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Abstract
We show that if a bounded pseudoconvex domain satisfies the solvability of the
bounded ∂ problem, then the ideal of bounded holomorphic functions vanishing at
a point α in the domain is generated by (z −α). We also prove a smooth analog of the
main result for bounded pseudoconvex domains with a sufficiently smooth boundary
and also consider the Bergman space case.

1 Preliminaries

Let � ⊂ C
n be a domain and we denote the space of bounded holomorphic functions

on � as H∞(�). Here, we equip H∞(�) with the usual compact open topology.
We say a bounded pseudoconvex domain � ⊂ C

n is Gleason solvable if the ideal
of functions in H∞(�) vanishing at a point is finitely generated. More precisely, we
have the following definition.

Definition 1 We say � Gleason solvable if for any α ∈ �, the ideal in H∞(�)

of functions vanishing at α is generated by (z − α). That is, if g ∈ H∞(�) and
g(α) = 0, then there exists g1, . . . , gn ∈ H∞(�) so that g ≡ ∑n

j=1(z j − α j )g j

where α := (α1, . . . , αn).

As we will show, bounded pseudoconvex domains for which the ∂-problem is
solvable in L∞, whichwewill call L∞-pseudoconvex, have the nice algebraic property
of Gleason solvablility. As a reference for such domains and more generally Stein
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manifolds with trivial L∞ ∂-cohomology, see the classical work [5]. We will define
L∞-pseudoconvex domains in a more precise manner.

Definition 2 Let � ⊂ C
n be a bounded pseudoconvex domain. We say � is L∞-

pseudoconvex if for any ∂-closed bounded form β ∈ L∞
(0,s)(�), there exists α ∈

L∞
(0,s−1)(�) ∩ dom(∂) so that

∂α = β.

Gleason solvability is sometimes referred to as Hefer’s condition (as developed by
Hefer in 1940) for the ring of bounded holomorphic functions on �. For more infor-
mation on Hefer’s condition, see [8, Chapter 5]. Many of the methods used in the study
of Hefer’s condition involve the integral representation techniques developed in [4,
11]. Gleason solvability was first considered for the ball algebra on the unit ball inCn .
This was first proved by Leibenson, albeit informally. See [14]. Gleason solvability
for holomorphic Bergman spaces, holomorphic mixed norm spaces, and the holomor-
phic Bloch spaces were studied in [9, 10, 12, 14, 17]. The domains considered were
intitially the unit ball, but then were generalized to strongly pseudoconvex domains
withC2-smooth boundary. There is also considerable interest on other function spaces
and domains, including the weighted L p spaces on egg shaped domains, as seen in
[13]. See [6] for some results on Gleason solvability on the harmonic Bloch spaces of
bounded strongly pseudoconvex domains with smooth boundary.

An application of Gleason solvable domains is a several variables partial general-
ization of the following commuting Toeplitz operator theorem seen in [1]. We state
the theorem for the convenience of the reader.

Theorem 1 [1] Let � ⊂ C be a bounded domain. Suppose φ ∈ H∞(�) and ψ be
a bounded measurable function so that Tφ and Tψ commute on the Bergman space
A2(�). Then ψ is holomorphic on �.

The commuting Toeplitz operator problem in several variables remains unsolved
on the Bergman spaces of bounded pseudoconvex domains. However, some partial
results were obtained on the the ball, strongly pseudoconvex domains in general, and
on domains where the ∂-problem can be solved in L∞. See [15] for results concerning
the commuting Toeplitz operator problem on the Bergman space of such domains. In
the paper [2] it was shown that the Gleason solvability condition implies � can be
identified with an open subset of its maximal ideal space. Furthermore, this condition
implies the density of an algebra generated by conjugate holomorphic and holomorphic
functions in various function spaces. Such density results are required in the proof of
the commuting Toeplitz operator problem in several variables as seen in [15]. As an
example, any bounded strongly pseudoconvex domain in C2 with a boundary of class
C4 is Gleason solvable in the continuous case.

Theorem 2 [7] Let � ⊂ C
2 be bounded and strongly pseudoconvex with a C4 smooth

boundary. Then � is Gleason solvable in the continuous case. That is, assume φ ∈
H∞(�) ∩ C(�) so that φ(α) = 0 for some α := (α1, α2) ∈ �. Then φ ≡ (z1 −
α1)φ1 + (z2 − α2)φ2 where φ1, φ2 are in the same space as φ.
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Wewill now define some terms related to the ∂-Koszul complex. We let� ⊂ C
n be

a domain andwe define C(0,s) := L∞(�)∩C∞
(0,s)(�)whereC∞

(0,s)(�) are (0, s)-forms
that are smooth on �. For V an m-dimensional vector space with basis {e1, . . . , em},
we define ∧r V := span{e j1 ∧ e j2 ∧ · · · ∧ e jr : j1 < · · · < jr }. Then we define the
tensor product

�∞
(r ,s) := ∧r V ⊗ C(0,s)

where r and s are non-negative integers. Thenwedefine the densely defined unbounded
operator

∂ :
{
f ∈ �∞

(r ,s) : ∂ f ∈ �∞
(r ,s+1)

}
→ �∞

(r ,s+1)

as

∂(eJ ⊗ W ) = eJ ⊗ ∂W .

We note that a similar definition holds for the L2 and C∞(�) setting (where L∞
is replaced with L2 in these definitions). We will denote the L2 analog of �∞

(r ,s) as

�2
(r ,s) and theC

∞(�) analog as�
C∞(�)
(r ,s) . Next, for any bounded holomorphic mapping

F := ( f1, . . . , fn) : � → C
n we will define the operator

τF : �∞
(r+1,s) → �∞

(r ,s)

as

(1) τF (e j ⊗ W ) = f jW
(2) τF∂ = ∂τF on { f ∈ �∞

(r ,s) : ∂ f ∈ �∞
(r ,s+1)}

(3) τFτF = 0 and ∂
2 = 0.

(4) τF (A ∧ B) = τF (A) ∧ B + (−1)|A|A ∧ τF (B) where |A| is the order of A in⋃m
r=0

∧r V .

Introducing more notation, we define Ds := C(0,s) ∩ dom(∂).

2 Main Results and Proofs

One can modify the proofs of [15, Lemma 1] and [15, Lemma 3] to get the following
proposition, which we prove for the convenience of the reader.

Proposition 1 Let � ⊂ C
n be a bounded L∞-pseudoconvex domain and F :=

( f1, . . . , fn) : � → � be injective, holomorphic, and C∞-smooth up to �. Let
W ∈ �∞

(r ,s) ∩ dom(∂) so that

(1) ∂W = 0.
(2) W is supported away from F−1(0, 0, . . . , 0).
(3) τF (W ) = 0.
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Then there exists Y ∈ �∞
(r+1,s−1) ∩ dom(∂) so that τF∂Y = W.

Proof Let χ ∈ C∞(�) so that χ ≡ 1 on the support of W and supp(χ) ∩
F−1(0, 0, . . . , 0) = ∅. Now define

g j := χ f j
∑n

j=1 | f j |2

and define

X :=
n∑

j=1

e j ⊗ g j ∈ �∞
(1,0).

Now, τF (X) = 1 on the support ofW and so we define Y := X ∧W ∈ �∞
(r+1,s). Then

τF (Y ) = τF (X) ∧ W − X ∧ τF (W ) = 1 ∧ W = W .

and the support of Y is away from F−1(0, 0, . . . , 0). Furthermore, ∂Y is bounded
since ∂W = 0 and g j ∈ C∞(�) for j ∈ {1, . . . , n}. Note that in [15, Proof of Lemma
3] we needed X to have compact support. This is not needed in this proposition since
we assumed F is smooth up to the closure of the domain (that is, { f1, . . . , fn} ⊂
C∞(�)) and injective (so F−1(0, 0, . . . , 0) is a singleton set). The rest of the proof
follows the descending induction procedure seen in [15, Proof of Lemma 3] with
some minor modifications. Let s = n, 0 ≤ r ≤ m − 1 and also W ∈ �∞

(r ,n) so that

supp(W ) ∩ F−1(0) = ∅ and τF (W ) = 0. It is clear that ∂W = 0 since any (0, n)

form is ∂-closed. Then there is Y1 ∈ �∞
(r+1,n) so that τF (Y1) = W . Also, it is clear that

∂Y1 = 0. Since � is L∞-pseudoconvex, there exists Y ∈ �∞
(r+1,n−1) so that ∂Y = Y1.

In other words, τF∂(Y ) = W . This is our base case. Now assume our proposition is
true for s = k + 1, k + 2, . . . , n and r = 0, 1, . . . ,m − 1. Suppose 0 ≤ r ≤ m − 1
and suppose W ∈ �∞

(r ,k) has the following properties:

(1) supp(W ) ∩ F−1(0, 0, . . . , 0) = ∅,
(2) ∂W = 0 and τF (W ) = 0.

Then there exists Y1 ∈ �∞
(r+1,k) so that

(1) ∂Y1 ∈ �∞
(r+1,k+1),

(2) supp(Y1) ∩ F−1(0, 0, . . . , 0) = ∅
Therefore, ∂Y1 ∈ �∞

(r+1,k+1) satisfies the conditions of the proposition for s = k+1.
In other words,

(1) supp(∂Y1) ∩ F−1(0, 0, . . . , 0) = ∅,
(2) ∂∂Y1 = 0 and τF∂(Y1) = ∂W = 0.

By the induction hypothesis, we have ∂Y2 ∈ �∞
(r+2,k+1) and τF∂Y2 = ∂Y1 for some

Y2 ∈ �∞
(r+2,k). Thus we have

∂(τFY2) = ∂Y1.
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Let us define Y3 := Y1 − τFY2. Then we have

τFY3 = W

and

∂Y3 = 0.

Since� is L∞-pseudoconvex, there exists Y ∈ �∞
(r+1,k−1) ∩dom(∂) so that ∂Y = Y3.

Thus we have

τF∂Y = W

as desired. �
Remark 1 The same procedure is applicable to the space �2

(r ,s) where the proof of
Proposition 1 is modified slightly to accomodate the different space. In this case, we
do not need a bounded L∞-pseudoconvex domain, as the ∂-problem is solvable on
L2(�) for any bounded pseudoconvex domain. See [16] for more information on the
L2-theory of the ∂-Neumann problem.

The proof for the following Proposition is the same as for Proposition 1, except one
must use the following theorem in place of the solvability of ∂ in L∞.

Theorem 3 [3] Let � ⊂ C
n be a bounded pseudoconvex domain with a C∞-smooth

boundary. Suppose β ∈ C∞
(0,s)(�) so that ∂β = 0. Then there exists α ∈ C∞

(0,s−1)(�)

so that ∂α = β.

Proposition 2 Let � ⊂ C
n be a bounded pseudoconvex domain with a C∞-smooth

boundary and F := ( f1, . . . , fn) : � → � be injective, holomorphic, and C∞-

smooth up to �. Let W ∈ �
C∞(�)
(r ,s) so that

(1) ∂W = 0.
(2) W is supported away from F−1(0, 0, . . . , 0).
(3) τF (W ) = 0.

Then there exists Y ∈ �
C∞(�)
(r+1,s−1) so that τF∂Y = W.

The following is the main theorem. As a consequence of this main theorem, we
have that the commuting Toeplitz operator problem as seen in [15] is true on a possibly
larger class of bounded pseudoconvex domains.

Theorem 4 Let � be a bounded L∞-pseudoconvex domain in Cn. Then � is Gleason
solvable.

Proof This proof is an application of a few results concerning the ∂-Koszul complex.
See [15] for more information on the ∂-Koszul complex. We will first consider n = 2.
Let � ⊂ C

2 be a bounded L∞-pseudoconvex domain. Let g ∈ H∞(�) and without
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loss of generality, suppose g(0, 0) = 0. Since g has a power series expansion about
(0, 0) converging on some open set U ⊂⊂ �, one can write

g = z1λ1 + z2λ2

on U . Here, λ1, λ2 ∈ H∞(U ) ∩ C∞(U ). Now let χ1 ∈ C∞(U ), supported in U ,

0 ≤ χ1 ≤ 1 onU and χ ≡ 1 on Ũ ⊂⊂ U . Also, (0, 0) ∈ Ũ . Then on � \ Ũ we have

g = z1

(

g
z1

|z1|2 + |z2|2
)

+ z2

(

g
z2

|z1|2 + |z2|2
)

Therefore,

g ≡ z1

(

(1 − χ1)g
z1

|z1|2 + |z2|2 + χ1λ1

)

+ z2

(

(1 − χ1)g
z2

|z1|2 + |z2|2 + χ1λ2

)

on �. Now for the sake of notation, define

L1 :=
(

(1 − χ1)g
z1

|z1|2 + |z2|2 + χ1λ1

)

and

L2 :=
(

(1 − χ1)g
z2

|z1|2 + |z2|2 + χ1λ2

)

Notice that both L1 and L2 are bounded on � and partial derivatives of L1 and L2 of
all orders exist and are continuous on compact subsets of �. In addition, ∂L1 and ∂L2
are bounded on �. Now define

W1 := e1 ⊗ ∂L1 + e2 ⊗ ∂L2.

Notice that W1 satisfies the hypothesis of Proposition 1 since the support of W1 is
away from F−1(0, 0) where F := (z1, z2), W1 ∈ �∞

(1,1) ∩ dom(∂), ∂W1 = 0, and

τFW1 = 0. Thus by Proposition 1, there exists there exists H1 ∈ C∞
(0,0) ∩ dom(∂) so

that

Y1 := (e1 ∧ e2) ⊗ H1 ∈ �∞
(2,0)

and

τF∂Y1 = e2 ⊗ z1∂H1 − e1 ⊗ z2∂H1 = W1.

Thus we have that

∂L1 = −z2∂H1
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and

∂L2 = z1∂H1.

Therefore,

L1 + z2H1 ∈ H∞(�)

and

L2 − z1H1 ∈ H∞(�).

Furthermore,

z1(L1 + z2H1) + z2(L2 − z1H1) ≡ g

on �. This completes the proof for n = 2. We will demonstrate the proof works for
n = 3 and then show how it can be generalized. For � ⊂ C

n for n = 3, we first use a
power series argument similar to the n = 2 case. That is, if g(0) = 0, one can write
g ≡ z1L1 + z2L2 + z3L3 where L j are holomorphic on a neighborhood of 0, L j are
smooth and bounded on �, and ∂L j ∈ L∞

(0,1)(�) for j = 1, 2, 3. We define

W := e1 ⊗ ∂L1 + e2 ⊗ ∂L2 + e3 ⊗ ∂L3 ∈ �∞
(1,1).

Clearly, ∂W = 0 and τF (W ) = 0 where F = (z1, z2, z3). Furthermore, the support
of W is away from F−1(0, 0, 0). Therefore, by Proposition 1, there exists Y ∈ �∞

(2,0)
so that

τF∂Y = W .

Now, Y ∈ �∞
(2,0), therefore, Y has the form

Y = e1 ∧ e2 ⊗ y3 + e1 ∧ e3 ⊗ y2 + e2 ∧ e3 ⊗ y1

for {y1, y2, y3} ⊂ C∞
(0,0) ∩dom(∂). Nowwe apply τF∂ to Y and collect terms together.

We get

W = τF∂Y = e1 ⊗ (−z2∂ y3 − z3∂ y2
) + e2 ⊗ (

z1∂ y3 − z3∂ y1
)

+e3 ⊗ (
z1∂ y2 + z2∂ y1

)
.

Thus we have

∂L1 = (−z2∂ y3 − z3∂ y2
)
,

∂L2 = (
z1∂ y3 − z3∂ y1

)
,
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and

∂L3 = (
z1∂ y2 + z2∂ y1

)
.

This implies

L1 + z2y3 + z3y2 ∈ H∞(�), L2 − z1y3 + z3y1 ∈ H∞(�),

and

L3 − z1y2 − z2y1 ∈ H∞(�).

Furthermore, we can write

g ≡ z1 (L1 + z2y3 + z3y2) + z2 (L2 − z1y3 + z3y1) + z3 (L3 − z1y2 − z2y1) .

The proof for n > 3 is an analog of the previous proofs with more terms involved.
We write g as a linear combination of bounded functions in the domain of ∂ that are
holomorphic on a neighborhood of 0. Then we use Proposition 1 to ’correct’ these
bounded functions to be holomorphic and bounded on �. Furthermore, the linear
combination of these functions still gives g. �
The advantage of this approach is that one can modify the proof to consider the
Bergman space A2(�). Recall theBergman space of� is the space of square integrable
holomorphic functions on �. The proof of this following theorem follows the proof
of Theorem 4 where Proposition 1 is used in addition to Remark 1.

Theorem 5 Let � ⊂ C
n be a bounded pseudoconvex domain. Suppose φ ∈ A2(�)

and φ(α) = 0 for some α ∈ �. Then, there exists φ1, φ2, . . . , φn ∈ A2(�) so that
φ ≡ ∑n

j=1(z j − α j )φ j .

It is well known that the boundary smoothness of the domain plays a role in deter-
mining the regularity of the solutions of the ∂-problem with smooth data. Therefore,
one can prove the following result for the ∂ problem with C∞-smooth data using the
techniques developed for the L∞ case (see the proof of Theorem 4) together with
Propostion 2. This result is a variation of one of the main results in [7]. The proof
follows the proof of Theorem 4 with Proposition 2 replacing Proposition 1.

Theorem 6 Let � ⊂ C
n be a C∞-smooth bounded pseudoconvex domain. Then �

has solvable C∞-smooth Gleason problem. That is, for any φ ∈ C∞(�) ∩ A2(�)

vanishing at α := (α1, . . . , αn) ∈ �, there exists

{φ1, . . . , φn} ⊂ C∞(�) ∩ A2(�)

so that

φ ≡
n∑

j=1

(z j − α j )φ j .
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