
Complex Analysis and Operator Theory (2022) 16:30
https://doi.org/10.1007/s11785-022-01202-1

Complex Analysis
and Operator Theory

Bounds on the Non-real Eigenvalues of Nonlocal Indefinite
Sturm–Liouville Problems with Coupled Boundary
Conditions

Fu Sun1 · Kun Li2 · Jinming Cai2

Received: 8 October 2021 / Accepted: 23 January 2022 / Published online: 3 March 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
The present paper deals with non-real eigenvalues of nonlocal indefinite Sturm–
Liouville problems involving nonlocal potential terms associated to nonlocal coupled
boundary conditions. A priori bounds on the imaginary parts and absolute values of
these non-real eigenvalues in terms of the coefficients of the differential expression
are obtained.

Keywords Indefinite Sturm–Liouville problem · Nonlocal potential · Nonlocal
coupled boundary conditions · Non-real eigenvalue

Mathematics Subject Classification Primary 34B24 · 34L15; Secondary 47B50 ·
34B05

Communicated by Jussi Behrndt.

This article is part of the topical collection “Spectral Theory and Operators in Mathematical Physics”
edited by Jussi Behrndt, Fabrizio Colombo and Sergey Naboko.

B Kun Li
qslikun@163.com

Fu Sun
sfmath@163.com

Jinming Cai
3934.caijinming@163.com

1 School of Statistics, Qufu Normal University, Qufu 273165, China

2 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11785-022-01202-1&domain=pdf
http://orcid.org/0000-0003-3076-2586


30 Page 2 of 12 F. Sun et al.

1 Introduction

This paper is concerned with the eigenvalue problem of nonlocal indefinite Sturm–
Liouville differential equation

− y′′(x) + q(x)y(x) + v(x)y(1) = λw(x)y(x), x ∈ (0, 1) (1.1)

associated to nonlocal coupled boundary value conditions

(
y(1)

y′(1) + ∫ 1
0 v(x)y(x)dx

)
= eiγC

(
y(0)
y′(0)

)
, (1.2)

where q ∈ L1([0, 1],R), v ∈ L1([0, 1],R) is called the nonlocal potential, w ∈
L1([0, 1],R) changes its sign on [0, 1] in the meaning that

mes{x : w(x) > 0} > 0, mes{x : w(x) < 0} > 0

and

C =
(
c11 c12
c21 c22

)
, ci j ∈ R, i, j = 1, 2, detC = 1, γ ∈ [−π, π).

In this context a function y is called a solution of (1.1) if y and y′ are in ACloc(0, 1)
and y satisfies the differential Eq. (1.1) for almost all x ∈ (0, 1). A complex number λ

is called an eigenvalue of the boundary value problem (1.1) and (1.2) if the equation
(1.1) has a nontrivial solution satisfying the boundary conditions (1.2). Such a solution
is called an eigenfunction of λ. If the weight function w ∈ L1[0, 1] satisfies w(x) >

0 a.e. x ∈ [0, 1], models similar to the nonlocal differential Eq. (1.1) have been
studied in [2,9,11,24,25], and the authors in [12] and [1,18,19] investigate the reality
of eigenvalues with Dirichlet boundary conditions and inverse spectral problems for
the case K (x, t) = v(x)u(t) with v, u ∈ C([−1, 1],R), q ≡ 0, w ≡ 1 and K (x, t) =
v(x)δ(t − c) + v(t)δ(x − c) with c ∈ (−1, 1], v ∈ L2([−1, 1],C), δ is Dirac’s
distribution, respectively.

It is well known that the (local)indefinite Sturm–Liouville eigenvalue problem, i.e.,
v(x) ≡ 0 in (1.1) with self-adjoint boundary conditions, has discrete, real eigenvalues
unbounded both below and above, and the main difference from right-definite Sturm–
Liouville problem was that the non-real eigenvalues may exist (see [3,13,15–17,21]).
To determine the bounds of these non-real eigenvalues is a difficult problem since
last century, however, this estimate problem was solved recently for (local)regular
indefinite Sturm–Liouville problem with separated or coupled boundary conditions
(see, for example, [4,14,20,26]) and for (local)singular case [5–7,23]. The nonlocal
indefinite Sturm–Liouville problem occurs in some models, particularly in transport
models, microwave propagation problems and quantum-mechanical theory. The spec-
tral problems including a priori bounds and existence of non-real eigenvalues for the
nonlocal indefinite Eq. (1.1) with separated self-adjoint boundary condition are well
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investigated in [22]. However, little is known for nonlocal indefinite Sturm–Liouville
differential equation (1.1) under coupled boundary conditions.

The present paper will focus on the nonlocal indefinite Sturm–Liouville eigenvalue
problems with coupled boundary conditions (1.1) and (1.2). Then the bounds of non-
real eigenvalues for this nonlocal indefinite Sturm–Liouville problems are investigated.
The rest of this paper is organized as follows. In Sect. 2, we state the main results about
the bounds of non-real eigenvalues (see Theorems 2.1, 2.2 and 2.3) and give the proofs
in Sect. 3.

2 Main results

For the benefit of the reader and simplify our description of results, we fix some
symbols at first. Let L2|w|(0, 1) be the linear space of functions y : (0, 1) → C

such that
∫ 1
0 |w||y|2 < ∞ and equip this space with the inner product (y, z)|w| =∫ 1

0 |w(x)|y(x)z(x)dx . As usual the L1, L2 and L∞ norm will be denoted by ‖ · ‖1,
‖ · ‖2 and ‖ · ‖∞, respectively. Setting q± = max{0, ±q} and

�c = max

⎧⎨
⎩

�c1 = |c22| + |c11| + 2

|c12| , c12 �= 0,

�c2 = |c11||c21|, c12 = 0,

�q,v = �c + ‖q−‖1 + 2‖v‖1, � =
√

�q,v(1 + �q,v) + �q,v.

(2.1)

Let real-valued function g satisfy

g ∈ H1(0, 1) := {g ∈ L2(0, 1) : g ∈ ACloc(0, 1), g
′ ∈ L2(0, 1),

g(1) = g(0) = 0, sgn g = sgn w a.e. on [0, 1]}. (2.2)

It follows from (2.2) and w(x) �= 0 a.e. on [0, 1] that gw > 0 a.e. on (0, 1), hence
we can choose α > 0, β > 0 such that

A = {x ∈ [0, 1] : g(x)w(x) < α}, m(α) = mes A ≤ 1

2(2� + 1)
, (2.3)

B = {x ∈ [0, 1] : g(x)w(x) < β}, m(β) = mes B ≤ 1

2�2
w�q,v

. (2.4)

Theorem 2.1 Let (2.1) and (2.2) hold. Suppose that λ is a non-real eigenvalue of (1.1)
and (1.2). Then

| Im λ| ≤ 2

α
‖g′‖2

(
�

√
1 + 2� + (1 + 2�)‖v‖1

)
,

|λ| ≤ 2

α

[
‖g′‖2

(
�

√
1 + 2� + (1 + 2�)‖v‖1

)

+‖g‖∞
(
�2 + (1 + 2�)‖q‖1

)]
,

(2.5)
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where α is defined in (2.3).

If the weight function w satisfies

∫ 1

0
w(x)dx �= 0.

Setting

	(x) =
∫ x

0
w(t)dt, x ∈ [0, 1], �w = 2 + 2‖w‖1

|	(1)| . (2.6)

Then 	(1) = ∫ 1
0 w(x)dx �= 0, ‖	‖∞ ≤ ‖w‖1 and �w are well defined.

Theorem 2.2 Let (2.1) and (2.2) hold. If
∫ 1
0 w(x)dx �= 0, then for any non-real eigen-

value λ of problem (1.1) and (1.2), we have

| Im λ| ≤ 2

β
�2

w�q,v‖g′‖2
(√

�q,v + ‖v‖1
)
,

|λ| ≤ 2

β
�2

w�q,v

[‖g′‖2
(√

�q,v + ‖v‖1
) + ‖g‖∞

(
�q,v + ‖q‖1

)]
,

(2.7)

where �w and β are defined in (2.6) and (2.4), respectively.

Let λ be an eigenvalue of (1.1)–(1.2) and ψ be a corresponding eigenfunction.
We say λ is either a positive eigenvalue of negative type or a negative eigenvalue of
positive type if λ ∈ R and λ

∫ 1
0 w|ψ |2 < 0 (cf. [17]). In the following, we will give

the upper bounds on the eigenvalues corresponding to the non-real eigenvalues and
non-zero real eigenvalues of a positive (negative) eigenvalues of negative (positive,
resp.) type. That is we assume λ

∫ 1
0 w|ψ |2 ≤ 0 in the following theorem.

Theorem 2.3 Let (2.1), (2.2) and (2.3) hold. Assume that λ corresponds to an eigen-
function ψ of problem (1.1) and (1.2) with λ

∫ 1
0 w|ψ |2 ≤ 0, then the eigenvalue λ

satisfies

|λ| ≤ 2

α

[
‖g′‖2

(
�

√
1 + 2� + (1 + 2�)‖v‖1

)
+ ‖g‖∞

(
�2 + (1 + 2�)‖q‖1

)]
.

(2.8)

3 The Proof of Theorems 2.1, 2.2 and 2.3

In order to proveTheorems2.1, 2.2 and2.3,wefirstly give some lemmas as preparation.
The operator associated to the nonlocal right-definite problem

τv y := −y′′(x) + q(x)y(x) + v(x)y(1) = λ|w(x)|y(x), Bv y = 0 (3.1)
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is defined as Sv y = 1
|w|τv y for y ∈ D(Sv), where Bv y = 0 is the boundary value

condition (1.2) in Sect. 1. It is self-adjoint in the Hilbert space (L2|w|, (·, ·)|w|) and its
spectra are real-valued and bounded from below, where

D(Sv) := {y ∈ L2|w| : y, y′ ∈ ACloc[0, 1], τv y/|w| ∈ L2|w|, Bv y = 0}.

Weconsider theKrein spaceK = (L2|w|(0, 1), [·, ·]w)with the inner product [ f , g]w =∫ 1
0 w f g, where f , g ∈ L2|w|[0, 1], and let J = sgn w be the fundamental symmetry
operator. The operator Tv in K is defined as

Tv y = 1

w
τv y = 1

w

(−y′′ + qy + vy(1)
)
, y ∈ D(Tv) = D(Sv).

Then Sv = JTv , [Tv f , g]w = (Sv f , g)|w|, f , g ∈ D(Tv) and Tv is a self-adjoint
operator in K with D(Tv) (cf. [8,10]). Let ϕ be an eigenfunction of (1.1) and (1.2)
corresponding to a non-real eigenvalue λ, that is Bvϕ = 0 and

− ϕ′′ + qϕ + vϕ(1) = λwϕ. (3.2)

Since the problem (1.1) with (1.2) is a linear system and ϕ is continuous, we can
choose ϕ satisfies ‖ϕ‖2 = 1 in the following discussion.

Lemma 3.1 Let �c be defined in (2.1). Then for ϕ ∈ D(Tv), it holds that

ϕ′(1)ϕ(1) − ϕ′(0)ϕ(0) +
∫ 1

0
vϕϕ(1) ≤ �c max

{
|ϕ(0)|2, |ϕ(1)|2

}
. (3.3)

Proof For ϕ ∈ D(Tv), it follows from

(
ϕ(1)

ϕ′(1) + ∫ 1
0 v(x)ϕ(x)dx

)
= eiγ

(
c11 c12
c21 c22

) (
ϕ(0)
ϕ′(0)

)
(3.4)

that

ϕ(1) = eiγ c11ϕ(0) + eiγ c12ϕ
′(0). (3.5)

From (3.4) and detC = 1 one sees that

(
c22 −c12

−c21 c11

) (
ϕ(1)

ϕ′(1) + ∫ 1
0 v(x)ϕ(x)dx

)
= eiγ

(
ϕ(0)
ϕ′(0)

)
. (3.6)

Then

c22ϕ(1) − c12ϕ
′(1) − c12

∫ 1

0
vϕ = eiγ ϕ(0).
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This together with (3.5) yields that

c12

(
ϕ′(1)ϕ(1) − ϕ′(0)ϕ(0) +

∫ 1

0
vϕϕ(1)

)

= c22|ϕ(1)|2 + c11|ϕ(0)|2 − 2Re
(
eiγ ϕ(0)ϕ(1)

)
.

Therefore, if c12 �= 0, by (2.1) we get

ϕ′(1)ϕ(1) − ϕ′(0)ϕ(0) +
∫ 1

0
vϕϕ(1)

= c−1
12

(
c22|ϕ(1)|2 + c11|ϕ(0)|2 − 2Re

(
eiγ ϕ(0)ϕ(1)

))

≤ |c−1
12 |

(
|c22||ϕ(1)|2 + |c11||ϕ(0)|2 + 2|eiγ ||ϕ(0)||ϕ(1)|

)

≤ |c22| + |c11| + 2

|c12| max
{
|ϕ(0)|2, |ϕ(1)|2

}

≤ �c max
{
|ϕ(0)|2, |ϕ(1)|2

}
.

(3.7)

If c12 = 0, then (3.4) and (3.6) give that

ϕ′(1) +
∫ 1

0
v(x)ϕ(x)dx = eiγ c21ϕ(0) + eiγ c22ϕ

′(0) and c22ϕ(1) = eiγ ϕ(0),

which together with detC = c11c22 = 1 and (2.1) implies that

ϕ′(1)ϕ(1) − ϕ′(0)ϕ(0) +
∫ 1

0
v(x)ϕ(x)ϕ(1)dx

= c11c21|ϕ(0)|2 ≤ |c11||c21|max
{
|ϕ(0)|2, |ϕ(1)|2

}

≤ �c max
{
|ϕ(0)|2, |ϕ(1)|2

}
.

(3.8)

It follows from (3.7) and (3.8) that (3.3) holds immediately. ��
The following lemma is the estimates of ‖ϕ′‖2 and ‖ϕ‖∞.

Lemma 3.2 Let ϕ and λ be defined as above. Then

‖ϕ′‖2 ≤ �, ‖ϕ‖∞ ≤ √
1 + 2�. (3.9)

Proof Multiplying both sides of (3.2) by ϕ and integrating by parts over the interval
[x, 1], we have

ϕ′(x)ϕ(x) − ϕ′(1)ϕ(1) +
∫ 1

x
(|ϕ′|2 + q|ϕ|2) +

∫ 1

x
vϕϕ(1) = λ

∫ 1

x
w|ϕ|2.

(3.10)
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Separating imaginary parts and the absolute values of λ on both sides of (3.10) yields

Im λ

∫ 1

x
w|ϕ|2 = Im

(
ϕ′(x)ϕ(x) − ϕ′(1)ϕ(1)

)
+ Im

(∫ 1

x
vϕϕ(1)

)
, (3.11)

|λ|
∣∣∣∣
∫ 1

x
w|ϕ|2

∣∣∣∣ =
∣∣∣∣ϕ′(x)ϕ(x) − ϕ′(1)ϕ(1) +

∫ 1

x

(
|ϕ′|2 + q|ϕ|2

)
+

∫ 1

x
vϕϕ(1)

∣∣∣∣ .
(3.12)

Let x = 0, then from (3.11), detC = 1 and Bvϕ = 0 one sees that

Im λ

∫ 1

0
w|ϕ|2

= Im

[
ϕ′(0)ϕ(0) +

(
−eiγCϕ′(0) +

∫ 1

0
vϕ

)
e−iγCϕ(0) +

∫ 1

0
vϕϕ(1)

]

= Im

(
ϕ′(0)ϕ(0) − C2ϕ′(0)ϕ(0) + e−iγCϕ(0)

∫ 1

0
vϕ +

∫ 1

0
vϕϕ(1)

)

= Im

(
ϕ(1)

∫ 1

0
vϕ +

∫ 1

0
vϕϕ(1)

)
= Im

[
2 Re

(∫ 1

0
vϕϕ(1)

)]
= 0.

This together with Im λ �= 0 yields that
∫ 1
0 w|ϕ|2 = 0. Then from (3.12) we get

∣∣∣∣ϕ′(0)ϕ(0) − ϕ′(1)ϕ(1) +
∫ 1

0

(
|ϕ′|2 + q|ϕ|2

)
+

∫ 1

0
vϕϕ(1)

∣∣∣∣ = 0. (3.13)

For x, y ∈ [0, 1], y < x ,

|ϕ(x)|2 − |ϕ(y)|2 =
∫ x

y

(
|ϕ(t)|2

)′
dt =

∫ x

y

(
ϕ′(t)ϕ(t) + ϕ(t)ϕ′(t)

)
dt

=
∫ x

y
2Re

(
ϕ′(t)ϕ(t)

)
dt ≤ 2

∫ 1

0
|ϕ′(t)ϕ(t)|dt

≤ 2‖ϕ′‖2.

Integrating the above inequality over [0, 1] with respect to y gives

∫ 1

0
|ϕ(x)|2dy −

∫ 1

0
|ϕ(y)|2dy ≤

∫ 1

0
2‖ϕ′‖2dy.
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Then |ϕ(x)|2 ≤ 2‖ϕ′‖2 + 1, and hence ‖ϕ‖2∞ ≤ 2‖ϕ′‖2 + 1. These facts together
with (2.1), (3.3) in Lemma 3.1, (3.13) and q = q+ − q− lead to

∫ 1

0
|ϕ′|2 =ϕ′(1)ϕ(1) − ϕ′(0)ϕ(0) −

∫ 1

0
q|ϕ|2 −

∫ 1

0
vϕϕ(1)

≤
∣∣∣ϕ′(1)ϕ(1) − ϕ′(0)ϕ(0)

∣∣∣ +
∫ 1

0
q−|ϕ|2 −

∣∣∣∣
∫ 1

0
vϕϕ(1)

∣∣∣∣
=

∣∣∣ϕ′(1)ϕ(1) − ϕ′(0)ϕ(0)
∣∣∣ −

∣∣∣∣
∫ 1

0
vϕϕ(1)

∣∣∣∣ +
∫ 1

0
|q−||ϕ|2

−
∣∣∣∣
∫ 1

0
vϕϕ(1)

∣∣∣∣ +
∣∣∣∣
∫ 1

0
vϕϕ(1)

∣∣∣∣
≤

∣∣∣∣ϕ′(1)ϕ(1) − ϕ′(0)ϕ(0) +
∫ 1

0
vϕϕ(1)

∣∣∣∣ +
∫ 1

0
|q−||ϕ|2

+ 2
∫ 1

0
|v||ϕ||ϕ(1)|

≤
∣∣∣�c max

{
|ϕ(0)|2, |ϕ(1)|2

}∣∣∣ +
∫ 1

0
|q−||ϕ|2 + 2

∫ 1

0
|v||ϕ||ϕ(1)|

≤‖ϕ‖2∞ (�c + ‖q−‖1 + 2‖v‖1) ≤ (
2‖ϕ′‖2 + 1

)
�q,v.

(3.14)

Then
(‖ϕ′‖2 − �q,v

)2 ≤ �q,v(1 + �q,v), and hence ‖ϕ′‖2 ≤ (√
�q,v(1 + �q,v)

+�q,v

)
. Therefore, ‖ϕ‖2∞ ≤ 2� + 1, where �, �q,v are defined in (2.1). ��

With the aids of Lemmas 3.1 and 3.2, we prove the first main result in Sect. 2.

The Proof of Theorem 2.1 Let ϕ and λ be defined as above. It follows from (2.3),
Lemma 3.2, Ac = [0, 1]\A and

∫ 1
0 w(x)|ϕ(x)|2dx = 0 that

∫ 1

0
g′(x)

∫ 1

x
w(t)|ϕ(t)|2dtdx =

∫ 1

0
g(t)w(t)|ϕ(t)|2dt

≥ α

(∫ 1

0
|ϕ(t)|2dt −

∫
A

|ϕ(t)|2dt
)

≥ α
(
1 − ‖ϕ‖2∞m(α)

)
≥ α/2.

(3.15)

This together with (3.11) and Lemma 3.2 yields that

α

2
| Im λ| ≤| Im λ|

∫ 1

0
g′

∫ 1

x
w|ϕ|2

≤
∣∣∣∣
∫ 1

0
g′

[
Im(−ϕ′(1)ϕ(1) + ϕ′ϕ) + Im

(∫ 1

x
vϕ(1)ϕ

)]∣∣∣∣
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=
∣∣∣∣
∫ 1

0
g′ Im(ϕ′ϕ) +

∫ 1

0
g′ Im

(∫ 1

x
vϕ(1)ϕ

)∣∣∣∣
≤‖ϕ‖∞‖g′‖2‖ϕ′‖2 + ‖ϕ‖2∞‖g′‖2‖v‖1
≤�

√
1 + 2�‖g′‖2 + (1 + 2�)‖g′‖2‖v‖1. (3.16)

For the absolute value part we exploit (3.12), (3.15) and Lemma 3.2 to derive

α

2
|λ| ≤|λ|

∫ 1

0
g′

∫ 1

x
w|ϕ|2

≤
∫ 1

0
|g′|

∣∣∣∣ϕ′ϕ − ϕ′(1)ϕ(1) +
∫ 1

x
(|ϕ′|2 + q|ϕ|2) +

∫ 1

x
vϕϕ(1)

∣∣∣∣
≤

∫ 1

0
|g′||ϕ′||ϕ| +

∫ 1

0
g(|ϕ′|2 + q|ϕ|2) +

∫ 1

0
|g′|

∫ 1

0
|v||ϕ||ϕ(1)|

≤‖ϕ‖∞‖g′‖2‖ϕ′‖2 + ‖g‖∞(‖ϕ′‖22 + ‖q‖1‖ϕ‖2∞) + ‖g′‖2‖v‖1‖ϕ‖2∞
≤‖g′‖2

(
�

√
1 + 2� + (1 + 2�)‖v‖1

)
+ ‖g‖∞

(
�2 + (1 + 2�)‖q‖1

)
.

(3.17)

So the inequalities in (2.5) follow from (3.16) and (3.17) immediately. ��

Now we give the Proof of Theorem 2.2. It follows from
∫ 1
0 w(x)dx �= 0 and (2.6)

that we can prove the following lemma.

Lemma 3.3 Let ϕ and λ be defined as above. Then

‖ϕ′‖2 ≤ �w�q,v, ‖ϕ‖∞ ≤ �w

√
�q,v.

Proof Since ϕ is an eigenfunction corresponding to the non-real eigenvalue λ, we still
can make use of the result

∫ 1
0 w(x)|ϕ(x)|2dx = 0 in Lemma 3.2. This together with

	(x) = ∫ x
0 w(t)dt , x ∈ [0, 1] yields that

∫ 1

0
	(|ϕ|2)′ = 	(1)|ϕ(1)|2 −

∫ 1

0
	′|ϕ|2

= 	(1)|ϕ(1)|2 −
∫ 1

0
w|ϕ|2 = 	(1)|ϕ(1)|2.
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Andhence	(1)|ϕ(x)|2 = −	(1)
(|ϕ(1)|2 − |ϕ(x)|2)+∫ 1

0 	(|ϕ|2)′.This fact together
with (2.6) implies

|ϕ(x)|2 =|ϕ(x)|2 − |ϕ(1)|2 + 1

	(1)

∫ 1

0
	(|ϕ|2)′

= −
∫ 1

x
(|ϕ|2)′ + 1

	(1)

∫ 1

0
	(|ϕ|2)′

≤
∫ 1

0

∣∣∣ϕ′ϕ + ϕϕ′
∣∣∣ + 1

|	(1)|
∫ 1

0
|	|

(
|ϕ′||ϕ| + |ϕ||ϕ′|

)

≤2
∫ 1

0
|ϕ′||ϕ| + 2

‖	‖∞
|	(1)|

∫ 1

0
|ϕ′||ϕ| ≤ �w‖ϕ′‖2.

Hence ‖ϕ‖2∞ ≤ �w‖ϕ′‖2, which together with (3.14) gives that

∫ 1

0
|ϕ′|2 ≤‖ϕ‖2∞(�c + ‖q−‖1 + 2‖v‖1) ≤ �w�q,v‖ϕ′‖2.

Therefore, ‖ϕ′‖2 ≤ �w�q,v and ‖ϕ‖∞ ≤ �w

√
�q,v . ��

Now we prove the second result in this paper, i.e., Theorem 2.2.

The Proof of Theorem 2.2. It follows from (2.4) and
∫ 1
0 w(t)|ϕ(t)|2dt = 0 that

∫ 1

0
g′

∫ 1

x
w|ϕ|2 =

∫ 1

0
gw|ϕ|2 ≥ β

(∫ 1

0
|ϕ|2 −

∫
B

|ϕ|2
)

≥ β
(
1 − ‖ϕ‖2∞m(β)

)
≥ β

2
.

This fact with Lemma 3.3 and (3.16) in the Proof of Theorem 2.1 lead to

β

2
| Im λ| ≤ ‖ϕ‖∞‖g′‖2‖ϕ′‖2 + ‖ϕ‖2∞‖g′‖2‖v‖1

≤ �2
w�

3/2
q,v‖g′‖2 + �2

w�q,v‖g′‖2‖v‖1.
(3.18)

For the real part, it follows from (3.17) and Lemma 3.3 that

β

2
|λ| ≤ ‖ϕ‖∞‖g′‖2‖ϕ′‖2 + ‖g‖∞‖ϕ′‖22 + ‖g‖∞‖ϕ‖2∞‖q‖1 + ‖g′‖2‖ϕ‖2∞‖v‖1

≤ �2
w�q,v‖g′‖2

(√
�q,v + ‖v‖1

) + �2
w�q,v‖g‖∞

(
�q,v + ‖q‖1

)
.

(3.19)

So the inequalities in (2.7) follow from (3.18) and (3.19) immediately. ��
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Since ψ is the eigenfunction of (1.1) and (1.2) corresponding to an eigenvalue λ

with λ
∫ 1
0 w|ψ |2 ≤ 0, that is

− ψ ′′ + qψ + vψ(1) = λwψ, Bvψ = 0. (3.20)

Similar with Lemma 3.2, we have

Lemma 3.4 Assume that λ is an eigenvalue of (3.20) and ψ is the corresponding
eigenfunction with λ

∫ 1
0 w|ψ |2 ≤ 0. Then

‖ψ ′‖2 ≤ �‖ψ‖2, ‖ψ‖∞ ≤ √
1 + 2�‖ψ‖2.

Proof The proof of this result is quite similar to that given earlier for the estimates of
‖ψ ′‖2 and ‖ψ‖∞ in Lemma 3.2 and so is omitted. ��

With the help of the preceding Lemma 3.4, we can now prove the Theorem 2.3.

The Proof of Theorem 2.3 Since the problem (3.20) is a linear system and ψ is contin-
uous, we can choose ψ satisfies ‖ψ‖2 = 1. Multiplying both sides of (3.20) by ψ and
integrating over the interval [x, 1] we have

− ψ ′(1)ψ(1) + ψ ′(x)ψ(x) +
∫ 1

x
(|ψ ′|2 + q|ψ |2) +

∫ 1

x
vψψ(1) = λ

∫ 1

x
w|ψ |2.

(3.21)

Similar with the argument in the Proof of Theorem 2.1 and 2.2, one sees that

α

2
|λ| ≤ |λ|

∫ 1

0
g′

∫ 1

x
w|ψ |2 ≤

∣∣∣∣λ
∫ 1

0
g′

∫ 1

x
w|ψ |2

∣∣∣∣
=

∣∣∣∣
∫ 1

0
g′

(
−ψ ′(1)ψ(1) + ψ ′(x)ψ(x) +

∫ 1

x
|ψ ′|2 +

∫ 1

x
q|ψ |2 +

∫ 1

x
vψψ(1)

)∣∣∣∣
≤ ‖g′‖2

(
�

√
1 + 2� + (1 + 2�)‖v‖1

)
+ ‖g‖∞

(
�2 + (1 + 2�)‖q‖1

)

by Lemma 3.4. So the inequality in (2.8) follows immediately. ��
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