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Abstract
We consider the family of Lorentz ideals C+

p , 1 ≤ p < ∞. Let C+(0)
p be the

‖ · ‖+
p -closure of the collection of finite-rank operators in C+

p . It is well known that

C+(0)
p �= C+

p . We show that C+(0)
p is proximinal in C+

p . We further show that a classic
approximation for Hankel operators (Axler et al. in AnnMath (2) 109, 601–612, 1979)
does not generalize to this new context.
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1 Introduction

Let X be a Banach space and let M be a closed linear subspace of X . An element
x ∈ X is said to have a best approximation in M if there is an m ∈ M such that
‖x − m‖ ≤ ‖x − a‖ for every a ∈ M . The subspace M is said to be proximinal in X
if every x ∈ X has a best approximation in M .
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One of the most familiar and significant examples of such a pair is the case of
X = B(H) and M = K(H), where H is a Hilbert space, B(H) is the collection of
bounded operators onH, and K(H) is the collection of compact operators onH. It is
well known thatK(H) is proximinal in B(H), which is a result in the influential book
[11] by Gohberg and Krien. Given any A ∈ B(H), to find its best approximation in
K(H), one takes the polar decomposition A = U |A|, where |A| = (A∗A)1/2 and U
is a partial isometry. Then from the spectral decomposition of |A| one easily finds the
best compact approximation to A. The moral of this example is that when looking for
best approximations for operators on a Hilbert space, one should take advantage of
spectral decomposition, which is not available on other Banach spaces.

The relation betweenB(H) andK(H) is that the latter is the closure of the collection
of finite-rank operators in the former. On a Hilbert spaceH, there are many pairs that
fit this description, but with different norms. In particular, the norm ideals of Robert
Schatten [16] are a good source for interesting examples of X and M .

Before getting to these examples, it is necessary to give a general introduction for
norm ideals. For this we follow the approach in [11, 19], because it offers the level of
generality that is suitable for this paper.

As in [11], we write ĉ for the linear space of sequences {a j } j∈N, where a j ∈ R and
for every sequence the set { j ∈ N : a j �= 0} is finite. A symmetric gauge function is a
map

� : ĉ → [0,∞)

that has the following properties:

(a) � is a norm on ĉ.
(b) �({1, 0, …, 0, . . . }) = 1.
(c) �({a j } j∈N) = �({|aπ( j)|} j∈N) for every bijection π : N → N.

See [11,p. 71]. Each symmetric gauge function � gives rise to the symmetric norm

‖A‖� = sup
j≥1

�({s1(A), . . . , s j (A), 0, . . . , 0, . . . })

for bounded operators, where s1(A), . . . , s j (A), . . . are the singular numbers of A.
On any separable Hilbert space H, the set of operators

C� = {A ∈ B(H) : ‖A‖� < ∞} (1.1)

is a norm ideal [11,p. 68]. That is, C� has the following properties:
• For any B, C ∈ B(H) and A ∈ C�, BAC ∈ C� and ‖BAC‖� ≤ ‖B‖‖A‖�‖C‖.
• If A ∈ C�, then A∗ ∈ C� and ‖A∗‖� = ‖A‖�.
• For any A ∈ C�, ‖A‖ ≤ ‖A‖�, and the equality holds when rank(A) = 1.
• C� is complete with respect to ‖ · ‖�.

Given a symmetric gauge function �, we define C(0)
� to be the closure with respect

to the norm ‖ · ‖� of the collection of finite-rank operators in C�.
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Both ideals C� and C(0)
� are important in operator theory and operator algebras.

For example, if one considers the problem of diagonalization under perturbation for
single self-adjoint operators [13, 14] or for commuting tuples of self-adjoint operators
[2, 18–21], then the natural perturbing operators come from ideals of the form C(0)

� .
If one studies Toeplitz operators or Hankel operators on various reproducing-kernel
Hilbert spaces, then a natural question is the membership of these operators in ideals
of the form C� [10, 12, 22].

For many symmetric gauge functions, we simply have C(0)
� = C�. For example, if

we take any 1 ≤ p < ∞ and consider the symmetric gauge function

�p({a j }) =
( ∞∑

j=1

|a j |p
)1/p

, {a j } ∈ ĉ,

then the norm ideal C�p defined according to (1.1) is simply the familiar Schatten

p-class. It is well known and obvious that C(0)
�p

= C�p .
From [11] we know that there also are many symmetric gauge functions for which

C(0)
� �= C�. The most noticeable of such examples is the symmetric gauge function

�∞({a j }) = sup
j∈N

|a j |, {a j } ∈ ĉ.

Obviously, the norm ‖ · ‖�∞ is none other than the ordinary operator norm. Therefore
(1.1) gives us C�∞ = B(H). It is also obvious that C(0)

�∞ = K(H). Thus the classic

result that K(H) is proximinal in B(H) can be rephrased as the statement that C(0)
�∞ is

proximinal in C�∞ . Once one realizes that, it does not take too much imagination to
propose

Problem 1.1 For a general symmetric gauge function � with the property C(0)
� �= C�,

is C(0)
� proximinal in C�?

In such generality, Problem 1.1 does not appear to be easy, for it simply covers too
many ideals of diverse properties. It is not too hard to convince oneself that to determine
whether or not C(0)

� is proximinal in C�, one needs to know the specifics of �. At this
point, we do not see how to get a general answer using only properties (a)-(c) listed
above plus the condition C(0)

� �= C�.
But we are pleased to report that there is a family of symmetric gauge functions of

common interest for which we are able to solve Problem 1.1 in the affirmative. Let us
introduce these symmetric gauge functions and the corresponding ideals.

For each 1 ≤ p < ∞, let �+
p be the symmetric gauge function defined by the

formula

�+
p ({a j } j∈N) = sup

j≥1

|aπ(1)| + |aπ(2)| + · · · + |aπ( j)|
1−1/p + 2−1/p + · · · + j−1/p , {a j } j∈N ∈ ĉ,

where π : N → N is any bijection such that |aπ(1)| ≥ |aπ(2)| ≥ · · · ≥ |aπ( j)| ≥ · · · ,
which exists because each {a j } j∈N ∈ ĉ only has a finite number of nonzero terms. The
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ideal C�+
p
, which is defined by (1.1) using�+

p , is often called a Lorentz ideal. It is well

known that C�+
p

�= C(0)
�+

p
[11]. The ideal C�+

1
deserves special mentioning, because it

is the domain of the Dixmier trace [4, 6], which has wide-ranging connections [3, 7,
8, 12, 17].

The ideals C�+
p
and C(0)

�+
p
, 1 ≤ p < ∞, are the main interest of this paper. Since they

will appear so frequently in the sequel, let us introduce a simplified notation. From
now on we will write

C+
p = C�+

p
, C+(0)

p = C(0)
�+

p
and ‖ · ‖+

p = ‖ · ‖�+
p

(1.2)

for 1 ≤ p < ∞. Here is our main result:

Theorem 1.2 For every 1 ≤ p < ∞, C+(0)
p is proximinal in C+

p .

The result thatK(H) is proximinal in B(H) has refinements within specific classes of
operators [1]. One such class of operators are the Hankel operators H f : H2 → L2,
where H2 is the Hardy space on the unit circle T ⊂ C. We recall the following:

Theorem 1.3 [1,Theorem 3] For each f ∈ L∞, the best compact approximation to
the Hankel operator H f can be realized in the form of a Hankel operator Hg.

In other words, Theorem 1.3 says that H f has a best compact approximation that is of
the same kind, a Hankel operator. Using the method in [1], Theorem 1.3 can be easily
generalized to Hankel operators on the Hardy space on the unit sphere in Cn .

Since Theorem 1.2 tells us that each C+(0)
p is proximinal in C+

p , we can obviously
ask a more refined question along the line of Theorem 1.3: Suppose that we have an
operator A in a natural class N , and suppose we know that A ∈ C+

p , can we find a

best C+(0)
p -approximation to A in the same classN ? In particular, what ifN consists

of Hankel operators? As we will see, the answer to this last question turns out to be
negative.

The rest of the paper is organized as follows. We prove Theorem 1.2 in Sect. 2.
Then in Sect. 3, we present the above-mentioned negative answer. Namely, we give
an example of a Hankel operator on the unit sphere in C2 which is in the ideal C+

4

and which does not have any Hankel operator as its best C+(0)
4 -approximation. This

example requires some explicit calculation, which may be of independent interest.

2 Existence of Best Approximation

Recall that the starting domain for every symmetric gauge function � is the space
ĉ, which consists of real sequences whose nonzero terms are finite in number. Our
first order of business is to follow the standard practice to extend the domain of � to
include every sequence. That is, for any sequence ξ = {ξ j } of complex numbers, we
define

�(ξ) = sup
k≥1

�({|ξ1|, |ξ2|, . . . , |ξk |, 0, . . . , 0, . . . }).
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It is well known that the properties of � imply that if |a j | ≤ |b j | for every j , then

�({a j }) ≤ �({b j }).

This fact will be used in many of our estimates below.
We will focus exclusively on the symmetric gauge functions �+

p , 1 ≤ p < ∞. For
the rest of the paper, p will always denote a positive number in [1,∞).

Definition 2.1 (1) Write c+
p for the collection of sequences ξ satisfying the condition

�+
p (ξ) < ∞.

(2) Let c+
p (0) denote the �+

p -closure of {a + ib : a, b ∈ ĉ} in c+
p .

(3) For each ξ ∈ c+
p , denote �+

p,ess(ξ) = inf{�+
p (ξ − η) : η ∈ c+

p (0)}.
(4) Write d+

p for the collection of sequences x = {x j } in c+
p satisfying the conditions

that x j ≥ 0 and that x j ≥ x j+1 for every j ∈ N.
In other words, d+

p consists of the non-negative, non-increasing sequences in c+
p .

Proposition 2.2 For every ξ = {ξ j } ∈ c+
p , we have

�+
p,ess(ξ) = lim

m→∞ �+
p ({ξm+1, ξm+2, . . . , ξm+k, . . . }).

In particular, ξ = {ξ j } ∈ c+
p (0) if and only if

lim
m→∞ �+

p ({ξm+1, ξm+2, . . . , ξm+k, . . . }) = 0.

Proof From the above definitions it is obvious that

�+
p,ess(ξ) ≤ lim

m→∞ �+
p ({ξm+1, ξm+2, . . . , ξm+k, . . . }).

On the other hand, for any a, b ∈ ĉ, there exist a ν ∈ N and ζ1, . . . , ζν ∈ C such that

ξ − a − ib = {ζ1, . . . , ζν, ξν+1, ξν+2, . . . , ξν+k, . . . }.

Thus for every m ≥ ν we have

�+
p (ξ − a − ib) ≥ �+

p ({ξm+1, ξm+2, . . . , ξm+k, . . . }).

Since c+
p (0) is the �+

p -closure of {a + ib : a, b ∈ ĉ}, it follows that

�+
p,ess(ξ) ≥ lim

m→∞ �+
p ({ξm+1, ξm+2, . . . , ξm+k, . . . }).

This completes the proof. ��
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Proposition 2.3 For every x = {x j } ∈ d+
p we have

�+
p,ess(x) = lim sup

j→∞
x1 + x2 + · · · + x j

1−1/p + 2−1/p + · · · + j−1/p . (2.1)

Proof For x = {x j } ∈ d+
p , (2.1) trivially holds if

∑∞
j=1 x j < ∞. Suppose that∑∞

j=1 x j = ∞. Then for every m ∈ N we have

lim
j→∞

xm+1 + · · · + xm+ j

x1 + · · · + x j
=1 − lim

j→∞
x1 + · · · + xm
x1 + · · · + x j

+ lim
j→∞

x1+ j + · · · + xm+ j

x1 + · · · + x j
=1.

Therefore

lim sup
j→∞

x1 + · · · + x j
1−1/p + · · · + j−1/p ≤ �+

p ({xm+1, xm+2, . . . , xm+k, . . . })

for every m ∈ N. By Proposition 2.2, this means

lim sup
j→∞

x1 + · · · + x j
1−1/p + · · · + j−1/p ≤ �+

p,ess(x).

To prove the reverse inequality, note that for each m ∈ N, there is a k(m) ∈ N such
that

�+
p ({xm+1, xm+2, . . . , xm+k, . . . }) ≤ xm+1 + · · · + xm+k(m)

1−1/p + · · · + {k(m)}−1/p + 1

m
. (2.2)

If there is a sequence m1 < m2 < · · · < mi < · · · in N such that k(mi ) → ∞ as
i → ∞, then from Proposition 2.2 and (2.2) we obtain

�+
p,ess(x) ≤ lim sup

i→∞
x1 + · · · + xk(mi )

1−1/p + · · · + {k(mi )}−1/p ≤ lim sup
j→∞

x1 + · · · + x j
1−1/p + · · · + j−1/p .

The only other possibility is that there is an N ∈ N such that k(m) ≤ N for every
m ∈ N. Obviously, the membership x ∈ d+

p implies lim j→∞ x j = 0. Thus in the case
k(m) ≤ N for every m ∈ N, from Proposition 2.2 and (2.2) we obtain

�+
p,ess(x) = lim

m→∞ �+
p ({xm+1, xm+2, . . . , xm+k, . . . }) = 0

≤ lim sup
j→∞

x1 + · · · + x j
1−1/p + · · · + j−1/p .

This completes the proof. ��
Proposition 2.4 Let a ξ = {ξ j } ∈ c+

p be given and denote

Ni = card{ j ∈ N : 2−i/p < |ξ j | ≤ 2−(i−1)/p}
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for every i ∈ N. If

lim
i→∞ 2−i Ni = 0, (2.3)

then ξ ∈ c+
p (0).

Proof By (2.3), for every k ∈ N, there is a natural number i(k) > k + 3 such that

Ni ≤ 2i−k for every i ≥ i(k). (2.4)

For every i ≥ i(k), we also have

card{ j ∈ N : 2i−k ≤ j < 2i+1−k} = 2i+1−k − 1 − 2i−k + 1 = 2i−k .

That is,

card{ j ∈ N : 2−(i−1)/p < 2−(k−2)/p j−1/p ≤ 2−(i−2)/p} = 2i−k

when i ≥ i(k). Combining this with (2.4), we see that

�+
p,ess(ξ) ≤ �+

p ({2−(k−2)/p j−1/p} j∈N) = 2−(k−2)/p.

Since this holds for every k ∈ N, we conclude that �+
p,ess(ξ) = 0, i.e., ξ ∈ c+

p (0). ��
Proposition 2.5 For each x ∈ d+

p , there is a decomposition x = y + z such that
y ∈ d+

p with

�+
p (y) = �+

p,ess(x)

and z = {z j } ∈ c+
p (0), where z j ≥ 0 for every j ∈ N.

Proof Obviously, it suffices to consider x ∈ d+
p with �+

p,ess(x) = 1. Write x = {x j }.
By the definition of d+

p , we have x j ≥ 0 and x j ≥ x j+1 for every j ∈ N.
We define the desired sequences y = {y j } and z = {z j } inductively, starting with

j = 1. If x1 ≤ 1, we define y1 = x1 and z1 = x1 − y1 = 0. If x1 > 1, we define
y1 = 1 and z1 = x1 − y1 = x1 − 1 > 0.

Let ν ≥ 1 and suppose that we have defined 0 ≤ y j ≤ x j and z j = x j − y j for
every 1 ≤ j ≤ ν such that the following hold true: for every 1 ≤ j ≤ ν we have

y1 + · · · + y j
1−1/p + · · · + j−1/p ≤ 1,

and for each j ∈ {1, . . . , ν} with the property y j < x j we have

y1 + · · · + y j
1−1/p + · · · + j−1/p = 1.
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Then we define yν+1 and zν+1 as follows. Suppose that

y1 + · · · + yν + xν+1

1−1/p + · · · + ν−1/p + (ν + 1)−1/p ≤ 1.

In this case, we define yν+1 = xν+1 and zν+1 = xν+1 − yν+1 = 0. Suppose that

y1 + · · · + yν + xν+1

1−1/p + · · · + ν−1/p + (ν + 1)−1/p > 1.

Since we know that

y1 + · · · + yν
1−1/p + · · · + ν−1/p ≤ 1,

these two inequalities imply that there is a yν+1 ∈ (0, xν+1) such that

y1 + · · · + yν + yν+1

1−1/p + · · · + ν−1/p + (ν + 1)−1/p = 1.

This defines yν+1. We then define zν+1 = xν+1 − yν+1, which is greater than 0 in this
case. Thus we have inductively defined the sequences y = {y j } and z = {z j } with the
properties that y j ≥ 0, z j ≥ 0 and y j + z j = x j for every j ∈ N. That is, x = y + z.
The construction above ensures

y1 + · · · + y j
1−1/p + · · · + j−1/p ≤ 1 (2.5)

for every j ∈ N. Moreover, the construction ensures that the equality

y1 + · · · + y j
1−1/p + · · · + j−1/p = 1 (2.6)

holds for each j ∈ N with the property y j < x j .
Next we show that y = {y j } is a non-increasing sequence, i.e., y j ≥ y j+1 for

every j ∈ N. First, consider the case j = 1. If x1 ≤ 1, then by definition y1 = x1 ≥
x2 ≥ y2, since x1 ≥ x2. If x1 > 1, then y1 = 1 by definition, and (2.5) gives us
1 + y2 ≤ 1−1/p + 2−1/p. Thus in the case x1 > 1 we have y2 ≤ 2−1/p < 1 = y1.

Now consider any j ≥ 2. If y j = x j , then we again have y j = x j ≥ x j+1 ≥ y j+1,
since x is a non-increasing sequence. If y j < x j , then (2.5) and (2.6) imply

y1 + · · · + y j−1 ≤ 1−1/p + · · · + ( j − 1)−1/p,

y1 + · · · + y j−1 + y j = 1−1/p + · · · + ( j − 1)−1/p + j−1/p,

y1 + · · · + y j−1 + y j + y j+1 ≤ 1−1/p + · · · + ( j − 1)−1/p + j−1/p + ( j + 1)−1/p,

from which we deduce

y j ≥ j−1/p > ( j + 1)−1/p ≥ y j+1.
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Thus y = {y j } is indeed a non-increasing sequence. Combining this fact with (2.5),
we conclude that y ∈ d+

p with �+
p (y) ≤ 1. What remains is to show that z ∈ c+

p (0).
To prove that z ∈ c+

p (0), we first consider the case where 1 < p < ∞. Define

Ni = card{ j ∈ N : z j ≥ 2−i/p}

for each i ∈ N. By Proposition 2.4, to prove that z ∈ c+
p (0), it suffices to show that

lim
i→∞ 2−i Ni = 0. (2.7)

Suppose that this failed. Then there would be a δ > 0 and an increasing sequence

i1 < i2 < · · · < iν < · · ·

of natural numbers such that

2−iν Niν ≥ δ for every ν ∈ N. (2.8)

We will show that this leads to a contradiction.
Write a = �+

p (x). Let ν and j be any pair of natural numbers such that z j ≥ 2−iν/p.
Since z j = x j − y j and y j ≥ 0, we have x j ≥ 2−iν/p. On the other hand, since x is a
non-increasing sequence, we have

j x j
1−1/p + · · · + j−1/p ≤ x1 + · · · + x j

1−1/p + · · · + j−1/p ≤ a.

Writing Cp = p/(p − 1), the above facts lead to the inequality

j2−iν/p ≤ j x j ≤ Cpaj
(p−1)/p.

That is, if z j ≥ 2−iν/p, then j ≤ (Cpa)p2iν . For each ν ∈ N, let jν = max{ j ∈ N :
z j ≥ 2−iν/p}. By (2.6), the fact z jν > 0 forces

y1 + · · · + y jν

1−1/p + · · · + j−1/p
ν

= 1.

Thus

x1 + · · · + x jν

1−1/p + · · · + j−1/p
ν

= y1 + · · · + y jν

1−1/p + · · · + j−1/p
ν

+ z1 + · · · + z jν

1−1/p + · · · + j−1/p
ν

≥ 1 + Niν2
−iν/p

Cp j
(p−1)/p
ν

≥ 1 + Niν2
−iν/p

Cp{(Cpa)p2iν }(p−1)/p

= 1 + Niν

C p
pa p−12iν

≥ 1 + δ

C p
pa p−1

,
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where the last ≥ follows from (2.8). Since the above inequality supposedly holds for
every ν ∈ N, by Proposition 2.3, it contradicts the condition �+

p,ess(x) = 1. This
proves (2.7). Applying Proposition 2.4, in the case 1 < p < ∞ we have z ∈ c+

p (0).

Now consider the case p = 1,which ismuchmore complicated. To prove z ∈ c+
1 (0)

in this case, pick an ε > 0. Define the sequences u = {u j } and v = {v j } by the
formulas

u j =
⎧⎨
⎩
z j if z j > εx j

0 if z j ≤ εx j
and v j =

⎧⎨
⎩
0 if z j > εx j

z j if z j ≤ εx j
,

j ∈ N. We have z = u + v by design. Then note that �+
1 (v) ≤ ε�+

1 (x). Since ε > 0
is arbitrary, it suffices to show that u ∈ c+

1 (0).
To prove that u ∈ c+

1 (0), consider the set N = { j ∈ N : u j > 0}. If card(N ) < ∞,
then we certainly have the membership u ∈ c+

1 (0). Suppose that card(N ) = ∞. Then
we enumerate the elements in N as a sequence

j(1) < j(2) < · · · < j(k) < · · · .

Keep in mind that z j(k) > εx j(k) for every k ∈ N.
Claim 1 If k1 < k2 < · · · < kν < · · · are natural numbers such that

log kν ≥ 1

2
log j(kν) (2.9)

for every ν ∈ N, then

lim
ν→∞

x j(1) + x j(2) + · · · + x j(kν )

1−1 + 2−1 + · · · + k−1
ν

= 0. (2.10)

Indeed for each ν ∈ N, since z j(kν ) > 0, i.e., y j(kν ) < x j(kν ), we have

x1 + x2 + · · · + x j(kν )

1−1 + 2−1 + · · · + { j(kν)}−1

= y1 + y2 + · · · + y j(kν )

1−1 + 2−1 + · · · + { j(kν)}−1 + z1 + z2 + · · · + z j(kν )

1−1 + 2−1 + · · · + { j(kν)}−1

≥ 1 + z j(1) + z j(2) + · · · + z j(kν )

1−1 + 2−1 + · · · + { j(kν)}−1 ≥ 1 + ε
x j(1) + x j(2) + · · · + x j(kν )

1−1 + 2−1 + · · · + { j(kν)}−1

= 1 + ε · 1−1 + 2−1 + · · · + k−1
ν

1−1 + 2−1 + · · · + { j(kν)}−1 · x j(1) + x j(2) + · · · + x j(kν )

1−1 + 2−1 + · · · + k−1
ν

.
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Combining this with (2.9), we find that for ν ≥ 3,

x1 + x2 + · · · + x j(kν )

1−1 + 2−1 + · · · + { j(kν)}−1 ≥ 1 + ε · log kν

2 log j(kν)
· x j(1) + x j(2) + · · · + x j(kν )

1−1 + 2−1 + · · · + k−1
ν

≥ 1 + ε

4
· x j(1) + x j(2) + · · · + x j(kν )

1−1 + 2−1 + · · · + k−1
ν

.

(2.11)

It follows from the condition �+
1,ess(x) = 1 and Proposition 2.3 that

lim sup
ν→∞

x1 + x2 + · · · + x j(kν )

1−1 + 2−1 + · · · + { j(kν)}−1 ≤ 1. (2.12)

Obviously, (2.10) follows from (2.11) and (2.12). This proves Claim 1.
Claim 2 Let E1, . . . , Es , . . . be finite subsets of N such that

lim
s→∞ card(Es) = ∞. (2.13)

Suppose that

log k <
1

2
log j(k) for every k ∈

∞⋃
s=1

Es . (2.14)

Then

lim
s→∞

∑
k∈Es

x j(k)

/ card(Es )∑
i=1

1

i
= 0. (2.15)

To prove this, pick an m ∈ N and define Fs = {k ∈ Es : mk ≤ j(k)} for each s ∈ N.
Note that (2.14) implies j(k) > k2 for every k ∈ ∪∞

s=1Es . Therefore card(Es\Fs) ≤ m
for every s. Thus it follows from (2.13) that

lim
s→∞

{( ∑
k∈Es

x j(k)

/ card(Es )∑
i=1

1

i

)
−

( ∑
k∈Fs

x j(k)

/ card(Fs )∑
i=1

1

i

)}
= 0.

Since m ∈ N is arbitrary, (2.15) will follow if we can show that

lim sup
s→∞

∑
k∈Fs

x j(k)

/ card(Fs )∑
i=1

1

i
≤ �+

1 (x)

m
. (2.16)
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For each s ∈ N, since j(k) ≥ mk for every k ∈ Fs and since the sequence x is
non-increasing, we have

∑
k∈Fs

x j(k) ≤
∑
k∈Fs

xmk ≤
card(Fs )∑
i=1

xmi ≤ 1

m

mcard(Fs )∑
i=1

xi ≤ 1

m

( mcard(Fs )∑
i=1

1

i

)
�+

1 (x).

That is,

∑
k∈Fs

x j(k)

/ card(Fs )∑
i=1

1

i
≤ 1

m

{ mcard(Fs )∑
i=1

1

i

/ card(Fs )∑
i=1

1

i

}
�+

1 (x) (2.17)

for every s ∈ N. Since card(Fs) → ∞ as s → ∞, (2.17) implies (2.16). This
completes the proof of Claim 2.

Having proved Claims 1 and 2, we are now ready to prove the membership u ∈
c+
1 (0). Recall that for every j for which u j �= 0, we have u j = z j ≤ x j , and that the
elements in N = { j ∈ N : u j > 0} are listed as

j(1) < j(2) < · · · < j(k) < · · · .

Since x is non-increasing, by Proposition 2.3, the membership u ∈ c+
1 (0) will follow

if we can show that

lim
k→∞

x j(1) + x j(2) + · · · + x j(k)
1−1 + 2−1 + · · · + k−1 = 0.

Suppose that this limit did not hold. Then there would be a sequence

n1 < n2 < · · · < ns < · · ·

of natural numbers such that

lim
s→∞

x j(1) + x j(2) + · · · + x j(ns )

1−1 + 2−1 + · · · + n−1
s

= b (2.18)

for some b > 0. Again, we will show that this leads to a contradiction.
For each s ∈ N, define As = {k ∈ {1, 2, . . . , ns} : log k ≥ (1/2) log j(k)}. If s is

such that As = ∅, we define

Gs = {1, 2, . . . , ns}.

If s is such that As �= ∅, we let ks be the largest element in As and we define

Gs = {1, 2, . . . , ns}\{1, 2, . . . , ks}.
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Note that for each s, the definition of Gs guarantees that log k < (1/2) log j(k) if
k ∈ Gs . Denote 
 = {s ∈ N : As �= ∅}. For each s ∈ 
, define

αs = 1−1 + 2−1 + · · · + k−1
s

1−1 + 2−1 + · · · + n−1
s

and βs =
∑card(Gs )

i=1 i−1

1−1 + 2−1 + · · · + n−1
s

,

where βs is understood to be 0 in the case Gs = ∅. For s ∈ 
 with Gs �= ∅, we have

x j(1) + x j(2) + · · · + x j(ns)

1−1 + 2−1 + · · · + n−1
s

= x j(1) + x j(2) + · · · + x j(ks ) + ∑
k∈Gs

x j(k)

1−1 + 2−1 + · · · + n−1
s

= αs
x j(1) + x j(2) + · · · + x j(ks )

1−1 + 2−1 + · · · + k−1
s

+ βs

∑
k∈Gs

x j(k)∑card(Gs )
i=1 i−1

.

(2.19)

Suppose that 
 �= ∅. Then 
 = {s ∈ N : s ≥ } for some  ∈ N. Thus there is a
sequence

s1 < s2 < · · · < sr < · · ·

contained in 
 such that both limits

lim
r→∞ αsr and lim

r→∞ βsr

exist. By definition, log ks ≥ (1/2) log j(ks). By Claim 1, we have

lim
r→∞

x j(1) + x j(2) + · · · + x j(ksr )

1−1 + 2−1 + · · · + k−1
sr

= 0 in the event lim
r→∞ αsr �= 0.

Recall that if k ∈ Gs , then log k < (1/2) log j(k). By Claim 2, we have

lim
r→∞

∑
k∈Gsr

x j(k)∑card(Gsr )

i=1 i−1
= 0 in the event lim

r→∞ βsr �= 0.

Combining these facts with (2.19), we find that

lim
r→∞

x j(1) + x j(2) + · · · + x j(nsr )

1−1 + 2−1 + · · · + n−1
sr

= 0,

which contradicts (2.18) in the case 
 �= ∅. Suppose that 
 = ∅. Then by definition
we have Gs = {1, 2, . . . , ns} for every s ∈ N. Thus we can apply Claim 2 to conclude
that

lim
s→∞

x j(1) + x j(2) + · · · + x j(ns )

1−1 + 2−1 + · · · + n−1
s

= lim
s→∞

∑
k∈Gs

x j(k)

/ card(Gs )∑
i=1

1

i
= 0.
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Thus (2.18) is also contradicted in the case 
 = ∅. This completes the proof of the
proposition. ��

Havingonly dealtwith sequences so far,wenowapply the above results to operators,
which are the main interest of the paper. Let H be a Hilbert space. For any u, v ∈ H,
the notation u ⊗ v denotes the operator on H defined by the formula

u ⊗ v f = 〈 f , v〉u, f ∈ H.

It is well known that if A is a compact operator on an infinite-dimensional Hilbert
space H, then it admits the representation

A =
∞∑
j=1

s j (A)u j ⊗ v j ,

where {u j : j ∈ N} and {v j : j ∈ N} are orthonormal sets inH. See, e.g., [5, 11].
We remind the reader of our notation (1.2). For each each A ∈ C+

p , we define

‖A‖+
p,ess = inf{‖A − K‖+

p : K ∈ C+(0)
p }.

We think of ‖A‖+
p,ess as the essential ‖ · ‖+

p -norm of A, hence the notation.

Proposition 2.6 For every operator A ∈ C+
p , we have

‖A‖+
p,ess = �+

p,ess({s j (A)}) = lim sup
j→∞

s1(A) + s2(A) + · · · + s j (A)

1−1/p + 2−1/p + · · · + j−1/p .

Proof For an A ∈ C+
p , there are orthonormal sets {u j : j ∈ N} and {v j : j ∈ N} such

that

A =
∞∑
j=1

s j (A)u j ⊗ v j .

Therefore it is obvious that ‖A‖+
p,ess ≤ �+

p,ess({s j (A)}). To prove the reverse inequal-
ity, for every k ∈ N we define the orthogonal projection

Ek =
∞∑
j=k

u j ⊗ u j .

If F is a finite-rank operator, then ‖Ek F‖+
p → 0 as k → ∞. Therefore

‖A − F‖+
p ≥ lim sup

k→∞
‖Ek(A − F)‖+

p = lim sup
k→∞

‖Ek A‖+
p

= lim
k→∞ �+

p ({sk(A), sk+1(A), . . . , sk+ j (A), . . . }) = �+
p,ess({s j (A)}),
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where the last = follows from Proposition 2.2. Since this inequality holds for every
finite-rankoperator F , we conclude that‖A‖+

p,ess ≥ �+
p,ess({s j (A)}). RecallingPropo-

sition 2.3, the proof is complete. ��
With the above preparation, we now prove Theorem 1.2 in a more explicit form:

Theorem 2.7 For each A ∈ C+
p , there is a K ∈ C+(0)

p such that

‖A − K‖+
p = ‖A‖+

p,ess = lim sup
j→∞

s1(A) + s2(A) + · · · + s j (A)

1−1/p + 2−1/p + · · · + j−1/p .

Proof Given an A ∈ C+
p , we again represent it in the form

A =
∞∑
j=1

s j (A)u j ⊗ v j ,

where {u j : j ∈ N} and {v j : j ∈ N} are orthonormal sets. Applying Proposition 2.5
to the sequence {x j } = {s j (A)}, we obtain y = {y j } ∈ d+

p and z = {z j } ∈ c+
p (0) such

that

s j (A) = y j + z j (2.20)

for every j ∈ N and �+
p (y) = �+

p,ess({s j (A)}). Define

K =
∞∑
j=1

z j u j ⊗ v j .

The condition z ∈ c+
p (0) obviously implies K ∈ C+(0)

p . From (2.20) we obtain

A − K =
∞∑
j=1

y j u j ⊗ v j .

Therefore

‖A − K‖+
p = �+

p (y) = �+
p,ess({s j (A)}).

Now an application of Proposition 2.6 completes the proof. ��

3 A Contrast to the Classic Case

As we mentioned in the Introduction, the result that K(H) is proximinal in B(H)

has refinements within specific classes of operators. One such class of operators are
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the Hankel operators H f : H2 → L2, where H2 is the Hardy space on the unit
circle T ⊂ C. Specifically, [1,Theorem 3] tells us that for f ∈ L∞, the best compact
approximation to the Hankel operator H f : H2 → L2 can be realized in the form of
a Hankel operator Hg .

In other words, [1,Theorem 3] says that H f has a best compact approximation that
is of the same kind, a Hankel operator. Using the method in [1], this result of best
compact approximation can be easily generalized to Hankel operators on the Hardy
space H2(S) on the unit sphere S ⊂ Cn .

The fact that each C+(0)
p is proximinal in C+

p raises an obvious question: Suppose
that we have an operator A in a natural class N , and suppose we know that A ∈ C+

p ,

can we find a best C+(0)
p -approximation to A in the same classN ? In particular, what

if N is the class of Hankel operators on H2(S)?
In this section we show that the answer to the last question is negative. This negative

answer provides a sharp contrast to the classic result [1,Theorem 3].
For the rest of the paper we assume n ≥ 2. Let S denote the unit sphere {z ∈

Cn : |z| = 1} in Cn . Write dσ for the standard spherical measure on S with the
normalization σ(S) = 1. Recall that the Hardy space H2(S) is the norm closure of the
analytic polynomials C[z1, . . . , zn] in L2(S, dσ) [15]. Let P : L2(S, dσ) → H2(S)

be the orthogonal projection. Then the Hankel operator H f : H2(S) → L2(S, dσ) is
defined by the formula

H f h = (1 − P)( f h), h ∈ H2(S).

For these Hankel operators, let us recall the following results:

Proposition 3.1 [9,Proposition 7.2] If f is a Lipschitz function on S, then H f ∈ C+
2n.

Proposition 3.2 When the complex dimension n is at least 2, for any f ∈ L2(S, dσ),
if H f is bounded and if H f �= 0, then H f /∈ C+(0)

2n .

Proof We apply [9,Theorem 1.6] which tells us that for f ∈ L2(S, dσ), if H f is
bounded and if H f �= 0, then there is an ε > 0 such that

s1(H f ) + · · · + sk(H f ) ≥ εk(2n−1)/2n

for every k ∈ N. Thus it follows from Proposition 2.6 that ‖H f ‖+
2n,ess > 0, if ‖H f ‖+

2n

is finite to begin with. In any case, we have H f /∈ C+(0)
2n . ��

As usual, we write z1, . . . , zn for the complex coordinate functions. Here is the
main technical result of the section:

Theorem 3.3 When the complex dimension n equals 2, we have ‖Hz̄1‖+
4 > ‖Hz̄1‖+

4,ess.

This leads to the negative answer promised above:

Example 3.4 Let the complexdimensionn be equal to 2.ByTheorem2.7, Hz̄1 has a best
approximation in C+(0)

4 . On the other hand, it follows from the inequality ‖Hz̄1‖+
4 >
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‖Hz̄1‖+
4,ess that if K ∈ C+(0)

4 is a best approximation of Hz̄1 , then K �= 0. The

membership K ∈ C+(0)
4 implies that K is not a Hankel operator, for Proposition 3.2

tells us that C+(0)
4 does not contain any nonzero Hankel operators on H2(S) in the case

S ⊂ C2. Thus for the class of Hankel operators on the Hardy space H2(S), S ⊂ C2,
the analogue of Theorem 1.3 does not hold for the pair C+

4 and C+(0)
4 , even though

C+(0)
4 is proximinal in C+

4 .
Having presented the principal conclusion of the section, we now turn to the proof

of Theorem 3.3, which requires some calculation. We begin with the generality n ≥ 2,
and then specialize to the complex dimension n = 2.

We need to make one use of Toeplitz operators, whose definition we now recall.
Given an f ∈ L∞(S, dσ), the Toeplitz operator T f is defined by the formula

T f h = P( f h), h ∈ H2(S).

We need the following relation between Hankel operators and Toeplitz operators: We
have

H∗
f H f = T| f |2 − T f̄ T f (3.1)

for every f ∈ L∞(S, dσ).

We follow the usual multi-index convention [15,p. 3]. Then the standard orthonormal
basis {eα : α ∈ Zn+} for H2(S) is given by the formula

eα(z) =
{

(n − 1 + |α|)!
(n − 1)!α!

}1/2

zα, α ∈ Zn+.

Consider the symbol function z̄1. Straightforward calculation using (3.1) shows that

〈H ∗̄
z1Hz̄1eα, eβ〉 = 0 if α �= β

and that

〈H ∗̄
z1Hz̄1eα, eα〉 = n − 1 + |α| − α1

(n − 1 + |α|)(n + |α|) for every α ∈ Zn+, (3.2)

where α1 denotes the first component of α. Thus H ∗̄
z1
Hz̄1 is a diagonal operator with

respect to the standard orthonormal basis {eα : α ∈ Zn+}, and the above are the s-
numbers of H ∗̄

z1
Hz̄1 . Consequently, the s-numbers of Hz̄1 are a descending arrangement

of

{
n − 1 + |α| − α1

(n − 1 + |α|)(n + |α|)
}1/2

, α ∈ Zn+.
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Lemma 3.5 In the case where the complex dimension n equals 2, we have

‖Hz̄1‖+
4,ess = 6−1/4.

Proof For α = (α1, α2) ∈ Z2+, note that |α| − α1 = α2 . Thus from (3.2) we obtain

(H ∗̄
z1Hz̄1)

1/2 =
∑

α∈Z2+

{
1 + α2

(1 + |α|)(2 + |α|)
}1/2

eα ⊗ eα.

It is also easy to see that (H ∗̄
z1
Hz̄1)

1/2 = Y + Z , where Z ∈ C+(0)
4 and

Y =
∑

α∈Z2+\{0}

√
α2

|α| eα ⊗ eα.

Hence ‖Hz̄1‖+
4,ess = ‖(H ∗̄

z1
Hz̄1)

1/2‖+
4,ess = ‖Y‖+

4,ess, and we need to figure out the
latter.

To find ‖Y‖+
4,ess, consider Q = {(x, y) ∈ R2 : x ≥ 0 and y ≥ 0}, the first quadrant

in the xy-plane. For each a > 0, define

Ea = {(x, y) ∈ Q : ay ≥ (x + y)2}.

Solving the inequality ay ≥ (x + y)2 in Q, we find that

Ea = {(x, y) ∈ Q : 0 ≤ y ≤ a and 0 ≤ x ≤ √
ay − y}.

Let m2 denote the natural 2-dimensional Lebesgue measure on Q. Then

m2(Ea) =
∫ a

0
(
√
ay − y)dy = a2

6
.

For each r > 1 we define

N (r) = card{α ∈ Z2+\{0} : √
α2/|α| > 1/r}.

To each α ∈ Z2+ we associate the square α + I 2, where I 2 = [0, 1] × [0, 1]. From
this association we see that

N (r) = m2(Er2) + o(r4) = 1

6
r4 + o(r4). (3.3)



Best Approximations in a Class of Lorentz Ideals Page 19 of 25 51

We have

∫∫
Er2

√
y

x + y
dxdy =

∫ r2

0

√
y

( ∫ r
√
y−y

0

dx

x + y

)
dy =

∫ r2

0

√
y log

(
r
√
y

y

)
dy

= r3
∫ 1

0

√
u log

1√
u
du = 2r3

∫ 1

0
t2 log

1

t
dt = 2

9
r3 = 4

3
· 1
6
r3.

Denote Ar = {α ∈ Z2+\{0} : √
α2/|α| > 1/r}. Then

N (r)∑
j=1

s j (Y ) =
∑
α∈Ar

√
α2

|α|

=
∑
α∈Ar

∫∫
α+I 2

√
y

x + y
dxdy +

∑
α∈Ar

∫∫
α+I 2

(√
α2

|α| −
√
y

x + y

)
dxdy

=
∫∫

Er2

√
y

x + y
dxdy + o(r3) = 4

3
· 1
6
r3 + o(r3).

On the other hand, from (3.3) we obtain

N (r)∑
j=1

j−1/4 = 4

3
{N (r)}3/4 + o({N (r)}3/4) = 4

3

(
1

6

)3/4

r3 + o(r3).

Combining these two identities, we find that

lim
r→∞

∑N (r)
j=1 s j (Y )∑N (r)
j=1 j−1/4

= lim
r→∞

4
3 · 1

6r
3 + o(r3)

4
3

( 1
6

)3/4
r3 + o(r3)

=
(
1

6

)1/4

.

Thus the proof of the lemma will be complete if we can show that

‖Y‖+
4,ess = lim

r→∞

∑N (r)
j=1 s j (Y )∑N (r)
j=1 j−1/4

. (3.4)

To prove (3.4), first note that by Proposition 2.6, the left-hand side is greater than
or equal to the right-hand side. Thus we only need to prove the reverse inequality. But
for the reverse inequality, note that (3.3) gives us

N (ν + 1) − N (ν) = o(ν4),

ν ∈ N. Hence

N (ν+1)∑
j=N (ν)+1

s j (Y ) ≤ 1

ν
(N (ν + 1) − N (ν)) = o(ν3).
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For a large k ∈ N, there is a ν(k) ∈ N such that N (ν(k)) ≤ k < N (ν(k) + 1). Thus

s1(Y ) + · · · + sk(Y )

1−1/4 + · · · + k−1/4 ≤
∑N (ν(k)+1)

j=1 s j (Y )∑N (ν(k))
j=1 j−1/4

=
∑N (ν(k))

j=1 s j (Y )∑N (ν(k))
j=1 j−1/4

+
∑N (ν(k)+1)

j=N (ν(k))+1 s j (Y )∑N (ν(k))
j=1 j−1/4

=
∑N (ν(k))

j=1 s j (Y )∑N (ν(k))
j=1 j−1/4

+ o({ν(k)}3)
(4/3){N (ν(k))}3/4 + o({N (ν(k))}3/4) .

Using (3.3) again, we find that

lim sup
k→∞

s1(Y ) + · · · + sk(Y )

1−1/4 + · · · + k−1/4 ≤ lim
r→∞

∑N (r)
j=1 s j (Y )∑N (r)
j=1 j−1/4

.

Thus, by Proposition 2.6, the left-hand side of (3.4) is less than or equal to the right-
hand side as promised. This completes the proof of the lemma. ��
Proof of Theorem 3.3. Under the assumption n = 2, (3.2) gives us ‖Hz̄11‖2 = 1/2.
Thus ‖Hz̄1‖+

4 ≥ ‖Hz̄1‖ ≥ 2−1/2. On the other hand, Lemma 3.5 tells us that
‖Hz̄1‖+

4,ess = 6−1/4. Since 2−1/2 > 6−1/4, it follows that ‖Hz̄1‖+
4 > ‖Hz̄1‖+

4,ess.��
We choose to present Lemma 3.5 separately because its proof is more elementary

than the general case. But the calculation in Lemma 3.5 can be generalized to all
complex dimensions n ≥ 2, which may be of independent interest:

Proposition 3.6 In each complex dimension n ≥ 2, we have

‖Hz̄1‖+
2n,ess =

(
1

n! · n − 1

2n − 1

)1/(2n)

.

Proof We begin with some general volume calculation. For j ≥ 1, let v j denote the
(real) j-dimensional volume measure. Let k ≥ 2 and define

�k(t) = {(x1, . . . , xk) ∈ Rk : x1 ≥ 0, . . . , xk ≥ 0 and x1 + · · · + xk = t}

for t ≥ 0. Elementary calculation shows that vk−1(�k(1)) = {(k−1)!}−1k1/2. Hence

vk−1(�k(t)) =
√
k

(k − 1)! t
k−1 (3.5)

for all t > 0.
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Consider the “first quadrant”

Qn = {(x1, . . . , xn) ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0}

in Rn . We write the elements in Qn in the form (x, y), where x ≥ 0 and y =
(y1, . . . , yn−1) with y j ≥ 0 for 1 ≤ j ≤ n − 1. For such a y, we denote

|y| = y1 + · · · + yn−1

in this proof. Adapting the proof of Lemma 3.5 to general n ≥ 2, we now define

Ea = {(x, y) ∈ Qn : a|y| ≥ (x + |y|)2}

for a > 0. We claim that

vn(Ea) = an

n! · n − 1

2n − 1
. (3.6)

To prove this, note that the condition a|y| ≥ (x + |y|)2 implies a ≥ x + |y| and,
consequently, a ≥ x and a ≥ |y|. For each 0 ≤ t ≤ a, define


a(t) = �n(t) ∩ Ea = {(x, y) ∈ Qn : x + |y| = t and a|y| ≥ t2}.

Obviously,


a(t) = {(t − ρ, y) ∈ Qn : t2/a ≤ ρ ≤ t and |y| = ρ}.

For any λ,μ ∈ [t2/a, t], the distance between the slices

{(t − λ, y) ∈ Qn : |y| = λ} and {(t − μ, y) ∈ Qn : |y| = μ}

is easily seen to be

(
{μ − λ}2 + (n − 1){(n − 1)−1λ − (n − 1)−1μ}2

)1/2 =
√

n

n − 1
|λ − μ|.

Combining this fact with (3.5), when n ≥ 3 we have

vn−1(
a(t)) =
√

n

n − 1

∫ t

t2/a
vn−2({(t − ρ, y) ∈ Qn : |y| = ρ})dρ

=
√

n

n − 1

∫ t

t2/a

√
n − 1

(n − 2)!ρ
n−2dρ =

√
n

(n − 1)! {t
n−1 − (t2/a)n−1}.

When n = 2, we can omit the first two steps above and the last = trivially holds. Let
u be the unit vector (n−1/2, . . . , n−1/2) in Rn . For s, t ∈ [0,∞), if su ∈ �n(t), then
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n1/2s = t . Since x + |y| ≤ a for (x, y) ∈ Ea , integrating along the “u-axis" in Rn ,
we have

vn(Ea) =
∫ n−1/2a

0
vn−1(
a(n

1/2s))ds = 1√
n

∫ a

0
vn−1(
a(t))dt

= 1

(n − 1)!
∫ a

0
(tn−1 − a−(n−1)t2n−2)dt = an

(n − 1)!
(
1

n
− 1

2n − 1

)
.

Then an obvious simplification of the right-hand side proves (3.6).
Let us again write each α ∈ Zn+ in the form α = (α1, α2), but keep in mind that this

time we have α2 ∈ Zn−1+ . Accordingly, |α| − α1 = |α2|. Thus from (3.2) we obtain

(H ∗̄
z1Hz̄1)

1/2 =
∑

α∈Zn+

{
n − 1 + |α2|

(n − 1 + |α|)(n + |α|)
}1/2

eα ⊗ eα.

Again, (H ∗̄
z1
Hz̄1)

1/2 = Y + Z , where Z ∈ C+(0)
2n and

Y =
∑

α∈Zn+\{0}

√|α2|
|α| eα ⊗ eα.

Hence ‖Hz̄1‖+
2n,ess = ‖(H ∗̄

z1
Hz̄1)

1/2‖+
2n,ess = ‖Y‖+

2n,ess, and we need to compute

‖Y‖+
2n,ess.

For each large r > 1 we define the set

Ar = {α ∈ Zn+\{0} : √|α2|/|α| > 1/r}.

To each α ∈ Zn+ we associate the cube α + I n , where I n = {(x1, . . . , xn) ∈ Rn : 0 ≤
x j ≤ 1 for j = 1, . . . , n}. Obviously, there is a constant 0 < C < ∞ such that for
any α ∈ Zn+\{0} and any (x, y) ∈ α + I n , we have

∣∣∣∣
√|α2|
|α| −

√|y|
x + |y|

∣∣∣∣ ≤ C

(1 + |α2|1/2)|α| . (3.7)

Write N (r) = card(Ar ). From (3.7) it is easy to deduce that N (r) = vn(Er2)+o(r2n).
Combining this fact with (3.6), we obtain

N (r) = γnr
2n + o(r2n), (3.8)

where we denote

γn = 1

n! · n − 1

2n − 1
. (3.9)
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For convenience let us write dy = dy1 · · · dyn−1 on Rn−1. We have

∫∫
Er2

√|y|
x + |y|dxdy =

∫ ∞

0
vn({(x, y) ∈ Er2 : √|y|/(x + |y|) > t})dt

=
∫ ∞

1/r
vn(E1/t2)dt + 1

r
vn(Er2) = γn

∫ ∞

1/r

1

t2n
dt + 1

r
γnr

2n

= 2n

2n − 1
γnr

2n−1,

where the third = follows from (3.6) and (3.9). Thus

N (r)∑
j=1

s j (Y ) =
∑
α∈Ar

√|α2|
|α|

=
∑
α∈Ar

∫∫
α+I n

√|y|
x + |y|dxdy +

∑
α∈Ar

∫∫
α+I n

(√|α2|
|α| −

√|y|
x + |y|

)
dxdy

=
∫∫

Er2

√|y|
x + |y|dxdy + o(r2n−1) = 2n

2n − 1
γnr

2n−1 + o(r2n−1).

On the other hand, from (3.8) we obtain

N (r)∑
j=1

j−1/(2n) = 2n

2n − 1
{N (r)}(2n−1)/(2n) + o({N (r)}(2n−1)/(2n))

= 2n

2n − 1
γ

(2n−1)/(2n)
n r2n−1 + o(r2n−1).

Combining these two identities, we find that

lim
r→∞

∑N (r)
j=1 s j (Y )∑N (r)

j=1 j−1/(2n)
= lim

r→∞

2n
2n−1γnr

2n−1 + o(r2n−1)

2n
2n−1γ

(2n−1)/(2n)
n r2n−1 + o(r2n−1)

= γ
1/(2n)
n .

Recalling (3.9), the proof of the proposition will be complete if we can show that

‖Y‖+
2n,ess = lim

r→∞

∑N (r)
j=1 s j (Y )∑N (r)

j=1 j−1/(2n)
. (3.10)

As in the proof of Lemma 3.5, we first note that by Proposition 2.6, the left-hand side
of (3.10) is greater than or equal to the right-hand side. Thus we only need to prove
the reverse inequality. But for the reverse inequality, note that (3.8) gives us

N (ν + 1) − N (ν) = o(ν2n),
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ν ∈ N. Hence

N (ν+1)∑
j=N (ν)+1

s j (Y ) ≤ 1

ν
(N (ν + 1) − N (ν)) = o(ν2n−1).

Once we have this, by the argument at the end of the proof of Lemma 3.5, the right-
hand side of (3.10) is greater than or equal to the left-hand side. This completes the
proof. ��

The point that we try to make with Proposition 3.6 is that it is not easy to come
up with functions f on S ⊂ Cn such that ‖H f ‖+

2n > ‖H f ‖+
2n,ess. Theorem 3.3 says

that the function z̄1 on S ⊂ C2 has this property. So what about the function z̄1 on
S ⊂ C3? In the case n = 3, Proposition 3.6 gives us

‖Hz̄1‖+
6,ess =

(
1

15

)1/6

.

On the other hand, the obvious lower bound that we obtain from (3.2) in the case n = 3
is ‖Hz̄1‖+

6 ≥ 3−1/2. Since 3−1/2 < 15−1/6, this is of no use to us. The difficulty here
is to obtain an estimate of ‖Hz̄1‖+

2n that is close to its true value. In view of this, it is
somewhat surprising that we can actually calculate the essential norm ‖Hz̄1‖+

2n,ess.

In the case n = 2, we do not know how close the lower bound ‖Hz̄1‖+
4 ≥ 2−1/2 is to

the true value of ‖Hz̄1‖+
4 . So it is really a matter of luck that the apparently crude lower

bound ‖Hz̄1‖+
4 ≥ 2−1/2 in the case n = 2 is good enough to give us Example 3.4,

which is the main purpose of the section. As of this writing, Example 3.4 is the only
example of its kind that we are able to produce.

Data availability Data sharing is not applicable to this article as no data sets were generated or analyzed
during the current study.
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