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Abstract
We characterize boundedness and compactness of Hankel operators between Bergman
spaces of variable exponent and the Lebesgue spaces of variable exponents. We also
give some characterizations of the symbol class which is some BMO-type spaces
with variable exponent on the unit ball of C

n .
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Variable exponent Bergman spaces · Variable exponent Lebesgue spaces

Mathematics Subject Classification Primary 32A36 · Secondary 47B35

1 Introduction and Statement of Results

Variable Lebesgue spaces are a generalization of the Lebesgue spaces that allow the
exponents to be a measurable function and thus the exponent may vary. These spaces
have many properties similar to the normal Lebesgue spaces, but they also differ
in surprising and subtle ways. For this reason, the variable Lebesgue spaces have an
intrinsic interest and also very important in applications to partial differential equations
and variational integrals with non-standard growth conditions. See [5] for more details
on the variable Lebesgue spaces.

Let B denote the unit ball in C
n and dν the normalized Lebesgue measure on B. If

z ∈ B and α > −1 we set dνα(z) = (1 − |z|2)αdν. For 1 ≤ p < ∞, the Bergman
space Ap

α = Ap(B, dνα) is the space of all analytic functions, f , on B such that
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‖ f ‖p
p =

∫
B

| f (z)|pdνα(z) < ∞.

Let Pα be the Bergman projection from L2 onto A2. Then Pα is an integral operator
given by

Pα( f )(z) =
∫
B

f (w)

(1 − 〈z, w〉)n+1+α
dνα(w), (1)

for each z ∈ B and f ∈ L2, where 〈z, w〉 = ∑n
i=1 ziwi . The function K α(z, w) =

K α
w(z) = 1

(1−〈z,w〉)n+1+α is the reproducing kernel for A2
α . For 1 < p ≤ q < ∞ and

f ∈ L p
loc we define the Hankel operator H

α
f : Ap

α → Lq
α by

Hα
f (g) = f g − Pα( f g) = (I − Pα)( f g), g ∈ Ap

α .

Hankel operators are amongst the most widely studied classes of concrete operators
and have attracted alot of interest in recent years. The behaviour of these operators on
the Bergman spaces and Fock spaces have been studied widely and alot of results are
available in the literature.

Given � ⊂ R
n , a measurable function p : � → [1,∞) will be called a variable

exponent. We denote by

p+ = p+
� := ess sup

x∈�

p(x), p− = p−
� := ess inf

x∈�
p(x).

Let P(�) denote the set of all variable exponents for which p+ < ∞.
For a complex-valued measurable function φ : � → Cwe define the modular ρp(·)

by

ρp(·)(φ) :=
∫

�

|φ(x)|p(x)dx

and the norm

‖φ‖p(·) := inf

{
λ > 0 : ρp(·)

(
φ

λ

)
≤ 1

}
. (2)

If no confusion shall arise, we shall denote the modular ρp(·) simply by ρ. Let p(·) ∈
P(�). Then the Lebesgue variable exponent space L p(·) is the set of all complex
valued measurable functions φ : � → C for which ρp(·)(φ) < ∞. If we equip L p(·)
with the norm given in (2), then L p(·) becomes a Banach space. We note here that
the condition ρp(·)(φ) < ∞ is not enough in general to define the variable exponent
lebesgue space (see for example chapter 2 of [5]).

It is known, see for example chapter 2 of [5], that the dual of L p(·) is L p′(·) where
1
p(·) + 1

p′(·) = 1. A straight foward computation shows that

(p′(·))+ = (p−)′, (p′(·))− = (p+)′. (3)
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For simplicity we will omit one set of parenthesis and write the left-hand side of each
equality as p′(·)+ and p′(·)−. Throughout this work we shall use p′(·) as the conjugate
exponent of p(·) and p′ the conjugate exponent of pwhenever p is a constant in (1,∞).

We will impose some regularity conditions on the variable exponents in order to
have some ”fruitful’ theory (e.g boundedeness of the maximal operator). A function
p : � → C is said to be log-Hölder continuous on � if there exists a positive constant
Clog such that

|p(x) − p(y)| ≤ Clog

log(1/|x − y|) , (4)

for all x, y ∈ � with |x − y| < 1/2. It follows that

|p(x) − p(y)| ≤ 2lClog

log(2l/|x − y|) ,

for all x, y ∈ � with |x − y| < l. We denote by P log(�) the exponents in P(�) that
are log-Hölder continuous on �. It is well known that the condition (4) is equivalent
to the condition

|B|p−
B−p+

B ≤ C, (5)

for all balls, where | · | stands for the normalized Lebesgue measure. As a consequence
of (5) we have that if z, w ∈ B then

|B|p(z) ≈ |B|p(w), (6)

for any ball B. We are going to use this relation several times in the paper.
The study of variable exponent Bergman spaces on the unit disc, Ap(·)(�), which is

the space of analytic functions in L p(·)(�), have been introduced in [4]. There, it was
shown, amongst other things, that the Bergman projector P is bounded from L p(·)(�)

onto Ap(·)(�). Also in [1] the author studied compact operators on Ap(·)(�) while
Carleson measures on such spaces are given in [3]. Using a similar argument and with
less difficulty one easily obtains the boundedness of the Bergman projector , Pα , from
L p(·)

α (B) onto Ap(·)
α (B) since the method used in [4] works in the case of the unit ball.

In this paper, we are interested in the mapping properties of Hankel operators
between different Lebesgue spaces with variable exponent. The case with constant
exponent has been of interest and has attracted a lot of research, see for example [7,
9, 11, 14], just to cite a few. We characterize functions f ∈ Lq(·)

σ such that both Hσ
f

and Hσ

f
are bounded and compact from Ap(·)

α to Lq(·)
σ , 1 < p(·) ≤ q(·). We define

two BMO-type spaces; BMOSp(·) and V MOSp(·) which will enable us characterize
the symbols for boundedness and compactness of the Hankel operators. We also note
that when the exponents are constant, then the spaces mentioned above becomes the
well known BMO and VMO spaces. The main results of this paper are the following:
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Theorem 1.1 Suppose p(·), q(·) ∈ P log(B), p(·) ≤ q(·), α, σ > −1, f ∈ Lq(·)
σ and

n + 1 + σ

q(·) = n + 1 + α

p(·) .

Let p0 ≤ q0 be such that 1 ≤ p0 ≤ p− ≤ p+ <
p0q0

q0−p0
and 1

p(·) − 1
q(·) = 1

p0
− 1

q0
.

Then Hσ
f , Hσ

f
: Ap(·)

α → Lq(·)
σ are both bounded if and only if f ∈ BMOSq(·)

Theorem 1.2 Suppose p(·), q(·) ∈ P log(B), p(·) ≤ q(·), α, σ > −1, f ∈ Lq(·)
σ and

n + 1 + σ

q(·) = n + 1 + α

p(·) .

Let p0 ≤ q0 be such that 1 ≤ p0 ≤ p− ≤ p+ <
p0q0

q0−p0
and 1

p(·) − 1
q(·) = 1

p0
− 1

q0
.

Then Hσ
f , Hσ

f
: Ap(·)

α → Lq(·)
σ are both compact if and only if f ∈ V MOSq(·).

In other to obtain these results we will first characterize the symbol spaces, which is,
the variable exponent BMO-type spaces, establish a weighted version of the Okikiolu
Lemma, [10], that will enable us use extrapolation techniques to extend the results
given in [11] to the variable exponent setting.

In the the following, the notation A � B means there is a positive constant C such
that A ≤ CB and the notation A ≈ B means A � B and B � A.

This paper is organized as follows: In Sect. 2 wewill study some basic concepts that
will be useful in the work. Sect. 3 deals with the variable Bergman spaces,in Sect. 4
we characterize the space BMOSp(·) and then we give the Proof of Theorem 1.1 in
Sect. 5. Sect. 6 deals with the space V MOSp(·) and the Proof of Theorem 1.2 is given
in Sect. 7.

2 Preliminaries

In this section we collect some preliminaries results that are needed for the proof of
the main theorems. For z = (z1, · · · , zn), w = (w1, · · · , wn) ∈ C

n , we write

〈z, w〉 =
n∑

i=1

ziwi

and |z| = √〈z, z〉. For a ∈ B with a 
= 0 we denote by ϕa the Möbius transformation
on B that interchanges the points 0 and a. It is well known that

ϕa(z) = a − Pa(z) − saQa(z)

1 − 〈z, a〉 , z ∈ B,

where sa = 1 − |a|2, Pa is the orthogonal projection from C
n onto the one dimen-

sional space [a] generated by a and Qa is the orthogonal projection from C
n onto the

complement of [a].
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For z, w ∈ B, the Bergman metric distance between z and w is given by

β(z, w) = 1

2
log

1 + |ϕz(w)|
1 − |ϕz(w)| .

Let z ∈ B and r > 0. Then the Bergman metric ball with centre z is given by

D(z, r) = {w ∈ B : β(z, w) < r} .

It is known that if w ∈ D(z, r) then 1 − 〈z, w〉 ≈ (1 − |w|2) ≈ (1 − |z|2),

(1 − |z|2)n+1+α ≈ να(D(z, r)) ≈ να(D(w, r)) ≈ (1 − |w|2)n+1+α, (7)

and by (6) if β(z, w) < r ,

(1 − |z|2)(n+1+α)p(z) ≈ (1 − |z|2)(n+1+α)p(w), p(·) ∈ P log(B). (8)

We will need the following result which is Theorem 2.23 of [16].

Lemma 2.1 There exists a positve integer N such that for any r ∈ (0, 1) we can find
a sequence {ak} in B satisfying the following properties:

(i) B = ⋃
k D(ak, r).

(ii) The sets D(ak, r/4) are mutually disjoint.
(iii) Each point z ∈ B belongs to at most N of the sets D(ak, r).

Recall, that any sequence {ak} satisfying the conditions of the lemma above is called
an r -lattice in the Bergman metric. A sequence {ak} is said to be separated in the
Bergman metric if there is a positive number δ such that β(ai , a j ) ≥ δ for all i 
= j .

We will need the following well-known estimates:

Lemma 2.2 Let t > −1, s > 0, and d ≥ 0. Then there is a positive constant C such
that

∫
B

(1 − |w|2)tβ(z, w)d

|1 − 〈z, w〉|n+1+t+s
dν(w) ≤ C(1 − |z|2)s (9)

for all z ∈ B.

Lemma 2.3 Let {zk} be a separated sequence in B and n < t < s. Then

∞∑
k=1

(1 − |zk |2)t
|1 − 〈z, zk〉|s ≤ C(1 − |z|2)t−s, z ∈ B.

The Proof of Lemma 2.3 can be deduced from Lemma 2.2 in the case when d = 0
and by noticing that if a sequence {ak} is separated, then there is a constant r > 0 such
that the Bergman metric balls, D(ak, r) are pairwise disjoint
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Definition 2.4 Let � be a set. Then the function d : � × � → R
+ is said be a

pseudo-distance on � if it satisties the following:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) There exists a positive constant K ≥ 1, such that, for all x, y, z ∈ �,

d(x, y) ≤ K (d(x, z) + d(z, y)).

For x ∈ � and r > 0, the set B(x, r) = {y ∈ � : d(x, y) < r} is called a
pseudo-ball with centre x and radius r . Ifμ is a measure on� then the triple (�, d, μ)

is called a homogeneous space if � is endowed with the topology generated by the
collection {B(x, r) : x ∈ �, r > 0} (that is the topology generated by the pseudo
balls) and μ satisfies the doubling property: there exists a constant δ such that for all
x ∈ � and r > 0, we have

0 < μ(B(x, 2r)) ≤ δμ(B(x, r)) < ∞.

We now tend our attention to the case when � = B. By lemma 2.6 of [13], it is shown
that the distance function d given on B by

d(z, w) =
{

||z| − |w|| + |1 − 〈z, w〉/|z||w|| if z, w ∈ B∗

|z| + |w| otherwise

is a pseudo-distance on B, where B∗ = B \ {0}. It is known (see for example [2]), that
at the boundary of B, d becomes the Koranyi distance. Also by Lemma 2 of [2], we
have that for any pseudo-ball B(w, r), w 
= 0, and r ∈ (0, 2) we have that

να(B(w, r)) ≈ rn+1. (10)

Also, observe that the pseudo-ball B(0, 1) = B. Also from [2] the space (B, d, dνα)

is a homogeneous space. On the variable exponent setting we will need the Diening
inequality, which will play the role of the Jensen integral inequality: For any Borel
measure μ(

1

μ(Bx, r)

∫
B(x,r)

| f (y)|dμ(y)

)p(x)

≤ C

(
1 + 1

μ(B(x, r)

∫
B(x,r)

| f (y)|p(y)dμ(y)

)

(11)

which holds whenever

∫
B(x,r)

| f (y)|p(y)dμ(y) ≤ 1

and p(·) is log-Hölders continuous. For more details see [12].
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Let f be a locally integrable function in B. Then the Hardy–Littlewood maximal
function relative to the pseudo-distance d is given by

M f (z) = sup
B

1

να(B)

∫
B

| f (w)|dνα(w)

where the supremum is taken over all pseudo-balls containing z.
Suppose 0 < ω(z) < ∞ almost everywhere on B, we will set ω(B) =∫

B ω(ξ)dνα(ξ). Then we say that ω is in the Muckenhoupt weight A1 if

[ω]A1 = ess sup
z∈B

Mω(z)

ω(z)
< ∞

There are two equivalent definitions, of the class A1, which are useful in practice.
First, ω ∈ A1 if for almost every z ∈ B,

Mω(z) ≤ [ω]A1ω(z). (12)

It follows that if ω ∈ A1 then

[ω]A1ω(z) ≥ Mω(z) ≥ ω(B).

Thus

1 ≤ [ω]A1ω(z)

ω(B)
. (13)

Alternatively w ∈ A1 if for every pseudo-ball B we have that

ω(B)

να(B)
≤ [ω]A1 ess inf

u∈B ω(u). (14)

For more details on the Muckenhoupt weights see Chapter 9 of [6] or Chapter 4 of [5].
We will need the following extrapolation result which is Theorem 5.24 of [5].

Proposition 2.5 Given � ∈ R
n and suppose for some p0, q0, 1 ≤ p0 ≤ q0 the family

F is such that for all ω ∈ A1,

(∫
�

F(x)q0ω(x)dx

) 1
q0 ≤ C0

(∫
�

G(x)p0ω(x)
p0
q0 dx

) 1
p0

, (F,G) ∈ F . (15)

Given p(·) ∈ P log(�) such that p0 ≤ p− ≤ p+ <
p0q0

q0−p0
, define q(·) by

1

p(x)
− 1

q(x)
= 1

p0
− 1

q0
.
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If the maximal operator is bounded on L(q(·)/q0)′(�), then

‖F‖q(·) ≤ Cp(·)‖G‖p(·), (F,G) ∈ F , (16)

where Cp(·) = CC0 and C is some positive constant depending on the dimension of
�.

The following is Theorem 3.16 of [5].

Proposition 2.6 Let p ∈ P log(�). Then theHardy–Littlewoodmaximal operator func-
tion is bounded in L p(·)(�) and we have

‖M f ‖p(·) ≤ C‖ f ‖p(·).

The next result, which establishes a relationship between the modular ρ and the norm
on Lebesgue spaces with variable exponents will be very useful in the rest of the work,
which is from Corollaries 2.22 and 2.23 of [5].

Lemma 2.7 Suppose p(·) ∈ P log(�) and |�| < ∞. If ‖ f ‖p(·) > 1 then ‖ f ‖p(·) ≤
ρ( f ) and

ρ( f )1/p+ ≤ ‖ f ‖p(·) ≤ ρ( f )1/p− .

If 0 < ‖ f ‖p(·) ≤ 1 then ρ( f ) ≤ ‖ f ‖p(·) and

ρ( f )1/p− ≤ ‖ f ‖p(·) ≤ ρ( f )1/p+ .

Finally, we will also use the following fact: If a > 0, b > 0 and p(·) ∈ P log(�)

then

(a + b)p(w) ≤ 2p(w)−1(a p(w) + bp(w)) (17)

For more details see Chapter 1 of [5].

3 Variable Exponent Bergman Spaces

Given p(·) ∈ P log(B),wedefine thevariable exponentBergman space Ap(·)(B, dνα) =
Ap(·)

α as the space of all analytic functions on B that belong to the variable exponent
Lebesgue space L p(·)(B, dνα) = L p(·)

α . It is known that Ap(·)
α is a closed subspace

of L p(·)
α . On the unit disc, �, it is shown in Theorem 4.4 of [4], that the Bergman

projection, P , given by (1) is bounded from L p(·) onto Ap(·) for any p(·) ∈ P log(�).
This result can easily be extended to the case of the unit ball in C

n :

Lemma 3.1 Let p(·) ∈ P log(B) and α > −1. Then the Bergman projection, Pα , is
bounded from L p(·)

α onto Ap(·)
α .
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The proof is an easy adaptation of the one dimensional case in [4] and so we leave it
for the interested reader.

We shall denote the norm on L p(·)
α by ‖ ·‖p(·),α or simply by ‖ ·‖p(·) if no confusion

shall arise.
The following result will be useful throughout the paper.

Lemma 3.2 Let p(·) ∈ P log(B). Then for every z ∈ B we have

‖K 2/p(z)
z ‖p(·) � C

(1 − |z|2)(n+1+α)/p(z)
.

Proof Let Jz(w) = 1−|z|2
(1−〈w,z〉)2 . We will first estimate the following integral:

Iz :=
∫
B

|Jz(w)|sp(w)/p(z)dνα(w),

where s = n + 1 + α. Using the change of variable w = ϕz we have that

Iz =
∫
B

(1 − |z|2)sp(ϕz(w))/p(z)

|1 − 〈z, ϕz(w)〉|2sp(ϕz(w))/p(z)

(1 − |z|2)s
|1 − 〈z, w〉|2s dνα(w)

=
∫
B

|Jz(w)|s−sp(ϕz(w))/p(z)dνα(w)

=
∫

|Jz(w)|≥1
|Jz(w)|s−sp(ϕz(w))/p(z)dνα(w)

+
∫

|Jz(w)|≤1
|Jz(w)|s−sp(ϕz(w))/p(z)dνα(w)

= I1 + I2

If |Jz(w)| ≥ 1 then the function t �→ |Jz(w)|t is increasing. Thus
|Jz(w)|s−sp(ϕz(w))/p(z) ≤ |Jz(w)|s and we have that I1 � 1. For I2 since Jz 
= 0 we
have that

∣∣∣log |Jz(w)|s−sp(ϕz(w))/p(z)
∣∣∣ = s

p(z)
|p(z) − p(ϕz(w))| log 1

|Jz(w)|
≤ s

p−
2Clog

log 4
|z−ϕz(w)|

log
1

|Jz(w)|

where we have used the log-Hölder condition to obtain the last inequality and the fact
that p− ≤ p(·). Now , a simple calculation shows that

|z − ϕz(w)| =
(
|Jz(w)|(|w|2 − |〈z, w〉|2)

) 1
2
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and that

1

|Jz(w)| ≤ 4

(|w|2 − |〈z, w〉|2|Jz(w)| .

Using these estimates we have that

∣∣∣log |Jz(w)|s−sp(ϕz(w))/p(z)
∣∣∣ ≤ 4sClog

p−
.

It follows that Iz is bounded and the bound depends only on p(·). Thus there is a
constant C > 0 depending on p(·) such that

‖|Jz |(n+1+α)/p(z)‖p(·) ≤ C .

The previous estimate implies that

‖K 2/p(z)
z ‖p(·) ≤ C

(1 − |z|2)(n+1+α)/p(z)

as required. ��

Lemma 3.3 Let p(·) ∈ P log(B), f ∈ Ap(·)
α and a ∈ B. Then

| f (a)| ≈ ‖ f ‖p(·)
(1 − |a|2)(n+1+α)/p(a)

.

Proof Suppose f is holomorphic on B and assume ‖ f ‖p(·) = 1. Then by the mean
value theorem we have

| f (z)| = | f (ϕz(0))| � 1

να(D(z, r))

∫
D(z,r)

| f (w)|dνα(w).

By the Diening inequality we have that

| f (z)|p(z) � 1

να(D(z, r))

∫
D(z,r)

| f (w)|p(w)dνα(w) + 1

� ‖ f ‖p(·)
(1 − |z|2)n+1+α

.

Since ‖ f ‖p(·) = 1, it follows that

| f (z)| � ‖ f ‖p(·)
(1 − |z|2)(n+1+α)/p(z)

.

Now for general f , define g = f /‖ f ‖p(·) and apply the previous result.
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For the other inequality, let us take

fz(w) = (1 − |z|2)(n+1+α)/p(z)

(1 − 〈w, z〉)2(n+1+α)/p(z)
.

Then by Lemma 3.2, ‖ fz‖p(·) ≤ C . Observe that

fz(z) = 1

(1 − |z|2)(n+1+α)/p(z)

and this completes the proof. ��
From Lemma 3.3 we see that

‖Kz‖p(·) ≈ (1 − |z|2)(n+1+α)(1/p(z)−1).

We have the following:

Proposition 3.4 Suppose α > −1 and p(·) ∈ P log(B). Then for every Borel measure
μ in B the following two statements are equivalent:

(a) There is a positive constant C such that

∫
B

| f (z)|p(z)dμ(z) ≤ C
∫
B

| f (z)|p(z)dνα(z),

for every f ∈ Ap(·).
(b) There is a positive constant Cr such that

μ(D(z, r)) ≤ Cr (1 − |z|2)n+1+α.

Proof Suppose (a) holds and let

fz(w) = (1 − |z|2)(n+1+α)/p(z)

(1 − 〈w, z〉)2(n+1+α)/p(z)
.

Then by (a) and Lemma (3.2) there is a constant C such that

∫
B

(1 − |z|2)(n+1+α)p(w)/p(z)

|1 − 〈w, z〉|2(n+1+α)p(w)/p(z)
dμ(w)

�
∫
B

(1 − |z|2)(n+1+α)p(w)/p(z)

|1 − 〈w, z〉|2(n+1+α)p(w)/p(z)
dνα(w) � C .

Thus

∫
B

(1 − |z|2)(n+1+α)p(w)/p(z)

|1 − 〈w, z〉|(n+1+α)p(w)/p(z)
dμ(w) � C .
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It follows that

C �
∫
D(z,r)

(1 − |z|2)(n+1+α)p(w)/p(z)

|1 − 〈w, z〉|(n+1+α)p(w)/p(z)
dμ(w)

≈
∫
D(z,r)

(1 − |z|2)(n+1+s+α)p(w)/p(z)

(1 − |z|2)2(n+1+α)p(w)/p(z)
dμ(w)

≈ μ(D(z, r))

(1 − |z|2)(n+1+α)

where we have used the identity (8) to obtain the last equation.
Conversely, suppose (b) holds.We first observe that if z ∈ D(a, r) andw ∈ D(z, r)

thenw ∈ D(a, 2r). Now, if f ∈ Ap(·) and z ∈ D(a, r) then there is a positive constant
C such that

| f (z)| ≤ C

(1 − |z|2)n+1+α

∫
D(z,r)

| f (w)|dνα(w)

≤ C

(1 − |a|2)n+1+α

∫
D(a,2r)

| f (w)|dνα(w)

≈ C

να(D(a, 2r))

∫
D(a,2r)

| f (w)|dνα(w)

Suppose
∫
B | f (z)|p(z)dνα(z) = 1 . Then by the Diening inequality (11) we have that

| f (z)|p(z) ≤ C

να(D(a, 2r))

∫
D(a,2r)

| f (w)|p(w)dνα(w) + 1. (18)

Thus, we have∫
D(a,r)

| f (z)|p(z)dμ(z) ≤ C

να(D(a, 2r))

∫
D(a,r)

∫
D(a,2r)

| f (w)|p(w)dνα(w)dμ(z)

+μ(D(a, r))

≈ μ(D(a, 2r)

να(D(a, 2r))

∫
D(a,2r)

| f (w)|p(w)dνα(w)dμ(z) + μ(D(a, r))

≤ C
∫
D(a,2r)

| f (w)|p(w)dνα(w)dμ(z) + μ(D(a, r)).

where we have used the hypothesis to obtain the last inequality. Now let the sequence
{ak} be an r-lattice on B then∫

B
| f (z)|p(z)dμ(z) ≤

∞∑
k=1

∫
D(ak ,r)

| f (z)|p(z)dμ(z)

≤
∞∑
k=1

∫
D(ak ,2r)

| f (w)|p(w)dνα(w) +
∞∑
k=1

μ(D(ak, r))

≤ N
∫
B

| f (w)|p(w)dνα(w) + μ(B) ≤ N (1 + μ(B).
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Thus,

∫
B

| f (z)|p(z)dμ(z) �
∫
B

| f (z)|p(z)dνα(z).

Now, if
∫
B | f (z)|p(z)dνα(z) 
= 1 we set g = f /‖ f ‖p(·). Then Proposition 2.21 of

[5] implies that
∫
B |g(z)|p(z)dνα(z) = 1 and by the preceeding argument

∫
B

|g(z)|p(z)dμ(z) �
∫
B

|g(z)|p(z)dνα(z).

This completes the proof.
��

It is relatively easy to prove the little-oh version of Proposition 3.4, which we now
state.

Proposition 3.5 Suppose α > −1 and p(·) ∈ P log(B). Then for every Borel measure
μ in B the following two statements are equivalent:

(a) If { fk} is a bounded sequence in Ap(·) that convergences uniformly on every
compact subset of B then

lim
k→∞

∫
B

| fk(z)|p(z)dμ(z) = 0.

(b)

lim|z|→1

μ(D(z, r))

(1 − |z|2)n+1+α
= 0.

Proposition 3.6 Suppose p(·), q(·) ∈ P log(B) with 1 ≤ p(·) ≤ q(·). Then the follow-
ing are equivalent:

(a) There is a positive constant C such that

∫
B

| f (z)|q(z)dμ(z) ≤ C
∫
B

| f (z)|p(z)dνα(z),

for every f ∈ Ap(·).
(b) There is a positive constant Cr such that

μ(D(z, r)) ≤ Cr (1 − |z|2)(n+1+α)q(z)/p(z).

Proof Suppose (a) holds. Let fz(w) = (1−|z|2)(n+1+α)/p(z)

(1−〈w,z〉)2(n+1+α)/p(z) , z ∈ B. Then as it was in
the Proof of Lemma 3.2 we have that

∫
B

| fz(w)|p(w)dνα(w) =
∫
B

|Jz(w)|(n+1+α)p(w)/p(z)dνα(w) ≤ C
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for some positive constant C . It follows from (a) that

∫
B

(1 − |z|2)(n+1+α)q(w)/p(z)

|1 − 〈w, z〉|2(n+1+α)q(w)/p(z)
dμ(w) ≤ C (19)

Thus, using the estimate (8), we obtain

C ≥
∫
D(z,r)

(1 − |z|2)(n+1+α)q(w)/p(z)

|1 − 〈w, z〉|2(n+1+α)q(w)/p(z)
dμ(w)

≈
∫
D(z,r)

(1 − |z|2)(n+1+α)q(w)/p(z)

(1 − |z|2)2(n+1+α)q(w)/p(z)
dμ(w)

≈ μ(D(z, r))

(1 − |z|2)(n+1+α)q(z)/p(z)

which gives (b).
Conversely, suppose (b) holds. Suppose

∫
B | f (z)|p(·)dνα(z) = 1 and let dμ f ,α(w)

= | f (w)|p(w)dνα(w). Then by Eq. (18) we have that

| f (z)|p(z) � 1

να(D(a, 2r))

∫
D(a,2r)

dμ f ,α(w) + 1

whenever z, w ∈ D(a, r), a ∈ B. Now if p(z) < q(z) we write q(z) = s(z)p(z),
where s(·) is log-Hölder continuous, then

| f (z)|q(z) = | f (z)|p(z)s(z) �
(

1

να(D(a, 2r))

∫
D(a,2r)

| f (w)|p(w)dνα(w) + 1

)s(z)

�
((

1

να(D(a, 2r))

∫
D(a,2r)

| f (w)|p(w)dνα(w)

)s(z)

+ 1

)

≤
(

1

(να(D(a, 2r)))s(z)

∫
D(a,2r)

| f (w)|p(w)dνα(w) + 2

)

≈
(

1

να(D(a, 2r))s(a)

∫
D(a,2r)

| f (w)|p(w)dνα(w) + 2

)
(20)

where we have used the identity (8) to obtain the last equation. It follows that

∫
D(a,r)

| f (z)|q(z)dμ(z) � μ(D(a, 2r))

(1 − |a|2)(n+1+α)q(a)/p(a)

∫
D(a,2r)

| f (w)|p(w)dνα(w)

+μ(D(a, 2r))

Now using the same argument used in the proof (b) implies (a) of Proposition 3.4 we
obtain

∫
B

| f (z)|q(z)dμ(z) �
∫
B

| f (z)|p(z)dνα(z),
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which gives the proof for the case p(·) < q(·). The case when q(·) = p(·) is just
Proposition 3.4. ��

Similarly we obtain little-oh version of Proposition 3.6.

Proposition 3.7 Suppose p(·), q(·) ∈ P log(B) with 1 ≤ p(·) ≤ q(·) Then for every
Borel measure μ in B the following two statements are equivalent:

(a) If { fk} is a bounded sequence in Ap(·) that convergences uniformly on every
compact subset of B then

lim
k→∞

∫
B

| fk(z)|q(z)dμ(z) = 0.

(b)

lim|z|→1

μ(D(z, r))

(1 − |z|2)(n+1+α)q(z)/p(z)
= 0.

Let f ∈ L p(·)
α , α > −1 and set

T f (z) =
∫
B
f (w)K (z, w)dνα(w), z ∈ B, (21)

where K : B × B → C
n is a kernel function.

We give an Okikiolu type theorem that will be useful in our work.

Lemma 3.8 Let ω ∈ A1 and suppose p and r are positive numbers such that 1 < p ≤
r ,

1

p′ + 1

r
= 1.

If there exist positive constants C1 and C2 depending on [ω]A1 and non-negative
measurable functions, h1 and h2, such that

∫
B

|K (ξ, z)|h1(z)p′
dνα(z) ≤ C1h2(ξ)p

′
(22)

for almost every ξ ∈ B and

ω(B)−1
∫
B

|K (ξ, z)|h(ξ)rω(ξ)dνα(ξ) ≤ C2h(z)r (23)

for almost every z ∈ B, then

(∫
B

|T f (z)|rω(z)dνα(z)

) 1
r ≤ CC1C2

(∫
B

| f (z)|pω(z)p/r dνα(z)

) 1
p

, (24)
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Proof We suppose r > p and let c = 1
p − 1

r . Then c > 0, 1
p′ + 1

r + c = 1 and
p(1+cr)

r2
= 1

r . It follows by the three term Hölder’s inequality with indices p′, r and
1/c that

|T f (z)| ≤
∫
B

|K (ξ, z)|| f (ξ)|dνα(ξ)

=
∫
B

(
|K (ξ, z)|1/p′

h1(ξ)
) (

h1(ξ)−1|K (ξ, z)|1/r | f (ξ)|p/r ) | f (ξ)|pcdν(ξ)

≤
(∫

B
|K (ξ, z)|h1(ξ)p

′
dνα(ξ)

)1/p′ (∫
B

|K (ξ, z)|h1(ξ)−r | f (ξ)|pdνα(ξ)

)1/r

(∫
B

| f (ξ)|pdνα(ξ)

)c

≤ Ch2(z)

(∫
B

|K (ξ, z)|h1(ξ)−r | f (ξ)|pdνα(ξ)

)1/r (∫
B

| f (ξ)|pdνα(ξ)

)c

≤ C

( [ω]A1

ω(B)

) p(1+cr)
r2

h2(z)

(∫
B

|K (ξ, z)|h1(ξ)−r | f (ξ)|pω(ξ)p/r dνα(ξ)

) 1
r

(∫
B

| f (ξ)|pω(ξ)p/r dνα(ξ)

)c

= C ′ω(B)−1/r h2(z)

(∫
B

|K (ξ, z)|h1(ξ)−r | f (ξ)|pω(ξ)p/r dνα(ξ)

) 1
r ‖ f ω1/r‖pc

p

where the third inequality comes from (22) and the fourth inequality is from (13).
Now, Fubini’s theorem gives

∫
B

|T f (z)|rω(z)dνα(z)

≤ C1‖ f ω1/r‖prc
p

∫
B

h2(z)r

ω(B)

{∫
B

|K (ξ, z)|h1(ξ)−r | f (ξ)|pω(ξ)p/r dνα(ξ)

}
ω(z)dνα(z)

= C1‖ f ω1/r‖prc
p

∫
B

| f (ξ)|ph1(ξ)−r
∫
B

|K (ξ, z)|h2(z)r ω(z)

ω(B)
dνα(z)ω(ξ)p/r dνα(ξ)

≤ C1C2

∫
B

| f (ξ)|pω(ξ)p/r dνα(ξ),

where we have used (23) to get the last inequality. ��

Proposition 3.9 Let 1 < p0 ≤ q0, p(·) ∈ P log(B), be such that p0 ≤ p− ≤ p+ <
p0q0

q0−p0
. Suppose K : B × B → C satisfies the hypothesis of Lemma 3.8. Then for q(·)

defined by

1

p(z)
− 1

q(z)
= 1

p0
− 1

q0
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we have that

‖T f ‖q(·) � ‖ f ‖p(·).

Proof Set p0 = p and q0 = r in Lemma 3.8 and consider the family {(|T f |, | f |) :
f ∈ L p0

α (B)}. Also, by Theorem 3.16 of [5], maximal function M f is bounded on

L(q(·)/q0)′
α . The conclusion then follows from Proposition 2.5. ��
We also observe that , if σ > α then the Bergman projection Pσ is bounded on

L p(·)
α . Indeed, if h ∈ L p(·)

α then

|(Pσ h)(z)| =
∣∣∣∣
∫
B
K σ

w(z)h(w)dνσ (w)

∣∣∣∣
≤

∫
B

|K α
w(z)||h(w)|dνα(w).

Now, we can use Lemma 3.8, with p(·) = q(·) and Proposition 3.9 to see that the
statement holds.

4 Variable Exponent BMO Type Spaces

For a continuous function on B we let

ωr ( f )(z) = sup{| f (z) − f (ξ)| : ξ ∈ D(z, r)}.

The function ωr ( f )(z) is called the oscillation of f at the point z in the Bergman
metric. For any r > 0, let BOr denote the space of continuous functions f on B such
that

‖ f ‖BOr = sup
z∈B

ωr ( f )(z) < ∞.

We have the following charcterization of BOr functions which is proved in [11].

Lemma 4.1 Let r > 0 and f be a continuous function on B. Then f ∈ BOr if and
only if there is a constant C > 0 such that

| f (z) − f (w)| ≤ C(β(z, w) + 1)

for all z, w ∈ B.

We say that f ∈ BAp(·)
r if f ∈ L1

loc and

sup
z∈B

̂| f |p(·)r (z) < ∞,
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where

f̂r (z) = 1

D(z, r)

∫
D(z,r)

f (w)dνα(w).

We proceed to show that the space BAp(·)
r is also independent of r . For α > −1 and

c > 0, the generalized Berezin transform Bc,α of a function g ∈ L1 is defined by

Bc,α(g)(z) = (1 − |z|2)c
∫
B

g(w)

|1 − 〈w, z〉|n+1+c+α
dνα(w). (25)

When c = n+1+α then Bαg(z) = 〈gkα
z , kα

z 〉α , where 〈·, ·〉α denote the inner product
of A2

α , is the standard Berezin transform.
Observe also that by the Diening inequality (11), if ‖ f ‖p(·) = 1 then

| f̂r (z)|p(z) ≤ ̂| fr |p(·)(z) + 1, w, z ∈ B. (26)

Lemma 4.2 Let p(·), q(·) ∈ P log(B) with p(z) ≤ q(z) and f ∈ Lq(·)
loc . Suppose

σ, α > −1 be such that (n + 1+ σ) = (n + 1+ α)q(z)/p(z). Then the following are
equivalent:

(i) The embedding i : Ap(·)
α → Lq(·)

σ (B, dμ f ,σ ) is bounded, where dμ f ,σ (z) =
| f (z)|q(z)dνσ (z).

(ii) Bc,α(| f |q(·)) ∈ L∞ for all α > −1 and all c > 0.

(iii) f ∈ BAq(·)
r for some (or all) r > 0.

Proof Observe that by Proposition 3.6 the condition (i) is equivalent to the condition

μ f ,σ (D(z, r)) ≤ C(1 − |z|2)(n+1+α)q(z)/p(z) (27)

On the other hand,

̂| f |p(·)r (z) ≈ μ f ,σ (D(z, r))

(1 − |z|2)n+1+σ
,

Thus if n + 1 + σ = (n + 1 + α)p(·)/q(·) we see that (i) and (ii) are equivalent.
Suppose (ii) holds. Then for z ∈ B we have that

Bc,α(| f |q(·))(z) = (1 − |z|2)c
∫
B

| f (w)|q(w)

|1 − 〈w, z〉|n+1+c+α
dνα(w)

≥ (1 − |z|2)c
∫
D(z,r)

| f (w)|q(w)

|1 − 〈w, z〉|n+1+c+α
dνα(w)

≈ 1

να(D(z, r))

∫
D(z,r)

| f (w)|q(w)dνα(w) = ̂| f |q(·)
r (z),

which gives (iii).
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Suppose (iii) holds and let {a j } be an r − lattice on B. Then

Bc,α(| f |q(·))(z) = (1 − |z|2)c
∫
B

| f (w)|q(w)

|1 − 〈w, z〉|n+1+c+α
dνα(w)

≤ (1 − |z|2)c
∞∑
j=1

∫
D(a j ,r)

| f (w)|q(w)

|1 − 〈w, z〉|n+1+c+α
dνα(w).

Now if β(w, a j ) < r then equation (2.20) on page 63 of [16] implies that

|1 − 〈z, w〉| ≈ |1 − 〈z, a j 〉|.

It follows that,

Bc,α(| f |q(·))(z) ≤ (1 − |z|2)c
∞∑
j=1

1

|1 − 〈a j , z〉|n+1+c+α

∫
D(a j ,r)

| f (w)|q(w)dνα(w)

= (1 − |z|2)c
∞∑
j=1

να(D(a j , r))

|1 − 〈a j , z〉|n+1+c+α

̂| f |q(·)
r (a j )

� (1 − |z|2)c
∞∑
j=1

(1 − |a j |2)n+1+α

|1 − 〈a j , z〉|n+1+c+α
.

Here, we have used the fact that f ∈ BAp(·) to obtain the last inequality. By Lemma
2.3 we see that (ii) holds, which completes the proof. ��

We let BMOSp(·) denote the space of functions f in B such that

‖ f ‖
BMOSp(·)

r
= sup

z∈B
MOp(·),r ( f )(z) < ∞

where

MOp(·),r ( f )(z) =
∥∥∥∥ 1

(να(D(z, r)))1/p(·)
χD(z,r)( f − f̂r (z))

∥∥∥∥
p(·)

. (28)

We note here that if p(·) = p is a constant, then it is shown in [8] that the spaces
BMOSp are equivalent to the well known BMOp spaces.

Lemma 4.3 Let f ∈ L p(·)
loc and r > 0. Then f ∈ BMOSp(·)

r if and only if there is a
constant C > 0 such that for any z ∈ B, there exists a function λz such that

1

να(D(z, r))

∫
D(z,r)

| f (w) − λz |p(w)dνα(w) ≤ C . (29)
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Proof If f ∈ BMOSp(·)
r , then (29) holds with λz = f̂r (z) and by Lemma 2.7,

C1/l = ‖ f ‖
BMOSp(·)

r
for some l ∈ {p−, p+} .

Conversely, suppose (29) holds. Then by the triangle inequality for variable expo-
nent Lebesgue spaces we have that

MOp(·),r ( f )(z) ≤
∥∥∥∥ χD(z,r)

(να(D(z, r)))1/p(·)
( f − λz)

∥∥∥∥
p(·)

+
∥∥∥∥ χD(z,r)

(να(D(z, r)))1/p(·)
(λz − f̂r (z))

∥∥∥∥
p(·)

= I (z) + J (z)

The boundedness of I (z) follows immediately from (29). Now, using Lemma 2.7 and
the Hölder’s inequality we have

|λz − f̂r (z)| ≤ 1

να(D(z, r))

∫
D(z,r)

| f (w) − λz |dνα(w)

�
∥∥∥∥ χD(z,r)

(να(D(z, r)))1/p(·)
(λz − f̂r (z))

∥∥∥∥
p(·)

≤
(

1

να(D(z, r))

∫
D(z,r)

| f (w) − λz|p(w)dνα(w)

)1/l

for some l ∈ {p−, p+}. Also, by Lemma 2.7 there is an l1 ∈ {p−, p+}, such that

J (z) =
∥∥∥∥ χD(z,r)

(να(D(z, r)))1/p(·)
(λz − f̂r (z))

∥∥∥∥
p(·)

≤
(

1

να(D(z, r))

∫
D(z,r)

| f̂r (z) − λz |p(w)dνα(w)

)1/l1

≤
(

1

να(D(z, r))

∫
D(z,r)

| f̂r (z) − λz |p+ + | f̂r (z) − λz|p−dνα(w)

)1/l1

= | f̂r (z) − λz|p+/l1 + | f̂r (z) − λz|p−/l1

≤
(

1

να(D(z, r))

∫
D(z,r)

| f (w) − λz |p(w)dνα(w)

)p+/ll1

+
(

1

να(D(z, r))

∫
D(z,r)

| f (w) − λz|p(w)dνα(w)

)p−/ll1
� C,

by (29). This shows that

sup
z∈B

MOp(·),r ( f )(z) < ∞,

as required. ��
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Theorem 4.4 Suppose r > 0, p(·) ∈ P log(B), f ∈ L p(·)
loc (B). Then the following are

equivalent:

(a) f ∈ BMOSp(·),
(b) f = f1 + f2 with f1 ∈ BO and f2 ∈ BAp(·).
(c) For all c > 0, α > −1 we have

sup
z∈B

∫
B

| f (w) − f̂r (z)|p(w) (1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w) < ∞. (30)

(d) For all c > 0, α > −1, there is a function λz such that, we have

sup
z∈B

∫
B

| f (w) − λz |p(w) (1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w) < ∞. (31)

Proof (c) implies (d) is obvious. (d) implies (a) follows by using the identities |1 −
〈z, w〉| ≈ 1 − |z|2 for w ∈ D(z, r) and να(D(z, r)) ≈ (1 − |z|2)n+1+α to obtain

1

να(D(z, r))

∫
D(z,r)

| f (w) − λz|p(w)dνα(w)

≤
∫
B

| f (w) − λz |p(w) (1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w).

(a) implies (b). It suffices to show that BMOSp(·)
2r ⊂ BOr + BAp(·)

r . Given f ∈
BMOSp(·)

2r and let z, w ∈ B with β(z, w) < r . Then we have

| f̂r (z) − f̂r (w)| ≤ | f̂r (z) − f̂2r (z)| + | f̂2r (z) − f̂r (w)|
≤ 1

να(D(z, r))

∫
D(z,r)

| f (u) − f̂2r (z)|dνα(u)

+ 1

να(D(w, r))

∫
D(w,r)

| f (u) − f̂2r (z)|dνα(u) (32)

Now using Hölder’s inequality, we have that

1

να(D(z, r))

∫
D(z,r)

| f (u) − f̂2r (z)|dνα(u)

≤ να(D(z, 2r))

να(D(z, r))

1

να(D(z, 2r))

∫
D(z,2r)

| f (u) − f̂2r (z)|dνα(u)

� ‖ f ‖BMOSp(·) .

Now, since forw ∈ D(z, r), να(D(z, r)) ≈ να(D(w, r)) and D(w, r) ⊂ D(z, 2r)we
see immediately that the two integral summands in (32) are both bounded by some
constant times ‖ f ‖BMOSp(·) . Since f̂r is continuous we see that f̂r ∈ BOr . We are
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left to show that g = f − f̂r is in BAp(·)
r whenever f ∈ BMOSp(·)

2r = BMOSp(·)
r .

Now

̂|g|p(·)r (z) = 1

να(D(z, r))

∫
D(z,r)

| f (w) − f̂r (z) + f̂r (z) − f̂r (w)|p(w)dνα(w)

≤ 1

να(D(z, r))

∫
D(z,r)

(| f (w) − f̂r (z)| + | f̂r (z) − f̂r (w)|)p(w)
dνα(w)

≤ 2p+−1

να(D(z, r))

∫
D(z,r)

| f (w) − f̂r (z)|p(w) + | f̂r (z) − f̂r (w)|p(w)dνα(w)

where we have used the modular triangle inequality to obtain the last inequality. Now
for a fixed z ∈ B, and w ∈ D(z, r) we have

| f̂r (z) − f̂r (w)|p(w) ≤ ωr ( f̂r )(z)
p(w) ≤ (ωr ( f̂r )(z)

p+ + ωr ( f̂r )(z)
p− , w ∈ B

and thus

̂|g|p(·)r (z) ≤ 2p+−1

να(D(z, r))

∫
D(z,r)

| f (w) − f̂r (z)|p(w)dνα(w)

+ωr ( f̂r )(z)
p+ + ωr ( f̂r )(z)

p− .

Since f̂r ∈ BOr and f ∈ BMOSp(·) we deduce that g ∈ BAp(·).
To show that (b) implies (c), we assume ‖ f ‖p(·) = 1 and observe that

∫
B

| f (w) − f̂r (z)|p(w) (1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w)

≤
∫
B
2p+−1(| f (w)|p(w) + | f̂r (z)|p(w))

(1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w)

≤ 2p+−1Bc,α(| f |p(·))(z) + 2p+−1
∫
B

| f̂r (z)|p(w) (1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w)

≤ 2p+−1Bc,α(| f |p(·))(z) + 2p+−1( ̂| fr |p(·)(z) + 1)
∫
B

(1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w)

� Bc,α(| f |p(·))(z) + ̂| fr |p(·)(z) + 1

where we have used the estimate (26) to obtain third inequality. Thus we have (c)
whenever f ∈ BAp(·). Now, if f ∈ BOr then

f (w) − f̂r (z) = 1

να(D(z, r))

∫
D(z,r)

( f (w) − f (ξ))dνα(ξ)

= 1

να(D(z, r))

∫
D(z,r)

( f (w) − f (z)) + ( f (z) − f (ξ))dνα(ξ).
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By Lemma 4.1 and the triangle inequality we have that

| f (w) − f̂r (z)| � β(z, w) + 1.

It follows that

∫
B

| f (w) − f̂r (z)|p(w) (1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w)

�
∫
B
(β(z, w) + 1)p(w) (1 − |z|2)c

|1 − 〈z, w〉|n+1+c+α
dνα(w)

Also if z, w ∈ B, we have that β(z, w) + 1 ≥ 1 and thus (β(z, w) + 1)p(w) ≤
(β(z, w) + 1)p+ ≤ Cp+(β(z, w)p+ + 1). Thus, the last integral above is bounded by
some constant times

∫
B
(β(z, w)p+ + 1)

(1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w)

which is finite by Lemma 2.2. This shows that (c) holds whenever f ∈ BOr and this
completes the proof. ��

5 Bounded Hankel Operators

Proof of Theorem 1.1

The Proof of Theorem 1.1 will be given by the following two Lemmas and three
Propositions. We will first begin with the necessary part.

Lemma 5.1 Suppose p(·) ∈ P log(B) and −1 < σ < α. Then

‖Hσ
f g‖p(·),α � ‖Hα

f g‖p(·),α

for all polynomials g and all f ∈ L1
σ .

Proof Since α > σ > −1, it follows from Theorem 2.11 of [16] that Pα is bounded
from L1

σ onto A1
σ . Since Pσ reproduces A1

σ we have that PαPσ ( f g) = Pα( f g) for
f ∈ L1

σ and any polynomial g. Thus

(Pσ − Pα)( f g) = (Pσ − Pσ Pα)( f g) = Pσ (I − Pα)( f g) = Pσ H
α
f g.

We use this to get

‖Hσ
f g‖p(·),α = ‖(I − Pσ ( f g)‖p(·),α

≤ ‖(I − Pα( f g)‖p(·),α + ‖(Pα − Pσ ( f g)‖p(·),α
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= ‖Hα
f g‖p(·),α + ‖Pσ H

α
f g‖p(·),α

≤ (1 + ‖Pσ ‖p(·))‖Hα
f g‖p(·),α,

as required. ��
Let z ∈ B, hz := Kz/‖Kz‖p(·) and

gz(w) = Pα( f hz)(w)

hz(w)
, w ∈ B.

We consider the function LOq(·),α f defined by

LOq(·),α f (z) = ‖ f (w)hz(w) − gz(z)hz(w)‖q(·).

Lemma 5.2 Suppose p(·), q(·) ∈ P log(B), p(z) ≤ q(z) and α > −1. If LOq(·),α f ∈
L∞ then f ∈ BMOSq(·).

Proof Since q(z) ≥ p(z) and hz(w) = (1 − |z|2)(n+1+α)(1−1/p(z))Kz(w), by Lemma
2.7 there is l ∈ {q+, q−} such that

(
LOq(·),α f (z)

)l ≥
∫
B

|hz(w)|q(w)| f (w) − gz(z)|q(w)dνα(w)

≥
∫
D(z,r)

|hz(w)|q(w)| f (w) − gz(z)|q(w)dνα(w)

≈ (1 − |z|2)−(n+1+α)q(z)/p(z)
∫
D(z,r)

| f (w) − gz(z)|q(w)dνα(w)

≥ (1 − |z|2)−(n+1+α)

∫
D(z,r)

| f (w) − gz(z)|q(w)dνα(w)

≈ 1

να(D(z, r))

∫
D(z,r)

| f (w) − gz(z)|q(w)dνα(w),

where we have used (8) to obtain the third equation. It follows from Lemma 4.3, with
λz = gz(z), that f ∈ BMOSp(·), which completes the proof. ��
Proposition 5.3 Suppose p(·), q(·) ∈ P log(B) and α > −1. Then for any f ∈ Lq(·)
we have

LOq(·),α f (z) � ‖Hα
f hz‖q(·) + ‖Hα

f
hz‖q(·).

Proof By the triangle inequality and the definition of Hankel operators, we have

LOq(·),α f (z) = ‖ f hz − gz(z)hz‖q(·)
≤ ‖ f hz − Pα( f hz)‖q(·) + ‖Pα( f hz) − gz(z)hz‖q(·)
= ‖Hα

f hz‖q(·) + ‖Pα( f hz) − gz(z)hz‖q(·).
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Now, for any g ∈ A1
α we have that

g(z)hz = Pα(ghz).

This together with the boundeness of the Bergman projection Pα on Lq(·)
α gives

‖Pα( f hz) − gz(z)hz‖q(·) = ‖Pα (Pα( f hz) − gzhz) ‖q(·)
≤ ||Pα‖‖Pα( f hz) − gzhz‖q(·).

Also, by the triangle inequality we have

‖Pα( f hz) − gzhz‖q(·) ≤ ‖Pα( f hz) − f hz‖q(·) + ‖ f hz − gzhz‖q(·)
= ‖Hα

f hz‖q(·) + ‖ f hz − gzhz‖q(·)
= ‖Hα

f hz‖q(·) + ‖ f hz − P( f hz)|q(·)
= ‖Hα

f hz‖q(·) + ‖Hα

f
hz‖q(·).

This proves the result. ��

This gives the proof of the necessity part of the Theorem 1.1. We now proceed to
prove of sufficiency part.

Proposition 5.4 Suppose p(·), q(·) ∈ P log(B), p(z) ≤ q(z) , α, σ > −1 and

(n + 1 + σ)/q(·) = (n + 1 + α)/p(·).

If f ∈ BAq(·), then Hσ
f , Hσ

f
: Ap(·)

α → Lq(·)
σ is bounded.

Proof Since the Bergman projection Pσ is bounded on Lq(·)
σ , we have by the triangle

inequality and Lemma 4.2 that

‖Hσ
f g‖q(·),σ ≤ ‖ f g‖q(·),σ + ‖Pσ ( f g)‖q(·),σ � ‖ f g‖q(·),σ = ‖g‖Lq(·)(dμ f ,σ ),

which completes the proof of the result. ��

Proposition 5.5 Suppose f ∈ BO,1 < p ≤ r be such that1/p′+1/r = 1,α, σ > −1
and ω ∈ A1 and g ∈ H∞. Then

(∫
B

|Hσ
f g(z)|rω(z)dνα(z)

) 1
r

�
(∫

B
|g(z)|pω(z)p/r dνα(z)

) 1
p

, (33)
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Proof Firstly we let σ = α and write

(Hα
f g)(z) =

∫
B

( f (z) − f (ξ))g(ξ)

(1 − 〈z, ξ 〉)n+1+α
dνα(ξ)

=
∫
B
K f (z, ξ)g(ξ)dνα(ξ) (34)

where K f (z, ξ) = ( f (z)− f (ξ))

(1−〈z,ξ〉)n+1+α . By Lemma 3.8 we are require to find non-negative
functions h1 and h2 such that

∫
B

|K f (ξ, z)|h1(z)p′
dνα(z) ≤ C1h2(ξ)p

′
(35)

for almost every ξ ∈ B and

ω(B)−1
∫
B

|K f (ξ, z)|h2(ξ)rω(ξ)dν(ξ) ≤ C2h(z)r (36)

for almost every z ∈ B, where ω ∈ A1. Now we let h1(z) = h2(z) = (1− |z|2)−ε , for
0 < ε < 1. Since f ∈ BO , it follows from Lemmas 2.2 and 4.1 that

∫
B

|K f (ξ, z)|h1(z)p′
dνα(z) ≤

∫
B

(β(z, ξ) + 1)(1 − |z|2)−ε p′

|1 − 〈z, ξ 〉|n+1+α
dνα(z)

� (1 − |ξ |2)−ε p′
,

which gives the estimate (35).
To get the estimate (36), we first recall that for ω ∈ A1, ω(ξ) ≤ Mω(ξ) and for

any ε > 0 with ε < ω(B) there is a pseudo ball B containing ξ such that

Mω(ξ) ≤ ω(B)

να(B)
+ ε ≤ ω(B)

να(B)
+ ω(B) = ω(B)

(
1

να(B)
+ 1

)
.

Using this together with Lemma 2.2 and the estimate (5) we have

ω(B)−1
∫
B

|K f (ξ, z)|(1 − |ξ |2)−εrω(ξ)dνα(ξ)

≤ ω(B)−1
∫
B

(β(z, ξ) + 1)(1 − |ξ |2)−εr

|1 − 〈z, ξ 〉|n+1+α
Mω(ξ)dνα(ξ)

�
∫
B

(β(z, ξ) + 1)(1 − |ξ |2)−εr

|1 − 〈z, ξ 〉|n+1+α
dνα(ξ) � (1 − |z|2)−εr

which is (36). If σ > α then we have that

(Hσ
f g)(z) =

∫
B
K ′

f (z, ξ)g(ξ)dνα(ξ)
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where K ′
f (z, ξ) = ( f (z)− f (ξ))(1−|ξ |2)σ−α

(1−〈z,ξ〉)n+1+σ . Since |K ′
f (z, ξ)| ≤ |K f (z, ξ)| the estimates

(35) and (36) hold, and thus the result in the case σ > α. The case σ < α follows
from Lemma 5.1. This completes the proof of the proposition. ��
Proposition 5.6 Suppose f ∈ BO, p(·), q(·) ∈ P log(B), α, σ > −1, 1 < p0 ≤ q0 be
such that

1

p(z)
− 1

q(z)
= 1

p0
− 1

q0

with 1 < p0 ≤ p− ≤ p+ <
p0q0

q0−p0
. Then Hσ

f , Hσ

f
: Ap(·)

α → Lq(·)
σ is bounded.

Proof Set p0 = p, r = q0 in Proposition 5.5 and let p(·), q(·), p0, q0 satisfy the
conditions of theProposition.ThenweapplyProposition 3.9 to the family {|Hσ

f g|, |g| :
g ∈ L p0} to obtain the required result. Similarly the result holds when we replace the
family by {|Hσ

f
g|, |g| : g ∈ L p0}. ��

6 Variable Exponent VMO Type Spaces

For r > 0, we define the space V Or to be the space of functions f in BOr such that

lim|z|→1
ωr ( f )(z) = 0

and V Ap(·)
r as the space of functions f ∈ BAp(·) such that

lim|z|→1
̂| fr |p(·)(z) = 0.

Lemma 6.1 Let p(·), q(·) ∈ P log(B) be such that p(·) ≤ q(·) α, σ > −1, f ∈ Lq(·)
loc

and

(n + 1 + σ)

q(·) = (n + 1 + α)

p(·) , dμ f ,σ = | f |q(·)dνσ .

Then the following are equivalent:

(i) If { fk} is a bounded sequence in Ap(·)
α and fk → 0 uniformly on every compact

subset of B, then

lim
k→∞

∫
B

| fk(w)|q(w)dμ f ,α(w) = 0.

(ii) f ∈ V Ap(·)
r for some (or all) r > 0.
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(iii) For α > −1 and c > 0 we have that

lim|z|→1
Bc,α(| f |q(·))(z) = 0.

Proof By Proposition 3.7 we have that (i) is equivalent to

lim|z|→1

μ f ,σ (D(z, r))

(1 − |z|2)(n+1+α)q(z)/p(z)
= 0

for some (or all) r > 0. The equivalence of (i) and (ii) is a consequence of this result
and the fact that

̂| f |q(·)
r (z) ≈ μ f ,σ (D(z, r))

(1 − |z|2)n+1+α
.

(iii) implies (ii) follows from the inequality

̂| f |q(·)
r (z) � Bc,α(| f |q(·))(z)

as it was shown in the Proof of Lemma 4.1.
We are left to show that (ii) implies (iii). Let f ∈ V Aq(·)

r . Then

Bc,α(
̂| f |q(·)

r )(z) = (1 − |z|2)c
∫
B

̂| f |q(·)
r (w)

|1 − 〈z, w〉|n+1+c+α
dνα(w).

For 0 < s < 1, let

I1(s) = (1 − |z|2)c
∫

|w|≤s

̂| f |q(·)
r (w)

|1 − 〈z, w〉|n+1+c+α
dνα(w)

and

I2(s) = (1 − |z|2)c
∫
s<|w|<1

̂| f |q(·)
r (w)

|1 − 〈z, w〉|n+1+c+α
dνα(w).

Let ε > 0 be given. Then by (ii) we have that there is an s > 0 such that

I2(s) ≤ ε(1 − |z|2)c
∫
s<|w|<1

1

|1 − 〈z, w〉|n+1+c+α
dνα(w).

Now, since 1 − |w|2 ≤ |1 − 〈z, w〉| and f ∈ BAq(·) we see that
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I1(s) � (1 − |z|2)c
∫

|w|≤s

1

(1 − |w|2)n+1+c+α
dνα(w)

� (1 − |z|2)c
(1 − s2)n+1+c

.

Hence, we can find an l ∈ (0, 1) such that I1(s) � ε whenever 1 − l < |z| < 1.
Combining the two inequalities for I1(s) and I2(s) it follows that for 1− l < |z| < 1
we have

Bc,α(
̂| f |q(·)

r )(z) < Cε,

for some positive constant C . Thus,

lim|z|→1
Bc,α(

̂| f |q(·)
r )(z) = 0. (37)

Also,

̂| f |q(·)
r (z) = 1

νσ (D(z, r))

∫
D(z,r)

| f (w)|q(w)dνσ (w)

= μ f ,σ (D(z, r))

νσ (D(z, r))

≈ μ f ,σ (D(z, r))

(1 − |z|2)n+1+σ
= μ̂ f ,σ (z)

It follows that Eq. (37) is equivalent to

lim|z|→1
Bc,σ (μ̂ f ,σ )(z) = 0. (38)

By Lemma 52 of [15] ,

Bc,α(μ f ,σ )(z) ≤ Bc,σ (μ̂ f ,σ )(z)

and thus

lim|z|→1
Bc,σ (μ f ,σ )(z) = 0.

It follows that

lim|z|→1
Bc,σ (| f |q(·)

r )(z) = 0.

This proves that (ii) implies (iii) and completes the prove of the Lemma. ��
Theorem 6.2 Suppose r > 0, p(·) ∈ P log(B), and f ∈ BMOSp(·). Then the follow-
ing are equivalent:
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(a) f ∈ V MOSp(·)
r .

(b) f = f1 + f2 with f1 ∈ V Or and f2 ∈ V Ap(·)
r .

(c) For some (or all) α > −1 and each c ≥ n + 1 + α, we have

lim
|z|→1−

∫
B

| f (w) − f̂r (z)|p(w) (1 − |z|2)c
|1 − 〈w, z〉|n+1+c+α

dνα(w) = 0

(d) For some (or all) α > −1 and each c ≥ n + 1 + α, there is a function λz such
that

lim
|z|→1−

∫
B

| f (w) − λz |p(w) (1 − |z|2)c
|1 − 〈w, z〉|n+1+c+α

dνα(w) = 0

(e) For some (or all) α > −1 there is a function λz such that

lim
|z|→1−

1

να(D(z, r))

∫
D(z,r)

| f (w) − λz |p(w)dνα(w) = 0.

Proof That (c) implies (d) is obvious. That (d) implies (e) follows from the inequality

1

να(D(z, r))

∫
D(z,r)

| f (w) − λz |p(w)dνα(w)

�
∫
B

| f (w) − λz|p(w) (1 − |z|2)c
|1 − 〈w, z〉|n+1+c+α

dνα(w).

That (a) implies (b) follows from the proof of (a) implies (b) of Theorem 4.4. Thus
we only need to prove that (b) implies (c). Now, as in the proof of (b) implies (c) of
Theorem 4.4, we have that

∫
B

| f (w) − f̂r (z)|p(w) (1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w)

≤ 2p+−1Bc,α(| f |p(·))(z) + 2p+−1
∫
B

| f̂r (z)|p(w) (1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w)

≤ 2p+−1Bc,α(| f |p(·))(z) + 2p+−1
∫
B
(|̂ fr |(z))p(w) (1 − |z|2)c

|1 − 〈z, w〉|n+1+c+α
dνα(w)

since | f̂r (z)| ≤ |̂ fr |(z) for z ∈ B. Now, suppose f ∈ V Ap(·)
r . Then by the Hölders

inequality and Corollary 2.23 of [4] we have

|̂ fr |(z) =
∫
B

να(D(z, r))−1/p(w)+1/p′(w)| f (w)|χD(z,r)(w)dνα(w)

� ‖να(D(z, r))−1/p(·) f χD(z,r)‖p(·)‖‖να(D(z, r))−1/p′(·)χD(z,r)‖p′(·)

�
(

̂| fr |p(·)(z)
)1/l
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for some l = {p−, p+}. Thus |̂ fr |(z) → 0 as |z| → 1 whenever f ∈ BAp(·)
r . Thus,

given ε > 0, there is δ ∈ (0, 1) such that if δ < |z| < 1 we have that |̂ fr |(z) < ε
1
p− .

Now, we fix δ < |z| < 1 and have that

∫
B
(|̂ fr |(z))p(w) (1 − |z|2)c

|1 − 〈z, w〉|n+1+c+α
dνα(w)

< ε

∫
B

(1 − |z|2)c
|1 − 〈z, w〉|n+1+c+α

dνα(w) � ε.

Now, suppose f ∈ V O . Then f ∈ BO and we let

I (z) =
∫
B

| f (ξ) − f̂r (z)|p(ξ) (1 − |z|2)c
|1 − 〈z, ξ 〉|n+1+c+σ

dνσ (ξ).

Then by making the change of variable ξ = ϕz we have that

I (z) =
∫
B

| f (ϕz(ξ)) − f̂r (z)|p(ϕz(ξ)) 1

|1 − 〈z, ξ 〉|n+1+σ−c
dνσ (ξ).

Also, by the invariance of the Bergman metric we have

| f (ϕz(ξ)) − f̂r (z)| = 1

νσ (D(z, r))

∫
D(z,r)

| f (ϕz(ξ)) − f (w)|dνσ (w)

� 1

νσ (D(z, r))

∫
D(z,r)

β(ϕz(ξ), w) + 1dνσ (w)

� β(ϕz(ξ), z) + 1 = β(ξ, 0) + 1

Also, direct calculation gives

| f (ϕz(ξ)) − f̂r (z)|p(ϕz(ξ)) � | f (ϕz(ξ)) − f (z)|p(ϕz(ξ)) + | f (z) − f̂r (z)|p(ϕz(ξ))

� | f (ϕz(ξ)) − f (z)|p(ϕz(ξ))

+| f (z) − f̂r (z)|p+ + | f (z) − f̂r (z)|p−

� | f (ϕz(ξ)) − f (z)|p(ϕz(ξ)) + ωr ( f )(z)
p− + ωr ( f )(z)

p+ .

On the other hand, if we let t = β(ξ, 0) = β(ϕz(ξ), z) then for f ∈ V O we have

| f (ϕz(ξ)) − f (z)| � ωt ( f )(z) → 0

as |z| → 1− and thus

| f (ϕz(ξ)) − f (z)|p(ϕz(ξ)) � ωt ( f )(z)
p(ϕz(ξ)) � ωt ( f )(z)

p− → 0

as |z| → 1−. It follows that if f ∈ V O we have that

lim
|z|→1− | f (ϕz(ξ)) − f̂r (z)|p(ϕz(ξ)) = 0.
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Now, since

∫
B
(β(ξ, 0) + 1)p(ϕz(ξ))dνσ (ξ) �

∫
B
(β(ξ, 0)p+ + 1dνσ (ξ) < ∞

and the fact that c ≥ n + 1 + σ we have that

Iz �
∫
B
(β(ξ, 0) + 1)p+dνσ (ξ).

It thus follows by the Lebesgue dominated convergence theorem that I (z) → 0 as
|z| → 1− which gives (c). This completes the proof of the Theorem. ��

7 Compact Hankel Operators

Proof of Theorem 1.2

We are going to prove Theorem 1.2 with the following three lemmas. We begin with
necessity.

Lemma 7.1 Let p(·), q(·), α and σ be as in Theorem 1.2. If both Hσ
f , Hσ

f
: Ap(·)

α →
Lq(·)

σ are compact, then f ∈ V MOSq(·)

Proof Firstly, observe that if f ∈ Ap′(·) then 〈 f , Kz/‖Kz‖p(·)〉 ≡ f (z)(1 −
|z|2)(n+1+α)/p(z). It follows that if f is a bounded holomorphic function in B, then

|〈 f , Kz/‖Kz‖p(·)〉| � (1 − |z|2)(n+1+α)(1−1/p+) → 0

as |z| → 1. Thus, the function hz = Kz/‖Kz‖p(·) → 0 weakly in Ap(·) as |z| → 1.
By the compactness of Hσ

f we have that

lim
|z|→1− ‖Hσ

f hz‖q(·) = 0.

The same is true if f is replaced by f . By Proposition 5.3 we have that

lim
|z|→1− LOq(·),α f (z) = 0.

That is,

lim
|z|→1−

∫
B

(1 − |z|2)(n+1+α)q(w)(1−1/p(z))

|1 − 〈w, z〉|(n+1+α)q(w)
| f (w) − gz(z)|q(w)dνα(w) = 0.

Now, using the identity (8) we have
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∫
B

(1 − |z|2)(n+1+α)q(w)(1−1/p(z))

|1 − 〈w, z〉|(n+1+α)q(w)
| f (w) − gz(z)|q(w)dνα(w)

≥
∫
D(z,r)

(1 − |z|2)(n+1+α)q(w)(1−1/p(z))

|1 − 〈w, z〉|(n+1+α)q(w)
| f (w) − gz(z)|q(w)dνα(w)

≈
∫
D(z,r)

1

(1 − |z|2)(n+1+α)q(w)/p(z)
| f (w) − gz(z)|q(w)dνα(w)

≈ 1

(1 − |z|2)(n+1+α)q(z)/p(z)

∫
D(z,r)

| f (w) − gz(z)|q(w)dνα(w)

� 1

|να(D(z, r))

∫
D(z,r)

| f (w) − gz(z)|q(w)dνα(w),

which shows that

lim
|z|→1−

1

|να(D(z, r))

∫
D(z,r)

| f (w) − gz(z)|q(w)dνα(w) = 0,

that is, f ∈ V MOSq(·) by Theorem 6.2. ��
Let f ∈ L p(·)

α and for 0 < δ < 1 we set

Tδ f (z) =
∫
1>|w|>δ

f (w)

|1 − 〈z, w〉|n+1+α
dνα(w).

Then it is obvious by Proposition 3.9 that Tδ is bounded from L p(·)
α into Lq(·)

α , for
p(·) ≤ q(·) such that 1/p(·) − 1/q(·) = 1/p0 − 1/q0, 1 ≤ p0 ≤ q0 and p+ <

p0q0/(q0 − p0). We have the following:

Lemma 7.2 Let p(·), q(·), α and σ be as in Theorem 1.2 and let f ∈ V O. Then
Hσ

f , Hσ

f
: Ap(·)

α → Lq(·)
σ is compact.

Proof Let {gn} be a bounded sequence in Ap(·) converging to zero uniformly on com-
pact subsets of B. By Lemma 5.1 it suffices to show that

lim
n→∞ ‖Hη

f gn‖q(·) = 0,

for η ≥ n + 1 + σ . Now, given ε > 0 we fine δ1 ∈ (0, 1) such that ωr ( f )(z) < ε

whenever |z| < δ1 < 1 since f ∈ V O . Let η ≥ n + 1 + α + σ then since f ∈
V MOSq(·) there is a δ2 ∈ (0, 1) such that

∫
B

| f (w) − f̂r (z)|p(z) (1 − |z|2)η
|1 − 〈w, z〉|n+1+η+α

dνα(w) < ε, (39)

whenever |z| < δ2 < 1. Now, let δ = min(δ1, δ2). Then

Hη
f gn(z) = In(z) + Jn(z),
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where

In(z) =
∫

|w|>δ

K η
f (z, w)gn(w)dνη(w), Jn(z) =

∫
|w|≤δ

K η
f (z, w)gn(w)dνη(w)

and

K η
f (z, w) = ( f (w) − f̂r (z))

(1 − |z|2)η
(1 − 〈w, z〉)n+1+η

.

Since,

| f (z) − f (w)| ≤ | f (z) − f̂r (w)| + | f̂r (w) − f (w)|

we have that

In(z) ≤ sn(z) + tn(z)

where

sn(z) =
∫

|w|>δ

| f (z) − f̂r (w)||K η
z (w)||gn(w)|dνη(w)

and

tn(z) =
∫

|w|>δ

| f̂r (w) − f (w)||K η
z (w)||gn(w)|dνη(w).

Since,

f (w) − f̂r (w) = 1

νη(D(w, r))

∫
D(w,r)

( f (w) − f (ξ))dνη(ξ),

we have that for |w| > δ

| f̂r (w) − f (w)| ≤ ωr ( f )(w) < ε.

Thus,

tn(z) < εTδ|gn|(z).

Now, for z, w ∈ B set G(z, w) = ( f (z) − f̂r (w))|gn(w)|χ{|w|>δ}. Then by Hölder’s
inequality we have that

sn(z) � ‖G(z, ·)K 1/q(·)
z ‖q(·)‖K 1/q ′(·)

z ‖q ′(·) ≈ ‖G(z, ·)K 1/q(·)
z ‖q(·).
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Now, if ‖G(z, ·)‖q(·) > 1 then by Corollary 2.22 of [5]

‖G(z, ·)‖q(·) ≤
∫
B

|G(z, w)|q(w)|K β
z (w)|dνβ(w) (40)

and if ‖G(z, ·)‖q(·) ≤ 1 by Corollary 2.23 of [5]

‖G(z, ·)‖q(·) ≤
(∫

B
|G(z, w)|q(w)|K β

z (w)|dνβ(w)

) 1
q+

. (41)

It follows that

|Hη
f gn(z)|q(z) � |In(z)|q(z) + |Jn(z)|q(z) � sn(z)

q(z) + tn(z)
q(z) + |Jn(z)|q(z)

< sn(z)
q(z) + ε1/q+Tδ|gn|(z)q(z) + |Jn(z)|q(z).

and thus
∫
B

|H f gn(z)|q(z)dνα(w)

<

∫
B
sn(z)

q(z)dνα(z) + ε1/q+
∫
B
Tδ|gn|(z)q(z)dνα(z) +

∫
B

|Jn(z)|q(z)dνα(z)

�
∫
B

‖G(z, ·)‖q(z)
q(·) dνα(z) + ε1/q+

∫
B
Tδ|gn|(z)q(z)dνα(z) +

∫
B

|Jn(z)|q(z)dνα(z)

(42)

Now, by Eqs. (40) and (41) we write

∫
B

‖G(z, ·)‖q(z)
q(·) dνα(z) ≤

∫
B∩{‖G(z,·)‖q(·)>1}

+
∫
B∩{‖G(z,·)‖q(·)≤1}

‖G(z, ·)‖q(z)
q(·) dνα(z).

Firstly, we observe that

να({‖G(z, ·)‖q(·) > 1}) = 0.

Indeed, using (40) we see that for any ε > 0 we can fine δ > 0 such that

να({‖G(z, ·)‖q(·) > 1})
≤

∫
{‖G(z,·)‖q(·)>1}

‖G(z, ·)‖q(·)dνα(z)

≤
∫

{‖G(z,·)‖q(·)>1}

∫
{|w|>δ}

| f (z) − f̂r (w)|q(w)|gn(w)|q(w)

|1 − 〈z, w〉|n+1+η
dνη(w)dνα(z)

≤
∫

{|w|>δ}
|gn(w)|q(w)

∫
B

| f (z) − f̂r (w)|q(w)

|1 − 〈z, w〉|n+1+η
dνα(z)dνη(w)
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=
∫

{|w|>δ}
|gn(w)|q(w)(1 − |w|2)η−α

∫
B

| f (z) − f̂r (w)|q(w)

|1 − 〈z, w〉|n+1+α+(η−α)
dνα(z)dνα(w)

< ε‖gn‖q(·)

It follows that

∫
B

‖G(z, ·)‖q(z)
q(·) dνα(z)

=
∫
B∩{‖G(z,·)‖q(·)≤1}

‖G(z, ·)‖q(z)
q(·) dνα(z)

≤
∫
B∩{‖G(z,·)‖q(·)≤1}

‖G(z, ·)‖q(·)dνα(z)

≤
∫
B

(∫
{|w|>δ}

| f (z) − f̂r (w)|q(w)|gn(w)|q(w)

|1 − 〈z, w〉|n+1+η
dνη(w)

)1/q+
dνα(z)

≤
(∫

B

∫
{|w|>δ}

| f (z) − f̂r (w)|q(w)|gn(w)|q(w)

|1 − 〈z, w〉|n+1+η
dνη(w)dνα(z)

)1/q+

=
(∫

{|w|>δ}
|gn(w)|q(w)(1 − |w|2)η−α

∫
B

| f (z) − f̂r (w)|q(w)

|1 − 〈z, w〉|n+1+α+(η−α)
dνα(z)dνα(w)

)1/q+

< ε1/q+‖gn‖1/q+
q(·) .

Also, we know that ‖Tδ|gn|‖q(·) � ‖gn‖q(·) < ∞ which implies that

∫
B
Tδ|gn|(z)q(z)dνα(z) < ∞.

Also, because of the uniform convergence of gn on compact subsets of B there is an
N ∈ N such that for all n ≥ N , |Jn(z)| < ε1/q− . That is, for n ≥ N we have

∫
B

|Jn(z)|q(z)dνα(z) ≤
∫
B

|Jn(z)|q−dνα(z) < ε.

It follows from (42) that,

lim
n→∞ ‖Hσ

f gn‖q(·) = 0,

which completes the proof. ��

Lemma 7.3 Let p(·), q(·), α and σ be as in Theorem 1.2 and let f ∈ V Aq(·). Then
Hσ

f , Hσ

f
: Ap(·)

α → Lq(·)
σ is compact.
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Proof Let {gn} be a bounded sequence in Ap(·)
α converging to zero uniformly on com-

pact subsets of B. We must prove that ‖Hσ
f gn‖q(·),σ → 0 as n → ∞. By Proposition

5.4 we know that

‖Hσ
f gn‖q(·),σ � ‖gn‖Lq(·)(dμ f ,σ ),

where dμ f ,σ = | f |q(·)dνσ . The result follows from Lemma 6.1. ��

Data Availibility Statement Data sharing not applicable to this article as no datasets were generated or
analysed during this study.
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