AL) N OC(ET)
=0p(p(g1): - P(8n). P(81)P(82), .o p(g1)P(8N)) N Oe(Cf)-

Then

(1) There exists an m-dimensional subspace L of CV invariant under the action of
eachmatrix Aj, j=1,..,n

(2) Restrictions of Aj, j = 1,...,n to L are unitary, self-adjoint, and generate a
representation, p of G, and

s Ag
L

o (41 ) =an(pten. . pten) (1.23)

3) If G is finite, non-special Coxeter group (that is either a Dihedral, or of types A,B,
or D), then p is unitary equivalent to p.

2 Limit Projections Along Components. Proof of Theorem 1.11

Observe that under conditions (a), (b) and (d), (b) we have:

o M, = Zjeh m j, is the multiplicity of A in 0 (A;). Here m; are exponents from
(1.1).

e If A # 0 and O is a small enough neighborhood of (1/1,0..., 0), then for every
x = (xy, ..., x,) sufficiently close to (1/A,0, ...,0) and every j € I, the line
through the origin and x has only one point of intersection with the hypersurface
(R 7 = 0} whichliesin O. Similarly,if A = O and O is a small enough neighborhood
of the origin, every line parallel to the x,-axis and passing through a point X close
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to 0 has only one point of intersection with the hypersurface {R =0}, jel
which lies in O.

“The component {Iéj =0} of o (A1, ..., Ay) (Gp,1(A1, ..., Ap)) has multiplicity m ;”
means that for every regular point in this component that does not belong to any
other component, the rank of the projection (1.9) is equal to m ;. As mentioned in the
introduction, §; in (1.9) is so small that §;-neighborhood of 1 does not contain any
eigenvalues of x] j(ﬁ)Al + -+ x, A, different from 1 (respectively d ;-neighborhood
of 0 does not contain non-trivial eigenvalues of A1 +x2A> +-—x,4+11). The existence
of such §; follows from conditions b) and b).

In general, even under the regularity conditions projection P; ;(X) given by (1.9)
might “blow up” as the point X approaches 0 . A simple example is:

11 1 0
w=o ] e=lo 4]

In this case X = x7, and the joint spectrum, o, (A1, A2) is
xit+x—-1=0U{x; —x» —1=0},

so conditions (a) and (b) are satisfied at (1,0). When a point (x1, x3) approaches (1, 0)
along the components {x; + x2 — 1 = 0} and {x; — x2 — 1 = 0}, the corresponding
projections Pj 1(x2) and P 1(x2) are given by

1 l=x 0 —1ltx
Py i(x) = [0 262 } Pr1(x2) = [0 %"2 }

We see that the norm of each projection goes to co as xp — 0.
Theorem 1.11 claims that this does not happen in the case when A is normal.

Proof of Theorem 1.11 1. A # 0.
Since scaling preserves conditions (a) and (b), we may replace A; with A;/A and
assume that A = 1. To slightly simplify the notation, in this proof we will write
x1;(X), j € I instead of x1,1,;(X) and P;(%) instead of P; 1(X).

Let |X| < min{e; : j =1, ..., 7}, where ¢; are constants from (1.7), and suppose
that O = ﬁjO(Ej).

Denote by I';j = {£ € O : x1;(%) = x1;(})}, i # j. ThenU = U} ;_, T, and
U= Uﬁjzzf‘ij, where [';; is the projection of I';; onto {x; = 0}.

Condition b) implies that the tangent planes at the origin X = 0 to the surfaces
{x1 = x1;(%), j € I} are pairwise different. These tangent planes are given by
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so that the tangent plain in {x; = 0} to I'; 7 18 given by
- 3X1 i 3)61 i
N J J
: —(0)— —( =0;. 2.1
[x ;:2 ( ox) 0) . ( )> x| ] 2.1

If a point X does not belong to any of the plains given by (2.1), then there exists
a > 0 and § > 0 such that for every z € C with |z| < § we have

|x1; (z%) — x1;(z%| > alz], i # j. (2.2)
The constant a continuously depends on

n L[S (15 ) — 221
rgljn{Z(BXk O (0)>xk},

k=2
and, therefore, may be chosen such that (2.2) holds uniformly in a neighborhood of x.
Recall that for each j € I, the point y; ;(X) in the component (R ;= 0} was
defined by (1.8). In our case A = 1, and instead of y; 1 (X) we will write y;(%). For
eachi € I and z € Cclose to 0 define 7;;(z) € C by the condition that it is the closest
to 1 root of the following equation in t

Ri(ty;(zf)) = 0. (2.3)

As mentioned above, conditions (a) and (b) imply that every line in C" passing through
the origin and close to the x1-axis has only one point of intersection with the hypersur-
face {Iéi = 0} that is close to (1, O, ..., 0). When this line is the line passing through
the origin and y;(zX), this point determines 7;;(z) in the following way. Write the
homogeneous decomposition of R ;:

]
Ri(x) = Ri(x1,8) = ) Su(x),
=0

Whe:re Si1(x) is a homogeneous Eolynomial of degree / in x1, ..., x, and ¢; is the degree
of R;. We always assume that Ry = —1. Then 7;;(z) is the only root of the equation
(in T)

1
Y ot Sulyjzf) =0

=0

which is close to 1. Since this root has multiplicity 1, 7;;(z) is an analytic functiion of
z in a small neighborhood of the origin in C, which we denote by U.

Of course, 7tjj(z) = 1, 1;;(z) # 1 fori # j, z # 0, and, of courses,
Ei(rij (2)y;(zX)) = O for all z € U. It is easy to see that (2.2) implies that there
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exist positive constants ¢ and C such that for all j # i
clz| = ltij(z) — 1] = Clzl. (2.4)

Using the notation A(x) = x1 A + -+ x, A, it follows from the definition of the joint

spectrum that the reciprocals p;;(z) = ﬁ are eigenvalues of A(y;(zX)). Now, (2.4)

implies that a similar estimate (with different constants) holds for the eigenvalues p;;:
cilzl < lpij(z) — 11 < Cilzl, j # 1. (2.5)

This shows that §; in (1.9) should be chosen smaller than c1|z| (of course, the integral
(1.9) is the same for all §; < c1]z]). We call it §;(z).

Let ey, ..., ey be an eigenbasis for Aj, where ey, ..., ey, are eigenvectors with
eigenvalue 1, and ey, 41, ..., ey correspond to eigenvalues different from 1, so that in
the basis ey, ..., exy the matrix A; is diagonal with the first M diagonal entries equal

to 1 (recall, M} = Y
being different from 1.
Write A,, ..., A, in the basis eq, ..., eyN:

ai=la],
i = |da .
J lml,m=l

Fort € Cand j € Iy let M (t) be the M| x M block of the matrix

3)61

=2

jen m ), and the others, which we denote by oy, 41, ..., ap,

n
x;) I — leAl
0) =2

formed by the first M| rows and the first M| columns. Here x = (x2, ..., x,) is the
point that appeared in Theorem 1.11. Consider the following polynomials in ¢

Sj(t) = det(M;(1)).
For each j this is a non-trivial polynomial of degree M (Sj (t) > ccast — oo)

Thus, there exists some positive number b < c¢; (the constant from (2.5)) such that
these polynomials do not vanish in the punctured disk of radius b centered at the origin:

Sj(t) #0fort e C, 0 < Jt| <b, j=1,.., k. (2.6)
Choose some #( satisfying 0 < 7y < b.

Next, we will show that there exists a positive constant . such that for jw — 1| =
to|z|, where z is close to zero, the following norm estimate holds:

< %. (2.7)
|z]

n -1
H (wl — X1 (zx)A| — ZZXsAs)
s=2
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The norm here is understood as the norm of an operator acting on CV.
Letn e CV, || n||=1,and ¢ € CV satisfies

<w1 —x1j(zX)A1 — sz1A1> . =n, (2.8)

which is a system of N equations in Variables IS (N, coordmates of ¢ in the basis

,,,,,

the ﬁrst M equation of this system can be written as
z(Mj(roe"e) + 0(z)1M1)(M1’5>) = (") — 2N VM, 2.9)

where Iy, is the My x M; identity matrix, (M17) = (¢1, ..., &y,) and (M17) =
M1y oo M01y)s (CN My = (¢, 41, -0 EN), and N is the My x (N — M) part of the
matrix xpAs + - - - + x, A, consisting of the entrees in the first M rows and the last
N — M columns.

Consider (2.9) as a system of equations in ¢1, ..., {a, . Then (2.6) implies that for
sufficiently small z the main determinant of this system does not vanish (it is equal to
M8 (t9e'?)+ 0 (]z|M171)). Now, Cramer’s rule implies that {1, ..., £y, are expressed
in terms of {a7,+1, ..., {nv and 1y, ..., N, in the following way:

M
|1 Da® Vil (2) B
;t - [ Z S (toele) } Z S (t el@)é’l’ - s ceey kl- (210)

I=M+1

where Dj;(z) and v;;(z) are uniformly bounded analytic functions in a small punctured
neighborhood of the origin (and, therefore, analytically extendable to the origin).
Substitute these expressions of ¢;, i = 1, ..., M} in the remaining N — M| equations
of the system (2.8). We obtain a system in the following form:

[(1+ t0z) v, = x1, @A = £2) | V)
=@M = T M. (2.11)
where Iy, isthe (N —M1) x (N — M) identity matrix, A is the (N —M7) x (N —My)
diagonal matrix with oy, 41, ..., oy on the main diagonal (they are coming from A),

L(z)isan (N — M) x (N — M;) matrix whose all entries are of the order of z, and
7T (z) is the following (N — M) x M| matrix with entrees

n M
1
T@)im==——+ Xy al, Dy (2),
(T(2)) sj(toete)r; ;j 71 Dim (2)

that is the product of the lower left (N — M) x M block of the matrix Zf:z XAy

and the matrix D(z) = [ SI_)é’;(’) S,Z;) ]
J
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Since for z close to zero, x| j(z)?) is close to one, and since o1, ..., ¥y are not
equal to one, it follows that the main determinant of (2.11) considered as a system in

My +1, ..., Cn stays away from 0 as z — 0. Since forall j =1, ..., N, |ns| < 1, this
implies that £y, 41, ..., ¢y stay bounded as z — 0. In summary: there exists a constant
A such that
¢l < 0 i=1L . M, |l <A, j=M +1,..,N. (2.12)
This yeilds
A
¢l E (2.13)

for some constant . independent of z and 5, which proves (2.7).
Now, (2.7) implies

1

n -1
— wl —x1(zX)A; — leAl) de
2mi v/lw—1|=t0|z| < ! ;
n —1
(wl — xlj(Z)’e)Al — ZZX1A1>
=2

Pj(yzX)) H =

1
< — max 2rto|z| < A ty.
2 \ lw—1]=nlz|

(2.14)

Since, the integral

n -1
/ (wl — xu(Z)?)Al — ZZX[A[) dw
lw—1]=tolz| 1=2

is an analytic function in z in a small punctured disk centered at the origin, Riemann’s
theorem implies that it is analytically extendable to z = 0. This completes the proof
of Theorem 1.11 for A # 0.

2.2 =0.

The details of the proof in this case are very similar to those when A # 0. The only
differences are the following. If x is sufficiently close to 0, then close to O spectral points
of the matrix Ay +x2A2+- - - +x, A, —Xpq1,j (X)] are X1, (X) —xp41,j(X), i € Iy
(here we again write x,41,; instead x4, 0, ;). Now, condition l;) implies that there
exists ¢ > 0 such that for sufficiently small z

[Xp41,i (2X) = Xpg1,j @X)| > clzl, i, j € o, i # j.

Further, we choose a basis e, ..., ey which is an eigenbasis for A; so that eigen-
vectors eq, ..., ey, are O-eigenvectors, and ep41,...,en are eigenvectors with
non-trivial eigenvalues, and write Aj, ..., A, in this basis. The matrix M (¢) in
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this case is defined as My x M block of the matrix

n n
0x 1,j
(t+ E %ﬂ)ﬂ)]— E X1 A
=2

1+2

of the first My rows and the first M columns. Again, there exists b > 0 such that the
polynomial S;(t) = det(M (t)) does not vanish in the punctured disk of radius b
centered at the origin and we pick O < 79 < b. The remaining details of the proof are
practically identical to those in the case A # 0 (of course, the integral (1.9) in (2.14)
is replaced with the integral (1.10)).

The proof is complete.

Remark 1 We would like to note that the above proof holds when A is just a diagonal
matrix, not necessarily normal.

Remark 2 In general, limit projections depend on the choice of .

Remark 3 1t is easily seen that a similar proof holds when a point approaches
(1,0, ..., 0) not along a line, but along a smooth curve y(z) € C"~! which is not
tangent to any component of ¢/ at the origin.

3 Relations Between Component Projections P; ;: Proofs of
Theorems 1.15 and 1.20

Each projection &5 in the spectral resolution (1.13) is, of course, represented by the
integral

1
P = — / (w— Ay ldw,
27 "

where y;, is a contour which separates A from the rest of the spectrum of Aj.

Proposition 3.1 The limit projections P; ;. from Theorem 1.11 satisfy the following
relations:

PiaPjr=0ifi #j,i,j €. (3.2)
Y, Pin= P (3.3)

Proof The proofs for A # 0 and A = 0 are very similar, so we will give it for A # 0.
Fix . € 0(A1), A #0and j € I,. Let x € O - the neighborhood from the proof
of Theorem 1.11. Equation (2.5) gives an estimate for ;; (X), i € I, the eigenvalues
close to 1 of the operator A(y; (%)) = x1,j(X)A1 + - - -+ x,Ap. Recall that ;; (%)
are the reciprocals of the roots of Eq. (2.3) which in the proof of Theorem 1.11 were
denoted by 7; ;(1). In the proof of Theorem 1.11 we supresed the dependance of these
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roots on A, assuming that A = 1, but here it is appropriate to call them 7; ; ; (z). Recall
that y; 5 (X) was defined by (1.8). Write

T2 (X)) =1 j (D), Ji,ja(®) =1 j1X)yj1(X).
Of course,
Vi ja (&) = yj ().
It was mentioned above that since R; is an irreducible polynomial, every regular point
of {R; = 0} has multiplicity 1, so 7; ; (%) is a bounded analytic function of X in a

punctured neighborhood of the origin, and, therefore, can be extended to the origin to
become an analytic function in the whole neighborhood satisfying

7;,j,2(0) = 1.
It is also easy to compute that form =2,...,n
i 8)‘l XA, )
0Ti ja Ti,j, A(x)( L ( ) — ( ))
G = _ o (3.4)
X1, ) (x) xm Bx ( )
and, therefore, (3.4)implies
9xii 3)‘1/
9 0) - (0)
Tji 0) = 9xm (3.5)
0X;, A

Further, the projections P; 5 (¥;,;.4(X)) and P; 5 (¥;,j (%)) (defined by the integral
(1.9) ) satisfy

P; 5.1, j xGC)Pj (3, ja (X)) =0, i # j.

Since 7; j (X)X — 0 as ¥ — 0, Theorem 1.11 implies P; ;(y; j (X)) = Pj
and P; ; (3i,j,» (X)) = P » as £ — 0. This proves (3.2).

To prove (3.3) we fix a contour y;, that separates A from the rest of the spectrum of
Ajq. Suppose that x is close to (1/A, 0, ..., 0). Consider the matrix

Ax) =x1A1 4+ -+ x,A,.

Then 1 € 0(A1/)) and &7, is the projection on the 1-eigenspace of Aj/A. Also,
¥,/ separates 1 from the rest of the spectrum of Ay /A.

Of course, A(x) — Ay/rasx — 0, andx; — 1/A If |x; —1/A]+|x2]+- - -+ x5
is small enough, there are no spectral points of A;/X on y; /A, and, therefore,

1 . 1 1\
— (w—AX) dw - — w— —A; dw = P,
27i Jy, 21i Jy, A
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asx — (1/x,0,...,0).
If x; = x1,5,j(X), then the poles of (w — A(x))~! which lie inside yy /A are the
reciprocals of 7; ; ;. (%), i € I,. Now, by the residue theorem

1 - A
= | =A@ dw =Y PuaGia®) = Y Pias
T V2 l’EI}L il])L

and we are done.
O
We now concentrate on the case when n = 2. Of course, in this case I = {0}, and

the limit projections are the same for all x, (which is X in this situation).

Proposition 3.6 Letn =2, A € o (A1). Assume that conditions (a) and (b), or a) and
b) are satisfied at A when A # 0 or A = 0 respectively. For i, j € I, we have

PjaAdPin=0,1i# (3.7
If there exists a neighborhood O of the origin, such that at every regular point of
{R; = 0} N O, the range of P; ;(x2) consists of I-eigenvectors for A(y; ;((x2)) =

X1, (X2) A1+ x2A2, if A # 0, and , 0-eigenvectors of A(y; 0((x2)) = A1 +x2A2 —
x3,0,j(x2)1 when A = 0, or equivalently,

(AG02) = 1) Pratx) = P (AGj0(2) = 1) =0, 4 £ 0, (338)
A(yjo0((x2)Pjo(x2) = Pjo(x2)A(yj0(x2)) =0, A =0, (3.9

then

P},A <xi,k,j(0)A1 + Az)'Pj)L = 'Pj,)t <xi,k,j(0)A1 + Az)'P}’)L

Xi/,x,j(o)

=-H0p a0, (3.10)
P} o(42 = ¥, ,O1) P = Pjo(A2 = 25,01
" X 0
=500p o a=0 (3.11)

P},A (xi,x,j(O)Al + Az)Pi,)\ = Pj’k (xi,)\,j(o)Al + A2>Pi/,x

—0, i %], A0, (3.12)
P} (42 = 25 O Pio = Pjo(Az = x o ;O )P
=0,i#j, A=0. (3.13)
where P’ ; = limy, o dPg;;&)’ jel.
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Proof 1. 1. # 0.
We have for every x; close to O:

Pj s (x2)A(x15,j (x2), x2) = A(x1,3,j(x2), X2) P} 5.(x2). (3.14)

By Theorem 1.11 both sides of this equality are analytic functions of x> in a neigh-
borhood of the origin. Differentiate with respect to x»:

dPj;(x2)

dxy Ax1,j(x2), x2) + Pja(x2)(x] 5 ;j(x2) A1 + A2)

Pj5.(x2)

d
= A(x1,2,j(x2), x2) dx + (Xﬂ,x,j(xz)Al + A2) P} ;.(x2).

Passing to the limit as x, — 0 and using P; 3 A1 = A1Pj 5 = AP; ;, we obtain
1 / / 1 / /
X,Pj’)”A] + )\xl,)h,j(o),Pj,)\ + Pj,AAZ = XAIIPJ'JL + )Lxl,)\’j(o),Pj,)\ + AZPj,)U

so that

1 1
n ;-’)\Al +Pj A2 = XAI,P}’A + A2Pj ;.

Multiply the last equality from the left by P; 5 withi # j, i € I). Since P; A =
A1 P; 5 = AP; 5, we obtain

1
XPI-J\,P},)LAI = 'P,‘,)LP}’;L + Pi AP .
yeilding

1
77,',)\77}’)\<XA1 — 1) = Pi 2 A2Pj .

Multiply the last equality by P; ; from the right. Since

1
(XAl — I)Pj,)L =0,

and 7)}2’ , = P, we conclude that
Pi,AAZPj,)» =0,

and (3.7) is proved for A # O..
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If (3.8) holds, then

Pj 5 (x2)A(x1,2,j(x2), x2) = Pj x(x2) (3.15)
A(xy,p,j(x2), x2) Pj 5. (x2) = Pj(x2). (3.16)

Differentiating twice (3.15) and (3.16) with respect to x, and passing to the limit
as xp — 0 yields

1Py, A+ 2P (), ()AL + Ad) JOPsAL= Pl
X JOAIP 0+ 20x), [OAL + ADP), + AP =P,

d?P; ;. (x2)

e Moving the righthand side of the last two equations

where P}” , =limy,

to the left gives

PUL(EA = D) 2P, (x, L O)AL + Ag) +x], ()P4 =0, (3.17)
x5 JOVAP .+ 2(x, (O)A + AP, + (LA — DPY, = 0. (3.18)

Multiply (3.17) from the right by P; 5 and by P; ;, i # j.

Again, since
(%Al - 1)7% = PMGAl — 1) =0, [ €,

ProAL = A1Pr, = AP, Lely
PiiPia=PjsPin=0,1,jely, i # ],

we obtain

xl )\](0)

77; A(xl )L](O)Al +A2)'Pl A==

P (¥ @A1+ ) Pis =0, i j € L i £,

PJ)\

Similarly, multiplication of (3.18) from the left by P; ; and by P; ; results in

xlx ,(0)

P (¥, A1+ 42) P, =

Pis (¥ O+ A )Py, =0, i e by i #

P

which finishes the proof for A # 0.
Iar=0.
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The proof in this case is similar and goes along the following lines.

(Al + x4 — X3,o,j(X2)1) Pjo(x2) = Pj,o(X2)(A1 +x24A2 — X3,0,j(X2)1),
(A2 - xio’j(O)I)Pj,o + AP, o =P, AL+ Pj,o(Az - xg’oyj(O)I).
Multiply the last relation from the right by P; o and use
PioPio="PioPjo=0,i#j, AiPro="PoA1=0,1¢€lp.
Since
Pjo(x2)Pio(x2) =0, i # j, P} oPio=—PjoPio
we obtain
0= —APjoPlo = AP} o Pio = PjoA2Pio,

which is (3.7) for A = 0.
Finally, under the assumption of (3.9), the proof of (3.11) and (3.13) is obtained
the same way as the one of (3.10) and (3.12) by twice differentiating

Pj,o(X2)<A1 + X2A2) = x3,,0,j (x2) Pj 0(x2)

(A1 +x242) P o(x2) = 3,0, (£2) P 0(x2)

with respect to x2, passing to the limit as x, — 0, and multiplying by P; o and P; o.
We are done. O

Obviously, (3.8) and (3.9) hold when every spectral component passing through
(1/x, 0) has multiplicity 1.

Proof of Theorem 1.15 1. A # 0
Fix j € I,. In the results of the previous section we were interested only in the

roots of (2.3) y
Ri(tx1;,j(x2), Tx2) = 0. (3.19)

which were close to 1. Now we will consider all the roots of this equation. Observe
that if x5 is small enough, all these roots are close to the ratios 1./ where i € o (Ay).
Moreover, since condition b) holds at every spectral point of A1, the multiplicity of each
of these roots is 1 (when x; is close to 0). We denote them by 7; 5 ; . (x2), 1 <i <ss,,
where p is defined by

A
Tjaipn(x2) > —, asxy — 0, (3.20)
u

which, of course, implies i € I,,. It was mentioned above that 7 ;, ; . (x2) are analytic
functions of x; in a neghborhood of the origin. Obviously, 7; 5 jx(x2) = 1.
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Further, (1.9) defined projections P; ; (x2). We define

Pjsipn(x2) = Py (Tj i x2). (3.21)

It follows from Theorem 1.11 and (3.21) that P; ; ; ,, (x2) are analytic operator-valued
functions of x; in a neighborhood of the origin, and

lim Pj,)h,-’u(xz) = Piall' (322)
x—0
Also
dPji, d P (Tjrip X2) At jipn(x2)
#(xz) — LAV AL 7S Tj,k,i,;t(xz) +x2¢ ,
dxy dxy dx;

so that (3.5) and (3.20) imply that for A = p we have

dPj i) . dPjin ,
SRR gy = fim LR () = P (0). 3.23
™= 0) le ) ™= (x2) ,,)L( ) ( )

Recall that projections (3.21) appeared in Proposition 3.1 for A = u. We renamed
them here, since we need these projections corresponding to all roots of (3.19) and want
to indicate to which reciprocal of a pointin o (A1) the corresponding point of the proper
joint spectrum converges. Note that 7; ; ;3 (x2) = 1 implies P;j ; ;1 (x2) = P} ;. (x2).

Since for i € I, components {R; (x1, x2) = 0} have multiplicity 1 in the projective
joint spectrum , the rank of P; ; ; ,,(x2) is equal to 1 for every i € I) N I,. For other
i ¢ I, the rank of P; ; ; , is equal to m; - the multiplicity of the spectral component
{R; = 0}.

As it was mentioned above, for a rank 1 projection (3.8) holds, and, therefore, if A
is small, we have

(xl,x,j(xz + A)AL 4 (2 + A)Ay — 1) Pj(x2+ A)=0.

We write this relation in the form

1 —1
o (w— 1)<w —x1,(2 + M)A — (2 + A)A2> dw=0, (324
14

where, as above, y is a circle centered at 1 which separates 1 from all other eigenvalues
of xq,;,j(x2)A1 + x2A2, and, therefore, the same is true for all x; 5 ;(x2 + A)A; +
(x2 + A)A; for all sufficiently small A.
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Let us write (3.24) as

! —1
0= 27i (w— 1)<w — X1, (02) A1 — szz)

1
2w ()
X [[ - <(xi,;\,j(x2)A1 + A2)A + (Z M}{+Ak A
k=2 .
_17-!
x(w — x5, (x2)Aq _szz) i| dw
l p—
o)
i J,
s oo (k)
xp5. 1 (2)
X Z |:<(x{,k,j(x2)Al + Az)A + (Z #Nc) Al)
=0 = |
IR
X (w — X1, (x2)A1 — x2A2) :| dw. (3.25)

The right hand side of the last expression is an analytic function of A in a small
neighborhood of 0, so that all the derivatives at A = 0 vanish. We will need only the
first and the second ones. Here are the corresponding relations.

1 —1
[ (=) (0 = 0 (DAL = x242) ()AL + Ad)
27 v

—1
x (w — X1 ()AL — szz) dw = 0. (3.26)

1 -1
s [ (= 1) (w—x1,000A1 —1242) { ((xi,k, SO AL+ A2)
Tl y

—1 —1
X (w—X1,x,j(X2)A1—X2A2) (XE,,\J(X2)A1+A2)(w—X1,A,j(X2)A1 —X2A2) )

x!'; j(xz) -1
S (w = )AL - 0242 }dw =0 (3.27)

We will now express relations (3.26) and (3.27) in terms of projections P; ; ; . (x2).

The spectrum of the matrix xp; j(x2)A1 + x2A2 consists of complex numbers
W j2.i,v(x2) which are reciprocals of 7;; ; ,(x2), v € o(Ay) and, possibly, 0. If x;
is close to 0, the latter might occur only when 0 € o (Aj). If 0 is an eigenvalue of
X1,a,j (x2) A1 + x2A3, we include it in the formulas below as 1t 5 ; 0(x2).

As mentiioned above, each eigenvalue w5 ;v (x2), i € I, v = Ais close to 1.
These eigenvalues tend to 1 as x, — 0 (and, of course, w3, ja(x2) = 1 for all x).
All other 1 5, ;v (x2) stay away from 1 as x, — 0, that is for some positive constant
a

|H,j))hi’,,(xz) — 1| > a, ifi e I)\ and v ;ﬁ )\., ori ¢ I)\. (328)
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The Jordan decomposition of the matrix A(x2) = x1 3, (x2) A1 + x2 A3 consists of
Jordan blocks which have sizes between 1 and m; corresponding to eigenvalue (4 3 ;v
(we consider an eigenvector which is not in a Jordan cell of dimension higher than 1
as a Jordan cell of size 1), so for w close to 1 we have

(w —x1j(x2)A1 — X2A2)
P iax P ia(x
_ i jon (X2) n Z i i (X2)

w—1 el W Wi (x2)

.
mi—l (Mj,x,i,u(m)l —x1,,j(x2) Ay —szz) Pjsiv(x2)

P3NP IDY

r+1
veo (Ay),v#riel, r=0 (w — /Lj,;hi,v(xz))

)

(3.29)

The integrands of (3.26) and (3.27) are meromorphic functions in w in a neighbor-
hood of w = 1. We use (3.29) to compute their residues at 1. A simple but tedious
computation shows that

-1
Res| _ [w=1(w—x15,00A1 = 3242) " (6], ()AL + A)
-1
x(w —x1,5,j(x2) A1 — x2A2) ]
= Pj 32 (2)(x] 3 j(x2) A1 + AP ja(x2) =0 (3.30)
Passing to the limit as x, — 0 we obtain

Pio(xi, j(0AL + A)Pj, =0, (3.31)

which is the first relation claimed in Theorem 1.15.
To simplify the computation of the residue of (3.27) at w = 1 let us introduce the
following operators

A(x2) = x; ;j(x2) A1 + Ag,

Pisi
S(x2) = j,x,j,x(xz)%’(xz)( Z M”M)%(xz)l’j,x,j,x(m),

iel,it) L= jain(x2)

S (x2) = Pjy ja(x2)Z(x2)

r
mi—l (/J«j,k,i,u(x2)1 —x12,j(x2) Ay —szz) Pjsiv(x2)
(X Ty )
veo (Ay).v#hiel, r=0 (1 — ,uj.)“,"v(xz)>

XA (x2) Pj 5., j1.(x2).
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A straightforward computation using (3.29) and (3.30) shows that (3.27) turns into

xi/,)\,j(xZ)

S (x2) + S (x2) + 5

Pj,ji(x2)A1Pj 5 ja(x2) = 0. (3.32)

Our next step is finding the limits of each of terms of (3.32) as x; — O.
Ifi € I), wj,ix(x2) = lasxy — 0, and condition (b) implies that ,u’j,/\’i’k(O) #=
0, so we have

Pj 3i0.(x2)
A1(x2) = Pjojan()Z0) | > IR B (x3) g (02)

ielidt) L —pjain(x2)
Pjain(x2)
= Pj.j(x2)%(x2) L2l B2 P 2 (x2)
o ie%':;&j _“/j,;\,i,/\(o)x2+0(|x2|2) I

. Z P, jxn(x2)Z(x2) P} 3.i0(x2)

K74 P
x2(=; 5 :5,.(0) +o(1)) (x2) P} 1.j2(x2)

i€l i#]j
Z:%%MWW%W+M@WM+OWﬁWWEMﬂm
- !
il i) x2(=1; 5.:.,(0) +o(1))

XK (x2) P} 5. j(x2).
Write
D(x2) = Pj ;. j 12 (x2)Z0)P; 5. 1 (x2).

Since P; 3 A1Pi s = APjaPi =0fori, j €Iy, i # j,relation (3.7) in Propo-
sition 3.1 implies

d(0) =0.
Also, (3.23) and (3.12) yield
®'(0) =0,
and, hence,
®(x2) = O(2f?), asxz — 0,

resulting in
lim .#(x2) = 0. (3.33)
x—0
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To evaluate the limit of .%% (x») we observe that since A is normal, Theorem 1.11
amd (3.20) impliy that for A £ v, i € I, and

((jiwx2) ] = x15,j(x2) A1 — X2A2)" Pj ;. i 0(x2) = Oforr > 0asxy; — 0.

Since by (3.28) we have |1 — ;5 ; 1 (x2)| > a > 0, and, since by Theorem 1.11 all
projections P; ; ; ,(x2) are bounded, all terms in the expression of .73 (x2) withr > 0
tend to 0 as x — 0. This yields

xlzigoyz(xz)zpj,)\Az Z Z APjs.  (3.34)

veo (Ay),v#riel, - MJ Aoty V(O)

Equations (3.3) in Proposition 3.1, (3.20), and (3.34) now give

. AP
lim 7 (x2) = P} A2 Z i AsPj s = AP AT A2 Pj 5.
x2—0 —
veo (Ar),v#EA
(3.35)
Finally, passing to the limit in (3.32) as x» — 0, (3.33), and (3.35) along with
PiaAr = AiPj, = aPj,, P, =Pj,, resultin

IA j( )
PjrA2T A2Pj s + T

JoA = 0,
which finishes the proof of Theorem 1.15 for A # 0.
ILA=0

In this case (1.10) gives the expression for P; o(x2).

The spectrum of A + x A3 consists of the roots of

Ri(1,x2,2) = Rj(x2,2) = 0.

If x; is close to 0, we denote these roots by x3, ;(x2), where v € o(A}) is the
eigenvalue of A; to which x3 ,,; (x2) converges as x; — 0,and i € I,. Each x3 ,,; has
multiplicity m;, and, in particular, this multiplicity is equal to 1 fori € Iy.

Fix j € Iy and x3 close to 0. Similar to what we had in the case A # 0, here

(A1 + @2+ A) A2 = 330,502 + M) Pyo(2) =0,

if A is small enough. An analog of (3.24) in this setting is

-1
[ w(w+x0,00+ AN = A1 = (2 + A)Az) dw=0,  (3.36)
2mi
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and, as above, y separates 0 from the rest of the spectrum of Ay +x2A2 —x30,j(x2)1.
Condition b) implies that there is a > 0 independent of x; such that y can be taken
to be circle centered at the origin of radius a|x3|.

Following a similar line of presentation as for A # 0, we write (3.36) as a power
series in A:

- -1
0= 2ni /y w((w +x3,0,j(x2) 1 — Ay — x2A2>
(k)
x3,0,;(*2)
X |:I - {(Az — xéyo’j(xz)])A _ (Z +Ak> I}
k=2

—17-1
X((w +X3,0,j(X2)1—A1—x2A2) :| dw

! /w((w +x ()] — A X2 A >_1
= - 3,0,j(X2)1 — A1 — X2A2
27i J, /
00 00 (k)
(x2)
Y H(Az — X0 ) 1)A — (Z % ") 1}
[=0 k=2

1
~1
x ((w +x3.0,(x2)] — Ay — szz) } dw. (3.37)

and equate the coefficients for powers of A to 0. Again, we are interested in the the
coefficients for A and AZ.
In this case the inverse is given by:

~1
((w +x3,0,j(x2) — Ay — X2A2)

_ Pjo(x2) n Z P;o(x2)

w w + x3,0,j (x2) — x3,0,i (x2)

iely, i;éj

1
N Z Z Z Al + xA) — X3,u,z(x2)1) P o(x2) ) (3.38)

I+1
veo(A),v£0iel, =0 (w + x3,0,j (x2) — X3, (x2))

We substitute (3.38) into (3.37) and evaluate the residues of the coefficients for A
and AZ. The details of this evaluation are similar to the ones in the case A # 0 and are
omitted.

The proof of Theorem 1.15 is complete.

Our next result shows that under the assumptions of Theorem 1.15 the limit compo-
nent projections coming out of the joint spectrum o, (A1, A1 A3) coincide with P; ;.
In a similar way as in our previous consideration, it follows from the implicit
function theorem that if 0 (A1, AjAy) satisfies conditions (a) and (b), then for each
spectral component of o), (A1, A1 Az) passing through (1/4, 0) the first coordinate is
expressed as an analytic function of the second one. To distinguish from the previous
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case when we considered the pair (A1, Az), we denote the coordinates of a spectral
pointin o,(A1, A1A2) by (z1, 22), so that the in the jth component passing through
(1/A,0), z1 = z1,3,(z2). Similarly, we denote by Q; 5 (z2) the projection

-1
0j:(z2) = <w — 21,5,/ (22) A1 — ZzA1A2> dw,

27 Sy 11=3;

where the contours {w : |w — 1| =4 7} separates 1 from the rest of the spectrum of
(zl,;\,j (z2)Aq +ng1A2), asitwasin (1.9). Since A1 is normal, Theorem 1.11 implies
that there are limits Q; ; of Q; ;(x2) as xo — 0.

Lemma 3.39 Suppose that the pairs of matrices (A1, Az) and (A1, A1A2) satisfy the
conditions of Theorem 1.15, and let A € 0 (A1), A # 0. Then P; ) = Q; ;.

Proof First we observe that relation (3.31) (the first relation in Theorem 1.15) implies
that for j € I, the compression of A; to the range of P; ; is xi rj (0)[72(73] .)» Where
IR (p; ;) is the identity matrix on the range of P; ;.. This implies that (— )cl . (0)), je
I are the eigenvalues of the compression of A; to the A-eigenspace of A1, which by
(3.3) is the sum of the ranges of P; ;. Each of these ranges is of dimension 1, and by
condition b) all numbers (xi, A j(O)) are different. Let ej, j € I, be an eigenvector
for P; 4 A2P; ;.. Then these eigenvectors form a basis of the A-eigenspace of Aj.

Similarly, applying Theorem 1.15 to the pair (A1, AjA>) we obtain that the com-
pression of AjA> to the A-eigenspace of A has (—z’l_’/\_j (0)) as eigenvalues of
multiplicity one each.

Propositions 3.1 and 3.6 imply

k;\ k)\ k}\
P A1A Py, = ij,k A1A; 27’]‘,1 = A ij,)\.Azpj,)u
j=1 j=1 j=1

so that for j € I,
@AAlAQQ)LEj = Al’Pj,AAz”Pj’Aej = —x{’)hj(O)Alej = —Ax{’)\‘j(O)ej.

This shows that —Axi 2 j(O), j € I, form the spectrum of the compression of A1A;
to the A-eigenspace of Ay and that e;, j € I form the corresponding eigenbasis. Of
course, this implies the statement we are proving. O

Proof of Theorem 1.20 Let . # 0. Apply Theorem 1.15 to each of the pairs (Af, A»)
and (A, AjA») and use Lemma 3.39. We obtain

PjirA2TyArPj s =

PiaA1A2 T A1APj ) = —— 2 Pija-
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It follows from the definition of the operator T}, (1.14), that

Ty Ay = AT, = —( 3 97’#) FAT, = —1 + P, + AT,
Heo (A1),

Since P; ; A1 = APj ;, this implies

—)»P/,)\A%P/,)\ + )\'Pj,AAZQAAZ,Pj,A + )»27)./,)\A2TA27DJ")L
Z/l/,k,j(o)
=——5Pix
)‘zxi/,)»,j(o) — Z/I/,A,j(o)
2

—)»'Pj,)LA%’Pj,)L + )»'Pj,)LA2< Z PI,A)Azpj,A =

lEl;L

Pj s

)szi/’)hj(()) - Z/I/,A,j(o),P

—)\'Pj,)VA%'Pj,)» + APj 2 A2P; . AP = > i

Now, 77]2- ,, = Pj s results in

2
'Pj’)LAz'Pj’)LAz'Pj,)L = (Pj,AAZPj,A> B
and (3.31) yields

2 (0) +24(x]; () = 3%x],(0)
21 Fia

PjrAPj . =

The proof is complete. O

4 Application to Representations of Coxeter Groups: Proof of
Theorem 1.22

Recall that a Coxeter group is a finitely generated group G with generators g1, ..., g,
satisfy the following relations:

(gig)™ =1, i,j=1,...,n,

where m;; = 1andm;; € NU{oo}, m;; > 2 wheni # j.Itis easy to see that to avoid
redundancies we must have m;; = m ;, and that m;; = 2 means g; and g; commute.
The set of generators {g1, ..., gn} is called a Coxeter set of generators, and m;; are
called the Coxeter exponents. The matrix ||m, j H is called a Coxeter matrix. A Coxeter
group with 2 generators is called a Dihedral group. The monographs [1, 20, 27] are
good sources for information on Coxeter groups.

Let G be a Coxeter group with Coxter generators gi,...,gs, and p : G — V
be a finite dimensional unitary representation of G. Suppose that Ay, ...., A, is a
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tuple of N x N matrices. In this section we investigate what information about
relations between Ay, ..., A, can be obtained from the fact that the joint spectrum
op(p(g1)s--., p(gn)) is contained in 0 (A1, ..., Ap).

Of course, for every pair of generators g;, g ; the representation p generates a unitary
representation of the Dihedral group generated by g; and g ;. Itis well-known that every
irreducible unitary representation of a Dihedral group is either 1- or 2-dimensional,
and by Maschke’s Theorem ([31, 32]) that every representation is a sum of irreducible
ones. The one dimensional representations of a Dihedral group are:

p(g1) =p(g2) =1,0rp(g1) =p(g2) =—1

for an odd order group. For an even order group there is an additioal one-dimensional
representation

pg) =1, p(g2) =—1.

Two-dimensional irreducible representations are equivalent to those generated by

| .
p(g1) = [0 _(1)] p(g2) = [Cosa Sma],

sino —cos«

where 0 < « < . If the group is finite, « is a rational multiple of m. It is easy to
see (cf [8]) that the proper joint spectrum of images of the Coxeter generators of a
Dihedral group under an irreducible representation could be either a line of the form
(one-dimensional)

{(x1,x2) @ xp £xp = 1},
or a “complex ellips" (two-dimensional)

{(x1,x2) : x% + 2(cosa)x1x2 + x% =1},
and the joint spectrum of (p(g1) and p(g1)p(g2)) could be
{x1 £xp = %1}

for one-dimensional representations, and

{)cl2 — x22 + 2(cosa)xp = 1}
for two-dimensional.

Proof of Theorem 1.22 Consider 2 < i < n. Condition (%) in the statement of Theo-
rem 1.22 implies that every line and ellipse in the joint spectrum of p(g1) and p(g;) has
multiplicity one, and, therefore, by condition (II) in Theorem 1.22, o,(A1, A;) and
op(A1, A1A;) satisfy Theorems 1.15 and 1.20 at (%1, 0). Details of the local analysis
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near each of them are similar, so we concentrate on (1, 0). Following the notations
of the previous section we denote by P; | the component projections from Theorem
1.11. We will apply Theorem 1.20.

First suppose that the jth component of o), (A1, A;) which passes through (1, 0) is
the line

x1xx =1

Then the corresponding component of the joint spectrum of A; and AjA; is also a
line, and x1;(x2) = 1 £ x2, z1j(x2) = 1 £ 22,0 that x{; = 2{; =0, (x{,)* = L.
Theorem 1.20 now implies

'PjJA%Pj,] =Pj1. “.1)

Let the jth component is the ellipse
x12 + 2(cosot)x1xz + x% =1.
Then the corresponding component of o, (A, A1 A>) is given by
Z% — z% + 2(cosoe)z2 =1.
In this case

x{;(0) = 2;(0) = —cosa, x{;(0) = —1 +cos? a,

z’{j 0) =1 —cos?a,
and Theorem 1.20 for A = 1 shows that (4.1) holds in this case too.

Thus, (3.3) shows that the compression of A% to the 1-eigenspace of Aj is the
identity. Since A is normal, the projection &1, onto this subspace is orthogonal.
Since the norm of A» is equal to 1, this implies that every 1-eigenvector of A is a
1-eigenvector of A%.

A similar proof shows that every (—1)-eigenvector of A is a 1-eigenvector of A%.

Further, every component of the joint spectrum of Coxeter generators under a rep-
resentation of a Dihedral group, either an ellipse, or a straight line, passes the same
number of times through (£1, 0) and through (0, £1). That is, if #; and #, are the
multiplicities of 1 and -1 as eigenvalues of p(g1), and u1 and u, are the same numbers
for p(g2), then

H+tH=u+u.

Now, condition II) in the statement of Theorem 1.22 implies that the sum of multi-
plicities of eigenvalues 1 and — 1 of A; and A; are the same. This sum is equal of
the sum of dimensions of all Jordan cells in the Jordan representation of A; corre-
sponding to eigenvalues +1 and, of course, to the multiplicity of eigenvalue 1 for A%.
Thus, the sum of 1- and (—1)-eigenspaces of A is exactly the invariant subspace for
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Ai2 corresponding to eigenvalue 1, and the restriction of Al.2 to this subspace is the
identity. Since the square of a Jordan cell which corresponds to a non-zero eigenvalue
and has dimension higher than 1 is never diagonal, we see that £=1-eigenvectors for A
and £1-eigenvectors of A; span the same subspace, which we call L, that is invariant
under the action of both A; and A;. As mentioned above, every component of the
joint spectrum of p(g1) and p)g» passes through (%1, 0), so that the dimension of L
is equal the dimension of p. Of course, L being spanned by =+ 1-eigenvectors of Aj is
independent of i = 2, ..., n, and (1) is proved.

The fact that A; ‘ are unitary and self-adjoint is straightforward. Indeed, it follows

from L being spanned by =+1-eigenvectors of A; and from a simple fact that for
an operator of norm 1 any two eigenvectors corresponding to different unimodular
eigenvalues are orthogonal. Since every component of the joint spectrum of Coxeter
generators of a representation of a Coxeter group passes through (£1, 0, ..., 0), we
see that (1.23) holds. The fact that restrictions of A;| generate a representation of G
L
follows from the Theorem 1.1 in [8] stating that for a representation of a pair of unitary
matrices Uy, U, their joint spectrum determines a number m such that (U U>)" = 1
(m is infinite, if there is no such relation). Thus, the Coxeter matrices of p and p are

the same, and (2) is proved.
Finally, (3) follows from (1.23) and Theorem 1.2 in [8]. We are done.
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