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1 Introduction

A Lie group G = (Rn, ◦) is called a stratified (Lie) group if it satisfies the following
conditions:

(a) For some integer numbers N1 + N2 + · · · + Nr = n, the decomposition R
n =

R
N1 × · · · × R

Nr is valid, and for any λ > 0 the dilation

δλ(x) := (λx ′, λ2x (2), . . . , λr x (r))

is an automorphism of G. Here x ′ ≡ x (1) ∈ R
N1 and x (k) ∈ R

Nk for k = 2, . . . , r .
(b) Let N1 be as in (a) and let X1, . . . , XN1 be the left-invariant vector fields on G

such that Xk(0) = ∂
∂xk

|0 for k = 1, . . . , N1. Then the Hömander rank condition must
be satisfied, that is,

rank(Lie{X1, . . . , XN1}) = n,

for every x ∈ R
n .

Then, we say that the triple G = (Rn, ◦, δλ) is a stratified (Lie) group.
Recall that the standard Lebesgue measure dx on R

n is the Haar measure for G
(see, e.g. [8]). The left-invariant vector field X j has an explicit form:

Xk = ∂

∂x ′
k

+
r∑

l=2

Nl∑

m=1

a(l)
k,m(x ′, . . . , x (l−1))

∂

∂x (l)
m

, (1.1)

see e.g. [8]. The following notations are used throughout this paper:

∇G := (X1, . . . , XN1)

for the horizontal gradient,

Lp f := ∇G · (|∇G f |p−2∇G f ), 1 < p < ∞, (1.2)

for the p-sub-Laplacian. When p = 2, that is, the second order differential operator

L =
N1∑

k=1

X2
k , (1.3)

is called the sub-Laplacian onG. The sub-LaplacianL is a left-invariant homogeneous
hypoelliptic differential operator and it is known that L is elliptic if and only if the
step r of G is equal to 1.

Let � ⊂ G be an open set, then we define the functional spaces

S1,p(�) = {u : � → R; u, |∇Gu| ∈ L p(�)}. (1.4)
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We consider the following functional

Jp(u) :=
(∫

�

|∇Gu(x)|pdx
) 1

p

.

Thus, the functional class S̊1,p(�) can be defined as the completion of C1
0(�) in the

norm generated by Jp, see e.g. [3].
Let � be a bounded domain on the stratified Lie groups with the smooth boundary

∂�. We consider the Dirichlet initial value problem for the p-sub-Laplacian heat
operator

⎧
⎪⎨

⎪⎩

ut (x, t) − Lpu(x, t) = f (u(x, t)), (x, t) ∈ � × (0,+∞),

u(x, t) = 0, (x, t) ∈ ∂� × [0,+∞),

u(x, 0) = u0(x) ≥ 0, x ∈ �.

(1.5)

Here f is a locally Lipschitz continuous function on R, f (0) = 0, and such that
f (u) > 0 for u > 0. Furthermore, we suppose that u0 is a non-negative and non-trivial
function in L∞(�) ∩ S̊1,p(�) and that u0(x) = 0 on the boundary ∂� of �.

In the Euclidean setting, it is well-known that there often exists a solution of the p-
Laplacian parabolic equation as the one in (1.5) for all times. There is a large literature
on the sufficient conditions for the local existence of solutions to the p-Laplacian
parabolic equation. For example, the sufficient conditions for the local existence of
solutions to the p-Laplacian parabolic equations are derived by Ball [1] and Zhao [10]
for p = 2 and p > 2, respectively. Then, the blow-up solutions have been investigated
by many authors such as Levine [6], Philippin and Proytcheva [7], Ding and Hu [5],
Bandle and Brunner [2], with a more detailed review of their works presented in [4].

In the present paper, our aim is to extend Abelian (Euclidean) to general stratified
(Lie) groups. Thus, in this paper, the blow-up theorems for the p-sub-Laplacian heat
operators are proved on the stratified Lie groups. We use the concavity method and the
Poincaré inequality from [9] as themain tool. However, these results cannot be directly
extended to the general stratified groups since there are no those spectral inequalities
on the general stratified groups. On the other hand, in general, our stratified group
theorems cannot completely cover the Heisenberg group results due to the restriction
N1 �= p (see Theorem 2.5).

2 Main Results

2.1 Blow-Up Solutions for the Sub-Laplacian Heat Operators

We consider the blow-up solutions to the sub-Laplacian heat equation on the stratified
groups G, that is,
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⎧
⎪⎨

⎪⎩

ut (x, t) − Lu(x, t) = f (u(x, t)), (x, t) ∈ � × (0,+∞),

u(x, t) = 0, (x, t) ∈ ∂� × [0,+∞),

u(x, 0) = u0(x) ≥ 0, x ∈ �,

(2.1)

where f is locally Lipschitz continuous on R, f (0) = 0, and such that f (u) > 0 for
u > 0. Furthermore, we suppose that u0 is a non-negative and non-trivial function in
C1(�) and that u0(x) = 0 on the boundary ∂�.

Theorem 2.1 Let � be a bounded domain of the stratified groupG with N1 ≥ 3 being
the dimension of the first stratum and smooth boundary ∂�. Let a function f satisfy
the condition that there exist constants α > 2 and γ such that for all u > 0 we have

αF(u) ≤ u f (u) + βu2 + αγ, (2.2)

where F(u) = ∫ u
0 f (s)ds and 0 < β ≤ (α−2)(N1−2)2

8R2 . If u0 ∈ C1(�) with u0 = 0 on
∂� satisfies the inequality

− 1

2

∫

�

|∇Gu0(x)|2dx +
∫

�

(∫ u0(x)

0
f (s)ds − γ

)
dx > 0, (2.3)

then the nonnegative solution to the Eq. (2.1) blows up at a finite time T ∗ for

M :=
(
1 +

√
α
2

) (∫
�
u20(x)dx

)2

2(α − 2)[− 1
2

∫
�

|∇Gu0|2dx + ∫
�
(
∫ u0(x)
0 f (s)ds − γ )dx]

, (2.4)

such that

0 < T ∗ ≤ M

σ
∫
�
u20(x)dx

, (2.5)

that is,

lim
t→T ∗

∫ t

0

∫

�

u2(x, τ )dxdτ = +∞. (2.6)

Lemma 2.2 [9] Let � be a bounded domain on the stratified group G with N1 ≥ 3
being the dimension of the first stratum. For every function u ∈ C∞

0 (�\{x ′ = 0}) we
have

∫

�

|∇Gu|2dx ≥ (N1 − 2)2

4R2

∫

�

|u|2dx, (2.7)

where R = supx∈� |x ′|.
Remark 2.3 Note that Lemma 2.2 will be useful in the proof of Theorem 2.1.
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Proof of Theorem 2.1 Let � be denoted by

�(t) :=
∫ t

0

∫

�

u2(x, τ )dxdτ + M, t ≥ 0, (2.8)

where M > 0 is a constant to be determined later. By Leibniz’s integral rule we get

�′(t) = d

dt
�(t) = d

dt

(∫ t

0

∫

�

u2(x, τ )dxdτ

)
=

∫

�

u2(x, t)dx,

and

∫

�

∫ t

0
2u(x, τ )uτ (x, τ )dτdx =

∫

�

∫ t

0

d

dτ
u2(x, τ )dτdx

=
∫

�

u2(x, t)dx −
∫

�

u20(x)dx .

This gives the relation

�′(t) =
∫

�

u2(x, t)dx =
∫

�

∫ t

0
2u(x, τ )uτ (x, τ )dτdx +

∫

�

u20(x)dx . (2.9)

Using the above computations, the condition (2.2) and Lemma 2.2, we compute the
second derivative of �(t) with respect to time

�′′(t) = 2
∫

�

u(x, t)ut (x, t)dx

= 2
∫

�

u(x, t)Lu(x, t) + 2
∫

�

u(x, t) f (u(x, t))dx

≥ −2
∫

�

|∇Gu(x, t)|2dx + 2
∫

�

[
αF(u(x, t)) − βu2(x, t) − αγ

]
dx

≥ 2α

[
−1

2

∫

�

|∇Gu(x, t)|2dx +
∫

�

(F(u(x, t)) − γ )dx

]

+
(

(α − 2)(N1 − 2)2

4R2 − 2β

) ∫

�

u2(x, t)dx

≥ 2α

[
−1

2

∫

�

|∇Gu(x, t)|2dx +
∫

�

(F(u(x, t)) − γ )dx

]

= 2α

[
−1

2

∫

�

|∇Gu0|2dx +
∫

�

(F(u0) − γ )dx

]
+ 2α

∫ t

0

∫

�

u2τ (x, τ )dxdτ.

Then we have

�′′(t)�(t) ≥2α

([
−1

2

∫

�

|∇Gu0|2dx+
∫

�

(F(u0)−γ )dx

]
+

∫ t

0

∫

�

u2τ (x, τ )dxdτ

)
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×
(∫ t

0

∫

�

u2(x, τ )dxdτ + M

)

≥ 2αM

[
−1

2

∫

�

|∇Gu0|2dx +
∫

�

(F(u0) − γ )dx

]

+ 2α

(∫

�

∫ t

0
u2(x, τ )dτdx

) (∫

�

∫ t

0
u2τ (x, τ )dτdx

)
.

Also, we compute by making use of Hölder and Schwartz’s inequalities,

(�′(t))2 ≤ 4(1 + δ)

(∫

�

∫ t

0
u(x, τ )uτ (x, τ )dτdx

)2

+
(
1 + 1

δ

)(∫

�

u20(x)dx

)2

≤ 4(1 + δ)

(∫

�

(∫ t

0
u2(x, τ )dτ

) 1
2
(∫ t

0
u2τ (x, τ )dτ

) 1
2

dx

)2

+
(
1 + 1

δ

) (∫

�

u20(x)dx

)2

≤ 4(1 + δ)

(∫

�

∫ t

0
u2(x, τ )dτdx

) (∫

�

∫ t

0
u2τ (x, τ )dτdx

)

+
(
1 + 1

δ

) (∫

�

u20(x)dx

)2

,

where δ > 0. Then by combining the above expressions and taking σ = δ = √
α/2−

1 > 0, we establish the following estimate

�′′(t)�(t) − (1 + σ)(�′(t))2

≥ 2αM

[
−1

2

∫

�

|∇Gu0|2dx +
∫

�

(F(u0) − γ )dx

]
− α√

2α − 2

(∫

�

u20(x)dx

)2

.

Then we choose M > 0 as large enough to satisfy

�′′(t)�(t) − (1 + σ)(�′(t))2 > 0. (2.10)

We can see that the above expression for t ≥ 0 implies

d

dt

[
�′(t)

�σ+1(t)

]
> 0 ⇒

⎧
⎨

⎩
�′(t) ≥

(∫
� u20(x)dx
Mσ+1

)
�1+σ (t),

�(0) = M .

Then we arrive at

�(t) ≥
(

1

Mσ
−

∫
�
u20(x)dx

Mσ+1 t

)− 1
σ

.
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From here we see that the solutions blow up in the finite time T ∗ which is

0 < T ∗ ≤ M

σ
∫
�
u20(x)dx

,

where M can be estimated from (2.10), that is,

M :=
(
1 +

√
α
2

) (∫
�
u20(x)dx

)2

2(α − 2)[− 1
2

∫
�

|∇Gu0|2dx + ∫
�
(F(u0) − γ )dx] .

Therefore, it follows that �(t) cannot remain finite for all t > 0. In other words, the
solutions u blows up in finite time T ∗. ��

2.2 Blow-Up Solutions for p-Sub-Laplacian Heat Operators

We consider now the blow-up solutions to the p-sub-Laplacian heat equation on the
stratified group G, that is,

⎧
⎪⎨

⎪⎩

ut (x, t) − Lpu(x, t) = f (u(x, t)), (x, t) ∈ � × (0,+∞),

u(x, t) = 0, (x, t) ∈ ∂� × [0,+∞),

u(x, 0) = u0(x) ≥ 0, x ∈ �,

(2.11)

where f is locally Lipschitz continuous on R, f (0) = 0, and such that f (u) > 0 for
u > 0. Furthermore, we suppose that u0 is a non-negative and non-trivial function in
L∞(�) ∩ S̊1,p(�) and that u0(x) = 0 on the boundary ∂�.

Lemma 2.4 [9] Let � be a bounded domain on the stratified group G with N1 being
the dimension of the first stratum. Let 1 < p < ∞ with p �= N1. For every function
u ∈ C∞

0 (�\{x ′ = 0}) we have
∫

�

|∇Gu|pdx ≥ |N1 − p|p
(pR)p

∫

�

|u|pdx, (2.12)

where R = supx∈� |x ′|.

Theorem 2.5 Let � be a bounded domain of the stratified group G with N1 being the
dimension of the first stratum and smooth boundary ∂�. Let a function f satisfy the
condition that there exist constants α > p and γ such that for all u > 0 we have

αF(u) ≤ u f (u) + βu p + αγ, (2.13)
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where F(u) = ∫ u
0 f (s)ds and 0 < β ≤ (α−p)|N1−p|p

p(pR)p
with N1 �= p. If u0 ∈ L∞(�)∩

S̊1,p(�) satisfies

− 1

p

∫

�

|∇Gu0(x)|pdx +
∫

�

(∫ u0(x)

0
f (s)ds − γ

)
dx > 0, (2.14)

then the nonnegative solution to the Eq. (2.11) blows up at a finite time T ∗ for

M :=
(
1 +

√
α
2

) (∫
�
u20(x)dx

)2

2(α − 2)
[
− 1

p

∫
�

|∇Gu0|pdx + ∫
�
(
∫ u0(x)
0 f (s)ds − γ )dx

] , (2.15)

such that

0 < T ∗ ≤ M

σ
∫
�
u20(x)dx

, (2.16)

that is,

lim
t→T ∗

∫ t

0

∫

�

u2(x, τ )dxdτ = +∞. (2.17)

Lemma 2.6 Let u be the weak solution to the Eq. (2.11) with |∇Gu0| ∈ L p(�). Then

1

2

∫ t

0

∫

�

(u2(x, τ ))τdxdτ = 1

2

∫

�

[u2(x, t) − u20(x)]dx

=
∫ t

0

∫

�

[−|∇Gu(x, t)|p + u(x, t) f (u(x, t))]dxdτ,

(2.18)

and

∫ t

0

∫

�

u2τ (x, τ )dxdτ = − 1

p

∫

�

[|∇Gu(x, t)|p − |∇Gu0(x)|p]dx

+
∫

�

[F(u(x, t)) − F(u0(x))]dx, (2.19)

where F(u) := ∫ u
0 f (s)ds.

Proof of Lemma 2.6 We first prove the equality (2.18) by using the equation (2.11),
that is,

1

2

∫ t

0

∫

�

(u2(x, τ ))τdxdτ = 1

2

∫

�

u2(x, τ )|t0dx = 1

2

∫

�

[u2(x, t) − u20(x)]dx,
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and

1

2

∫ t

0

∫

�

(u2(x, τ ))τdxdτ =
∫

�

∫ t

0
u(x, τ )uτ (x, τ )dxdτ

=
∫ t

0

∫

�

Lpu(x, τ )u(x, τ )dxdτ +
∫ t

0

∫

�

f (u(x, τ ))u(x, τ )dxdτ

= −
∫ t

0

∫

�

|∇Gu(x, τ )|pdxdτ +
∫ t

0

∫

�

f (u(x, τ ))u(x, τ )dxdτ,

which proves the expression (2.18). Now we prove inequality (2.19) by using the
Leibniz integral rule, as follows

∫ t

0

∫

�

u2τ (x, τ )dxdτ =
∫ t

0

∫

�

Lpu(x, τ )uτ (x, τ )dxdτ

+
∫ t

0

∫

�

f (u(x, τ ))uτ (x, τ )dxdτ

= −
∫ t

0

∫

�

〈|∇Gu(x, τ )|p−2∇Gu(x, τ ),∇Guτ (x, τ )〉dxdτ

+
∫ t

0

∫

�

f (u(x, τ ))uτ (x, τ )dxdτ

= −1

2

∫

�

∫ t

0

d

dτ

(∫ |∇Gu(x,τ )|2

0
s

p−2
2 ds

)
dτdx

+
∫

�

∫ t

0

d

dτ

(∫ u(x,τ )

0
f (s)ds

)
dτdx

= −1

2

∫

�

∫ |∇Gu(x,τ )|2

0
s

p−2
2 dsdx |t0 +

∫

�

F(u(x, τ ))dx |t0

= −1

2

∫

�

(
2

p
s

p
2 ||∇Gu(x,τ )|2

0

)
dx |t0 +

∫

�

F(u(x, τ ))dx |t0

= − 1

p

∫

�

[|∇Gu(x, t)|p − |∇Gu0(x)|p
]
dx

+
∫

�

[F(u(x, t)) − F(u0(x))]dx,

which proves the expression (2.19). ��

Proof of Theorem 2.5 Let us define the function �p by

�p(t) :=
∫ t

0

∫

�

u2(x, τ )dxdτ + M, t ≥ 0, (2.20)
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where M is a positive constant. Then we compute the derivative of �(t) with respect
to time, which gives that

�′
p(t) = d

dt

∫ t

0

∫

�

u2(x, τ )dxdτ =
∫

�

d

dt

(∫ t

0
u2(x, τ )dτ

)
dx

=
∫

�

u2(x, t)dx

=
∫ t

0

∫

�

2u(x, τ )uτ (x, τ )dτdx +
∫

�

u20(x)dx .

The second derivative of �p(t)with respect to time t can be calculated by Lemma 2.6,
using the condition (2.13), and Lemma 2.4, so that we get the estimate for �′′

p(t) as
follows:

�′′
p(t) = 2

∫

�

u(x, t)ut (x, t)dx

= −2
∫

�

|∇Gu(x, t)|pdx + 2
∫

�

u(x, t) f (u(x, t))dx

≥ −2
∫

�

|∇Gu(x, t)|pdx + 2
∫

�

(
αF(u(x, t)) − βu p(x, t) − αγ

)
dx

≥ 2α

[
− 1

p

∫

�

|∇Gu(x, t)|pdx +
∫

�

[F(u(x, t)) − γ ]dx
]

+ 2

(
(α − p)|N1 − p|p

pp+1Rp
− β

) ∫

�

u p(x, t)dx

≥ 2α

[
− 1

p

∫

�

|∇Gu(x, t)|pdx +
∫

�

[F(u(x, t)) − γ ]dx
]

= 2α

[
− 1

p

∫

�

|∇Gu0|pdx +
∫

�

[F(u0) − γ ]dx
]

+ 2α
∫ t

0

∫

�

u2τ (x, τ )dxdτ.

Then we have

�′′
p(t)�p(t) ≥2α

([
−1

p

∫

�

|∇Gu0|pdx+
∫

�

[F(u0)−γ ]dx
]
+

∫ t

0

∫

�

u2τ (x, τ )dxdτ

)

×
(∫ t

0

∫

�

u2(x, τ )dxdτ + M

)

≥ 2αM

[
− 1

p

∫

�

|∇Gu0|pdx +
∫

�

[F(u0) − γ ]dx
]

+ 2α

(∫ t

0

∫

�

u2τ (x, τ )dxdτ

) (∫ t

0

∫

�

u2(x, τ )dxdτ

)
.
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By making use of Schwartz’s inequality and for arbitrary δ > 0 as in the case p = 2
we arrive at

(
�′
p(t)

)2 ≤ 4(1 + δ)

(∫

�

∫ t

0
u2(x, τ )dτdx

) (∫

�

∫ t

0
u2τ (x, τ )dτdx

)

+ 1 + δ

δ

(∫

�

u20(x)dx

)2

. (2.21)

Now we use estimates of �′
p(t) and �′′

p(t) to obtain

�′′
p(t)�p(t) − (1 + σ)(�′

p(t))
2

≥ 2αM

[
− 1

p

∫

�

|∇Gu0|pdx +
∫

�

(F(u0) − γ )dx

]
− α√

2α − 2

(∫

�

u20(x)dx

)2

.

(2.22)

Note that from (2.14) we have

− 1

p

∫

�

|∇Gu0|pdx +
∫

�

(F(u0) − γ )dx > 0,

and taking M > 0 as large as necessary, we obtain the following estimate

�′′
p(t)�p(t) − (1 + σ)(�′

p(t))
2 > 0. (2.23)

For t ≥ 0 the above expression can be written as

d

dt

(
�′
p(t)

�1+σ
p (t)

)
> 0,

which implies

⎧
⎨

⎩
�′
p(t) ≥

(∫
� u20(x)dx
Mσ+1

)
�1+σ
p (t), t > 0,

�p(0) = M .

(2.24)

Then we arrive at

�p(t) ≥
(

1

Mσ
−

∫
�
u20(x)dx

Mσ+1 t

)− 1
σ

,

From here we see that the solutions blow up in the finite time T ∗ which is

0 < T ∗ ≤ M

σ
∫
�
u20(x)dx

,
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where M can be estimated from (2.22) as follows

M =
(
1 +

√
α
2

) (∫
�
u20(x)dx

)2

2(α − 2)
[
− 1

p

∫
�

|∇Gu0|pdx + ∫
�
(F(u0) − γ )dx

] . (2.25)

��
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