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Abstract
Let (M, g) be a smooth compact orientable two-dimensional Riemannian manifold
(surface) with a smooth metric tensor g and a smooth connected boundary �. The
Hilbert transform H associated with (M, g) acts in C(�; R) by H : �η �→ �η, where
η = w|� is the trace of a function w holomorphic in M . We provide characteristic
conditions on an operator H defined on a curve � to be the Hilbert transform of
a surface. In fact, the characterization of H is reduced to one of the Dirichlet-to-
Neumann map �g of the surface (M, g), which is related to the Hilbert transform by
H = J�g , where J is integration along �. In contrast to the known characterization
of �g by Henkin and Michel in terms of multidimensional complex analysis, our one
makes use of the Commutative Banach Algebra theory.
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Hilbert Transform

• Let (M, g) be a smooth1 compact orientable two-dimensional Riemannianmanifold
with a smooth metric tensor g and smooth connected boundary �. In what follows,
we deal with the manifolds of this class only and, for short, call them surfaces. We
denote the length element on � by ds and the set of continuous functions with zero
mean on � by Ċ(�; R), i. e., Ċ(�; R) := { f ∈ C(�; R) | ∫

�
f ds = 0}.

There are two continuous families {�x ∈ EndTx M | x ∈ M} of rotations on (M, g)

g(�x a,�x b) = g(a, b), g(�x a, a) = 0, a, b ∈ Tx M, x ∈ M .

Each family � fixes the orientation on M and in the subsequent we deal with the
oriented surface (M, g,�). The rotation � also orients the boundary � by the field
of tangent unit vectors

γ := �ν, (1)

where ν is a unit outward normal on�. In what follows, we denote by ∂γ the derivative
with respect to the length s in direction γ and by J : Ċ(�; R) �→ Ċ(�; R) the
corresponding integration on �: J∂γ f = ∂γ J f for f ∈ Ċ(�; R).
• A function w ∈ C(M; C) is called holomorphic if the Cauchy–Riemann condition

∇g�w = �∇g�w in M\� (2)

holds. The set A(M) of all holomorphic continuous functions on M is a closed sub-
algebra of C(M; C). Its smooth elements A∞(M) are dense in A(M). Due to the
maximum modulus principle, the trace operator Tr : w �→ w|� is isometric iso-
morphism between A(M) and a (closed) subalgebra A(�) := TrA(M) in C(�; C).
Moreover, A∞(�) := TrA∞(M) = A(�) ∩ C∞(�; C) is dense subalgebra of A(�).
• There are several ways to define the Hilbert transform. By the first definition, a
Hilbert transformof the oriented surface (M, g,�) is the closed operatorH inC(�; C)

with the graph

G = {(�ζ,�ζ ) | ζ ∈ A(�), �ζ ∈ Ċ(�; R)} ⊂ C(�; R) × C(�; R)

(this graph is closed sinceA(�) is closed in C(�; C)). However, it is more convenient
to consider the Hilbert transform as an operator acting on smooth functions. Choose
in G the following (dense) subgraph

G′ := {(�ζ,�ζ ) | ζ ∈ A∞(�), �ζ ∈ Ċ(�; R)} ⊂ C∞(�; R) × C∞(�; R)

and assignwith it the operatorH′. ThenH′ is closableC(�; R) and its closure isH. The
domain of definition DomH′ depends on topology of M : dimC∞(�;R)

DomH′ = 1 − X(M),
where X(M) is Euler characteristics of M . Nevertheless, we can extend H′ to all
smooth functions using the following lemma.

1 Throughout the paper smooth means C∞-smooth.
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Lemma 1 The relation H′ ⊂ J�g holds, where �g : C∞(�; R) �→ C∞(�; R) is the
Dirichlet-to-Neumann operator (DN-map) of the surface (M, g) associated with the
(elliptic) problem


gu = 0 in M\�, (3)

u = f on � (4)

and acting by the rule

�g f := ∂νu f on �,

where 
g is the Beltrami–Laplace operator and u = u f is the solution of (3)–(4).

Proof Note that Dom J�g ≡ C∞(�; R). Indeed, Green formula implies
∫
�

∂νu f = 0
for any f ∈ C∞(�; R). Thus, Ran�g ⊂ Ċ(�; R) = Dom J .

Suppose that { f , h} ∈ G′. Then f + ih is a trace on � of a holomorphic smooth
function w. From (2) it follows that 
g�w = 
g�w = 0, whence �w = u f and
�w = uh . Restriction of (2) on � yields ∂γ h = ∂νu f = �g f in view of (1). Since
h ∈ Ċ(�; R), after integration we get h = J�g f . �
Lemma 1 motivates the following definition of Hilbert transform.

Definition 1 In what follows, the operator H := J�g is referred to as a Hilbert
transform of the surface (M, g,�).

Note that if H is the Hilbert transform of (M, g,�), then−H is the Hilbert transform
of (M, g,−�).

Characterization

• Let (�, ds, γ ) be a curve diffeomorphic to a circle in R
2 and let H be a linear

operator in C∞(�; R). Our goal is to describe the necessary and sufficient conditions
for H to be the Hilbert transform of some surface (M, g,�). In other words, we need
to characterize the Hilbert transform of the surfaces. Our main result is the list of such
conditions.

Lemma 1 shows that characterization of H is equivalent to characterization of the
DN-map �g .
• The characterization is directly related to the inverse problem: to determine the sur-
face (M, g) from the (given) DN-map�g (or the Hilbert transform H ). In applications
it is also known as the Electric Impedance Tomography problem.

In [8], M. Lassas and G. Uhlman show that the DN-map �g determines the surface
M up to conformal equivalence. In more detail, if (M, g) and (M ′, g′) have the com-
mon boundary � and �g = �g′ , then there exists a diffeomorphism ψ : M ′ → M
and a smooth positive function ρ on M obeying ψ |� = id, ρ|� ≡ 1, and g = ρ ψ∗g′.

In [2], M. I. Belishev obtained the same result by using relation between the EIT
problemand the holomorphic function algebra of the surface.Moreover, the expression
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for the topological invariants of the surface (Betti numbers) in terms of the DN-map
is obtained. In [4] these formulas are generalized to the multidimensional case. The
paper [3] extends the algebraic approach to nonorientable surfaces.
• In the papers above, it is a priori assumed that the given �g is the DN-map of some
surface. Thus, for such a�g , the solvability of theEITproblem is guaranteed.However,
an important question remains: what are the necessary and sufficient conditions on an
operator � to provide the solvability? G. M. Henkin and V. Michel presented such a
criterion in the paper [6] in terms of multidimensional complex analysis. In our paper
we propose a characterization based on the connections of EIT problem with Banach
algebras. So, the novelty is a new formulation of the solvability conditions. The list
of them is rather long, however, we venture to claim that our formulation is more
transparent and understandable.
• Our approach makes use of the classical result [1] on the existence of a complex
structure on the Gelfand spectrum of a commutative Banach algebra. It is the result,
which provides the sufficiency of the proposed characteristic conditions.

Main Result

• Let � be a smooth curve diffeomorphic to a circle, let dγ be its length element, and
let � : C∞(�; R) �→ C∞(�; R) be a linear map. With such � we associate the map
ϒ : C∞(�; C) �→ C∞(�; C), given by the formula

ϒζ := (��ζ − ∂γ �ζ ) + i(��ζ + ∂γ �ζ ), (5)

where γ is a tangent field of unit vectors on �. It is easy to verify thatϒ is a (complex)
linear operator. For η ∈ C∞(�; C) and z ∈ C\η(�), we introduce the map ϒη,z :
C∞(�; C) �→ C∞(�; C) as follows

ϒη,zζ := ϒ
ζ

η − ze
, (6)

where e is the function equal to 1 on �.
Let I be the identity operator on C∞(�; R), let ∂γ C∞(�; R) be the space of

smooth real-valued functions with zero mean value on �, and let J : ∂γ C∞(�; R) →
∂γ C∞(�; R) be the integration on�: J∂γ = ∂γ J = I . By �S wedenote the cardinality
of S.

Our main result is the following.

Theorem 1 The operator � is the DN-map of a surface if and only if it satisfies the
conditions:

i e ∈ Kerϒ and ζ1ζ2 ∈ Kerϒ for any ζ1, ζ2 ∈ Kerϒ;
ii if ζ1, ζ2 ∈ Kerϒ , ζ1/ζ2 ∈ C∞(�; C), and there exists a polynomial P, degP ≥ 1

such that P(ζ1/ζ2) ∈ Kerϒ , then ζ1/ζ2 ∈ Kerϒ;
iii Kerϒ ∩ C∞(�; C) = Kerϒ (the closure in C(�; C));
iv dim(∂γ + �J�)C∞(�; R) < ∞;
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v if η ∈ Kerϒ and z ∈ C\η(�), then

dim[ϒη,zKerϒ] = 1

2π i

∫

�

∂γ η

η − ze
dγ ; (7)

vi for any x ∈ �, there exist a function ηx ∈ Kerϒ and a neighborhood Ux � ηx (x)

diffeomorphic to an open disk D ⊂ C, such that

1 ∂γ ηx (x) �= 0 is valid and there is no points on �, at which all derivatives ∂k
γ ηx ,

k ≥ 1 vanish simultaneously, whereas � η−1
x ({z}) < ∞ holds for all z ∈ C;

2 ϒηx ,ze = 0 holds on one connected component of Ux\ηx (�), whereas ϒηx ,ze �= 0
holds on the other connected component;

3 the equation

ϒ
( ζ − ce

ηx − ze

)
= 0 on � (8)

has a solution c = c(z, ζ ) ∈ C for any z ∈ Ux and ζ ∈ Kerϒ;

vii if ζ, 1/ζ ∈ Kerϒ , then � log|ζ | = ∂γ argζ .

Remark 1 Conditions i–vii do not depend on the choice of the field γ .

The characterisation of the Hilbert transform immediately follows from Theorem 1.

Corollary 1 The linear map H : C∞(�; R) �→ C∞(�; R) is the Hilbert transform
of a surface if and only if one of the operators � = ∂γ H, � = −∂γ H satisfies the
conditions i–vii of Theorem 1.

As a comment, note the following. Condition i means that Kerϒ is an algebra,
whereas vi shows that this algebra must be rich enough to contain the functions ηx

with the required properties. By condition vi 2, invertibility of ηx − ze in the algebra
Kerϒ depends on the position of z on the complex plane. Condition vi 3, from an
algebraic point of view, means that (ηx −ze)Kerϒ is an ideal in Kerϒ of codimension
1, i.e., it is a maximal ideal. It is easy to see that the embedding g ∈ Kerϒ implies
∂γ �g, ∂γ �g ∈ Ker[I + (�J )2]. The operator I + (�J )2 is the key object of the
papers [2–4].

The rest of the paper is devoted to the proof of Theorem 1.

Necessity

Here we show that any DN-map satisfies conditions i–vii.
• Suppose that � = �g is the DN-map of some surface (M, g). Recall that γ and ν

are the tangent and normal unit vector fields at the boundary �.
Choose a continuous family of rotations � such that �ν = γ on �. Recall that a

function w ∈ C∞(M; C) is called holomorphic if the Cauchy–Riemann condition (2)
holds in M . Let w be holomorphic and let ζ = w|� be its trace on the boundary. The
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real functions�w and�w are harmonic in M and provide the solutions�w = u�ζ and
�w = u�ζ to (3), (4). Restricting the Cauchy–Riemann conditions on �, we obtain

��ζ = ∂ν�w = ∂γ �ζ, ��ζ = ∂ν�w = −∂γ �ζ on �, (9)

which implies ϒ(ζ ) = 0 according to (5).
Now, suppose that ζ ∈ C∞(�; C) and ϒ(ζ ) = 0. Then the function w := u�ζ +

iu�ζ is holomorphic in intM . Indeed, since ϒ(ζ ) = 0, we have (9), i.e., ∇g�w =
�∇g�w holds on �. Let U be an arbitrary neighborhood in M diffeomorphic to the
disc, and let ∂U ∩ � contain a segment �′ of non-zero length. Since ∂ν�w = u�ζ is
harmonic inU , there exists a function v such that∇gv = �∇g�w inU . Thus, ∂ν�w =
∂γ v and ∂νv = −∂γ �w on �′. Comparing with (9), we obtain v = �w+const, ∂νv =
∂ν�w on �′. So, v and �w + const are harmonic in U and have the same Cauchy data
on �′. Due to uniqueness of the solution to the Cauchy problem for the second order
elliptic equations, v coincides with �w + const in U , and ∇g�w = ∇gv = �∇g�w

in U . Since U is arbitrary, ∇g�w = �∇g�w holds in M , and w is holomorphic. So,
we have proved that Kerϒ coincides with the algebra A∞(�) of traces on � of all
holomorphic smooth functions on M . This yields i.
• Suppose that ζ1, ζ2 ∈ Kerϒ , ζ = ζ1/ζ2 ∈ C∞(�; C), and P(ζ ) ∈ Kerϒ , where P is
a polynomial of degree p ≥ 1. In view of the already proven, there exist holomorphic
functions w1, w2, wP such that w1|� = ζ1, w2|� = ζ2, and wP |� = P(ζ ). Then the
function w := w1/w2 is meromorphic in intM and w|� = ζ ∈ C∞(�; C). The last
implies that the poles of w do not accumulate to � and the number of them is finite.
The function P(w) is also meromorphic and its poles coincide with those of w, while
their multiplicities are p times greater than those of w. Since P(w) = P(ζ ) = wP on
�, the function P(w) coincides with wP outside the poles of w due to uniqueness of
analytic continuation. Then P(w) = wP everywhere on M . Thus, w is holomorphic
and its trace ζ belongs to Kerϒ . This proves ii.
• Recall that Kerϒ = A∞(�) coincides with the set A(�) of traces on � of all
holomorphic continuous functions. SinceA(�)∩C∞(�; C) = A∞(�), we obtain iii.

The property iv follows from the equality

dim(∂γ + �J�)C∞(�; R) = 1 − X (M) (10)

(see formula (1.6), [2]), where X (M) is the Euler characteristics of M .
• Suppose that η ∈ Kerϒ and z ∈ C\η(�). Then there exists the holomorphic in
intM function w0 such that w0|� = η. Denote by x1, . . . , xl all the zeroes of w0 − z
and by m1, . . . , ml their multiplicities. We make use of the argument principle2:

1

2π i

∫

�

∂γ η

η − ze
dγ =

l∑

k=1

mk . (11)

2 For a compact Riemannian surface with boundary, the argument principle can be obtained by simple
modification of the proofs of Theorem 3.17 and Corollary 3.18, [7].
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Since � is smooth, the manifold (M, g) can be embedded into a larger non-compact
smooth manifold (M ′, g′), g′|M = g. For each k = 1, . . . , l and s = 0, . . . , mk − 1,
choose a function wk,s holomorphic on M ′ and such that x1, . . . , xl are all zeroes of
wk,s on M ′ and multiplicity of x j is equal to s if j = k and to m j if j �= k. The
existence of such wk,s follows from Proposition 26.5 in [5]. The linear combination∑

k,s
ck,swk,s
w0−z has no poles in M only if all ck,s equal to zero. Denote ηk,s := wk,s |�;

then ϒη,z(
∑

k,s ck,sηk,s) = 0 only if all ck,s are zeros. Hence, the functions

ϒη,z(ηk,s), k = 1, . . . , l, s = 0, . . . , mk − 1 (12)

are linearly independent.
Now, suppose that w ∈ C∞(�; C) is holomorphic in M and ζ = w|� . For any

k = 1, . . . , l, there exist dk,s ∈ C (l = 1, . . . , mk) such that w − ∑
s dk,swk,s has

a zero of multiplicity not less than mk at x = xk . In view of this and the defini-
tion of wk,s , the function w − ∑

k,s dk,swk,s has a zero of multiplicity not less than

mk at each xk . Therefore, the ratio
w−∑

k,s dk,swk,s

w0−z is holomorphic in M and, hence,
ϒη,z(ζ −∑

k,s dk,sηk,s) = 0. Thismeans that (12) is a basis inϒη,zKerϒ . In particular,

dimϒη,zKerϒ = ∑l
k=1 mk . Comparing with (11), we arrive at v.

• Let x be an arbitrary point of �. According to Proposition 26.5, [5], there exists the
holomorphic in M ′ function wx such that x is unique zero of wx and its multiplicity is
equal to one. For any c ∈ C, the function wx − c has only finite number of zeros on M
(otherwise, there would be an accumulation point of such zeros due to the compactness
of M) and each zero ofwx −c is of finite multiplicity. This implies vi 1 for the function
ηx := wx |� ∈ Kerϒ .

Next, since ∇�wx (x) �= 0, the map wx : M → C is a bijection of a neighborhood
V0 of x and neighborhood wx (V0) of the zero, and |wx (x ′)| > 0 holds for any x ′ ∈
M ′\{x}. Let K be a compact in M ′ that contains M ∪ V0. Then the set K\V0 is also
compact and |wx (x ′)| > c0 > 0 for any x ′ ∈ K\V . Choose a neighborhood V1 ⊂ V0
sufficiently small to obey |wx (x ′)| < c0/2 for any x ∈ V1. Then the pre-image
w−1

x ({z}) of any z ∈ wx (V1) is contained in V0 and, since wx is a bijection of V0 and
wx (V0), it consists of a single element. Denote Ux := wx (V1), Ux,1 := Ux\wx (M),
and Ux,2 := Ux ∩ wx (M). The function 1

wx −z has no poles on M for any z ∈ Ux,1

and has a simple pole on M for any z ∈ Ux\Ux,1. Thus, ϒηx ,ze = ϒ( e
ηx −ze ) = 0 for

all z ∈ Ux,1 and ϒ( e
ηx −ze ) �= 0 for any z ∈ Ux,2. This yields vi 2.

Finally, suppose that w ∈ C∞(M; C) is holomorphic in M and ζ := w|� . If
z ∈ Ux,1 and c ∈ C, then the function w−c

wx −z is holomorphic in M . Hence, any c ∈ C

is a solution of (8). Now, suppose that z ∈ Ux,2. Since 1
wx −z has a simple pole at

the point w−1
x (z) and no other poles on M , the function w−c

wx −z is holomorphic in M

if and only if c = w(w−1
x (z)). So, (8) has a unique solution c = w(w−1

x (z)) for any
z ∈ Ux,1. This proves vi 3.
• Suppose that ζ, 1/ζ ∈ Kerϒ . Then ζ = w|� , where w, 1/w are holomorphic
functions in M . Let U be an arbitrary simply connected neighborhood in M . Since w

has no zeroes in U , each branch of logw is a holomorphic function in U . In particular,
log|w| = � logw is harmonic in U . In addition, log|w| is a single-valued function on
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the whole M . Then log|w| = ulog|ζ | is a solution of (3), (4) with f = log|ζ |. Hence,
∂ν log |w| = �log|ζ | on �. Now choose U in such a way that U ∩ � is a segment
�′ ⊂ � of nonzero length. Since each branch of logw is holomorphic inU and smooth
up to �′, it follows from Cauchy–Riemann conditions that

∂ν log|w| = ∂ν� logw = ∂γ � logw = ∂γ argw = ∂γ argζ

on �. Therefore, �log|ζ | = ∂γ argζ , i.e., vii does hold.
The necessity is proved.

Sufficiency

Here we assume that � obeys i–vii and construct a Riemannian surface (M, g) such
that its DN-map is �, i.e., � = �g holds. Before that, we recall some known facts
and definitions that will be used in the construction.
• A commutative Banach algebra is a (complex) Banach space (A, ‖ · ‖) equipped
with multiplication satisfying ηζ = ζη, ‖ηζ‖ ≤ ‖η‖‖ζ‖ for all η, ζ ∈ A. Algebra A
is unital if there exists e ∈ A such that eη = η holds for all η ∈ A. Element η ∈ A is
invertible if there exists η−1 ∈ A such that η−1η = e. The set of all z ∈ C, for which
η − ze is noninvertible, is called the spectrum of η and is denoted by SpAη, such a set
being compact.

A character of the commutative Banach algebra A is a nonzero homomorphism
χ : A �→ C. Each character χ is a continuous map: we have

|χ(η)| ≤ ‖η‖, η ∈ A. (13)

The set of characters Â is called the spectrum of the algebra A. For an η ∈ A, its
Gelfand transform η̂ : Â �→ C is defined as

η̂(χ) := χ(η), χ ∈ Â.

For any η̂, the image η̂(Â) ⊂ C coincides with the spectrum SpAη.
Spectrum Â is endowedwith the canonical Gelfand (∗-weak) topology, with respect

to which it is a compact Hausdorff space. The Gelfand transforms {η̂ | η ∈ A} consti-
tute a subalgebra in C(Â), which separates points of Â. The space Â is connected if
and only if there is no nontrivial idempotents η = η2, η �= 0, e in A.

A closed subset B ⊂ Â is called a boundary of A if maxB |η̂| = maxÂ |η̂| for
any η ∈ A. The intersection of all boundaries is called the Shilov boundary of A and
denoted by bA.

The key fact that we use in the proof of sufficiency is the fundamental Bishop–
Aupetit–Wermer analytic structure theorem.

Theorem 2 (see Theorem 2.2, [1] or Chapter 11, [9]) Assume that η ∈ A, the set
η̂(Â)\η̂(bA) is non-empty, and V is its connected component. Assume also that the set
{z ∈ V | � η̂−1({z}) < ∞} has nonzero Lebesgue measure. Then � η̂−1({z}) ≤ N < ∞
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for any z ∈ V and the subset η̂−1(V ) ⊂ Â has the structure of 1-dim complex analytic
manifold, on which all functions ζ̂ (ζ ∈ A) are holomorphic.

The rest of the proof of Theorem 1 is as follows.We construct a Riemann surface M
as the spectrum Â of some Banach function algebra A that is provided by conditions
i and iii. Then, using Theorem 2 and the condition v, we endow a part �η ⊂ Â with
the structure of Riemannian surface, and this part depends on the element η ∈ A. The
condition vi enables us, by varying the elements η ∈ A, to cover the whole spectrum
Â by parts �η and thus endow the Â with the structure of Riemannian surface. Due to
Theorem2, theGelfand transforms of elements ofA form a subalgebra in the algebra of
holomorphic smooth functions on M . By conditions ii and iv, this subalgebra coincides
with the set of all holomorphic smooth functions on M . As a consequence, we see
that � coincides with the DN-map of the surface M for all f = �w|� such that w

is holomorphic on M . The set of such f is of finite codimension. To check that �

coincides with the DN-map of M on all other functions from C∞(�; R), we use the
remaining condition vii.

So, we proceed to prove the sufficiency of the conditions of Theorem 1.
• In view of i, the set Kerϒ is a unital (sub)algebra in C(�; C). The closure

A := Kerϒ ⊂ C(�; C)

is a unital commutative Banach algebra with the norm ‖ ζ ‖:= max� |ζ |. We denote
its spectrum Â by M . Recall that M is a compact Hausdorff space. In addition, M
is connected: indeed, if η2 = η on �, then η(x) = 0 or 1 for any x ∈ �; since η is
continuous and � is connected, this means that either η = 0 or η = 1. Note that the
set of smooth elements of A coincides with Kerϒ due to property iii.

The set δ� := {δx | x ∈ �} of the Dirac measures δx (ζ ) := ζ(x) is a subset of M .
In view of (13) and the definition of the norm ‖ · ‖, we have |η̂(χ)| = |χ(η)| ≤ ‖η‖ =
maxx∈� |δx (η)| for any χ ∈ M and η ∈ A. Hence, δ� is a boundary of A and thus it
contains the Shilov boundary bA of A.
• Our first goal is to endow M\δ� with the structure of an analytic manifold by means
of Theorem 2. To verify the conditions of Theorem 2, we prove that η̂−1({z}) is finite
for any η ∈ Kerϒ = A ∩ C∞(�; C) and z ∈ η̂(Â)\η(�). The proof is based on
a bijection between the characters from η̂−1({z}) and the characters over a certain
finite-dimensional factor-algebra Aη,z which is constructed below. Let us get down to
implementation of this plan.

Let η ∈ Kerϒ and z ∈ C\η(�); then the function η − ze is invertible in C∞(�; C)

(but not necessarily inA). Consider the main ideal Iη,z := (η− ze)A inA. It is closed
in A: indeed, if ζk ∈ Iη,z (i.e.,

ζk
η−ze ∈ A) and ζk → ζ in C(�; C), then ζk

η−ze → ζ
η−ze

in C(�; C) since 1
η−ze ∈ C∞(�; C). Therefore we have ζ

η−ze ∈ A and ζ ∈ Iη,z .
Since Kerϒ is dense inA, the set I∞

η,z := (η− ze)Kerϒ is dense in Iη,z . The function

ζ ∈ Kerϒ belongs to I∞
η,z if and only if 0 = ϒ(

ζ
η−ze ) = ϒη,z(ζ ).

Introduce the factor-algebra

Aη,z := A/Iη,z
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with the factor-norm ‖ζ + Iη,z‖η,z := inf ζ̃∈Iη,z
‖ζ + ζ̃‖; here and in what follows we

denote by ζ + Iη,z the equivalence class in Aη,z of element ζ ∈ A. Due to definition
of the factor-norm and the equality Kerϒ = A, the set A∞

η,z := {ζ + Iη,z | ζ ∈ Kerϒ}
is dense in Aη,z . Let us prove that the algebra Aη,z is finite-dimensional. To this end,
we consider a linear map Gη,z : A∞

η,z �→ C∞(�; C) defined by the rule

Gη,z(ζ + Iη,z) = ϒη,z(ζ ).

The map Gη,z is well-defined and its kernel is trivial. Indeed, if ζ1+Iη,z = ζ2+Iη,z ∈
A∞

η,z , then ζ1 − ζ2 ∈ Iη,z ∩C∞(�; C) = I∞
η,z and ϒη,z(ζ1)−ϒη,z(ζ2) = 0. Similarly,

if Gη,z(ζ + Iη,z) = 0, then ϒη,z(ζ ) = 0 and thus ζ ∈ I∞
η,z ⊂ Iη,z , i.e., ζ + Iη,z is

the zero element in Aη,z . Note that Gη,zA
∞
η,z = ϒη,zKerϒ . Since the map Gη,z is a

bijection of A∞
η,z and Gη,zA

∞
η,z , we have

dimA∞
η,z = dim[ϒη,zKerϒ].

In view of condition v, the right-hand side is equal to the integral

1

2π i

∫

�

∂γ η

η − ze
dγ .

Since the functions η and 1
η−ze are smooth, this integral is finite. So, dimA∞

η,z is finite
and, since A∞

η,z is dense in Aη,z , we have

dimAη,z = 1

2π i

∫

�

∂γ η

η − ze
dγ .

Note that the right-hand side is the winding number d(z) of the image η(�) ⊂ C with
respect to the point z; this number depends only on the connected component V of
C\η(�) that contains z. If d(z) = 0, then dimAη,z = 0 and e ∈ Iη,z = A. This means
that η − ze is invertible in A and z /∈ SpAη = η̂(M). Thus,

η̂(M)\η(�) = {z ∈ C\η(�) | d(z) > 0}.

• Now, we show that the set η̂−1({z}) is finite, z ∈ V being the same as before. Let
χ̃ be a character on the algebra Aη,z ; then the rule

χ(ζ ) := χ̃(ζ + Iη,z) (14)

defines a character χ ∈ M that vanishes on Iη,z . Hence, we have χ(η − ze) = 0
and χ(η) = z. Conversely, suppose that χ ∈ M and χ(η) = z (then, obviously,
χ(Iη,z) = {0}). Then the same rule (14) defines the character χ̃ on Aη,z . Thus, we
have

� Âη,z = � η̂−1({z}). (15)
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Suppose that χ̃1, . . . , χ̃N are the distinct characters in Âη,z . Since the Gelfand trans-
forms of the elements ζ +Iη,z ∈ Aη,z separate the points of Âη,z , there exists ζi j ∈ A
such that χ̃i (ζi j + Iη,z) = 1 and χ̃ j (ζi j + Iη,z) = 0. Denote qi := � j �=i (ζi j + Iη,z),
then χ̃ j (qi ) = δi j . In particular, qi , i = 1, . . . , N , are linearly independent in Aη,z .
Therefore, N ≤ dimAη,z = d(z). So, we see that � Âη,z ≤ d(z) and, by (15), we
conclude that � η̂−1({z}) ≤ d(z) < ∞.
• Suppose that z ∈ η̂(M)\η(�) (to obtain η̂(M)\η(�) �= ∅, we can take η = ηx

for any function ηx obeying vi1). Denote by V the connected component of C\η(�)

that contains z. Obviously, V is open and, hence, it has a nonzero Lebesgue measure.
Moreover, 1 ≤ d(z) < ∞ and d(z′) = d(z) is valid for any z′ ∈ V . For such a z′, the
dimension d(z′) of algebraAη,z′ is finite and nonzero. Hence, Iη,z′ �= A, i.e., η− z′e is
noninvertible. Therefore z′ ∈ η̂(M) and, thus, the embedding V ⊂ η̂(M)\η(�) holds.

Since η(�) = η̂(δ�) and bA ⊂ δ� , the set V does not intersect with η̂(bA). In
view of Theorem 2, the set η̂−1(V ) ⊂ Â has the structure of 1-dim complex analytic
manifold on which all functions ζ̂ (ζ ∈ A) are analytic. Thus, for any character
χ ∈ η̂−1(V ) there exist an open (in the Gelfand topology) neighborhood U � χ and a
homeomorphism κ : U → D onto an open disk D ⊂ C such that any function ζ̂ ◦κ−1

(ζ ∈ A) is holomorphic on D. In other words, every χ ∈ η̂−1(V ) does possess a local
analytic coordinate η̂.

As a result, we can represent the spectrum M as the following disjoint union:

M = M ′ ∪ δ� ∪ M̃,

where

M ′ :=
⋃

η∈Kerϒ
η̂−1(C\η(�))

is the set of characters that can be provided with the local coordinate by the choice of
a suitable η ∈ Kerϒ , and M̃ := M\(M ′ ∪ δ�).
• Let us show that M̃ = ∅. Suppose, on the contrary, that χ ∈ M̃ and η satisfies
condition vi 1 (as such η, we can choose any ηx from vi). Then, z := η̂(χ) ∈ η(�)

and the set δ� ∩ η̂−1({z}) = {δx | η(x) = z} is finite. Denote all characters from δ� ∩
η̂−1({z}) by δx1 , . . . , δxl . Choose ηxk from condition vi in such a way that ηxk (xk) = z
(this condition can always be satisfied since ηx in vi are determined up to a constant). In
viewof vi 3, any ζ ∈ Kerϒ can be represented as ζ = cζ,ke+ζ ′

k , whereϒηxk ,z(ζ
′
k) = 0.

Then ζ̃ ′
k := ζ ′

k
ηxk −ze belongs to Kerϒ = A ∩ C∞(�; C), whence ζ ′

k(xk) = 0 and

cζ,k = ζ(xk). Thus, ζ = ζ(xk)e + (ηxk − ze)ζ̃ ′
k with ζ̃ ′

k ∈ Kerϒ and we have

χ(ζ ) − ζ(xk) = [χ(ηxk ) − z] χ(ζ̃ ′
k).

In particular, if χ(ηxk ) = z, then χ coincides with δxk on the dense set Kerϒ inA and,
hence, on the whole A. Thus, the embedding χ ∈ M̃ shows that χ(ηxk ) �= z for any
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k = 1, . . . , l. Then the element

θ =
l∏

k=1

[ ηxk − ηxk (xk) e ]

satisfies χ(θ) �= 0 and θ(xk) = 0 for any k = 1, . . . , l.
Denote

ηε,ϕ := η + ε2eiϕχ(θ)−1θ,

where ε > 0 and ϕ ∈ [0, 2π). Due to condition vi 1, the function η − ze has a zero of
multiplicity not more than m < ∞ at each xk , and there are no other zeros of η − ze
on �. Thus, the pre-image η−1(Bε) of the ε−neighborhood Uε of z is contained in
O(ε1/m)-neighborhood of the set {x1, . . . , xl} in �. Therefore,

|ηε,ϕ(x) − η(x)| = ε2|χ(θ)−1θ(x)| = ε2| θ(xk) + O(dist{x, xk})|
= ε2|0 + O(ε1/m)| = O(ε2+1/m), (16)

where xk is chosen to be the nearest point to x . For x ∈ �\η−1(Bε),we have |η(x)| ≥ ε,
whence

|ηε,ϕ(x)| = |η(x) + ε2O(1)| ≥ ε − O(ε2). (17)

Estimates (16),(17) show that, for sufficiently small ε, the set Bε/2 does not intersect
with the fragment ηε,ϕ(�\η−1(Bε)) of ηε,ϕ(�) while the fragment ηε,ϕ(η−1(Bε)) is
contained in O(ε2+1/m)−neighborhood of η(η−1(Bε)). Thus, it is possible to choose
ε and ϕ such that η̂ε,ϕ(χ) = χ(ηε,ϕ) = z + ε2eiϕ /∈ ηε,ϕ(�). This means that
χ ∈ η̂−1

ε,ϕ(C\η(�)) ⊂ M ′, so that we arrive at the contradiction and prove that M̃ = ∅.
• Now, we endow δ� with coordinates. Let δx (x ∈ �) be an arbitrary character from
δ� . Consider the map

η̂x : η̂−1
x (Ux ) �→ C,

where ηx , Ux are the same as in condition vi. Due to condition vi 2, for any z from
one connected component Ux,1 of Ux\ηx (�) we have 1

ηx −ze ∈ Kerϒ ⊂ A. Hence
z /∈ SpAηx = η̂x (M). Now, suppose that z ∈ Ux\Ux,1 is arbitrary and ζ ∈ Kerϒ . By
vi 2, we have 1

ηx −ze /∈ Kerϒ , i.e., either z ∈ ηx (�) or 1
ηx −ze is smooth on � and does

not belong to A. Thus, z ∈ SpAηx = η̂x (M). In addition, due to vi 3, there exists a
unique cζ,z ∈ C such that

ζ − cζ,ze

ηx − ze
=: ζ̃z ∈ Kerϒ ⊂ A. (18)
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By the same reason, there exists a unique c′
ζ,z ∈ C such that

ζ̃z − c′
ζ,ze

ηx − ze
=: ζ̃ ′

z ∈ Kerϒ ⊂ A. (19)

If χ ∈ η̂−1
x ({z}), then we have

ζ̂ (χ) = χ(ζ ) = χ(cζ,ze + (ηx − ze)ζ̃z) = cζ,z + (χ(ηx ) − z)χ(ζ̃z)

= cζ,z + (η̂x (χ) − z)χ(ζ̃z) = cζ,z .
(20)

Since ζ ∈ Kerϒ is arbitrary andKerϒ is dense inA, (20) means that χ(ζ ) = χ ′(ζ ) for
any χ, χ ′ ∈ η̂−1

x (z) and ζ ∈ A. Thus, � η̂−1
x ({z}) = 1 and the map η̂x : η̂−1

x (Ux ) �→
Ux\Ux,1 is a bijection. In addition,

cζ,z = ζ̂ ◦ η̂−1
x (z) = [η̂−1

x (z)](ζ )

and z �→ cζ,z is a bounded function on Ux\Ux,1 due to (13). By the same reason, for
fixed z ∈ Ux\Ux,1, the function

z′ �→ [η̂−1
x (z′)](ζ̃ ′

z)

is also bounded on Ux\Ux,1. Now, (18) implies

cζ,z′ = [η̂−1
x (z′)](ζ ) = [η̂−1

x (z′)](cζ,ze + (ηx − ze)ζ̃z)

= cζ,z + (z′ − z)[η̂−1
x (z′)](ζ̃z).

Hence, the function z �→ cζ,z is continuous on Ux\Ux,1. In view of (19),

cζ,z′ − cζ,z

z′ − z
= [η̂−1

x (z′)](ζ̃z) = [η̂−1
x (z′)](c′

ζ,ze + (ηx − ze)ζ̃ ′
z)

= c′
ζ,z + (z′ − z)[η̂−1

x (z′)](ζ̃ ′
z).

Therefore, there exists lim
z′→z

cζ,z′−cζ,z

z′−z = c′
ζ,z . So, it is proved that, for any ζ ∈ Kerϒ ,

the function z �→ cζ,z = ζ̂ ◦ η̂−1
x (z) is holomorphic on Ux\Ux,1 and continuous

on Ux\Ux,1. By the definition of the Gelfand topology, the map ηx : η̂−1
x (Ux ) �→

Ux\Ux,1 is homeomorphism. So, any character δx ∈ δ� is coordinatizable in the
following sense: there exists a neighborhood V := η̂−1

x (Ux ) (in the Gelfand topology)
of δx and the local coordinate η̂x : V �→ Ux\Ux,1 in which all functions ζ̂ (ζ ∈
Kerϒ) are holomorphic on Ux\Ux,1 and continuous up to the (smooth) curve Ux ∩
ηx (�). Note that, in view of vi 1, the map η−1(Ux ) � x ′ → (�ηx (δx ′),�ηx (δx ′) is a
diffeomorphism.
• We have proved above that for each character χ ∈ M there exist an open neighbor-
hood Vχ and a homeomorphism κχ : Vχ �→ Uχ ⊂ C such that
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1. the set U ′
χ := κχ(Vχ\χ(δ�)) is open,

2. Uχ\U ′
χ ⊂ ∂Uχ is empty or it is the fragment of smooth curve,

3. each function ζ̂ ◦ κ−1
χ (ζ ∈ Kerϒ) is holomorphic on U ′

χ and continuous differ-
entiable up to U ′

χ ⊂ ∂Uχ .

Now, we construct a biholomorphic atlas on M using {Vχ , κχ }χ∈M . The collection
{Vχ }χ∈M is an open cover of M and, since M is compact, there exists a finite subcover
{Vχk

}L
k=1. Denote Vk := Vχk

and κk := κχk
. Suppose that Vk ∩ Vl �= ∅ and denote

Wk := κk((Vk ∩ Vl)\δ�), Wl := κl((Vk ∩ Vl)\δ�). Choose an arbitrary nonconstant
ζ ∈ Kerϒ (for example, one of ηx from condition iii), then ζ̂ ◦ κ−1

k , ζ̂ ◦ κ−1
l are

holomorphic on Wk and Wl , respectively. In particular, any zero of ∇�(ζ̂ ◦ κ−1
k ) on

Wk is isolated. If κk(χ) ∈ Wk does not coincide with zero of ∇�(ζ̂ ◦ κ−1
k ), then there

exists the neighborhood V ′ of χ such that ζ ◦ χ−1
k : κk(V ′) �→ ζ ◦ χ−1

k (W ′) is
biholomorphic map. So, the function

κk ◦ κ−1
l = κk ◦ ζ−1 ◦ ζ ◦ κl = (ζ ◦ κ−1

k )−1 ◦ (ζ ◦ κ−1
l )

is holomorphic on κl(V ′). So, κk ◦ κ−1
l is holomorphic on Wl except for only some

isolated points. Since κk ◦κ−1
l is continuous on Wl , we find that κk ◦κ−1

l is holomorphic
on the whole Wl . The same reasoning shows that κl ◦ κ−1

k is holomorphic on Wk

and, thus, the transition function κk ◦ κ−1
l is biholomorphic. So, we have proved

that {Vk := Vχk , κk := κχk }L
k=1 is a biholomorphic atlas on M . Endowed with this

atlas, M is a Riemann surface with boundary δ� . Moreover, the map δ : x �→ δx is a
diffeomorphism from � to δ� . In what follows, we identify � and δ� by means of the
map δ.
• Now, we introduce a metric g and a rotation � on M that are consistent with the
metrics and the tangent fieldγ on�. Endow M with themetric tensor g′ = ∑L

k=1 ψk gk ,

where gi j
k = δi j in local coordinates κk , and {ψk}L

k=1 is a partition of unity on M :

ψk ◦ κ−1
l is smooth for any l, ψk ≥ 0, suppψk ⊂ Vk , and

∑L
k=1 ψk = 1. Since the

transition functions are biholomorphic, the tensor g′ is of the form
∑L

k=1 ψk |∇�(κk ◦
κ−1

l )|2δi j in any local coordinates κk . Tensor g′ induces a new metrics dγ ′ = q(x)dγ

on� ≡ δ� , where the function q > 0 is smooth on� due to condition vi 1. Introducing
a smooth conformal multiplier ρ, such that ρ = q−1 on �, we obtain the new metric
tensor g = ρg′ which is consistent with the original metric on �.

Choose a continuous family of rotations {�x ∈ EndTx M | x ∈ M},

g(�x a,�x b) = g(a, b), g(�x a, a) = 0, ∀a, b ∈ Tx M, x ∈ M

such that �1
1 = �2

2 = 0, �1
2 = −�2

1 = 1 in local coordinates x1 = �κk , x2 = �κk .
For any k and ζ ∈ Kerϒ , the function ζ̂ ◦ κk is holomorphic, whence

∇�ζ̂ = �∇�ζ̂ in M\�. (21)

So, any function ζ̂ (ζ ∈ Kerϒ) is holomorphic on M\� (in the sense of Cauchi–
Riemann conditions (21)) and continuous up to �. In particular, any functions u = �ζ̂
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and v = �ζ̂ are harmonic in M\� and continuous up to �. Let us show that u, v are
smooth up to �. Denote by u f and uh the solutions to (3), (4) with f = �ζ and
h = �ζ ; these solutions are smooth because ζ ∈ C∞(�; C). Since ζ̂ = ζ on �, the
functions u − u f , v − vh are harmonic in M\�, continuous up to � and have zero
traces on �. Thus, due to the maximum principle, u = u f , v = uh , and ζ̂ = u f + iuh

is smooth up to �.
Let ν be the outward normal on�. Thenγ ′ = �ν is the tangent field on� and, hence,

it coincides with sγ , where s = 1 or−1. Choose some η ∈ Kerϒ and z ∈ SpAη\η(�),
then η̂ − ze have at least one zero on M . Consider the integral

∫

�

1

2π i

∂γ ′ η̂

η̂ − z
dγ = s

∫

�

1

2π i

∂γ η

η − ze
dγ.

In view of the argument principle, the integral in the left-hand side coincides with the
number of zeroes of η̂ counted with their multiplicities, and, thus, it is positive. The
integral in the right-hand side is positive in view of (7). Therefore, s = 1 and γ = γ ′.
• Suppose that f ∈ Ker(∂γ + �J�). Denote h := J� f (= J�J∂γ f ) and ζ =
f + ih. Then ∂γ h = � f , ∂γ f = −�h and, hence, ζ ∈ Kerϒ . The proved above
implies �ζ̂ = u f , �ζ̂ = uh , where u f , uh are solutions to (3), (4). In particular,
∂νu = �g f , where �g is the DN-map of the above constructed (M, g). Moreover,
the Cauchy–Riemann condition (21) holds. Passing in (21) to the trace on�, we obtain

�g f = ∂νu f = ∂γ h = � f , ∂νuh = −∂γ f .

Since f is arbitrary, we have proved that Ker(∂γ + �J�) ⊂ Ker(∂γ + �g J�g) and
� f = �g f for any f ∈ Ker(∂γ + �J�).
• Let us show that Ker(∂γ + �J�) = Ker(∂γ + �g J�g). By iv, the dimension q
of the factor-space Ker(∂γ + �g J�g)/Ker(∂γ + �J�) is finite. In view of (5), we
have

Kerϒ = { f + i J� f + ic | f ∈ Ker(∂γ + �J�), c ∈ R}. (22)

Denote by A∞ the algebra of traces of all holomorhic smooth functions on M ; obvi-
ously, Kerϒ is a subalgebra of A∞. From Cauchy–Riemann conditions on �, the
representation

A∞ := { f + i J� f + ic | f ∈ Ker(∂γ + �g J�g), c ∈ R}

is valid. Comparison of the last two formulas shows that the algebra A∞ is a
finite-dimensional extension of the algebra Kerϒ , and dimension of the factor-space
A∞/Kerϒ is equal to q.
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Suppose that q > 0 and choose the elements θ1, . . . , θq ∈ A∞ linearly independent
modulo Kerϒ . Then any θ ∈ A∞ can be represented as

θ =
q∑

k=1

ck(θ)θk + θ̃ , (23)

where cq(θ) ∈ C and θ̃ ∈ Kerϒ . Take any nonconstant η ∈ Kerϒ . Representation
(23) implies

ηθl =
q∑

k=1

Tkl θk + θ̃l , (24)

where T is a complex q × q−matrix and θ̃l ∈ Kerϒ . Choose an arbitrary eigenpair
λ, X = (X1, . . . , Xq) tr of T and denote

� :=
∑

k

Xlθl , �̃ :=
q∑

l=1

Xl θ̃l .

Relation (24) yields

η� =
q∑

l=1

Xlηθl =
q∑

k=1

( q∑

l=1

Tkl Xk

)

θk = λ

q∑

k=1

Xkθk +
q∑

l=1

Xl θ̃l = λ� + �̃.

Note that η−λe does not vanish identically on any segment �′ of� of non-zero length
(indeed, since η̂ is holomorphic and smooth on M , the equality η = λe on �′ implies
η = λe on the whole �). So,

� := �̃

η − λe
(25)

holds on �, where both numerator and denominator are elements of Kerϒ . Note that
X �= 0 and � /∈ Kerϒ . Similarly, representation (23) yields

�l =
q∑

k=1

Nklθk + �̃l , l = 1, . . . , q, (26)

where N is a complex q × q−matrix and �̃l ∈ Kerϒ .
If detN = 0, then there exists a non-zero Y = (Y1, . . . , Yq)tr ∈ KerN and the

polynomial P(�) = ∑q
l=1 Yl�

l admits the following representation

P(�) =
q∑

k=1

( q∑

l=1

NklYl

)

θk +
q∑

l=1

Yl�̃l = 0 +
q∑

l=1

Yl�̃l .
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Therefore P(�) ∈ Kerϒ and, due to (25) and condition ii, we have� ∈ Kerϒ , which
leads to a contradiction.

If detN �= 0 and N ′ is the matrix inverse to N , then (26) implies

θs −
q∑

l=1

N ′
ls�

l =
q∑

l=1

N ′
ls�̃l ∈ Kerϒ.

This means that �,�2 . . . , �q are linearly independent modulo Kerϒ . So, we can
assume that θk = �k . Now, formula (23) provides

R(�) := �q+1 −
q∑

k=1

ckθk ∈ Kerϒ,

where ck ∈ C. Since the polynomialR is of degree q + 1 > 0, the inclusionR(�) ∈
Kerϒ , formula (25) and condition ii yield � ∈ Kerϒ . This contradiction means that
A∞ = Kerϒ and q = 0. Thus, it is proved that Kerϒ is the algebra of traces of all
holomorhic smooth functions on M and Ker(∂γ + �J�) = Ker(∂γ + �g J�g). In
particular, from (10) it follows that dim(∂γ + �J�)C∞(�; R) = 1−X (M), where
X (M) is the Euler characteristic of M .
• Thus, we have proved that � coincides with DN-map �g of the surface (M, g) on
the subspace

K := Ker(∂γ + �J�) = Ker(∂γ + �g J�g) (27)

of codimension r := 1 − X (M) in C∞(�; R). To complete the proof of sufficiency,
it remains to show that � f1 = �g f1, . . . , � fr = �g fr , where f1, . . . , fr are some
functions from C∞(�; R) linearly independent modulo K. Before that, recall the
terminology associated with vector fields on the Riemannian manifolds and some
well-known facts.

The vector fields are the T Mx -valued functions on M (the sections of T M). A field
of the form b = ∇gϕ is called potential, ϕ being a potential. A field a is harmonic if
divg a = divg(�a) = 0 holds. The rotation � preserves harmonicity. Each harmonic
field is locally potential. If b = ∇gϕ is harmonic then the potential ϕ is a harmonic
function: 
gϕ = 0, the opposite being also true.

So, let f1, . . . , fr be linearly independentmoduloK. Denote the solution of problem
(3), (4) with f = f j by u j . The vector fields a j := �∇gu j are harmonic in M . Note
that any non-zero linear combination of a j is not a potential field in M . Indeed, if∑r

j=1 c j a j = ∇gv, then the function w := u + iv, where u := ∑r
j=1 c j u j , is

holomorphic in M . Then w|� ∈ A∞(M) = Kerϒ and �w|� = ∑r
j=1 c j f j ∈ K in

view of (22). Since fk are linearly independent modulo K, all c j equal zero.
Although a j are not potential on M , they can be represented as gradients of some

multi-valued functions Vj which are defined on an appropriate covering M of the
surface M . The covering M is constructed in the following way. Let D be a surface
diffeomorphic to an open disk inR

2 and such that ∂D = �. Identifying the boundaries
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of M and D, we obtain the closed compact surface M ′ = M ∪ D of genus

gen M ′ = 1 − X (M ′)
2

= 1 − X (M) + 1

2
= r

2
.

It is well known that the metric tensor g and rotation � on M can be extended to the
(smooth) metric tensor g′ and rotation �′ on the whole M ′.

Let M′ be the universal covering of M ′ (see, for definition, §5, [5]), that is a simply
connected Riemann surface, and let π ′ : M

′ �→ M ′ be the projection, that is a local
homeomorphism. Tensor g′ and rotation �′ on M ′ induce the tensor g′ := π ′∗g′ and
the rotation �̃ := π ′∗�′ on M

′. As a result, π ′ : (M′, g′) �→ (M ′, g′) turns out
to be a local isometry. At last, we get the required covering for (M, g,�) as the
collection (M, π, g, �̇), where M := M

′\π ′ −1(D) is the surface with the boundary
∂M = π ′ −1(�), g := g′|M, �̇ := �̃|M, and π := π ′|M.

Recall that the solutions u j and fields a j correspond to the functions f1, . . . , fr
which are linearly independent modulo K (see (27)). Introduce the vector fields A j :=
π∗a j = �̇∇g(u j ◦ π) and the functions Vj on M such that

Vj (x) =
∫

L
g(A j , l) dl ∈ R,

where L is an arbitrary curve in M that connects a fixed point x0 ∈ M with a point x .
In what follows, we denote by l and dl the unit tangent vector and the length element
on the curve, respectively. Since M = M

′\π ′ −1(D) is no longer simply connected,
we need to check that Vj are single-valued on M. To this end, it suffices to show that∫
�̃
g(A j , l) dl = 0 for any connected component �̃ of π −1(�). Since �̃ is isometric

to �, we need to check only that
∫
�

g(a j , γ ) dγ = 0. By the Green formula, we have

∫

�

g(a j , γ ) dγ =
∫

�

g(�∇gu j , γ ) dγ =
∫

�

∂νu j dγ =
∫

M

gu j dx = 0

in view of harmonicity of u j . So, we have constructed the functions Vj such that
∇gVj = A j = �̇∇g(u j ◦ π) holds on M. This means that the functions

W j := u j ◦ π + i Vj , j = 1, . . . , r (28)

are holomorphic on (M, g), whereas the Cauchy–Riemann conditions ∇g�W j =
�̇∇g�W j hold.
• We are going to show that the functions f1, . . . , fr can be chosen in such a way
that eW j = w j ◦ π , where w j are holomorphic functions in M .

Introduce the groups

Deck(M/M) := {φ | φ is automorphism of M, π ◦ φ = π},
Deck(M′/M ′) := {φ′ | φ is automorphism of M

′, π ′ ◦ φ′ = π ′}
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of fiber-wise automorphisms ofM andM
′, respectively (see, e.g., [5], 5.4). Obviously,

if φ′ ∈ Deck(M′/M ′), then φ′|M ∈ Deck(M/M). Conversely, if φ ∈ Deck(M/M),
then it can be lifted to φ′ ∈ Deck(M′/M ′) such that φ′|M = φ. Indeed, if x belongs
to a connected component D̃ of π ′ −1(D), then φ′(x) is uniquely determined by its
projection π ′(φ′(x)) = π ′(x) and by the fact that the boundary of the connected
component of π ′ −1(D) containing φ′(x) must coincide with φ(∂D̃). So, the map
φ′ �→ βφ′ = φ′|M is an isomorphism of the groups Deck(M′/M ′) and Deck(M/M).

Denote by π1(M ′) the fundamental group of M ′ and by [L] the homotopy class
of a closed curve L in M ′. In view of Proposition 5.6, [5], the groups π1(M ′) and
Deck(M′/M ′) are isomorphic. The isomorphism

α : Deck(M′/M ′) �→ π1(M ′)

is constructed as follows. Let φ′ ∈ Deck(M′/M ′). Choose an arbitrary point x ∈ M
′

and a curve Lφ′ which connects x to φ′(x). Then π ′(Lφ′) is a closed curve in M ′ due
to the equality π ′(φ′(x)) = π ′(x). It turns out that the homotopy class [π ′(Lφ′)] of the
curve π ′(Lφ′) does not depend on the choice of Lφ′ and x . The required isomorphism
α is defined by the rule

α(φ′) := [π ′(Lφ′)].

The map α ◦ β−1 is an isomorphism of groups Deck(M/M) and π1(M ′).
Since M ′ is a surface of the genus genM ′ = r/2, there are 2 genM ′ = r gener-

ators [L1], . . . , [Lr ] of the fundamental group π1(M ′). Note that, since D is simply
connected, we can deform the curves L j , preserving their homotopy class, in such
a way that any L j does not intersect D. Thus, we assume that L1, . . . , Lr ⊂ M .
Since the groups Deck(M/M) and π1(M ′) are isomorphic, the automorphisms
φ j := β ◦ α−1([L j ]), j = 1, . . . , r , generate the group Deck(M/M). Therefore,
a function V on M can be represented as V = v ◦ π if and only if V ◦ φ j = V ,
j = 1, . . . , r .
Suppose that V is a function on M such that ∇gV = A := π∗a, where a is a vector

field on M . Then

V (φ j (x)) − V (x) =
∫

L j

g(A, l) dl,

where L j connects x to φ j (x). Since the field A = π∗a is invariant under action of
the group Deck(M/M), the right-hand side does not depend on x and we can choose
L j to provide π(L j ) = L j . Then the difference V (φ j (x)) − V (x) is equal to

Tj (a) :=
∫

L j

g(a, l) dl.

Thus, V = v ◦ π and a = ∇gv if and only if T1(a) = · · · = Tr (a) = 0.
Introduce the r × r -matrix T with entries Ti j = Ti (a j ). Recall that any non-

zero linear combination
∑r

j=1 c j a j is not potential field in M . This means that all
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Ti (
∑r

j=1 c j a j ) = ∑
j Ti j c j are zero if and only if c1 = · · · = cr = 0. Thus, T is

invertible. Denote f ′
s := 2π

∑r
l=1 Rls fl , where R = T −1. Then f ′

1, . . . , f ′
r are linear

independent modulo K. Introduce the following new functions

V ′
s = 2π

r∑

l=1

Rls Vl , W ′
s = 2π

r∑

l=1

Rls Wl ,

that are determined by f ′
s in the same way as Vs and Ws are determined by fs (see

(28)). Then ∇gV ′
s = 2π

∑r
l=1 Rls Al = π∗a′

s , where a′
s = 2π

∑r
l=1 Rlsal and

Tj (a
′
s) = 2π

r∑

l=1

Tjl Rls = 2πδ js

holds. By the latter, we have

V ′
s ◦ φ j − V ′

s = W ′
s ◦ φ j − W ′

s = 2πδ js, j = 1, . . . , r .

Hence,

eW ′
s◦φ j = eW ′

s

for any j, s = 1, . . . , r . Thismeans that eW ′
s can be represented as eW ′

s = ws ◦π , where
ws is a function on M . Since W ′

s is holomorphic in M, the function ws is holomorphic
in M . Replacing fs by f ′

s (what is the same, omitting ‘prime’ everywhere in the
notation), we obtain eW j = w j ◦ π .

So, we have constructed the functions f1, . . . , fr with the properties claimed at the
beginning of the paragraph.
• Since w j is holomorphic on M , the function ζ j := w j |� is an element of Kerϒ .
We have

log|w j (π(x))| = �W j (x) = u j (π(x)), x ∈ M.

In particular,

log|w j | = u j and log|ζ j | = f j

holds on M and � respectively.
Since W j is holomorphic on M, the Cauchy–Riemann conditions yield

(∂νu j ) ◦ π = ∂ν(u j ◦ π) = ∂ν �W j = ∂γ �W j = ∂γ � log(w j ◦ π)

= ∂γ arg(w j ◦ π) = (∂γ argw j ) ◦ π

on π−1(�). This means that

�g f j = ∂νu j = ∂γ argζ j (29)
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holds on �. In the mean time, condition vii implies

� f j = � log|ζ j | = ∂γ argζ j . (30)

Comparing (29) and (30), we obtain � f j = �g f j for any j = 1, . . . , r . Together
with what was proved above, this means that � = �g and, hence, � is the DN-map
of the surface (M, g).

The sufficiency of the conditions i–vii is established.
Theorem 1 is proved.
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