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Abstract
This paper is about the scattering theory for one-dimensional matrix Schrödinger oper-
ators with amatrix potential having a finite first moment. The transmission coefficients
are analytically continued and extended to the band edges. An explicit expression is
given for these extensions. The limits of the reflection coefficients at the band edges
are also calculated.
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1 Introduction

We study scattering theory for the one-dimensional matrix Schrödinger Hamiltonians
on Z of the form

H = H0 + V , (1)

where H0 is (an energy shift of) the discrete Laplace operator and V is a self-adjoint
matrix multiplication operator with finite first moment. See Sect. 1.1 below for a
detailed definition of H . This model is widely used in the context of low-energy
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phenomena in solid state physics. Moreover, H is a tridiagonal operator, also called
a Jacobi operator, which is the discrete analogue of a Sturm–Liouville operator. Its
analysis is connected to orthogonal (matrix) polynomials and, via its spectral theory,
to matrix-valued measures on the real line. Many authors have studied direct and
inverse scattering theory for this class of operators, see for example Case and Kac
[11], Serebryakov [33], Aptekarev and Nikishin [6, 29], Geronimo [20] and Guseinov
[21–24]. More recent contributions are [17, 35].

The energy is parametrized by E = z + 1/z, for z ∈ D\{0} where D = {z ∈
C : |z| < 1} and this parametrization is used in the analysis of the scattering matrix
which is constructed from the Jost solutions, namely asymptotically free generalized
eigenfunctions. This permits to extend the transmission coefficients meromorphically
to D\{0} using the properties of the Wronskian. We compute the limit of the trans-
mission coefficients when z tends to 1 and give an explicit expression for them (with
a limit taken in D). We also prove that the limits of the reflection coefficients exist
when z tends to 1 (these coefficients are only defined for z ∈ S

1, and S
1 is regarded

as a subset of C). The limits when z tends to −1 can be studied in a similar fashion
and, for this reason, we omit them. The above results are useful for inverse scattering
theory and the proof of Levinson’s theorem, and we will address these problems in
future works.

Scattering theory for matrix Schrödinger operators on Z of the form (1), but
with compactly supported V , is studied in [7]. However, in [7] a different analyti-
cal approach is followed, namely the solutions of the eigenvalue equation of H are
calculated in terms of the transfer matrix, whereas here the Volterra equation is used.
This implies a major difference and there is practically no intersection between the
proofs of the present manuscript and the proofs in [7]. Moreover, a compactly sup-
ported potential admits meromorphic continuations of the scattering matrix to the
whole complex plane, something that is not possible in the present framework. Never-
theless, we essentially stick with the notations of [7] in this paper, but there are some
new technical objects that are only addressed in the present analysis.

Let us briefly comment on other earlier contributions. In the continuous scalar case,
[13] contains everything from Jost solutions to low-energy behavior of reflection and
transmission coefficients (see Ch. XVII). In Sect. XVII4.4 and in page 381, some ideas
and references for the matrix-valued case are presented. Much of this is now driven by
interest in completely integrable systems, in particular, by studies of the matrix-valued
KdV and Toda equations. The inverse scattering theory approach was developed in
great detail in [9, 10, 15, 27, 31, 36], and the half-line case was addressed in [30]. For
further references, see [8, 16, 18, 19].

The low-energy behavior of the scattering matrix is studied in [26] for the scalar
continuous case and in [25] for the scalar discrete case. For continuous matrix-valued
Schrödinger operators, there are works by Wadati and Kamijo [36], Martínez Alonso
and Olmedilla [27, 31], Corona–Corona [15], Newton and Jost [30] as well as by
Aktosun, Klaus, Van Der Mee and Weder [2–4]. We would like to stress here that our
proof for the limit of the scattering matrix at the band edges is shorter and closely tied
to a conceptual treatment of theWronskian. Actually we do not use the Jordan decom-
position as in [2].There are also works in the non-linear context, see for example [9,
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10, 12, 28]. Bound states for the half-space version of the discrete matrix Schrödinger
equation with compactly supported potentials have been analyzed in [5].

1.1 Mathematical Framework andMain Results

In this manuscript, C
L denotes the L-dimensional complex vector space and

Md×e(C) = Md×e the vector space of matrices with d rows and e columns and
with coefficients in C. Furthermore, M∗ denotes the adjoint of a matrix M , that is, its
conjugate transpose.

1.1.1 Hamiltonians

Scattering theory compares asymptotic time evolution of two systems. The simpler
one is called free system and the other is the interaction system. In this paper, the free
system is described by the discrete Laplacian on the Hilbert space �2(Z,CL). It is
given by

(H0φ)(n) := φ(n + 1) + φ(n − 1), φ ∈ �2(Z,CL). (2)

Wedenote byV ∈ ML×L(C)Z the interaction,which is amatrix-valuedmultiplication
operator defined by

(V�)(n) := V (n)�(n), � ∈ �2(Z,CL), (3)

and assume that V (n) = V (n)∗ for every n ∈ Z, and that

∑

n∈Z
‖nV (n)‖ < ∞. (4)

Now the interaction Hamiltonian is defined by (1), namely H = H0 + V , with
domain �2(Z,CL). We denote by F : �2(Z,CL) → L2([−π, π ],CL) the Fourier
transform and by F−1 its inverse. They are given by

F(φ)(k) = 1√
2π

∑

n

eiknφ(n), F−1(ψ)(n) =
∫ π

−π

1√
2π

e−iknψ(k). (5)

A direct calculation leads us to

FH0F−1ψ(k) = (eik + e−ik)ψ(k) = 2 cos(k)ψ(k). (6)

As the Fourier transform is unitary, then the spectrum of H0 is σ(H0) = [−2, 2] and
it is purely absolutely continuous. The essential spectrum of H is thus [−2, 2] (see
Section XIII.4 in [32]).

This paper studies stationary scattering theory. Then, naturally, eigenvalue equa-
tions for H and H0 are relevant in this manuscript. As usual, we study generalized
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eigenvalues and, moreover, do not only address real energies, but also study gener-
alized eigenvectors corresponding to complex energies. We use the same symbols H
and H0 to denote the operators defined (with the same expressions as above) either on
(ML×L)Z or (CL)Z and parametrize the eigenvalues in the form

E = z + 1/z , z ∈ C\{0}. (7)

Then, the eigenvalue equations take the form

Hu = Eu, (8)

H0u = Eu, (9)

and generally we take u ∈ (ML×L)Z. In the context of this article we simply call
solutions the functions u satisfying (8). The solutions of (9) are referred to as the free
solutions. Of particular importance are the Jost solutions, which are solutions with
prescribed data at −∞ or ∞ given by free solutions. They are essential objects for
the scattering matrix. We also study solutions with prescribed data at 0 and 1, because
they are important in technical elements in our proofs.

1.1.2 Jost Solutions

Jost solutions are the key ingredient for the construction of the scattering matrix. They
are solutions of the system that behave as free waves (planewaves) at infinity. Standard
properties and the construction of these solutions can be found in the books [1, 13].
In (6), k might be seen as a momentum and the Fourier modes, namely the functions
n �→ eink represent plane waves. These are generalized eigenvalues of H0 and satisfy
the equation

H0e
inkα = (eik + e−ik)einkα = 2 cos(k)einkα, (10)

for every α ∈ C
L . In the previous equation we identify, as usual, the function n �→

einkα with einkα. For k /∈ {−π, 0, π}, the functions {einkα, e−iknα : α ∈ C
L} define

a 2L-dimensional vector space and, as H0 has only two discrete derivatives, they
generate all solutions of (10) (see also (9)). Of course, 2 cos(k) = E is interpreted as
the energy of the corresponding plane waves. In this generalized sense, the solutions
of the time dependent Schrödinger equation

i
d

dt
φ = H0φ

are of the form

e−i(Et−kn)α, e−i(Et+kn)α.

For positive energies E , the first wave function above moves in the direction of k and
the second in the direction of −k. For negative energies it is the other way around.
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Heuristically, we understand a wave traveling to the right allowing n to be real (as in
the continuous case) and looking at the equation Et − kn = 0 (taking the phase to
be zero): for positive E and k (for example), a positive increment in time leads to a
positive increment in position.

It is convenient to change our notation and take z = eik . With this notation, we take
z ∈ C and not only z = eik as before, i.e.we analytically continue the solutions. From
the discussion above, we obtain that a complex number z = eik represents a wave
traveling to the right if its real and imaginary parts have the same sign. Otherwise, it
travels to the left. This implies that if z represents a wave traveling to the right, then
1/z represents a wave traveling to the left, and vice versa. Notice that this holds true
only when z = eik , if this is not fulfilled then there is no interpretation for the direction
of traveling. We analyze matrix valued solutions in order to consider all vector valued
solutions at once. We set (for z 	= 0)

uz0(n) := zn 1, (11)

where 1 is the identity in ML×L . It satisfies the complex extension of (10), notably
with E = z + 1/z,

H0u
z
0 = Euz0, (12)

where we use matrix multiplication, and the vector valued solutions of (10) are of
the form uz0a. Notice that for any fixed value of the energy E and z /∈ {−1, 0, 1}, the
columns of uz0 and u

1/z
0 generate all solutions. This is not the case for z = 1 or z = −1

(which correspond to E = 2, or E = −2, respectively) because in this situation
uz0 = u1/z0 . In order to provide all solutions, also for E = 2 and E = −2, we define

v±
0 (n) := (±1)n n. (13)

Then, the columns of the matrices u±1
0 and v±

0 generate the space of free solutions
(generalized eigenvectors) of (10) for E = ±2. As mentioned above, the generalized
eigenvectors of H0 are free waves (or plane waves). Jost solutions are generalized
eigenvectors of H that behave as plane waves away from the interaction. They are
introduced in the next definition. Their existence is proved in Sect. 2.2.

Definition 1 (Jost Solutions) For every z ∈ D\{0}, we denote by uz+ , u1/z− theML×L -
valued solutions of

Huz+ = Euz+, Hu1/z− = Eu1/z− , E = z + 1/z, (14)

satisfying, as n → +∞ and n → −∞ respectively,

uz+(n) = zn(1 + o(1)), u1/z− (n) = z−n(1 + o(1)). (15)
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Moreover, for z = 1, we denote by vz± the ML×L -valued solutions of

Hvz± = Evz±, E = 2, (16)

satisfying as n → ±∞

vz±(n) = n(1 + o(1)). (17)

1.1.3 The Scattering Matrix

Due to the asymptotic behavior of the Jost solutions (see Eq. (15)), the columns of
the matrix (uz±, u1/z± ) are linearly independent for z ∈ S

1\{−1, 1} and, therefore, they
form a basis of solutions. The same holds true for (u1±, v1±). This implies that there
are matrices Mz±, Nz± ∈ ML×L such that

uz+ = uz−Mz+ + u1/z− Nz+, u1/z− = uz+Nz− + u1/z+ Mz−. (18)

Moreover, it will be proved that the matrices Mz± have a meromorphic continuation to
D [see Eq. (59)]. Assuming that Mz± are invertible, we can rewrite these equations as

uz+T z+ = uz− − u1/z− Rz+, u1/z− T z− = u1/z+ − uz+Rz−, (19)

where

T z± = (Mz±)−1, Rz± = −Nz±(Mz±)−1, (20)

are the transmission and reflection coefficients, respectively. The interpretation of (19)
in the case that z = eik /∈ {−1, 1}, corresponding to a wave traveling to the right, is
the following (we only describe the first equation in (19)): the incoming wave uz−
produces the outgoing wave uz+T z+ traveling to the right (i.e., a transmitted wave) and

the outgoing wave u1/z− Rz+ traveling to the left (i.e., a reflected wave). The relation
between transmitted and reflected waves is described by the scattering matrix.

Definition 2 For any z ∈ S
1\{−1, 1}, the scattering matrix Sz ∈ M2L×2L is defined

by

Sz =
(
T z+ Rz−
Rz+ T z−

)
=

(
(Mz+)−1 −Nz−(Mz−)−1

−Nz+(Mz+)−1 (Mz−)−1

)
.

Notice that matrices Mz± are indeed invertible, see Proposition 16. In the case that

z = eik represents a wave traveling to the right, then uz− and u1/z+ are incoming and

uz+ and u1/z− are outgoing. In this case, the scattering matrix expresses the incoming

Jost solutions uz− and u1/z+ in terms of the outgoing ones uz+ and u1/z− :

(
uz− u1/z+

)
=

(
uz+ u1/z−

)
Sz . (21)



Band Edge Limit of the Scattering... Page 7 of 31 23

1.2 Main Results

The following theorem is proved in Theorem 32 below.

Theorem 3 There is a neighborhood of 1 such that, for every z in this neighborhood
with z ∈ D, the matrices Mz± are invertible. Moreover, the limits

T 1± := lim
z→1

T z± (22)

exist, where the limits are taken in D, and they have explicit expressions (see (106)).
The kernels and images of T 1± can be explicitly calculated (see (107)) and are tightly
connected to half-bound states. The limits

R1± := lim
z→1

Rz± (23)

of the reflection coefficients Rz± exist, where the limits are taken in S
1, and they have

explicit expressions (see (109)). The kernels and images of 1 − R1± can be explicitly
calculated (see (110)).

Remark 4 Theorem 3 is also valid if one takes the limits z → −1, and the proofs are
the same. In order to simplify notations, we focus on the case z → 1.

2 Solutions

2.1 Free Solutions with Prescribed Data on 0 and 1

Definition 5 For every z ∈ D\{0}, we denote by sz and τ z the scalar solutions sz, τ z ∈
C
Z of (9) such that sz(0) = 0, sz(1) = 1 and τ z(0) = 1 = τ z(1).

Explicitly, one can verify that

sz(n) =
{

1
z−z−1 (z

n − z−n) = z
z+1

∑n−1
j=−n z

j , z2 	= 1

(±1)n+1n, z = ±1
(24)

and (for z 	= −1)

τ z(n) = zn + z−n+1

z + 1
. (25)

Let us introduce the notation D(w; r) := {z ∈ C : |z − w| < r}.

Lemma 6 For all z ∈ D ∩ D(1; 1/2), the following holds true:
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(i) |sz(n)| ≤ C |n||z|−|n|, |sz(n) − s1(n)|
|z − 1|

≤ Cn2|z|−|n|, sz(n) − s1(n) = O(|z − 1|2), (26)

as z tends to 1, where the O symbol does depend on n, but C does not.

(ii) ∣∣∣
sz(n − j) − s1(n − j) − (sz(n) − s1(n))

z − 1

∣∣∣ ≤ C |nj ||z|−|n|. (27)

(iii) |τ z(n) − τ 1(n)| = O(|z − 1|2), (28)

where the O symbol depends on n.

(iv) |τ z(n)| ≤ C |z|−|n|,
∣∣∣
τ z(n) − τ 1(n)

z − 1

∣∣∣ ≤ C |n||z|−|n|. (29)

Proof Since

sz(n) = z

z + 1

n−1∑

j=−n

z j , (30)

the left bound in (26) is obvious. Equation (30) implies that sz(n) is analytic and its
derivative is uniformly bounded by a constant times n2|z|−|n|. Then, an application of
the mean value theorem yields the middle bound in (26). A direct calculation shows
that the derivative of sz(n) vanishes at z = 1, and Taylor’s theorem implies the right
bound in (26).

The derivative of sz(n − j) − sz(n) = z
z+1

(∑n− j−1
j=−(n− j) z

j − ∑n−1
j=−n z

j
)
is uni-

formly bounded by a constant times |z−n|nj and, therefore, the mean value theorem
shows (27).

An elementary calculation gives that d
dz τ

z(n)|z=1 = 0, and this together with
Taylor’s theorem implies (28).

The left identity of (29) is obvious from the definition of τ z . The right identity of
(29) follows again from themean value theorem, since the derivative of τ z is uniformly
bounded by C |n||z|−|n|. �

2.2 Jost Solutions

Lemma 7 (Jost Solutions) The Jost solutions uz+, u
1/z
− as defined in Definition 1 exist,

for every z ∈ D\{0}. Moreover, for every n, the functions uz+(n), u1/z− (n) are holo-
morphic on D\{0} and continuous on D\{0}. The following Volterra equations are
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satisfied:

uz+(n) = zn1 −
∞∑

j=n+1

sz( j − n)V ( j)uz+( j), n ∈ Z,

u1/z− (n) = z−n1 +
n−1∑

j=−∞
s1/z( j − n)V ( j)u1/z− ( j), n ∈ Z,

(31)

where sz is defined in Definition 5.

Proof The result follows from the Theorem 33: Taking g = 1, K z(n, j) =
−z j−nsz( j − n)V ( j) and M( j) = j‖V ( j)‖, we obtain a solution ũz+ to the equation
(for n ∈ N)

ũz+(n) = 1 −
∞∑

j=n+1

sz( j − n)V ( j)z j−nũz+( j). (32)

A direct computation using (32) shows that uz+(n) = znũz+(n) solves the Schrödinger
equation uz+(n − 1) + V (n)uz+(n) + uz+(n + 1) = (z + 1/z)uz+(n), for n ≥ 2 (this
is proved in Lemma 36). For n ∈ Z

− ∪ {0}, we recursively fit Eq. (8) defining :
uz+(n − 1) = (z + 1/z)uz+(n) − V (n)uz+(n) − uz+(n + 1). The construction of the
other solution is similar. �
Lemma 8 The solutions v1± introduced in Definition 1 exist.

Proof Theorem 33 implies that there is a solution ṽ1+ to the Volterra equation (for
n ≥ N )

ṽ1+(n) = 1 + 1

n

n∑

j=N

j2V ( j)ṽ1+( j) +
∞∑

j=n+1

jV ( j)ṽ1+( j), (33)

where N ∈ N is such that
∑∞

j=N j‖V ( j)‖ < 1/2. Here we set g = 1,

K (n, j) =
{

jV ( j), j ≥ n + 1

j2

n V ( j), N ≤ j ≤ n

and M( j) = j‖V ( j)‖. A direct calculation using (33) shows that v1+(n) = nṽ1+(n)

solves the Schrödinger equation v1+(n − 1) + V (n)v1+(n) + v1+(n + 1) = 2v1+(n), for
n ≥ N + 1 (this is carried out using similar methods as in the proof of Lemma 36).
For n ≤ N , we recursively fit Eq. (8) defining v1+(n − 1) = 2v1+(n) − V (n)v1+(n) −
v1+(n + 1). The construction of the other solution is similar. �

A key point of this paper is the study of Jost solutions when the spectral parameter
z tends to 1. It turns out to be more accessible to control the behavior of solutions with
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prescribed data on 0 and 1 as z → 1 in a detailed manner. Via Wronskian identities
this ultimately allows to deal with Jost solutions and the behavior of the scattering
matrix as z → 1.

2.3 Solutions with Prescribed Data at 0 and 1

Lemma 9 Let a, b ∈ ML×L . For every z ∈ D\{0}, the solution �z of (8) such that
�z(0) = a, �z(1) = b satisfies the following equations: for every n ∈ N,

�z(n) = sz(n)(b − a) + τ z(n)a −
n−1∑

j=1

sz(n − j)V ( j)�z( j), (34)

and for every n ∈ Z
− ∪ {0}

�z(n) = sz(n)(b − a) + τ z(n)a +
0∑

j=n+1

sz(n − j)V ( j)�z( j). (35)

Moreover, for every fixed n,�z(n) is holomorphic onD\{0} and continuous onD\{0}.
Proof The result follows from Lemma 35, taking A = −(z + 1/z)1, B(n) =
−V (n), S1 = sz and S2 = τ z . The analyticity and continuity follows from the analyt-
icity and continuity of sz(n) and τ z(n). �
Lemma 10 Let �z be as in Lemma 9. For all z ∈ D ∩ D(1; 1/2), the estimates

‖�z(n)‖ ≤C |n||z|−|n|, (36)

‖�z(n) − �1(n)‖ = O(|z − 1|2), z → 1, (37)

hold, where the O symbol depends on a, b and n, but not on z and C depends on a
and b, but not on z and n.

Proof Let n ∈ N, it follows from (34) and Lemma 6 that

‖�z(n)‖|z|n 1
n

= |z|n 1
n

⎛

⎝|sz(n)(b − a) + τ z(n)a −
n−1∑

j=1

sz(n − j)V ( j)�z( j)|
⎞

⎠

≤ C

⎛

⎝1 +
n−1∑

j=1

‖ jV ( j)‖ ‖�z( j)‖ |z| j 1
j

⎞

⎠ , (38)

and, therefore, Gronwall’s Lemma (see Lemma 34) combined with (4) yields (36).
For negative n, the argument is similar, using (35). Now we prove (37) for n ∈ N, the
case of n negative is proved similarly. The proof uses induction on n. By definition,
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�z(1) − �1(1) = 0. Suppose that for every j < n, �z( j) − �1( j) = O(|z − 1|2).
It follows from Lemma 9 that

‖�z(n) − �1(n)‖ ≤ ‖sz(n) − s1(n)‖ ‖b − a‖ + ‖τ z(n) − τ 1(n)‖ ‖a‖

+
n−1∑

j=1

‖sz(n − j)V ( j)‖ ‖�z( j) − �1( j)‖

+
n−1∑

j=1

‖sz(n − j) − s1(n − j)‖ ‖V ( j)‖ ‖�1( j)‖. (39)

Equation (39), Lemma 6 and (36) for z = 1 imply that there is a function ι(n, z) ≥ 0
such that ι(n, z) = O(|z − 1|2) and

‖�z(n) − �1(n)‖ ≤ι(n, z) + Cn|z|−n
n−1∑

j=1

‖V ( j)‖ ‖�z( j) − �1( j)‖. (40)

Since each element in the sum on the right is O(|z − 1|2), it follows that ‖�z(n) −
�1(n)‖ = O(|z − 1|2), and the argument is completed by induction. �

Of particular importance are here solutions with the initial condition a =
u1+(0), b = u1+(1).

Definition 11 For all z ∈ D ∩ D(1; 1/2), the solution described in Lemma 9 with
a = u1+(0) and b = u1+(1) is denoted by �z ∈ (ML×L)Z.

Notice that �1 = u1+. In this case, we have that (see Lemma 7)

b − a =
∞∑

j=1

V ( j)u1+( j) =
∞∑

j=1

V ( j)�1( j). (41)

Let us set

d(n) :=
∞∑

j=n

V ( j)�1( j).

It follows from Lemma 9 that for every n ∈ N,

�z(n) = sz(n)d(n) + τ z(n)a −
n−1∑

j=1

sz(n − j)V ( j)(�z( j) − �1( j))

−
n−1∑

j=1

(sz(n − j) − sz(n))V ( j)�1( j), (42)
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and for every n ∈ Z
− ∪ {0}

�z(n) = sz(n)(b − a) + τ z(n)a +
0∑

j=n+1

sz(n − j)V ( j)�z( j), (43)

The following result shows that �z satisfies essentially the same bounds as sz and
τ z given in Lemma 6.

Lemma 12 (Regularity 1) There is a constant C ∈ R independent of n and z such that,
for all z ∈ D ∩ D(1; 1/2),

∥∥∥∥
�z(n) − �1(n)

z − 1

∥∥∥∥ ≤ Cn|z|−n, ∀n ∈ N. (44)

Proof It follows from (42), that

�z(n) − �1(n)

= (sz(n) − s1(n))d(n)+(τ z(n)−τ 1(n))a−
n−1∑

j=1

sz(n− j)V ( j)(�z( j)−�1( j))

−
n−1∑

j=1

(
sz(n − j) − s1(n − j) − (

sz(n) − s1(n)
))
V ( j)�1( j). (45)

Equation (45), Lemma 6, (4), and the fact that nd(n) is uniformly bounded (see (4))
implies that

|z|n
n

∥∥∥
�z(n) − �1(n)

z − 1

∥∥∥ ≤ C
[
1 +

n−1∑

j=1

j‖V ( j)‖ |z| j
j

∥∥∥
�z( j) − �1( j)

z − 1

∥∥∥
]
, (46)

here we use that �1( j) = u1+( j) is uniformly bounded for j ≥ 0 (which is a conse-
quence of the definition of the Jost solution in question). Equation (46) and Gronwall’s
Lemma (see Lemma 34) combined with (4) imply (44). �

Lemma 10 (with �1 playing the role of �1) implies that the series

∞∑

j=−∞
V ( j)�1( j) =

∞∑

j=−∞
V ( j)u1+( j), (47)

converges to a matrix in ML×L . This matrix plays an important role in the proofs as
it is connected to the Wronskian of u1+ and v1−, see Lemma 20. In Lemma 28 (see
Definition 21), we prove that for every vector ξ that belongs to its kernel, the sequence
(u1+( j)ξ) j∈Z is bounded. The corresponding states (u1+( j)ξ) j∈Z are called half-bound
states.
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Lemma 13 (Regularity 2)Let ξ belong to the kernel of (47). There is a constantC ∈ R,
independent of n and z, such that, for all z ∈ D ∩ D(1, 1/2),

∥∥∥∥
1

z − 1
(�z(n) − �1(n))ξ

∥∥∥∥ ≤ C |n||z|n, ∀ n ∈ Z
− ∪ {0}. (48)

Proof In this case, (see Eq. (41) and recall that ξ belongs to the kernel of (47))

(b − a)ξ =
∞∑

j=1

V ( j)�1( j)ξ = −
0∑

j=−∞
V ( j)�1( j)ξ. (49)

Hence let us set

d−(n) := −
n∑

j=−∞
V ( j)�1( j).

Due to (4) one has

|nd−(n)| ≤
n∑

j=−∞
| j | ‖V ( j)‖ ‖�1( j)‖ < ∞. (50)

It follows from Lemma 9 applied to �z and (49) that for every n ∈ Z
− ∪ {0}

�z(n)ξ = sz(n)d−(n)ξ + τ z(n)aξ +
0∑

j=n+1

sz(n − j)V ( j)(�z( j) − �1( j))ξ

+
0∑

j=n+1

(
sz(n − j) − sz(n)

)
V ( j)�1( j)ξ. (51)

Then, we have that

∥∥∥
|z|−n

n

1

z − 1
(�z(n)ξ − �1(n)ξ)

∥∥∥ ≤ |z|−n

n

1

z − 1

[
‖(sz(n) − s1(n))d−(n)ξ‖

+ ‖(τ z(n) − τ 1(n))aξ‖ +
0∑

j=n+1

‖sz(n − j)V ( j)(�z( j) − �1( j))ξ‖

+
0∑

j=n+1

‖(sz(n − j) − s1(n − j) − (sz(n) − s1(n))
)
V ( j)�1( j)ξ‖

]
. (52)

Bounding the first summand on the right is bounded using the second estimate from
(26) and (50), the second summand with (28) and the fourth summand with (27), one
deduces
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|z|−n

n

∥∥∥
�z(n) − �1(n)

z − 1
ξ

∥∥∥ ≤ C
[
1 +

0∑

j=n+1

j‖V ( j)‖ |z|− j

j

∥∥∥
�z( j) − �1( j)

z − 1
ξ

∥∥∥
]
,

(53)

because �1( j)ξ is uniformly bounded (see Lemma 28 and Definition 21). Equation
(53) and Gronwall’s (see Lemma 34) imply (48). �

3 The ScatteringMatrix

Definition 14 (Wronskian) For two functions u, v : Z → ML×L and n ∈ Z, the
Wronskian is defined by

W (u, v)(n) = i
(
u(n + 1)∗v(n) − u(n)∗v(n + 1)

) ∈ ML×L . (54)

It is easy to see that W (u, v)∗ = W (v, u) and that for matrix solutions satisfying
Hu = Eu and Hv = Ev, the Wronskian W (u, v) is independent of n. In these cases
we omit the argument n. For z ∈ D, the Wronskians of the Jost solutions can be
evaluated using that they are independent of n: taking the limits, either n → ∞ or
n → −∞, we find that

W (uz+, uz+) = 0 = W (u1/z− , u1/z− ), (55)

and if, additionally, z ∈ S
1\{−1, 1}

W (uz±, uz±) = (νz)−1 1 , (56)

where

νz = i

z − z−1 . (57)

Next recall that for z ∈ S
1\{−1, 1}, it is possible to decompose the states uz+ and

u1/z− on the basis (uz−, u1/z− ) and (uz+, u1/z+ ), respectively, and that the matrices Mz±
and Nz± are defined by

uz+ = uz−Mz+ + u1/z− Nz+ , u1/z− = uz+Nz− + u1/z+ Mz− . (58)

Equation (56) leads to

Mz+ = νz W (u1/z− , uz+) ,

Nz+ = − νz W (u1/z− , uz+) ,

Nz− = νz W (uz+, u1/z− ) ,

Mz− = − νz W (uz+, u1/z− ) .

(59)
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This shows that Mz± can be extended to analytic functions on D\{0} which are con-
tinuous on D\{−1, 0, 1}. Equations (59) imply that

(Nz+)∗ = −Nz− , (Mz+)∗ = Mz− , (60)

where the first equation holds true for z ∈ S
1\{−1, 1} and the second can be extended

to D\{−1, 0, 1}.
Lemma 15 For every z ∈ S

1\{−1, 1}, the following identities hold true:

(Mz−)∗Mz− = 1 + (Nz−)∗Nz− , (61)

Mz+Nz− = − N 1/z
+ Mz− , (62)

(Mz+)∗Mz+ = 1 + (Nz+)∗Nz+, (63)

Mz−Nz+ = − N 1/z
− Mz+ . (64)

Proof We notice that for every matrix M ∈ ML×L and every solutions u, v,

W (uM, (v + w)) = M∗(W (u, v) + W (u, w)),

W (u + v,wM) = (W (u, w) + W (v,w))M . (65)

First we prove (63). It follows from Eqs. (56) and (58) that

(νz)−11 = W (uz+, uz+) = W (uz−Mz+ + u1/z− Nz+, uz−Mz+ + u1/z− Nz+). (66)

Expanding the right hand side of (66) and using Eqs. (55), (56) and (65), we get

(νz)−11 = (νz)−1(Mz+)∗Mz+ − (νz)−1(Nz+)∗Nz+,

where ν1/z = −νz was used. This implies (63). Equation (61) is obtained in similar
manner by expanding W (uz−, uz−). Now let us prove (64). It follows from Eqs. (55)
and (58) that

0 = W (u1/z+ , uz+) = W (u1/z− M1/z
+ + uz−N 1/z

+ , uz−Mz+ + u1/z− Nz+). (67)

Expanding the right hand side of (67) and using Eqs. (55), (56) and (65), we get

0 = −(νz)−1(M1/z
+ )∗Nz+ + (νz)−1(N 1/z

+ )∗Mz+
= −(νz)−1Mz−Nz+ − (νz)−1N 1/z

− Mz+,

where the last equality follows from (60). Equation (62) is obtained in similar manner
expanding W (u1/z− , uz−). �
Proposition 16 For z ∈ S

1\{−1, 1}, Mz± is invertible and Sz is unitary
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Proof The invertibility of Mz± follows from Eqs. (61) and (63). Now we prove the
unitarity. The off diagonal terms of (Sz)∗ Sz are (see Definition 2)

− ((Mz+)−1)∗Nz−(Mz−)−1 − ((Mz+)−1)∗(Nz+)∗(Mz−)−1, (68)

− ((Mz−)−1)∗(Nz−)∗(Mz+)−1 − ((Mz−)−1)∗Nz+(Mz+)−1 (69)

and they vanish by (60). The diagonal terms are

((Mz+)−1)∗(1 + (Nz+)∗Nz+)(Mz+)−1,

((Mz−)−1)∗(1 + (Nz−)∗Nz−)(Mz−)−1, (70)

and they are both equal to 1, see (63) and (61). This proves the unitary of Sz . �

4 Analysis of theWronskian

It follows from (59) and Definition 2 that the Wronskian is tightly connected to the
scattering matrix. In particular, the invertibility of Mz± is essential for its definition.
Since the purpose of the present paper is the analysis of the scattering matrix as z tends
to 1, it is crucial to study the behavior of W (u1/z− , uz+) = (νz)−1Mz+ as z tends to 1
(the study of Mz− is carried out using (60)). Regularity properties of uz+ as z tends to
1 are thus relevant. As stated above, this will be deduced from the regularity results
on �z . Indeed, it turns out that these properties of �z allow to identify lower order
terms of W (u1/z− , uz+) with respect to |z − 1|. This holds because W (u1/z− , uz+) can be

written in terms of W (�z, uz+) and W (u1/z− ,�z) (see Lemma 18). Then, most of this

section is devoted to the study of W (�z, uz+) and W (u1/z− ,�z).
From the definition of u1+, we know that u1+( j) tends to 1 as j tends to infinity. Then,

for large enough j , u1+( j) is invertible. In order to simplify notations, we assume that
u1+(1) is already invertible. This does not imply any restriction because, translating
the origin, we can always take it for granted.

Assumption 17 We assume, without loss of generality, that u1+(1) is invertible.

Lemma 18 For every z ∈ D\{0}, it follows that

W (u1/z− , uz+) = u1/z̄− (1)∗(u1+(1)
∗
)−1W (�z, uz+)+W (u1/z− ,�z)u1+(1)−1uz+(1). (71)

Proof The result follows from an expansion of the right hand side of (71) using
Definition 11 of �z and the definition of the Wronskians, evaluated on n = 0, and the
identity (see (55))

(u1+(1)∗)−1
u1+(0)∗ = u1+(0)u1+(1)−1.

Notice that, by definition, �z( j) = u1+( j), for j ∈ {0, 1}. �
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Proposition 19 The following formula holds true

W (�z, uz+) = i(1 − z)1 + o(|z − 1|), (72)

as z tends to 1 in D.

Proof Equation (34) for �z = �z together with the bounds from Lemma 6 imply
that for n ∈ N

|z|n‖�z(n)‖ ≤ Cz +
n−1∑

j=1

Cz |z| j ‖V ( j)‖ ‖�z( j)‖, (73)

for some positive function Cz depending on z (that blows up as z tends to 1 because in
Eq. (24) for sz a cancellation of the factor 1

1−z implies growth in n). Then, Gronwall’s
lemma implies that |z|n|�z(n)| is bounded (with respect to n, for positive n). This
implies that (see Eq. (15))

W (�z, uz+) = lim
n→∞ i(�z(n + 1)∗zn − �z(n)∗zn+1)

= i(b − a)∗ − i(z − 1)a∗ − i
∞∑

j=1

z j�z( j)∗V ( j),

where in the second step we used (34) and Definition 5 of sz and τ z . On the other
hand,

∞∑

j=1

z j (�z − �1)( j)∗V ( j) = o(|1 − z|). (74)

Indeed, Eqs. (44) and (4) imply that the series multiplied by 1
1−z is bounded by a

summable function that does not depend on z, and (37) implies that each term of the
sum multiplied by 1

1−z tends to zero. Hence interpreting the series as an integral with
respect to a counting measure, Lebesgue’s dominated convergence theorem shows
(74). Furthermore, since �1 is bounded for j > 0 (because �1( j) = u1+( j), for
j > 1) it follows that

∞∑

j=1

(z j − 1 − j(z − 1))�1( j)∗V ( j) = o(|1 − z|). (75)

Then, we obtain that

W (�z, uz+) = i(b − a)∗ − i(z − 1)a∗ − i
∞∑

j=1

(1 + j(z − 1))�1( j)∗V ( j) + o(|1 − z|).
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This last equation and the fact that (see (31))

(b − a) =
∞∑

j=1

V ( j)u1+( j) =
∞∑

j=1

V ( j)�1( j),

a = 1 −
∞∑

j=1

jV ( j)u1+( j) = 1 −
∞∑

j=1

jV ( j)�1( j),

(76)

imply the desired result. �
Lemma 20 The following formula holds true

W (u1−, u1+) = −i
∞∑

j=−∞
V ( j)u1+( j). (77)

Proof It follows from Lemma 7 that

u1+(n) = 1 −
∞∑

j=n+1

( j − n)V ( j)u1+( j), n ∈ Z,

u1−(n) = 1 +
n−1∑

j=−∞
( j − n)V ( j)u1−( j), n ∈ Z.

(78)

Since | jV ( j)| tends to zero as j tends to minus infinity (see (4)) and there is a constant
C such that |u1+( j)| ≤ C | j |, for j ≤ 0, (see Lemma 10), it follows that for n → ∞

W (u1−, u1+)(n)

= i

⎛

⎝1 +
n∑

j=−∞
( j − n − 1)u1−( j)∗V ( j)

⎞

⎠

⎛

⎝1 −
∞∑

j=n+1

( j − n)V ( j)u1+( j)

⎞

⎠

− i

⎛

⎝1 +
n−1∑

j=−∞
( j − n)u1−( j)∗V ( j)

⎞

⎠

⎛

⎝1 −
∞∑

j=n+2

( j − n − 1)V ( j)u1+( j)

⎞

⎠

= −i
∞∑

j=n+2

V ( j)u1+( j) + i
n∑

j=−∞
u1−( j)∗V ( j)

∞∑

j=n+1

( j − n)V ( j)u1+( j) + o(1),

Here,we used thatu1±(± j) is bounded for j ∈ N and that limm→∞
∑−m

j=−∞ | j |‖V ( j)‖
+ ∑∞

j=m | j |‖V ( j)‖ = 0. Taking the limit n → −∞ yields the desired result. �
We define some technical objects that will be used in Sect. 5.1.

Definition 21 We introduce the notations

N := Ker(W (u1−, u1+)), L := Ker(W (u1+, u1−)). (79)
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The generic case is referred as N = {0}, otherwise one speaks of the exceptional
case. In Lemma 28, a characterization of N and L in terms of half-bound states is
presented, in particular we prove that (u1+( j)ξ) j∈Z is bounded, for every ξ ∈ N (i.e.,
it is a half-bound state, see Sect. 5.1). For ξ ∈ N , let us define

�ξ :=
⎛

⎝ξ −
∞∑

j=−∞
jV ( j)u1+( j)ξ

⎞

⎠ . (80)

In Lemma 29 another characterization of � is given and in Lemma 30 it is shown that
� is a bijection from N onto L. We denote by

PN , PL, PN⊥ , PL⊥ (81)

the orthogonal projections onto N , L, N⊥ and L⊥ respectively.

Proposition 22 The following formula holds true

W (u1/z− ,�z) = W (u1−, u1+) + o(1), (82)

as z tends to 1 in D. Moreover, if ξ ∈ N , then

W (u1/z− ,�z)ξ = i(1 − z)�ξ + o(|z − 1|), (83)

as z tends to 1 in D.

Proof Equation (82) follows from the continuity of the functions z �→ u1/z− and z �→
�z , and the fact that �1 = u1+. Now we prove (83). Equation (35) implies that

|z−n||�z(n)| ≤ Cz +
0∑

j=n+1

Cz |z− j | ‖V ( j)‖ ‖�z( j)‖, (84)

for some positive function Cz of z (that blows up as z tends to 1). Then, Gronwall’s
lemma implies that |z−n ||�z(n)| is bounded (with respect to n, for n ≤ 0). This implies
that (see Eq. (15))

W (u1/z− ,�z) = lim
n→−∞ i(z−n−1�z(n) − z−n�z(n + 1))

= −i(b − a) + i
1 − z

z
a − i

0∑

j=−∞
z− j V ( j)�z( j),
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where (35) was used. Utilizing (37), (48) and (4) we deduce that (here we use again
Lebesgue’s dominated convergence theorem)

0∑

j=−∞
z− j V ( j)(�z( j) − �1( j))ξ = o(|1 − z|). (85)

Since �1( j)ξ is bounded (see Lemma 28), it follows that for j ≤ 0

0∑

j=−∞
(z− j − 1 − j(1 − z))V ( j)�1( j)ξ = o(|1 − z|). (86)

Then

W (u1/z− ,�z)ξ = −i(b − a)ξ + i
1 − z

z
aξ − i

0∑

j=−∞
(1 + j(1 − z))V ( j)�1( j)ξ

+ o(|1 − z|).

The desired result from this last equation and (76). Notice that we use that 1−z
z −

(1 − z) = o(|1 − z|) and that by assumption (see Lemma 20 and Definition 21)∑∞
j=−∞ V ( j)�1( j)ξ = 0 and recall that u1+ = �1 . �

The operator u1/z− (1)∗(u1+(1)
∗
)−1 that appears in (71) plays an important role

because, when z = 1, it operates on half-bound states (see Remark 31) and it is
present in the scattering matrix, in the limit when z tends to 1. For this reason, we also
introduce a notation for this object.

Definition 23 We denote

� := u1+(1)−1u1−(1) ∈ ML×L . (87)

A different characterization of � is given in Remark 31.

Proposition 24 There exist functions X ,Y : D → ML×L such that

W (u1/z− , uz+) =
(
i(1 − z)(�∗ + �)PN + W (u1−, u1+)PN⊥ + X(z) + Y (z)PN⊥

)

· u1+(1)−1uz+(1), (88)

and X(z) = o(|z − 1|) and Y (z) = o(1), as z tends to 1 in D.

Proof The result follows from the continuity of u1/z̄− (1) and uz+(1), Propositions 19
and 22 and Lemma 18. �
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5 Proof of theMain Result

5.1 Half-Bound States

In this section we study half-bound states at the threshold energy corresponding to
the spectral parameter z = 1. They are solutions of (8) with E = 2 that are bounded.
These solutions play a fundamental role in the limit of the scattering matrix as z tends
to 1.

Lemma 25 Let u ∈ (CL)
Z
be a solution of (8), for z = 1. The following items are

equivalent:

(i) u is o(n) for n → +∞.
(ii) u is bounded as n tends to +∞.
(iii) u converges as n tends to +∞.

Moreover, u is o(1) for n → +∞, if and only if u = 0.

Proof It follows from Eqs. (15) and (17) that the columns of u1+ and v1+ form a basis
of all solutions. Then, there are α, β ∈ C

L such that

u = v1+α + u1+β.

The asymptotic behavior of u1+ and v1+ at ∞ yields the desired result. �
Remark 26 The previous lemma remains valid if we replace +∞ by −∞.

Lemma 27 The next equations hold true:

u1+(n) = n(iW (u1−, u1+) + o(1)), n → −∞.

u1−(n) = n(−iW (u1+, u1−) + o(1)), n → +∞.

Proof It was proved in Lemma 20 that

W (u1−, u1+) = −i
∞∑

j=−∞
V ( j)u1+( j), (89)

and, similarly we deduce that

W (u1+, u1−) = i
∞∑

j=−∞
V ( j)u1−( j). (90)

Equation (31) implies that

u1+(n + 1) − u1+(n) = −
∞∑

j=n+2

( j − n − 1)V ( j)u1+( j) +
∞∑

j=n+1

( j − n)V ( j)u1+( j)
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=
∞∑

j=n+1

V ( j)u1+( j)

= iW (u1−, u1+) −
n∑

j=−∞
V ( j)u1+( j).

Thus, u1+(n + 1) − u1+(n) → iW (u1−, u1+), as n → −∞ (recall that |u1+(n)| ≤ C |n|
due to Eq. (36)). This implies that

1

n
(u1+(n + 1) − u1+(1)) = 1

n

n∑

j=1

u1+( j + 1) − u1+( j) → iW (u1−, u1+)

and, therefore,

u1+(n)

n
→ iW (u1−, u1+), n → ∞.

This proves the first equality. The proof of the second is similar. �
The next result establishes a connection between the subspaceN and L introduced

in Definition 21 and the half-bound states.

Lemma 28 (Half-Bound States) The next equations hold true:

N = {ξ ∈ C
L : u1+ξ is bounded}, L = {χ ∈ C

L : u1−χ is bounded}. (91)

Moreover, since W (u1−, u1+)∗ = W (u1+, u1−) by definition, it follows that

N = (W (u1+, u1−)CL)⊥, L = (W (u1−, u1+)CL)⊥, (92)

and, therefore, dim(N ) = dim(L).

Proof Take ξ ∈ N , then Lemmas 25 and 27 yield that u1+ξ is bounded. Now taking
ξ ∈ C

L such that u1+ξ is bounded, Lemma 27 implies that

0 = lim
n→−∞

u1+(n)ξ

n
= iW (u1−, u1+)ξ.

Therefore the first equality follows. The proof of the second equality is similar. �
Lemma 29 For every ξ ∈ N ,

�ξ = lim
n→−∞ u1+(n)ξ. (93)
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Proof Let ξ ∈ N = Ker(W (u1−, u1+)), we calculate using Lemma 20 and Eq. (31):

ξ − u1+(n)ξ =
∞∑

j=n+1

( j − n)V ( j)u1+( j)ξ

=
∞∑

j=n+1

jV ( j)u1+( j)ξ − n
∞∑

j=n+1

V ( j)u1+( j)ξ

=
∞∑

j=n+1

jV ( j)u1+( j)ξ − n

⎛

⎝iW (u1−, u1+) −
n∑

j=−∞
V ( j)u1+( j)

⎞

⎠ ξ

=
∞∑

j=n+1

jV ( j)u1+( j)ξ + n
n∑

j=−∞
V ( j)u1+( j)ξ.

Notice that u1+( j)ξ is bounded because ξ ∈ N (see Lemma 28). From the last equation
and definition of � (see Definition 21), we have that (see also (4))

lim
n→−∞ u1+(n)ξ = ξ − lim

n→−∞

∞∑

j=n+1

( j − n)V ( j)u1+( j)ξ

= ξ −
∞∑

j=−∞
jV ( j)u1+( j)ξ = �ξ,

(94)

completing the proof. �
Lemma 30 � is a linear isomorphism from N to L.

Proof Taking ξ ∈ N and χ = �ξ , it follows from Lemma 29 and Eq. (15) that

lim
n→−∞ u1+(n)ξ − u1−(n)χ = 0.

Then, Remark 26 implies that

u1+(n)ξ = u1−(n)χ, n ∈ Z. (95)

We deduce that u1−χ is bounded and, therefore, χ ∈ L and it follows that �N ⊂ L.
Let χ ∈ L and ξ = limn→∞ u1−(n)χ . As above, we obtain that u1+(n)ξ = u1−(n)χ

for n ∈ Z and, therefore, �ξ = χ . This proves the subjectivity and as L and N have
the same dimension, that � is bijective. �
Remark 31 It follows from (95) that

� = (u1−(n)−1u1+(n))
∣∣N , (96)
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whenever u1−(n)−1 exists. As explained above it can be assumed without loss of
generality that this is the case when n = 1. Let us also recall that

� = u1+(1)−1u1−(1), (97)

and notice that
�

∣∣L = �−1. (98)

5.2 Band Edge Limit of the ScatteringMatrix

Let {e1, . . . , eL} be an orthonormal basis of CL such that the first d vectors form a
basis ofL and the last L−d vectors form a basis ofL⊥ = W (u1−, u1+)CL , see Lemma
28. We take another orthonormal basis {v1, . . . , vL} ofCL such that the first d vectors
form a basis of N and the last L − d vectors form a basis of N⊥.

Then define

P := (
e1 e2 · · · eL

)∗
, Q := (

v1 v2 · · · vL
)
. (99)

We recall that PL and PL⊥ are the projections onto L and L⊥, respectively. Then

PL
(
i(1 − z)(�∗ + �)PN + W (u1−, u1+)PN⊥

)
PN = i(1 − z)PL(�∗ + �)PN

(100)

and PL(�∗ +�)PN defines a bijection betweenN and L (see Lemma 28): in view of
Lemma 28 it is enough to prove that it is injective. This holds true because� : N → L
is a bijection and, for every ξ ∈ N , (see Eq. (98))

〈�ξ, PL(�∗ + �)ξ 〉 = 〈PL�ξ, (�∗ + �)ξ 〉 = 〈�ξ, (�∗ + �)ξ 〉
= 〈��ξ, ξ 〉 + ‖�ξ‖2 = ‖ξ‖2 + ‖�ξ‖2.

Moreover,

PL⊥
(
i(1 − z)(�∗ + �)PN + W (u1−, u1+)PN⊥

)
PN⊥ = PL⊥W (u1−, u1+)PN⊥

(101)

defines a bijection betweenN⊥ and L⊥ (see Lemma 28 and Definition 21). It follows
that there are matrix-valued functions A(z), B(z),C(z), D(z) such that

P
(
i(1 − z)(�∗ + �)PN + W (u1−, u1+)PN⊥ + X(z) + Y (z)PN⊥

)
Q =

(
A(z) B(z)
C(z) D(z)

)

(102)

(recall the definitions of X and Y in Proposition (24)) and

A(z) = i(1 − z)A + o(|1 − z|), B(z) = o(1),
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C(z) = O(|1 − z|), D(z) = D + o(1), (103)

where

A := [PL(�∗ + �)PN ]βα, D := [PL⊥W (u1−, u1+)PN⊥]δγ , (104)

are invertible where [T ]ηθ denotes the matrix representation of a linear transformation
T in terms of the bases θ , η. Here α = {v1, . . . , vd}, which is a basis of N , β =
{e1, . . . , ed}, which is a basis of L, and γ = {vd+1, . . . , vL} and δ = {ed+1, . . . , eL},
which are bases of N⊥ and L⊥, respectively.

Theorem 32 The transmission coefficients satisfy the following properties:

T z+ = T 1+ + o(1), T z− = T 1− + o(1), (105)

as z tends to 1 in D, where

T 1+ := Q

(
2A−1 0
0 0

)
P, T 1− :=

(
Q

(
2A−1 0
0 0

)
P

)∗
. (106)

Moreover,

T 1+CL = N , Ker(T 1+) = W (u1−, u1+)CL ,

T 1−CL = L, Ker(T 1−) = W (u1+, u1−)CL . (107)

The reflection coefficients satisfy the following properties:

Rz+ = R1+ + o(1), Rz− = R1− + o(1), (108)

as z tends to 1 in S1, where

R1+ := 1 − �T 1+, R1− := 1 − �−1T 1−. (109)

Moreover,

L = (1 − R1+)CL , Ker(T 1+) = Ker(1 − R1+),

N = (1 − R1−)CL , Ker(T 1−) = Ker(1 − R1−). (110)

Proof Equation (103) implies that the matrices D(z) and A(z)− B(z)D(z)−1C(z) are
invertible for z ∈ D in a neighborhood of 1, so using the Schur complement formula,
it follows that (recall (57))

(νz)−1
(
A(z) B(z)
C(z) D(z)

)−1
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= (νz)−1
(

1 0
−D(z)−1C(z) 1

)((
A(z) − B(z)D(z)−1C(z)

)−1
0

0 D(z)−1

)

×
(
1 −B(z)D(z)−1

0 1

)

=
(
2A−1 0
0 0

)
+ o(1), (111)

where (57) and (103) were used. The first equation in (106) follows from Eq. (111),
Proposition 24, the continuity of uz+(1), (59) and Definition 2. The second equation
in (106) is a consequence of the first equation, Definition 2 and (60).

Due to the definition (99) of P , the kernel of T 1+ is generated by {ed+1, . . . , eL},
and they are a basis of W (u1−, u1+)CL : since P is unitary, P∗ = P−1 = (

e1 . . . eL
)
.

Therefore, the kernel at stake equals the kernel of

(
1 0
0 0

) (
e1 · · · eL

)−1. Due to the

definition (99) of Q, the image of T 1+ is generated by {v1, . . . , vd}, and these vectors
form a basis of N . This proves the first line in (107). The second one follows from
the fact that T 1− = (T 1+)∗ (which can be deduced from (60) and (20)).

Next let us take small enough n such that (u1−(n))−1 exists. Then, by continuity,

(u1/z− (n))−1 exists, for z in a neighborhood of 1. Using (19) leads to

Rz+ = (u1/z− (n))−1uz−(n) − (u1/z− (n))−1uz+(n)T z+ → (u1−(n))−1u1−(n)

− (u1−(n))−1u1+(n)T 1+, (112)

as z tends to 1. Taking the limit n → −∞ in the right hand side of (112), we arrive
at the first equation in (109) (see also Lemma 29 and (15)). The second equation is
obtained similarly. Equations (110) follow from (107), (109) and the fact that � is a
bijection from N onto L. �
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A Appendix

Let M = ML×L and l p(N,M) the space of sequences h : N → M with∑
n ‖h(n)‖p < ∞ for p ∈ [1,∞) and supn ‖h(n)‖ < ∞ for p = ∞.
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Theorem 33 (Lemma 7.8 [34], Volterra Equation) Let g ∈ l∞(N,M) and K (n,m) ∈
M for each m, n ∈ N. Consider the Volterra sum equation

f (n) = g(n) +
∞∑

m=n+1

K (n,m) f (m), (113)

and suppose there is a sequence M ∈ l1(N,R) such that ‖K (n,m)‖ ≤ M(m) for each
m, n ∈ N. Then, Equation (113) has a unique solution f ∈ l∞(N,M). Moreover, if
g(n) and K (n,m) depend continuously (resp. holomorphically) on a parameter z (for
every n), M does not depend on z, and g(n) is uniformly bounded with respect to n
and z, then the same is true for f (n).

Proof For each k ∈ N, if one finds a solution f ∈ l∞(N ∩ [k,∞),M), then it
can be extended to a solution in l∞(N,M) by defining recursively f (n) = g(n) +∑∞

m=n+1 K (n,m) f (m) for each n < k. Since M ∈ l1(N,R), there exists k ∈ N

such that
∑∞

m=k+1 M(m) < 1/2. Then, w.l.o.g., we can assume that k = 0, i.e.,∑∞
m=1 M(m) < 1/2. Then let us introduce the operator T : l∞(N,M) → l∞(N,M)

by

(T f )(n) =
∞∑

m=n+1

K (n,m) f (m)

which is well-defined because

∞∑

m=n+1

‖K (n,m) f (m)‖ ≤
∞∑

m=n+1

‖K (n,m)‖‖ f (m)‖ ≤ 1/2‖ f ‖∞.

Moreover, the last equation also implies that T is bounded and ‖T ‖ < 1/2, therefore
I − T is invertible and f := (I − T )−1g is a solution to the equation on l∞(N,M).

Now we assume that g(n) ≡ gz(n) and K (n,m) = K z(n,m) depend continu-
ously (resp. holomorphically) on a parameter z (for every n), M does not depend
on z, and gz(n) is uniformly bounded with respect to n and z. Since the series
(Tgz)(n) = ∑∞

m=n+1 K
z(n,m)gz(m) converges uniformly, (Tgz)(n) is then con-

tinuous (holomorphic) for each n ∈ N and it is uniformly bounded with respect to
n and z. Repeating the argument, one obtains that the same holds true for T j gz , for
every natural number j . Using that ‖T j g‖ ≤ (1/2) j supn,z{‖g(n)‖}, it follows that
the series f z(n) = ∑∞

j=0(T
j g)z(n) converges uniformly. This implies that the map

z �→ f z(n) is continuous (holomorphic). �
The following well-known result is recalled without proof (see [14] for a proof).

Lemma 34 (Gronwall’sLemma)Let (un)n∈N, (wn)n∈N benon-negative real sequences
and α a real number such that for n ∈ N

un ≤ α +
n−1∑

i=1

uiwi .
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Then, for n ∈ N we have that

un ≤ α exp

(
n−1∑

i=1

wi

)
.

Lemma 35 (Variation of parameters) Consider the following difference equation

X(n − 1) + AX(n) + X(n + 1) = B(n)X(n), (114)

where A, B(n) ∈ M for each n ∈ Z. Suppose that S1, S2 are solutions of the equation

X(n − 1) + AX(n) + X(n + 1) = 0, (115)

such that S1(0) = 0, S1(1) = 1 and S2(0) = S2(1) = 1. Then, for C, D ∈ M, the
solution S to Equation (114), with initial conditions S(0) = C, S(1) = D, satisfies
for n ∈ N

S(n) = S1(n)(D − C) + S2(n)C +
n−1∑

j=1

S1(n − j)B( j)S( j), (116)

and for n ∈ Z
− ∪ {0}

S(n) = S1(n)(D − C) + S2(n)C −
0∑

j=n+1

S1(n − j)B( j)S( j), (117)

where we identify
∑0

j=1 S1(− j)B( j)S( j) ≡ 0 and
∑0

j=1 S1(1 − j)B( j)S( j) ≡ 0.

Proof Equations (116) and (117) together with the initial conditions define recursively
a matrix valued function that is denoted by S. Now we prove that S satisfies Equation
(114). The proof is carried out only for n ≥ 2, the other cases are similarly treated.
For every X ∈ MZ, we use the notation

hn(X) = X(n − 1) + AX(n) + X(n + 1).

Using Equation (116) and n ≥ 2 we get (here recall that S1 ans S2 satisfy (115)
and, therefore, hn(S1) = 0 = hn(S2); moreover S1(0) = 0, S1(1) = 1)

hn(S) = hn(S1)(D − C) + hn(S2)C +
n−2∑

j=1

hn− j (S1)B( j)S( j)

+ AS1(n − (n − 1))B(n − 1)S(n − 1)

+ S1(n + 1 − (n − 1))B(n − 1)S(n − 1) + S1(n + 1 − n)B(n)S(n)

= AS1(1)B(n − 1)S(n − 1) + S1(2)B(n − 1)S(n − 1) + B(n)S(n)
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=
(
AS1(1) + S1(2)

)
B(n − 1)S(n − 1) + B(n)S(n)

= − S1(0)B(n − 1)S(n − 1) + B(n)S(n) = B(n)S(n).

We obtain that hn(S) = B(n)S(n), which is (114). �

Lemma 36 Consider the set-up of Theorem 33 with g = 1, K z(n, j) = −z j−nsz( j −
n)V ( j) and M( j) = j‖V ( j)‖ where sz is as in Definition 5. Furthermore let ũz+ be
the corresponding solution to the Volterra equation (for n ∈ N)

ũz+(n) = 1 −
∞∑

j=n+1

sz( j − n)V ( j)z j−nũz+( j). (118)

Finally denote by uz+(n) = znũz+(n), n ∈ N. It follows that

uz+(n − 1) + V (n)uz+(n) + uz+(n + 1) = (z + 1/z)uz+(n), n ≥ 2. (119)

Proof Let us take n ≥ 2. We use the notation of Lemma 35 and its proof, taking
A = −(z+1/z)1, and set γ (n) = zn . A direct calculation shows that hm(sz) = 0 and
hm(γ ) = 0, for every m. Further let us note that

uz+(n) = γ (n) +
∞∑

j=n+1

sz(n − j)V ( j)uz+( j). (120)

It follows from (120) by an algebraic calculation using the definition of hm that

hn(u
z+) = hn(γ ) +

∞∑

j=n+2

hn− j (s
z)V ( j)uz+( j)

+ Asz(n − (n + 1))V (n + 1)uz+(n + 1)

+ sz(n − 1 − (n + 1))V (n + 1)uz+(n + 1) + sz(n − 1 − n)V (n)uz+(n).

(121)

Using (121), the facts that hm(sz) = 0, hn(γ ) = 0 and sz(m) = −sz(−m) together
with sz(0) = 0, sz(1) = 1, one gets that

hn(u
z+) = − (Asz(1) + sz(2))V (n + 1)uz+(n + 1) − sz(1)V (n)uz+(n)

= sz(0)V (n + 1)uz+(n + 1) − V (n)uz+(n)

= − V (n)uz+(n),

which is (119). �
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