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Abstract
For a tuple of square matrices A1, . . . , An the determinantal hypersurface is defined
as

σ(A1, ..., An)

=
{
[x1 : · · · : xn] ∈ CP

n−1 : det(x1A1 + · · · + xn An) = 0
}
.

In this paper we develop a local spectral analysis near a regular point of reducibility
of a determinantal hypersurface. We prove a rigidity type theorem for representations
of Coxeter groups as an application.

Keywords Projective joint spectrum · Detarminantal manifold · Coxeter groups ·
Representations of coxeter groups

Mathematics Subject Classification Primary 47A25 · 47A13 · 47A75 · 47A15 ·
14J70; Secondary 47A56 · 47A67

1 Introduction and Statements of Results

Given n square N × N matrices, the determinant of their linear combination,
det(x1A1 + · · · + xn An), (such linear combination is called a pencil) is a homoge-
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neous polynomial of degree N in variables x1, ..., xn . Zeros of this polynomial form an
algebraic manifold in the projective space CPn−1. This manifold is called the deter-
minantal manifold (or determinantal hypersurface) for the tuple (A1, . . . , An). We
use the following notation

σ(A1, ..., An) =
{
[x1 : · · · : xn] ∈ CP

n−1 : det(x1A1 + · · · + xn An) = 0
}
.

An infinite dimensional analog of determinantal manifold, called projective joint
spectrum of a tuple of operators acting on a Hilbert space was introduced in [38]. For
operators A1, . . . , An acting on a Hilber space H it is defined by

σ(A1, . . . , An)

=
{
[x1 : · · · : xn] ∈ CP

n−1 : x1A1 + · · · + xn An is not invertible
}
.

To avoid trivial redundancies it is frequently assumed that at least one of the oper-
ators is invertible, and, thus, can be assumed to be the identity. In what follows we
always assume that An+1 = I . It was shown in [35] that a lot of information can be
obtained from the part of the joint spectrum that lies in the chart {xn+1 �= 0} (and,
therefore, we can take xn+1 = −1). We call this part the proper joint spectrum and
denote it σp(A1, . . . , An),

σp(A1, . . . , An) =
{
(x1, ..., xn) ∈ C

n : x1A1 + · · · + xn An − I

is not invertible
}
.

When the dimension of H is finite the projective joint spectrum coincides with
the corresponding determinantal manifold. This is why we use the same notation in
both cases. In this paper we concentrate on the finite dimensional case, so we will use
“determinantal manifold” and “projective joint spectrum” interchangiably. Of course,
in the finite dimensional case

σp(A1, . . . , An) =
{
(x1, , . . . , , xn) ∈ C

n : det(x1A1 + · · · + xn An − I ) = 0
}
.

Matrix pencils have been under investigation for a long time. Ultimately this line
of research led Frobenius to laying out the foundation of representation theory, cf
[17–19].

One of the basic questions regarding determinantal manifolds was when a hyper-
surface in the projective space admits a determinantal representation. The number
of publications in this area is very substantial. Without trying to give an exhaustive
account of the results here we just refer a reader to [4, 9–14, 24, 25, 28, 29, 37] and
references there.

In this paper we investigate joint spectra from a different angle: given that an alge-
braic hypersurface inCPn has a determinantal representation, what does the geometry
of the surface tell us about relations between operators in a representing pencil? This
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line of research was paid much less attention until recently. The only early result we
can mention is the one by Motzkin and Taussky [33]. The situation changed in the last
decade when joint spectra have been intensely scrutinized exactly from this point of
view (see [2, 3, 5, 8, 15, 16, 21–23, 30, 34–36, 38], and references there).

In particular, papers [34, 35] contain a local spectral analysis near the reciprocal of
a spectral point of one of the operators when this point does not belong to the singular
locus of the joint spectrum. Results of this analysis led to a spectral characterization of
representations of non-special finiteCoxeter groups in [8] and ofHadamardmatrices of
Fourier type in [34]. Non-singularity was essential in these cases. Here we concentrate
on the local spectral analysis in a neighborhood of a point at which the joint spectrum is
reducible, and, therefore, this point belongs to the singular locus of the joint spectrum.
One of the difficulties of carrying out spectral analysis in this setting is that, in general,
spectral projections related to operator families analytically depending on parameters
(in our setting parameters are coordinates (x1, . . . , xn) of a point in the joint spectrum)
might blow up when approaching a singular point. It turned out that if one of the
matrices is diagonal, and the joint spectrum satisfies regularity conditions (a) and (b)
introduced below, then the limit projections exist when approaching a singular point
along a curve in a spectral component that is non-tangential to the singular locus.

Write

σ(A1, ..., An,−I ) = {
R1(x1, .., xn, xn+1)

m1 ...Rs(x1, ..., xn, xn+1)
ms ,= 0

}
, (1.1)

where R1, ..Rs are irreducible polynomials.
Suppose that λ ∈ σ(A1). We introduce the regularity conditions at λ, which we

mentioned above, separately for λ �= 0 and λ = 0..
(1). λ �= 0.

In this case

σp(A1, ..., An) = {
R1(x1, .., xn, 1)

m1 ...Rs(x1, ..., xn, 1)
ms = 0

}
. (1.2)

Let us denoted by Iλ the set of indexes 1 ≤ j ≤ s corresponding to the components
of the proper projective spectrum passing through (1/λ, 0, ..., 0,−1):

Iλ = {
1 ≤ j ≤ s : R j (1/λ, 0..., 0, 1) = 0

}
. (1.3)

We call the following conditions the regularity conditions at λ:

(a)
∂R j
∂x1

(1/λ, 0, ..., 0, 1) �= 0, j ∈ Iλ
(b) For every pair i �= j, i, j ∈ Iλ the vectors ∂Ri (1/λ, 0, ..., 0, 1) and

∂R j (1/λ, 0, ..., 0, 1) are not proportional, where

∂Rl =
(

∂Rl

∂x1
, . . . ,

∂Rl

∂xn

)
.

(2). λ = 0.
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In this case we pass to the chart {x1 �= 0} (and we take x1 = 1 here). Let us denote
by σ̃p,1(A1, ..., An) the part of the projective joint spectrum that lies in this chart:

σ̃p,1(A1, ..., An)

=
{
(x2, ..., xn, xn+1) ∈ C

n : A1 +
( n∑

j=2

x j A j

)
− xn+1 I is not invertible

}
.

If 0 ∈ σ(A1), then 0 ∈ σ̃p,1(A1, ..., An), and σ̃p,1(A1, ..., An) is given by

σ̃p,1(A1, ..., An) = {R1(1, x2, .., xn+1)
m1 ...Rs(1, x2, ..., xn+1)

ms = 0}. (1.4)

Similarly, we denote by I0 the set of indexes corresponding to the components of (1.4)
passing through the origin

I0 = {
1 ≤ j ≤ s : R j (1, 0, ..., 0) = 0

}
. (1.5)

The regularity conditions here are:

(ã)
∂R j

∂xn+1
(0) �= 0, j ∈ I0.

(b̃) For every pair i �= j, i, j ∈ I0 the vectors ∂Ri and ∂R j at the origin are not
proportional, and here ∂Rl = (

∂Rl
∂x2

, . . . ,
∂Rl

∂xn+1

)
.

In both cases λ �= 0 and λ = 0 we write x̂ = (x2, ..., xn).

Let O be a small neighborhood of (1/λ, 0, ..., 0) ∈ C
n , if λ �= 0, or of the origin

in Cn , if λ = 0. Write

R̃ j (x1, ..., xn) = R j (x1, ..., xn, 1) if λ �= 0

R̃ j (x2, ..., xn, xn+1) = R(1, x2, ..., xn+1) if λ = 0.

The singular locus of the surface
{∏

j∈Iλ R̃ j = 0
} ∩ O is an algebraic manifold in

O which we denote by U . Of course, geometrically U coincides with singular locus
of σp(A1, ..., An) or σ̃p,1(A1, ..., An) in O, but they have different multiplicities: the
multiplicity of each regular point of

{∏
j∈Iλ R j = 0

}
is 1.

Conditions (a) and (b)
(
ã) and b̃) respectively

)
imply that U has codimension

greater than 1. Let us denote by Ũ the orthogonal projection of U onto the hyperplain
{x1 = 0} if λ �= 0, and on the hyperplain {xn+1 = 0}, if λ = 0,

Ũ = {(x2, ..., xn) : ∃(x1, x2, ..., xn) ∈ U}, λ �= 0,

and

Ũ = {(x2, ..., xn) : ∃(x2, ..., xn+1) ∈ U}, λ = 0,

then Ũ is a set of positive codimension in the plain {x1 = 0} for λ �= 0, and in the
plain {xn+1 = 0} when λ = 0.
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Let j ∈ Iλ. Since by condition a) when λ �= 0,
(
by ã), when λ = 0

)
,

∂R j
∂x1

(1/λ, 0, ..., 0) �= 0,
( ∂R j

∂xn+1
(0, ..., 0) �= 0

)
, by the implicit function theorem,

in a small neighborhood of the origin in C
n−1, O(ε j ), the first coordinate x1 ( the

(n + 1)st coordinate xn+1, respectively) can be expressed as an analytic function
x1,λ, j (x̂) (xn+1,0, j (x̂) when λ = 0), of x̂ = (x2, ..., xn) satisfying

x1,λ, j (0) = 1/λ, R̃ j (x1,λ, j (x̂), x̂) = 0, x̂ ∈ O(ε j ), if λ �= 0,

xn+1,0, j (0) = 0, R̃ j (x̂, xn+1,0, j (x̂)) = 0, x̂ ∈ O(ε j ), if λ = 0. (1.6)

Conditions a) and b) ( ã) and b̃) ) imply that in O(ε j ) we have 1 − x1,λ, j = O(|x̂ |)
(respectively xn+1,0, j = O(|x̂ |) for λ = 0), so that there are d j > 0 such that

|1 − x1,λ, j (x̂)| ≤ d j |x̂ |, x̂ ∈ O(ε j ), λ �= 0

|xn+1,0, j (x̂)| ≤ d j |x̂ |, x̂ ∈ O(ε j ), λ = 0. (1.7)

Let λ ∈ σ(A1), λ �= 0, j ∈ Iλ. Suppose that

y j,λ(x̂) = (x1,λ, j (x̂), x̂) (1.8)

is a regular spectral point which belongs to the j th component {R̃ j = 0}, and δ j (x)
is so small that no eigenvalue of x1,λ, j (x̂)A1 + x2A2 + · · · + xn An other than 1 is in
the δ j (x)-neighborhood of 1, we denote by Pj,λ(x̂) the projection

Pj,λ(x̂) = 1

2π i

∫

|w−1|=δ j (x)

(
w − (x1,λ, j (x̂)A1 + · · · + xn An)

)−1

dw. (1.9)

If λ = 0 is in the spectrum of A1, x = (x̂, xn+1,0, j (x̂) is in the j th component
of σ̃p,1(A1, ..., An), and δ j (x) is small enough so that no non-zero eigenvalue of
A1+ x2A2+, . . . ,+xn An − xn+1,,0, j (x̂)I ) is in the δ j (x)-neighborhood of the origin,
the corresponding projection Pj,0(x̂) is given by

Pj,0(x̂) = 1

2π i

∫

|w|=δ j (x)

(
(w + xn+1,0, j (x̂))I − A1 − · · · − xn An)

)−1

dw. (1.10)

Our first result is

Theorem 1.11 Let (A1, ..., An) be a matrix tuple, such that A1 is a normal matrix.
Suppose that λ ∈ σ(A1), and that σp(A1, . . . , An), if λ �= 0, or σ̃p,1(A1, . . . , An),
if λ = 0, satisfies conditions (a) and (b) if λ �= 0 and respctively conditions ã) and
b̃) if λ = 0 . Fix x̂ such that the line {t x̂ : t ∈ C} is not tangent to any component
of Ũ at the origin. Then for j ∈ Iλ each projection Pj,λ(t x̂) for λ �= 0 and Pj,0(t x̂)
for λ = 0, can be extended to t = 0, so, it becomes an analytic function of t in some
neighborhood O of the origin.
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We denote this limit projection by P j,λ(x̂),

P j,λ(x̂) = lim
t→0

Pj,λ(t x̂), λ �= 0,

P j,0(x̂) = lim
t→0

Pj,0(t x̂), λ = 0. (1.12)

Section 2 is devoted to the proof of this result.
We express certain pairwise relations between operators in the tuple in terms of

these limit projections in Sect. 3. The main results here are the following Theorems
formulated for the pair (A1, A2). Of course, whenwe have only 2matrices in the tuple,
that is when n = 2, the dependance on x̂ is redundant, and we simply write P j,λ.

Let A1 be a normal matrix and

A1 =
∑

λ∈σ(A1)

λPλ (1.13)

be its spectral resolution. For λ ∈ σ(A1) write

Tλ =
∑

μ∈σ(A1),μ�=λ

Pμ

λ − μ
. (1.14)

Theorem 1.15 Let A1 and A2 be N ×N matrices with A1 being normal. Suppose that
the regularity conditions are satisfied at every spectral point of A1. Further, suppose
that λ ∈ σ(A1), and that the multiplicities m j , j ∈ Iλ are equal to 1. Then the
following relations hold:

P j,λA2P j,λ + x ′
1,λ, j (0)P j,λ = 0, λ �= 0, (1.16)

P j,0A2P j,0 − x ′
3,0, j (0)P j,0 = 0, λ = 0 (1.17)

P j,λA2TλA2P j,λ + x ′′
1,λ, j (0)

2 P j,λ = 0, λ �= 0, (1.18)

P j,0A2T0A2P j,0 − x ′′
3,0, j (0)

2 P j,0 = 0, λ = 0. (1.19)

Theorem 1.20 Let λ ∈ σ(A1), λ �= 0, and both pairs of matrices (A1, A2) and
(A1, A1A2) satisfy the conditions of Theorem 1.15. Then

P j,λA
2
2P j,λ =

z′′1,λ, j (0) + 2λ
(
x ′
1,λ, j (0)

)2 − λ2x ′′
1,λ, j (0)

2λ
P j,λ, (1.21)

where z1 = z1,λ, j (z2) is the local representation of the j th component of
σp(A1, A1A2), {R̃ j (z1, z2) = 0}, near (1/λ, 0)).

Finally, in Sect. 4 we give an application of our technique to representations of
Coxeter groups. Here we prove the following result which might be viewed as a
rigidity type theorem for representations of Coxeter groups.
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Theorem 1.22 Let G be a Coxeter group with Coxeter generators g1, ..., gn, and let
ρ be an m-dimensional linear representation of G. For every 2 ≤ i ≤ n denote by ρ̃i
the representation of the Dihedral group D1i generated by g1 and gi , which is induced
by ρ. Assume that the following condition is satisfied:

(∗) For 2 ≤ i ≤ n no irreducibble representation of D1i is included in the decompo-
sition of ρ̃i with coefficient bigger than 1.

Suppose that A1, ..., An are complex matrices in M(N ) such that A1 is normal, ‖
A j ‖= 1, j = 2, ..., n, and conditions (a)–(b), ã) - b̃) are satisfied for the pairs
(A1, A j ) and (A1, A1A j ), j = 2, ..., n at every spectral point of A1. Also suppose
that

(I) σp(A1, ..., An) ⊃ σp(ρ(g1), ..., ρ(gn)).
(II) ∃ε > 0 such that for every point ζ+

j = (0, ..., 1︸︷︷︸
J

, 0, ..., 0) and ζ−
j =

(0, ..., −1︸︷︷︸
J

, 0, ..., 0), j = 1, ..., n we have

σp
(
A1, ..., An, A1A2, ..., A1An

) ∩ Oε(ζ
±
j )

= σp
(
ρ(g1), ..., ρ(gn), ρ(g1)ρ(g2), ..., ρ(g1)ρ(gn)

) ∩ Oε(ζ
±
j ).

Then

(1) There exists an m-dimensional subspace L of C
N invariant under the action of

each matrix A j , j = 1, ..., n.
(2) Restrictions of A j , j = 1, ..., n to L are unitary, self-adjoint, and generate a

representation, ρ̂ of G, and

σp

(
A1

∣∣∣
L
, ..., An

∣∣∣
L

)
= σp

(
ρ(g1), ..., ρ(gn)

)
(1.23)

.
(3) If G is finite, non-special Coxeter group (that is either a Dihedral, or of types A,B,

or D), then ρ̂ is unitary equivalent to ρ.

2 Limit Projections Along Components. Proof of Theorem 1.11

.
Observe that under conditions (a), (b) and (ã), (b̃) we have:

• Mλ = ∑
j∈Iλ m j , is the multiplicity of λ in σ(A1). Here m j are exponents from

(1.1).
• If λ �= 0 and O is a small enough neighborhood of (1/λ, 0 . . . , 0), then for every

x = (x1, ..., xn) sufficiently close to (1/λ, 0, ..., 0) and every j ∈ Iλ the line
through the origin and x has only one point of intersection with the hypersurface
{R̃ j = 0}which lies inO. Similarly, ifλ = 0 andO is a small enoughneighborhood
of the origin, every line parallel to the xn+1-axis and passing through a point x̂ close
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to 0 has only one point of intersection with the hypersurface {R̃ j = 0}, j ∈ I0
which lies in O.

“The component {R̃ j = 0} of σp(A1, ..., An) (σ̃p,1(A1, ..., An)) has multiplicity m j”
means that for every regular point in this component that does not belong to any
other component, the rank of the projection (1.9) is equal to m j . As mentioned in the
introduction, δ j in (1.9) is so small that δ j -neighborhood of 1 does not contain any
eigenvalues of x1 j (x̂)A1 + · + xn An different from 1 (respectively δ j -neighborhood
of 0 does not contain non-trivial eigenvalues of A1+ x2A2+·− xn+1 I ). The existence
of such δ j follows from conditions b) and b̃).

In general, even under the regularity conditions projection Pj,λ(x̂) given by (1.9)
might “blow up” as the point x̂ approaches 0 . A simple example is:

A1 =
[
1 1
0 1

]
, A2 =

[
1 0
0 −1

]
.

In this case x̂ = x2, and the joint spectrum, σp(A1, A2) is

{x1 + x2 − 1 = 0} ∪ {x1 − x2 − 1 = 0},

so conditions (a) and (b) are satisfied at (1,0). When a point (x1, x2) approaches (1, 0)
along the components {x1 + x2 − 1 = 0} and {x1 − x2 − 1 = 0}, the corresponding
projections P1,1(x2) and P2,1(x2) are given by

P1,1(x2) =
[
1 1−x2

2x2
0 0

]
, P2,1(x2) =

[
0 − 1+x2

2x2
0 1

]
.

We see that the norm of each projection goes to ∞ as x2 → 0.
Theorem 1.11 claims that this does not happen in the case when A1 is normal.

Proof of Theorem 1.11 1. λ �= 0.
Since scaling preserves conditions (a) and (b), we may replace A1 with A1/λ and
assume that λ = 1. To slightly simplify the notation, in this proof we will write
x1 j (x̂), j ∈ I1 instead of x1,1, j (x̂) and Pj (x̂) instead of Pj,1(x̂).

Let |x̂ | < min{ε j : j = 1, ..., r}, where ε j are constants from (1.7), and suppose
that O = ∩ jO(ε j ).

Denote by 
i j = {x̂ ∈ O : x1i (x̂) = x1 j (x̂)}, i �= j . Then U = ∪k
i, j=2
i j , and

Ũ = ∪k
i, j=2
̃i j , where 
̃i j is the projection of 
i j onto {x1 = 0}.

Condition b) implies that the tangent planes at the origin x̂ = 0 to the surfaces
{x1 = x1 j (x̂), j ∈ I1} are pairwise different. These tangent planes are given by

x1 − 1 =
n∑

l=2

∂x1 j
∂xl

(0)xl ,
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so that the tangent plain in {x1 = 0} to 
̃i j is given by

{
x̂ :

n∑
l=2

(
∂x1 j
∂xl

(0) − ∂x1 j
∂xl

(0)

)
xl = 0

}
. (2.1)

If a point x̂ does not belong to any of the plains given by (2.1), then there exists
a > 0 and δ > 0 such that for every z ∈ C with |z| < δ we have

|x1i (zx̂) − x1 j (zx̂ | ≥ a|z|, i �= j . (2.2)

The constant a continuously depends on

min
i, j

{∣∣∣∣∣
n∑

k=2

(
∂x1 j
∂xk

(0) − ∂x1 j
∂xk

(0)

)
xk

∣∣∣∣∣

}
,

and, therefore, may be chosen such that (2.2) holds uniformly in a neighborhood of x̂ .
Recall that for each j ∈ Iλ the point y j,λ(x̂) in the component {R̃ j = 0} was

defined by (1.8). In our case λ = 1, and instead of y j,1(x̂) we will write y j (x̂). For
each i ∈ I1 and z ∈ C close to 0 define τi j (z) ∈ C by the condition that it is the closest
to 1 root of the following equation in τ

R̃i (τ y j (zx̂)) = 0. (2.3)

Asmentioned above, conditions (a) and (b) imply that every line inCn passing through
the origin and close to the x1-axis has only one point of intersection with the hypersur-
face {R̃i = 0} that is close to (1, 0, ..., 0). When this line is the line passing through
the origin and y j (zx̂), this point determines τi j (z) in the following way. Write the
homogeneous decomposition of R̃ j :

R̃i (x) = R̃i (x1, x̂) =
ti∑

l=0

Sil(x),

where Sil(x) is a homogeneous polynomial of degree l in x1, ..., xn and ti is the degree
of R̃i . We always assume that R̃0 = −1. Then τi j (z) is the only root of the equation
(in τ )

ti∑
l=0

τ l Sil(y j (zx̂)) = 0

which is close to 1. Since this root has multiplicity 1, τi j (z) is an analytic functiion of
z in a small neighborhood of the origin in C, which we denote by U .

Of course, τ j j (z) = 1, τi j (z) �= 1 for i �= j, z �= 0, and, of courses,
R̃i (τi j (z)y j (zx̂)) = 0 for all z ∈ U . It is easy to see that (2.2) implies that there
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exist positive constants c and C such that for all j �= i

c|z| ≤ |τi j (z) − 1| ≤ C |z|. (2.4)

Using the notation A(x) = x1A1 +·+ xn An , it follows from the definition of the joint
spectrum that the reciprocalsμi j (z) = 1

τi j (z)
are eigenvalues of A(y j (zx̂)). Now, (2.4)

implies that a similar estimate (with different constants) holds for the eigenvaluesμi j :

c1|z| ≤ |μi j (z) − 1| ≤ C1|z|, j �= i . (2.5)

This shows that δ j in (1.9) should be chosen smaller than c1|z| (of course, the integral
(1.9) is the same for all δ j < c1|z|). We call it δ j (z).

Let e1, ..., eN be an eigenbasis for A1, where e1, ..., eM1 are eigenvectors with
eigenvalue 1, and eM1+1, ..., eN correspond to eigenvalues different from 1, so that in
the basis e1, ..., eN the matrix A1 is diagonal with the first M1 diagonal entries equal
to 1 (recall, M1 = ∑

j∈I1 m j ), and the others, which we denote by αM1+1, ..., αN ,
being different from 1.

Write A2, ..., An in the basis e1, ..., eN :

A j =
[
a j
lm

]N
l,m=1

.

For t ∈ C and j ∈ I1 let M j (t) be the M1 × M1 block of the matrix

(
t −

n∑
l=2

∂x1 j
∂xl

∣∣∣∣
(0,...,0)

xl

)
I −

n∑
l=2

xl Al

formed by the first M1 rows and the first M1 columns. Here x̂ = (x2, . . . , xn) is the
point that appeared in Theorem 1.11. Consider the following polynomials in t

S j (t) = det(M j (t)).

For each j this is a non-trivial polynomial of degree M1
(
S j (t) → ∞ as t → ∞)

.
Thus, there exists some positive number b < c1 (the constant from (2.5)) such that
these polynomials do not vanish in the punctured disk of radius b centered at the origin:

S j (t) �= 0 for t ∈ C, 0 < |t | < b, j = 1, ..., k. (2.6)

Choose some t0 satisfying 0 < t0 < b.
Next, we will show that there exists a positive constantM such that for |w − 1| =

t0|z|, where z is close to zero, the following norm estimate holds:

∥∥∥∥
(

w I − x1 j (zx̂)A1 −
n∑

s=2

zxs As

)−1∥∥∥∥ ≤ M

|z| . (2.7)
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The norm here is understood as the norm of an operator acting on C
N .

Let η ∈ C
N , ‖ η ‖= 1, and ζ ∈ C

N satisfies

(
w I − x1 j (zx̂)A1 −

n∑
l=2

zxl Al

)
ζ = η, (2.8)

which is a system of N equations in variables ζ1, ..., ζN , coordinates of ζ in the basis

e1, ..., eN . Sincew−1 = t0zeiθ and 1−x1 j (zx̂) = z
(∑n

s=2
∂x1 j
∂xs

|(0,...,0)xs
)
+O(|z|2),

the first M1 equation of this system can be written as

z

(
M j (t0e

iθ ) + O(z)IM1)(
M1 ζ̂ )

)
= (M1 η̂) − zN (̂ζ N−M1), (2.9)

where IM1 is the M1 × M1 identity matrix, (M1 ζ̂ ) = (ζ1, ..., ζM1) and (M1 η̂) =
(η1, ..., ηM1), (̂ζ N−M1) = (ζM1+1, ..., ζN ), and N is the M1 × (N − M1) part of the
matrix x2A2 + · · · + xn An consisting of the entrees in the first M1 rows and the last
N − M1 columns.

Consider (2.9) as a system of equations in ζ1, ..., ζM1 . Then (2.6) implies that for
sufficiently small z the main determinant of this system does not vanish (it is equal to
zM1S j (t0eiθ )+O(|z|M1+1)). Now,Cramer’s rule implies that ζ1, ..., ζM1 are expressed
in terms of ζM1+1, ..., ζN and η1, ..., ηM1 in the following way:

ζi =
[
1

z

M1∑
l=1

Dil(z)

S j (t0eiθ )
ηl

]
+

N∑
l=M+1

ψil(z)

S j (t0eiθ )
ζl , i = 1, ..., k1. (2.10)

where Dil(z) andψil(z) are uniformly bounded analytic functions in a small punctured
neighborhood of the origin (and, therefore, analytically extendable to the origin).
Substitute these expressions of ζi , i = 1, ..., M1 in the remaining N − M1 equations
of the system (2.8). We obtain a system in the following form:

[
(1 + t0ze

iθ )IN−M1 − x1 j (zx̂)� − L(z)
]
(̂ζ N−M1)

= (̂ηN−M1) − T (z)(M1 η̂), (2.11)

where IN−M1 is the (N−M1)×(N−M1) identitymatrix,� is the (N−M1)×(N−M1)

diagonal matrix with αM1+1, ..., αN on the main diagonal (they are coming from A1),
L(z) is an (N − M1) × (N − M1) matrix whose all entries are of the order of z, and
T (z) is the following (N − M1) × M1 matrix with entrees

(T (z))im = 1

S j (t0eiθ )

n∑
r=2

xr

M1∑
l=1

aril Dlm(z),

that is the product of the lower left (N − M1) × M1 block of the matrix
∑n

r=2 xr Ar

and the matrix D(z) =
[

Dlm (z)
S j (t0eiθ )

]
.
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Since for z close to zero, x1 j (zx̂) is close to one, and since αM+1, ..., αN are not
equal to one, it follows that the main determinant of (2.11) considered as a system in
ζM1+1, ..., ζN stays away from 0 as z → 0. Since for all j = 1, ..., N , |ηJ | ≤ 1, this
implies that ζM1+1, ..., ζN stay bounded as z → 0. In summary: there exists a constant
M̃ such that

|ζ j | ≤ M̃

|z| j = 1, ..., M1, |ζ j | ≤ M̃ , j = M1 + 1, ..., N . (2.12)

This yeilds

‖ ζ ‖≤ M1

|z| (2.13)

for some constant M1 independent of z and η, which proves (2.7).
Now, (2.7) implies

∥∥∥∥Pj (y(zx̂))

∥∥∥∥ =
∥∥∥∥

1

2π i

∫

|w−1|=t0|z|

(
w I − x1 j (zx̂)A1 −

n∑
l=2

zxl Al

)−1

dw

∥∥∥∥

≤ 1

2π

(
max|w−1|=t0|z|

∥∥∥∥
(

w I − x1 j (zx̂)A1 −
n∑

l=2

zxl Al

)−1∥∥∥∥
)
2π t0|z| ≤ M1t0.

(2.14)

Since, the integral

∫

|w−1|=t0|z|

(
w I − x1 j (zx̂)A1 −

n∑
l=2

zxl Al

)−1

dw

is an analytic function in z in a small punctured disk centered at the origin, Riemann’s
theorem implies that it is analytically extendable to z = 0. This completes the proof
of Theorem 1.11 for λ �= 0.

2. λ = 0.
The details of the proof in this case are very similar to those when λ �= 0. The only

differences are the following. If x̂ is sufficiently close to 0, then close to 0 spectral points
of the matrix A1+ x2A2 +· · ·+ xn An − xn+1, j (x̂)I are xn+1,i (x̂)− xn+1, j (x̂), i ∈ I0
(here we again write xn+1, j instead xn+1,0, j ). Now, condition b̃) implies that there
exists c > 0 such that for sufficiently small z

|xn+1,i (zx̂) − xn+1, j (zx̂)| > c|z|, i, j ∈ I0, i �= j .

Further, we choose a basis e1, . . . , eN which is an eigenbasis for A1 so that eigen-
vectors e1, . . . , eM0 are 0-eigenvectors, and eM0+1, . . . , eN are eigenvectors with
non-trivial eigenvalues, and write A2, . . . , An in this basis. The matrix M j (t) in
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this case is defined as M0 × M0 block of the matrix

(
t +

n∑
l+2

∂xn+1, j

∂xl
xl

)
I −

n∑
l=2

xl Al

of the first M0 rows and the first M0 columns. Again, there exists b > 0 such that the
polynomial S j (t) = det(M j (t)) does not vanish in the punctured disk of radius b
centered at the origin and we pick 0 < t0 < b. The remaining details of the proof are
practically identical to those in the case λ �= 0 (of course, the integral (1.9) in (2.14)
is replaced with the integral (1.10)).

The proof is complete.

Remark 1 Wewould like to note that the above proof holds when A1 is just a diagonal
matrix, not necessarily normal.

Remark 2 In general, limit projections depend on the choice of x̂ .

Remark 3 It is easily seen that a similar proof holds when a point approaches
(1, 0, ..., 0) not along a line, but along a smooth curve γ (z) ∈ C

n−1 which is not
tangent to any component of Û at the origin.

3 Relations Between Component ProjectionsPj,�: Proofs of
Theorems 1.15 and 1.20

Each projection Pλ in the spectral resolution (1.13) is, of course, represented by the
integral

Pλ = 1

2π i

∫

γλ

(w − A1)
−1dw,

where γλ is a contour which separates λ from the rest of the spectrum of A1.

Proposition 3.1 The limit projections P j,λ from Theorem 1.11 satisfy the following
relations:

Pi,λP j,λ = 0 if i �= j, i, j ∈ Iλ. (3.2)∑
j∈Iλ P j,λ = Pλ (3.3)

Proof The proofs for λ �= 0 and λ = 0 are very similar, so we will give it for λ �= 0.
Fix λ ∈ σ(A1), λ �= 0 and j ∈ Iλ. Let x̂ ∈ O - the neighborhood from the proof

of Theorem 1.11. Equation (2.5) gives an estimate for μi j (x̂), i ∈ Iλ, the eigenvalues
close to 1 of the operator A(y j,λ(x̂)) = x1,λ, j (x̂)A1 + · · · + xn An . Recall that μi j (x̂)
are the reciprocals of the roots of Eq. (2.3) which in the proof of Theorem 1.11 were
denoted by τi, j (1). In the proof of Theorem 1.11 we supresed the dependance of these
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roots on λ, assuming that λ = 1, but here it is appropriate to call them τi, j,λ(z). Recall
that y j,λ(x̂) was defined by (1.8). Write

τi, j,λ(x̂) = τi, j (1), ỹi, j,λ(x̂) = τi, j,λ(x̂)y j,λ(x̂).

Of course,

ỹ j, j,λ(x̂) = y j,λ(x̂).

It was mentioned above that since R̃i is an irreducible polynomial, every regular point
of {R̃i = 0} has multiplicity 1, so τi, j,λ(x̂) is a bounded analytic function of x̂ in a
punctured neighborhood of the origin, and, therefore, can be extended to the origin to
become an analytic function in the whole neighborhood satisfying

τi, j,λ(0) = 1.

It is also easy to compute that for m = 2, . . . , n

∂τi, j,λ

∂xm
(x̂) = τi, j,λ(x̂)

( ∂x1,λ,i
∂xm

(x̂) − ∂x1,λ, j
∂xm

(x̂)
)

x1,λ, j (x̂) − xm
∂x1,λ,i
∂xm

(x̂)
, (3.4)

and, therefore, (3.4)implies

∂τ j,λ,i

∂xm
(0) =

∂x1i
∂xm

(0) − ∂x1 j
∂xm

(0)

λ
. (3.5)

Further, the projections Pi,λ(ỹ j, j,λ(x̂)) and Pj,λ(ỹi, j,λ(x̂)) (defined by the integral
(1.9) ) satisfy

Pi,λ(ỹi, j,λ(x̂))Pj,λ(ỹ j, j,λ(x̂)) = 0, i �= j .

Since τi, j,λ(x̂)x̂ → 0 as x̂ → 0, Theorem 1.11 implies Pj,λ(ỹ j, j,λ(x̂)) → P j,λ

and Pi,λ(ỹi, j,λ(x̂)) → Pi,λ as x̂ → 0. This proves (3.2).
To prove (3.3) we fix a contour γλ that separates λ from the rest of the spectrum of

A1. Suppose that x is close to (1/λ, 0, . . . , 0). Consider the matrix

A(x) = x1A1 + · · · + xn An .

Then 1 ∈ σ(A1/λ) and Pλ is the projection on the 1-eigenspace of A1/λ. Also,
γλ/λ separates 1 from the rest of the spectrum of A1/λ.

Of course, A(x) → A1/λ as x̂ → 0, and x1 → 1/λ. If |x1−1/λ|+|x2|+· · ·+|xn|
is small enough, there are no spectral points of A1/λ on γλ/λ, and, therefore,

1

2π i

∫

γλ/λ

(w − A(x))−1dw → 1

2π i

∫

γλ/λ

(
w − 1

λ
A1

)−1

dw = Pλ,
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as x → (1/λ, 0, . . . , 0).
If x1 = x1,λ, j (x̂), then the poles of (w − A(x))−1 which lie inside γλ/λ are the

reciprocals of τi, j,λ(x̂), i ∈ Iλ. Now, by the residue theorem

1

2π i

∫

γλ

(w − A(x))−1dw =
∑
i∈Iλ

Pi,λ(ỹi, j,λ(x̂)) →
∑
i ıIλ

Pi,λ,

and we are done.
��

We now concentrate on the case when n = 2. Of course, in this case Û = {0}, and
the limit projections are the same for all x2 (which is x̂ in this situation).

Proposition 3.6 Let n = 2, λ ∈ σ(A1). Assume that conditions (a) and (b), or ã) and
b̃) are satisfied at λ when λ �= 0 or λ = 0 respectively. For i, j ∈ Iλ we have

P j,λA2Pi,λ = 0, i �= j (3.7)

If there exists a neighborhood O of the origin, such that at every regular point of
{R̃ j = 0} ∩ O, the range of Pj,λ(x2) consists of 1-eigenvectors for A(y j,λ((x2)) =
x1,λ, j (x2)A1 + x2A2, if λ �= 0, and , 0-eigenvectors of A(y j,0((x2)) = A1 + x2A2 −
x3,0, j (x2)I when λ = 0, or equivalently,

(
A(y j,λ(x2)) − I

)
Pj,λ(x2) = Pj,λ(x2)

(
A(y j,λ(x2)) − I

)
= 0, λ �= 0, (3.8)

A(y j,0((x2))Pj,0(x2) = Pj,0(x2)A(y j,0(x2)) = 0, λ = 0, (3.9)

then

P ′
j,λ

(
x ′
1,λ, j (0)A1 + A2

)
P j,λ = P j,λ

(
x ′
1,λ, j (0)A1 + A2

)
P ′

j,λ

= − x ′′
1,λ, j (0)

2 P j,λ, λ �= 0, (3.10)

P ′
j,0

(
A2 − x ′

3,,0, j (0)I
)
P j,0 = P j,0

(
A2 − x ′

3,0, j (0)I
)

= x ′′
3,0, j (0)

2 P j,0, λ = 0 (3.11)

P ′
j,λ

(
x ′
1,λ, j (0)A1 + A2

)
Pi,λ = P j,λ

(
x ′
1,λ, j (0)A1 + A2

)
P ′
i,λ

= 0, i �= j, λ �= 0, (3.12)

P ′
j,0

(
A2 − x ′

3,0, j (0)I
)
Pi,0 = P j,0

(
A2 − x ′

3,0, j (0)I
)
P ′
i,0

= 0, i �= j, λ = 0. (3.13)

where P ′
j,λ = limx2→0

dPj,λ(x2)
dx2

, j ∈ Iλ.
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Proof I. λ �= 0.
We have for every x2 close to 0:

Pj,λ(x2)A(x1,λ, j (x2), x2) = A(x1,λ, j (x2), x2)Pj,λ(x2). (3.14)

By Theorem 1.11 both sides of this equality are analytic functions of x2 in a neigh-
borhood of the origin. Differentiate with respect to x2:

dPj,λ(x2)

dx2
A(x1,λ, j (x2), x2) + Pj,λ(x2)(x

′
1,λ, j (x2)A1 + A2)

= A(x1,λ, j (x2), x2)
dPj,λ(x2)

dx2
+ (x ′

1,λ, j (x2)A1 + A2)Pj,λ(x2).

Passing to the limit as x2 → 0 and using P j,λA1 = A1P j,λ = λP j,λ, we obtain

1

λ
P ′

j,λA1 + λx ′
1,λ, j (0)P j,λ + P j,λA2 = 1

λ
A1P ′

j,λ + λx ′
1,λ, j (0)P j,λ + A2P j,λ,

so that

1

λ
P ′

j,λA1 + P j,λA2 = 1

λ
A1P ′

j,λ + A2P j,λ.

Multiply the last equality from the left by Pi,λ with i �= j, i ∈ Iλ. Since Pi,λA1 =
A1Pi,λ = λPi,λ, we obtain

1

λ
Pi,λP ′

j,λA1 = Pi,λP ′
j,λ + Pi,λA2P j,λ

yeilding

Pi,λP ′
j,λ

(
1

λ
A1 − I

)
= Pi,λA2P j,λ.

Multiply the last equality by P j,λ from the right. Since

(
1

λ
A1 − I

)
P j,λ = 0,

and P2
j,λ = P j,λ, we conclude that

Pi,λA2P j,λ = 0,

and (3.7) is proved for λ �= 0..
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If (3.8) holds, then

Pj,λ(x2)A(x1,λ, j (x2), x2) = Pj,λ(x2) (3.15)

A(x1,λ, j (x2), x2)Pj,λ(x2) = Pj,λ(x2). (3.16)

Differentiating twice (3.15) and (3.16) with respect to x2 and passing to the limit
as x2 → 0 yields

1
λ
P ′′

j,λA1 + 2P ′
j,λ(x

′
1,λ, j (0)A1 + A2) + x ′′

1,λ, j (0)P j,λA1 = P ′′
j,λ,

x ′′
1,λ, j (0)A1P j,λ + 2(x ′

1,λ, j (0)A1 + A2)P ′
j,λ + 1

λ
A1P ′′

j = P ′′
j,λ,

where P ′′
j,λ = limx2→0

d2Pj,λ(x2)

dx22
. Moving the righthand side of the last two equations

to the left gives

P ′′
j,λ(

1
λ
A1 − I ) + 2P ′

j,λ(x
′
1,λ, j (0)A1 + A2) + x ′′

1,λ, j (0)P j,λA1 = 0, (3.17)

x ′′
1,λ, j (0)A1P j,λ + 2(x ′

1,λ, j j (0)A1 + A2)P ′
j,λ + ( 1

λ
A1 − I )P ′′

j,λ = 0. (3.18)

Multiply (3.17) from the right by P j,λ and by Pi,λ, i �= j .
Again, since

(
1
λ
A1 − I

)
Pl,λ = Pl,λ

(
1
λ
A1 − I

)
= 0, l ∈ Iλ,

Pl,λA1 = A1Pl,λ = λPl,λ, l ∈ Iλ
Pi,λP j,λ = P j,λPi,λ = 0, i, j ∈ Iλ, i �= j,

we obtain

P ′
j,λ

(
x ′
1,λ, j (0)A1 + A2

)
P j,λ = − x ′′

1,λ, j (0)
2 P j,λ

P ′
j,λ

(
x ′
1,λ, j (0)A1 + A2

)
Pi,λ = 0, i, j ∈ Iλ, i �= j,

Similarly, multiplication of (3.18) from the left by P j,λ and by Pi,λ results in

P j,λ

(
x ′
1,λ, j (0)A1 + A2

)
P ′

j,λ = − x ′′
1,λ, j (0)

2 P j,λ

Pi,λ

(
x ′
1,λ, j (0)A1 + A2

)
P ′

j,λ = 0, i, j ∈ Iλ, i �= j,

which finishes the proof for λ �= 0.
II λ = 0.
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The proof in this case is similar and goes along the following lines.

(
A1 + x2A2 − x3,o, j (x2)I

)
Pj,0(x2) = Pj,0(x2)

(
A1 + x2A2 − x3,0, j (x2)I

)
,

(
A2 − x ′

3,0, j (0)I
)
P j,0 + A1P ′

j,0 = P ′
j,0A1 + P j,0

(
A2 − x ′

3,0, j (0)I
)
.

Multiply the last relation from the right by Pi,0 and use

P j,0Pi,0 = Pi,0P j,0 = 0, i �= j, A1Pl,0 = Pl,0A1 = 0, l ∈ I0.

Since

Pj,0(x2)Pi,0(x2) ≡ 0, i �= j, P ′
j,0Pi,0 = −P j,0P ′

i,0,

we obtain

0 = −A1P j,0P ′
i,0 = A1P ′

j,0Pi,0 = P j,0A2Pi,0,

which is (3.7) for λ = 0.
Finally, under the assumption of (3.9), the proof of (3.11) and (3.13) is obtained

the same way as the one of (3.10) and (3.12) by twice differentiating

Pj,0(x2)
(
A1 + x2A2

)
= x3,,0, j (x2)Pj,0(x2)

(
A1 + x2A2

)
Pj,0(x2) = x3,0, j (x2)Pj,0(x2)

with respect to x2, passing to the limit as x2 → 0, and multiplying by P j,0 and Pi,0.
We are done. ��
Obviously, (3.8) and (3.9) hold when every spectral component passing through
(1/λ, 0) has multiplicity 1.

Proof of Theorem 1.15 I. λ �= 0
Fix j ∈ Iλ. In the results of the previous section we were interested only in the

roots of (2.3)
R̃i (τ x1,λ, j (x2), τ x2) = 0. (3.19)

which were close to 1. Now we will consider all the roots of this equation. Observe
that if x2 is small enough, all these roots are close to the ratios λ/μ where μ ∈ σ(A1).
Moreover, since condition b) holds at every spectral point of A1, themultiplicity of each
of these roots is 1 (when x2 is close to 0).We denote them by τ j,λ,i,μ(x2), 1 ≤ i ≤ s, ,
where μ is defined by

τ j,λ,i,μ(x2) → λ

μ
, as x2 → 0, (3.20)

which, of course, implies i ∈ Iμ. It was mentioned above that τ j,λ,i,μ(x2) are analytic
functions of x2 in a neghborhood of the origin. Obviously, τ j,λ, j,λ(x2) = 1.
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Further, (1.9) defined projections Pj,λ(x2). We define

Pj,λ,i,μ(x2) = Pi,μ(τ j,λ,i,μ x2). (3.21)

It follows from Theorem 1.11 and (3.21) that Pj,λ,i,μ(x2) are analytic operator-valued
functions of x2 in a neighborhood of the origin, and

lim
x2→0

Pj,λ,i,μ(x2) = Pi,μ. (3.22)

Also

dPj,λ,i,μ

dx2
(x2) = dPi,λ(τ j,λ,i,μ x2)

dx2

[
τ j,λ,i,μ(x2) + x2

dτ j,λ,i,μ(x2)

dx2

]
,

so that (3.5) and (3.20) imply that for λ = μ we have

dPj,λ,i,λ

dx2
(0) = lim

x2→0

dPj,λ,i,λ

dx2
(x2) = P ′

i,λ(0). (3.23)

Recall that projections (3.21) appeared in Proposition 3.1 for λ = μ. We renamed
themhere, sinceweneed these projections corresponding to all roots of (3.19) andwant
to indicate towhich reciprocal of a point inσ(A1) the corresponding point of the proper
joint spectrum converges. Note that τ j,λ, j,λ(x2) = 1 implies Pj,λ, j,λ(x2) = Pj,λ(x2).

Since for i ∈ Iλ components {R̃i (x1, x2) = 0} have multiplicity 1 in the projective
joint spectrum , the rank of Pj,λ,i,μ(x2) is equal to 1 for every i ∈ Iλ ∩ Iμ. For other
i /∈ Iλ the rank of Pj,λ,i,μ is equal to mi - the multiplicity of the spectral component
{R̃i = 0}.

As it was mentioned above, for a rank 1 projection (3.8) holds, and, therefore, if �

is small, we have

(
x1,λ, j (x2 + �)A1 + (x2 + �)A2 − I

)
Pj,λ(x2 + �) = 0.

We write this relation in the form

1

2π i

∫

γ

(
w − 1

)(
w − x1,λ, j (x2 + �)A1 − (x2 + �)A2

)−1

dw = 0, (3.24)

where, as above, γ is a circle centered at 1 which separates 1 from all other eigenvalues
of x1,λ, j (x2)A1 + x2A2, and, therefore, the same is true for all x1,λ, j (x2 + �)A1 +
(x2 + �)A2 for all sufficiently small �.
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Let us write (3.24) as

0 = 1

2π i

∫

γ

(
w − 1

)(
w − x1,λ, j (x2)A1 − x2A2

)−1

×
[
I −

((
x ′
1,λ, j (x2)A1 + A2

)
� +

( ∞∑
k=2

x (k)
1,λ, j (x2)

k! �k

)
A1

)

×
(
w − x1,λ, j (x2)A1 − x2A2

)−1
]−1

dw

= 1

2π i

∫

γ

(
w − 1

)(
w − x1,λ, j (x2)A1 − x2A2

)−1

×
∞∑
l=0

[((
x ′
1,λ, j (x2)A1 + A2

)
� +

( ∞∑
k=2

x (k)
1,λ, j (x2)

k! �k

)
A1

)

×
(
w − x1,λ, j (x2)A1 − x2A2

)−1
]l
dw. (3.25)

The right hand side of the last expression is an analytic function of � in a small
neighborhood of 0, so that all the derivatives at � = 0 vanish. We will need only the
first and the second ones. Here are the corresponding relations.

1

2π i

∫

γ

(
w − 1

)(
w − x1,λ, j (x2)A1 − x2A2

)−1
(x ′

1,λ, j (x2)A1 + A2)

×
(
w − x1,λ, j (x2)A1 − x2A2

)−1
dw = 0. (3.26)

1

2π i

∫

γ

(
w − 1

)(
w − x1,λ, j (x2)A1 − x2A2

)−1
{(

(x ′
1,λ, j (x2)A1 + A2)

×
(
w−x1,λ, j (x2)A1−x2A2

)−1
(x ′

1,λ, j (x2)A1+A2)
(
w−x1,λ, j (x2)A1−x2A2

)−1
)

+ x ′′
1,λ, j (x2)

2
A1

(
w − x1,λ, j (x2)A1 − x2A2

)−1
}
dw = 0. (3.27)

Wewill now express relations (3.26) and (3.27) in terms of projections Pj,λ,i,μ(x2).
The spectrum of the matrix x1,λ, j (x2)A1 + x2A2 consists of complex numbers

μ j,λ,i,ν(x2) which are reciprocals of τ j,λ,i,ν(x2), ν ∈ σ(A1) and, possibly, 0. If x2
is close to 0, the latter might occur only when 0 ∈ σ(A1). If 0 is an eigenvalue of
x1,λ, j (x2)A1 + x2A2, we include it in the formulas below as μ j,λ,i,0(x2).

As mentiioned above, each eigenvalue μ j,λ,i,ν(x2), i ∈ Iλ, ν = λ is close to 1.
These eigenvalues tend to 1 as x2 → 0 (and, of course, μ j,λ, j,λ(x2) = 1 for all x2).
All other μ j,λ,i,ν(x2) stay away from 1 as x2 → 0, that is for some positive constant
a

|μ j,λ,i,ν(x2) − 1| > a, if i ∈ Iλ and ν �= λ, or i /∈ Iλ. (3.28)
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The Jordan decomposition of the matrix A(x2) = x1,λ, j (x2)A1 + x2A2 consists of
Jordan blocks which have sizes between 1 andmi corresponding to eigenvalueμ j,λ,i,ν

(we consider an eigenvector which is not in a Jordan cell of dimension higher than 1
as a Jordan cell of size 1), so for w close to 1 we have

(
w − x1 j (x2)A1 − x2A2

)−1

= Pj,λ, j,λ(x2)

w − 1
+

∑
i∈Iλ,i �= j

Pj,λ,i,λ(x2)

w − μ j,λ,i,λ(x2)

+
∑

ν∈σ(A1),ν �=λ

∑
i∈Iν

mi−1∑
r=0

(
μ j,λ,i,ν(x2)I − x1,λ, j (x2)A1 − x2A2

)r
Pj,λ,i,ν(x2)

(
w − μ j,λ,i,ν(x2)

)r+1 ,

(3.29)

The integrands of (3.26) and (3.27) are meromorphic functions in w in a neighbor-
hood of w = 1. We use (3.29) to compute their residues at 1. A simple but tedious
computation shows that

Res
∣∣∣
w=1

[
(w − 1)

(
w − x1,λ, j (x2)A1 − x2A2

)−1
(x ′

1,λ, j (x2)A1 + A2)

×(w − x1,λ, j (x2)A1 − x2A2
)−1
]

= Pj,λ, j,λ(x2)(x
′
1,λ, j (x2)A1 + A2)P j,λ, j,λ(x2) = 0 (3.30)

Passing to the limit as x2 → 0 we obtain

P j,λ(x
′
1,λ, j (0)A1 + A2)P j,λ = 0, (3.31)

which is the first relation claimed in Theorem 1.15.
To simplify the computation of the residue of (3.27) at w = 1 let us introduce the

following operators

R(x2) = x ′
1,λ, j (x2)A1 + A2,

S1(x2) = Pj,λ, j,λ(x2)R(x2)

⎛
⎝ ∑

i∈Iλ,i �= j

Pj,λ,i,λ(x2)

1 − μ j,λ,i,λ(x2)

⎞
⎠R(x2)Pj,λ, j,λ(x2),

S2(x2) = Pj,λ, j,λ(x2)R(x2)

×
( ∑

ν∈σ(A1),ν �=λ

∑
i∈Iν

mi−1∑
r=0

(
μ j,λ,i,ν (x2)I − x1,λ, j (x2)A1 − x2A2

)r
Pj,λ,i,ν (x2)

(
1 − μ j,λ,i,ν (x2)

)r+1

)

×R(x2)Pj,λ, j,λ(x2).



70 Page 22 of 30 M. I. Stessin

A straightforward computation using (3.29) and (3.30) shows that (3.27) turns into

S1(x2) + S2(x2) + x ′′
1,λ, j (x2)

2
Pj,λ, j,λ(x2)A1Pj,λ, j,λ(x2) = 0. (3.32)

Our next step is finding the limits of each of terms of (3.32) as x2 → 0.
If i ∈ Iλ, μ j,λ,i,λ(x2) → 1 as x2 → 0, and condition (b) implies thatμ′

j,λ,i,λ(0) �=
0, so we have

S1(x2) = Pj,λ, j,λ(x2)R(x2)

⎛
⎝ ∑

i∈Iλ,i �= j

Pj,λ,i,λ(x2)

1 − μ j,λ,i,λ(x2)

⎞
⎠R(x2)Pj,λ, j,λ(x2)

= Pj,λ, j,λ(x2)R(x2)

⎛
⎝ ∑

i∈Iλ,i �= j

Pj,λ,i,λ(x2)

−μ′
j,λ,i,λ(0)x2+O(|x2|2)

⎞
⎠R(x2)Pj,λ, j,λ(x2)

=
⎛
⎝ ∑

i∈Iλ,i �= j

Pj,λ, j,λ(x2)R(x2)Pj,λ,i,λ(x2)

x2(−μ′
j,λ,i,λ(0) + o(1))

⎞
⎠R(x2)Pj,λ, j,λ(x2)

=
⎛
⎝ ∑

i∈Iλ,i �= j

Pj,λ, j,λ(x2)
(
R(0) + (x ′′

1,λ, j (0)x2 + O(|x2|2))A1
)
Pj,λ,i,λ(x2)

x2(−μ′
j,λ,i,λ(0) + o(1))

⎞
⎠

×R(x2)Pj,λ, j,λ(x2).

Write

�(x2) = Pj,λ, j,λ(x2)R(0)Pj,λ,i,λ(x2).

Since P j,λA1Pi,λ = λP j,λPi,λ = 0 for i, j ∈ Iλ, i �= j , relation (3.7) in Propo-
sition 3.1 implies

�(0) = 0.

Also, (3.23) and (3.12) yield

�′(0) = 0,

and, hence,

�(x2) = O(|x2|2), as x2 → 0,

resulting in
lim
x2→0

S1(x2) = 0. (3.33)
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To evaluate the limit ofS2(x2) we observe that since A1 is normal, Theorem 1.11
amd (3.20) impliy that for λ �= ν, i ∈ Iν and

((μ j,λ,i,ν(x2)I − x1,λ, j (x2)A1 − x2A2)
r Pj,λ,i,ν(x2) → 0 for r > 0 as x2 → 0.

Since by (3.28) we have |1 − μ j,λ,i,λ(x2)| > a > 0, and, since by Theorem 1.11 all
projections Pj,λ,i,ν(x2) are bounded, all terms in the expression ofS2(x2)with r > 0
tend to 0 as x2 → 0. This yields

lim
x2→0

S2(x2) = P j,λA2

⎛
⎝ ∑

ν∈σ(A1),ν �=λ

∑
i∈Iν

Pi,ν

1 − μ j,λ,i,ν(0)

⎞
⎠ A2P j,λ. (3.34)

Equations (3.3) in Proposition 3.1, (3.20), and (3.34) now give

lim
x2→0

S2(x2) = P j,λA2

⎛
⎝ ∑

ν∈σ(A1),ν �=λ

λPν

λ − ν

⎞
⎠ A2P j,λ = λP j,λA2TλA2P j,λ.

(3.35)
Finally, passing to the limit in (3.32) as x2 → 0, (3.33), and (3.35) along with

P j,λA1 = A1P j,λ = λP j,λ, P2
j,λ = P j,λ, result in

P j,λA2TλA2P j,λ + x ′′
1,λ, j (0)

2
P j,λ = 0,

which finishes the proof of Theorem 1.15 for λ �= 0.
II. λ = 0

In this case (1.10) gives the expression for Pj,0(x2).
The spectrum of A1 + x2A2 consists of the roots of

Ri (1, x2, z) = R̃ j (x2, z) = 0.

If x2 is close to 0, we denote these roots by x3,ν,i (x2), where ν ∈ σ(A1) is the
eigenvalue of A1 to which x3,ν,i (x2) converges as x2 → 0, and i ∈ Iν . Each x3,ν,i has
multiplicity mi , and, in particular, this multiplicity is equal to 1 for i ∈ I0.

Fix j ∈ I0 and x2 close to 0. Similar to what we had in the case λ �= 0, here

(
A1 + (x2 + �)A2 − x3,0, j (x2 + �)I

)
Pj,0(x2) = 0,

if � is small enough. An analog of (3.24) in this setting is

1

2π i

∫

γ

w
(
(w + x3,0, j (x2 + �))I − A1 − (x2 + �)A2

)−1
dw = 0, (3.36)
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and, as above, γ separates 0 from the rest of the spectrum of A1 + x2A2 − x3,0, j (x2)I .
Condition b̃) implies that there is a > 0 independent of x2 such that γ can be taken
to be circle centered at the origin of radius a|x2|.

Following a similar line of presentation as for λ �= 0, we write (3.36) as a power
series in �:

0 = 1

2π i

∫

γ

w
(
(w + x3,0, j (x2)I − A1 − x2A2

)−1

×
[
I −

{(
A2 − x ′

3,0, j (x2)I
)
� −

( ∞∑
k=2

x (k)
3,0, j (x2)

k! �k

)
I

}

×
(
(w + x3,0, j (x2)I − A1 − x2A2

)−1
]−1

dw

= 1

2π i

∫

γ

w
(
(w + x3,0, j (x2)I − A1 − x2A2

)−1

×
∞∑
l=0

[{(
A2 − x ′

3,0, j (x2)I
)
� −

( ∞∑
k=2

x (k)
3,0, j (x2)

k! �k

)
I

}

×
(
(w + x3,0, j (x2)I − A1 − x2A2

)−1
]l
dw. (3.37)

and equate the coefficients for powers of � to 0. Again, we are interested in the the
coefficients for � and �2.

In this case the inverse is given by:

(
(w + x3,0, j (x2)I − A1 − x2A2

)−1

= Pj,0(x2)

w
+

∑
i∈I0,i �= j

Pi,0(x2)

w + x3,0, j (x2) − x3,0,i (x2)

+
∑

ν∈σ(A1),ν �=0

∑
i∈Iν

mi−1∑
l=0

(
A1 + x2A2 − x3,ν,i (x2)I

)l
Pi,0(x2)(

w + x3,0, j (x2) − x3,ν,i (x2)
)l+1 . (3.38)

We substitute (3.38) into (3.37) and evaluate the residues of the coefficients for �

and �2. The details of this evaluation are similar to the ones in the case λ �= 0 and are
omitted.

The proof of Theorem 1.15 is complete.

Our next result shows that under the assumptions of Theorem 1.15 the limit compo-
nent projections coming out of the joint spectrum σp(A1, A1A2) coincide with P j,λ.

In a similar way as in our previous consideration, it follows from the implicit
function theorem that if σ(A1, A1A2) satisfies conditions (a) and (b), then for each
spectral component of σp(A1, A1A2) passing through (1/λ, 0) the first coordinate is
expressed as an analytic function of the second one. To distinguish from the previous
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case when we considered the pair (A1, A2), we denote the coordinates of a spectral
point in σp(A1, A1A2) by (z1, z2), so that the in the j th component passing through
(1/λ, 0), z1 = z1,λ, j (z2). Similarly, we denote by Q j,λ(z2) the projection

Q j,λ(z2) = 1

2π i

∫

|w−1|=δ̃ j

(
w − z1,λ, j (z2)A1 − z2A1A2

)−1

dw,

where the contours {w : |w − 1| = δ̃ j } separates 1 from the rest of the spectrum of(
z1,λ, j (z2)A1+ z2A1A2

)
, as it was in (1.9). Since A1 is normal, Theorem 1.11 implies

that there are limits Q j,λ of Q j,λ(x2) as x2 → 0.

Lemma 3.39 Suppose that the pairs of matrices (A1, A2) and (A1, A1A2) satisfy the
conditions of Theorem 1.15, and let λ ∈ σ(A1), λ �= 0. Then P j,λ = Q j,λ.

Proof First we observe that relation (3.31) (the first relation in Theorem 1.15) implies
that for j ∈ Iλ the compression of A2 to the range ofP j,λ is−x ′

1,λ, j (0)IR(P j,λ), where
IR(P j,λ) is the identity matrix on the range ofP j,λ. This implies that (−x ′

1,λ, j (0)), j ∈
Iλ are the eigenvalues of the compression of A2 to the λ-eigenspace of A1, which by
(3.3) is the sum of the ranges of P j,λ. Each of these ranges is of dimension 1, and by
condition b) all numbers (x ′

1,λ, j (0)) are different. Let e j , j ∈ Iλ be an eigenvector
for P j,λA2P j,λ. Then these eigenvectors form a basis of the λ-eigenspace of A1.

Similarly, applying Theorem 1.15 to the pair (A1, A1A2) we obtain that the com-
pression of A1A2 to the λ-eigenspace of A1 has (−z′1,λ. j (0)) as eigenvalues of
multiplicity one each.

Propositions 3.1 and 3.6 imply

PλA1A2Pλ =
⎛
⎝

kλ∑
j=1

P j,λ

⎞
⎠ A1A2

⎛
⎝

kλ∑
j=1

P j,λ

⎞
⎠ = A1

kλ∑
j=1

P j,λA2P j,λ,

so that for j ∈ Iλ

PλA1A2Pλe j = A1P j,λA2P j,λe j = −x ′
1,λ, j (0)A1e j = −λx ′

1,λ, j (0)e j .

This shows that −λx ′
1,λ, j (0), j ∈ Iλ form the spectrum of the compression of A1A2

to the λ-eigenspace of A1 and that e j , j ∈ Iλ form the corresponding eigenbasis. Of
course, this implies the statement we are proving. ��

Proof of Theorem 1.20 Let λ �= 0. Apply Theorem 1.15 to each of the pairs (A1, A2)

and (A1, A1A2) and use Lemma 3.39. We obtain

P j,λA2TλA2P j,λ = − x ′′
1,λ, j (0)

2 P j,λ,

P j,λA1A2TλA1A2P j,λ = − z′′1,λ, j (0)
2 P j,λ.
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It follows from the definition of the operator Tλ, (1.14), that

TλA1 = A1Tλ = −
( ∑

μ∈σ(A1),μ�=λ

Pμ

)
+ λTλ = −I + Pλ + λTλ.

Since P j,λA1 = λP j,λ, this implies

−λP j,λA
2
2P j,λ + λP j,λA2PλA2P j,λ + λ2P j,λA2T A2P j,λ

= − z′′1,λ, j (0)

2
P j,λ,

−λP j,λA
2
2P j,λ + λP j,λA2

(∑
l∈Iλ

Pl,λ

)
A2P j,λ = λ2x ′′

1,λ, j (0) − z′′1,λ, j (0)

2
P j,λ,

−λP j,λA
2
2P j,λ + λP j,λA2P j,λA2P j,λ = λ2x ′′

1,λ, j (0) − z′′1,λ, j (0)

2
P j,λ.

Now, P2
j,λ = P j,λ results in

P j,λA2P j,λA2P j,λ =
(
P j,λA2P j,λ

)2
,

and (3.31) yields

P j,λA
2
2P j,λ = z′′1 j (0) + 2λ

(
x ′
1 j (0)

)2 − λ2x ′′
1 j (0)

2λ
P j,λ.

The proof is complete. ��

4 Application to Representations of Coxeter Groups: Proof of
Theorem 1.22

Recall that a Coxeter group is a finitely generated group G with generators g1, . . . , gn
satisfy the following relations:

(gi g j )
mi j = 1, i, j = 1, . . . , n,

wheremii = 1 andmi j ∈ N∪{∞}, mi j ≥ 2 when i �= j . It is easy to see that to avoid
redundancies we must have mi j = m ji , and that mi j = 2 means gi and g j commute.
The set of generators {g1, . . . , gn} is called a Coxeter set of generators, and mi j are
called the Coxeter exponents. The matrix

∥∥mi j
∥∥ is called a Coxeter matrix. A Coxeter

group with 2 generators is called a Dihedral group. The monographs [1, 20, 27] are
good sources for information on Coxeter groups.

Let G be a Coxeter group with Coxter generators g1, ..., gn , and ρ : G → V
be a finite dimensional unitary representation of G. Suppose that A1, ...., An is a
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tuple of N × N matrices. In this section we investigate what information about
relations between A1, . . . , An can be obtained from the fact that the joint spectrum
σp(ρ(g1), . . . , ρ(gn)) is contained in σp(A1, ..., An).

Of course, for every pair of generators gi , g j the representationρ generates a unitary
representation of theDihedral group generated by gi and g j . It iswell-known that every
irreducible unitary representation of a Dihedral group is either 1- or 2-dimensional,
and byMaschke’s Theorem ([31, 32]) that every representation is a sum of irreducible
ones. The one dimensional representations of a Dihedral group are:

ρ(g1) = ρ(g2) = I , or ρ(g1) = ρ(g2) = −I

for an odd order group. For an even order group there is an additioal one-dimensional
representation

ρ(g1) = I , ρ(g2) = −I .

Two-dimensional irreducible representations are equivalent to those generated by

ρ(g1) =
[
1 0
0 −1

]
, ρ(g2) =

[
cosα sin α

sin α − cosα

]
,

where 0 < α < π . If the group is finite, α is a rational multiple of π . It is easy to
see (cf [8]) that the proper joint spectrum of images of the Coxeter generators of a
Dihedral group under an irreducible representation could be either a line of the form
(one-dimensional)

{(x1, x2) : x1 ± x2 = ±1},

or a “complex ellips" (two-dimensional)

{(x1, x2) : x21 + 2(cosα)x1x2 + x22 = 1},

and the joint spectrum of (ρ(g1) and ρ(g1)ρ(g2)) could be

{x1 ± x2 = ±1}

for one-dimensional representations, and

{x21 − x22 + 2(cosα)x2 = 1}

for two-dimensional.

Proof of Theorem 1.22 Consider 2 ≤ i ≤ n. Condition (∗) in the statement of Theo-
rem 1.22 implies that every line and ellipse in the joint spectrum of ρ(g1) and ρ(gi ) has
multiplicity one, and, therefore, by condition (II) in Theorem 1.22, σp(A1, Ai ) and
σp(A1, A1Ai ) satisfy Theorems 1.15 and 1.20 at (±1, 0). Details of the local analysis
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near each of them are similar, so we concentrate on (1, 0). Following the notations
of the previous section we denote by P j,1 the component projections from Theorem
1.11. We will apply Theorem 1.20.

First suppose that the j th component of σp(A1, Ai ) which passes through (1, 0) is
the line

x1 ± x2 = 1.

Then the corresponding component of the joint spectrum of A1 and A1A2 is also a
line, and x1 j (x2) = 1 ± x2, z1 j (x2) = 1 ± z2, so that x ′′

1 j = z′′1 j ≡ 0, (x ′
1 j )

2 ≡ 1.
Theorem 1.20 now implies

P j,1A
2
2P j,1 = P j,1. (4.1)

Let the j th component is the ellipse

x21 + 2
(
cosα

)
x1x2 + x22 = 1.

Then the corresponding component of σp(A1, A1A2) is given by

z21 − z22 + 2
(
cosα

)
z2 = 1.

In this case

x ′
1 j (0) = z′1 j (0) = − cosα, x ′′

1 j (0) = −1 + cos2 α,

z′′1 j (0) = 1 − cos2 α,

and Theorem 1.20 for λ = 1 shows that (4.1) holds in this case too.
Thus, (3.3) shows that the compression of A2

2 to the 1-eigenspace of A1 is the
identity. Since A1 is normal, the projection P1, onto this subspace is orthogonal.
Since the norm of A2 is equal to 1, this implies that every 1-eigenvector of A1 is a
1-eigenvector of A2

2.
A similar proof shows that every (−1)-eigenvector of A1 is a 1-eigenvector of A2

2.
Further, every component of the joint spectrum of Coxeter generators under a rep-

resentation of a Dihedral group, either an ellipse, or a straight line, passes the same
number of times through (±1, 0) and through (0,±1). That is, if t1 and t2 are the
multiplicities of 1 and -1 as eigenvalues of ρ(g1), and u1 and u2 are the same numbers
for ρ(g2), then

t1 + t2 = u1 + u2.

Now, condition II) in the statement of Theorem 1.22 implies that the sum of multi-
plicities of eigenvalues 1 and − 1 of A1 and Ai are the same. This sum is equal of
the sum of dimensions of all Jordan cells in the Jordan representation of Ai corre-
sponding to eigenvalues ±1 and, of course, to the multiplicity of eigenvalue 1 for A2

i .
Thus, the sum of 1- and (−1)-eigenspaces of A1 is exactly the invariant subspace for
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A2
i corresponding to eigenvalue 1, and the restriction of A2

i to this subspace is the
identity. Since the square of a Jordan cell which corresponds to a non-zero eigenvalue
and has dimension higher than 1 is never diagonal, we see that±1-eigenvectors for A1
and ±1-eigenvectors of Ai span the same subspace, which we call L , that is invariant
under the action of both A1 and Ai . As mentioned above, every component of the
joint spectrum of ρ(g1) and ρ)g2 passes through (±1, 0), so that the dimension of L
is equal the dimension of ρ. Of course, L being spanned by ±1-eigenvectors of A1 is
independent of i = 2, ..., n, and (1) is proved.

The fact that Ai

∣∣∣
L
are unitary and self-adjoint is straightforward. Indeed, it follows

from L being spanned by ±1-eigenvectors of Ai and from a simple fact that for
an operator of norm 1 any two eigenvectors corresponding to different unimodular
eigenvalues are orthogonal. Since every component of the joint spectrum of Coxeter
generators of a representation of a Coxeter group passes through (±1, 0, ..., 0), we

see that (1.23) holds. The fact that restrictions of Ai

∣∣∣
L
generate a representation of G

follows from the Theorem 1.1 in [8] stating that for a representation of a pair of unitary
matrices U1,U2 their joint spectrum determines a number m such that (U!U2)

m = 1
(m is infinite, if there is no such relation). Thus, the Coxeter matrices of ρ and ρ̃ are
the same, and (2) is proved.

Finally, (3) follows from (1.23) and Theorem 1.2 in [8]. We are done.
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