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Abstract
In this paper, we discuss the necessary and sufficient conditions for a polynomial
P(z) to have all its zeros inside the open unit disc. These results involve two asso-
ciated polynomials namely, the derivative of the reciprocal polynomial of P(z) and
the reciprocal of the derivative of P(z). We also derive some generalizations of the
classical Theorem of Laguerre.
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1 Introduction and statements of results

In the literature, we can find a category of problems concerning the regions, mostly
circular or annular, containing all the zeros of a polynomial. A classic solution to such
a problem was first obtained by Cauchy [1], and subsequently, many related results
appeared in the literature (see [13]). One such problem is to study, when and what
class of polynomials has all their zeros in or outside a circular region.

Let P(z) be a polynomial of degree n and z0 be a complex number, and let r > 0.
Then it is quite interesting to study the conditions on which P(z) has some or all
its zeros or no zeros in the disc |z − z0| ≤ r . For detailed information, we refer to
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the monograph by Marden [13]. By means of a suitable linear transformation, these
problems can be reduced to the study of zeros in the unit disc centered at the origin. In
other words, the number of zeros of P(z) in |z − z0| ≤ r equals the number of zeros
of the polynomial P∗(z) = P(z0 + r z) satisfying |z| ≤ 1. In this context, the study
of location of zeros with respect to the unit disc is quite natural and simpler.

The location of zeros has been vastly studiedwithmore focus on finding the number
of zeros in a given domain. But we could not find any exclusive work on a necessary
and sufficient condition for a polynomial to have all its zeros in the unit disc except
the famous Schur–Cohn algorithm [2,14] which is very often used to decide whether
a given polynomial is free of zeros in the closed unit disc. The Schur–Cohn algorithm
with some additional hypotheses can also be used to determine the number of zeros
in a circular region. Most of the results in this direction have used coefficients as the
main parameters. The Eneström-Kakeya Theorem [5] and its generalizations like the
one given by Govil and Rahman [7] are the classic and significant examples of this
kind. In this paper, we derive two results on the necessary and sufficient conditions
for a polynomial P(z) to have all its zeros in the open unit disc in terms of a simple
inequality involving the derivative of the reciprocal of a polynomial P(z) and the
reciprocal of the derivative of the polynomial P(z).

Theorem 1.1 Let P(z) = a0 + a1z + · · · + anzn be a polynomial of degree n. If P(z)
has all its zeros in |z| < 1 then on |z| = 1,

|R(z)| < |S(z)| (1.1)

where

R(z) =
(
zn P

(
1

z

))′
+

[ |an| − |a0|
|an| + |a0|

]
zn−1P

(
1

z

)
,

and S(z) = zn−1P ′
(
1

z

)
.

If P(z) is a polynomial of degree n having no zeros in |z| ≤ 1, then Q(z) =
zn P

(
1

z

)
has all its zeros in |z| < 1. Therefore applying Theorem 1.1 to Q(z), we

will obtain a necessary condition for a polynomial to have no zeros in the closed unit
disc, which is given below.

Corollary 1.2 Let P(z) = a0 + a1z + · · · + anzn be a polynomial of degree n. If P(z)
has no zeros in |z| ≤ 1 then on |z| = 1,

|R∗(z)| < |S∗(z)| (1.2)

where R∗(z) = P ′(z) +
[ |a0| − |an|
|ao| + |an|

]
zn−1Q

(
1

z

)
, S∗(z) = zn−1Q′

(
1

z

)
and

Q(z) = zn P

(
1

z

)
.
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The sufficiency analogue of Theorem 1.1 can be established as follows.

Theorem 1.3 Let P(z) be a polynomial of degree n. Then P(z) has all its zeros in
|z| < 1 if in |z| ≤ 1,

|T (z)| < |S(z)| (1.3)

where

T (z) =
(
zn P

(
1

z

))′
,

and S(z) = zn−1P ′
(
1

z

)
.

Again applying Theorem 1.3 to the polynomial Q(z) = zn P

(
1

z

)
, we will obtain

the following result.

Corollary 1.4 Let P(z) be a polynomial of degree n. Then P(z) has no zeros in |z| ≤ 1
if in |z| ≤ 1,

|T ∗(z)| < |S∗(z)| (1.4)

where T ∗(z) = P ′(z), S∗(z) = zn−1Q′
(
1

z

)
and Q(z) = zn P

(
1

z

)
.

The well known Theorem of Laguerre [11] states that, if P(z) is a polynomial of
degree n having no zeros in the disc |z| < 1, then the polynomial

DαP(z) := nP(z) + (α − z)P ′(z)

has no zeros in |z| < 1 for any complex number α with |α| < 1. Here some ques-
tions may arise; why only ‘n’ is sitting with P(z) in the expression for DαP(z)?
what happens if we replace ‘n’ by ‘c’ where ‘c’ is any positive real number? These
questions appear genuine, intriguing and at the same time directed towards capturing
more information on DαP(z), and its possible generalization. In fact these thoughts
motivated us to derive the following results. Without loss of generality we consider
the class of monic polynomials in the next two results.

A set Sn of n distinct points in the complex plane can be associated with a class
Pn−1 of monic polynomials of degree n − 1 having all their zeros in Sn . The classical
Theorem of Laguerre for polynomials can now be extended to more general operator
involving convex linear combination of polynomials in Pn−1.

So let us take the set Sn = {z1, z2, . . . , zn} of n complex numbers not necessar-
ily distinct in the complex plane, let {Pk(z)|1 ≤ k ≤ n} denote the sequence of n
polynomials given by

Pk(z) =
n∏

i=1,i �=k

(z − zi ).
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One can observe that a convex linear combination of members of {Pk(z)} carries the
essence of the ordinary derivative of a monic polynomial P(z) of degree n whose
zeros are z1, z2, . . . , zn in the sense that

P ′(z) =
n∑

k=1

n∏
i=1,i �=k

(z − zi ).

Thus the derivative of the monic polynomial P(z) can be equivalently expressed as

1

n
P ′(z) =

∑n

k=1

1

n
Pk(z) (1.5)

where all the coefficients of the convex linear combination are
1

n
, and

∑n

k=1

1

n
= 1.

In view of the above, the expression (1.5) can be extended to more generalized
form as follows. If αk > 0, 1 ≤ k ≤ n with

∑n
k=1 αk = 1 then

∑n
k=1 αk Pk(z) is a

polynomial of degree n − 1 in its general form and P ′(z) is one such representation.
This behaviour of �(α1,...,αn)P(z) = ∑n

k=1 αk Pk(z) leads us towards the extension of
results involving the derivative of a polynomial P(z) to the operator�(α1,...,αn) on P(z)
as given above by�(α1,...,αn)P(z).One important result involving the relative location
of zeros and critical points of a polynomial is the Gauss-Lucas Theorem, and Díaz
and Egozcue [3] generalized the Gauss-Lucas Theorem from the derivative operator
to the �(α1,...,αn) operator on polynomials. Here we present the similar extension for
another significant result on the polar derivative of a polynomial, i.e., the Theorem of
Laguerre, as follows.

Theorem 1.5 Let P(z) = ∏n
k=1(z − zk) be a polynomial of degree n having no zeros

in the disc |z| < 1. Then the polynomial

cP(z) + (α − z)
∑n

k=1
αk Pk(z) (1.6)

has no zeros in the disc |z| < 1, for all α with |α| < 1, c ≥ 1, where Pk(z) =∏n
i=1,i �=k(z − zi ), 1 ≤ k ≤ n and αk > 0 with

∑n
k=1 αk = 1.

Remark 1.6 Theorem 1.5 is quite useful in generalizing Bernstein-type inequalities
for the derivative of a polynomial to the more general class of operators of the type∑n

k=1 αk Pk(z) as given above. In many cases we need to proceed with the same proof
available for the results on the derivative of a polynomial, with minor modifications
and replacing P ′(z)/n by

∑n
k=1 αk Pk(z). For example, Erdős-Lax inequality [12] for

the derivative of a polynomial and its LP version have been provedmainly by using the
Theorem of Laguerre. Instead, if we use Theorem 1.5 in those results, we can establish
their analogues in terms of

∑n
k=1 αk Pk(z) for the given P(z). As the proofs of these

generalizations do not deviate much from that of their analogues on the derivative of a
polynomial, we do not mention every such result and its proof over here, rather leave
it to the readers.
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The choice of αk = 1

n
, 1 ≤ k ≤ n in (1.6) reduces Theorem 1.5 to an interesting

result that generalizes the Theorem of Laguerre as given below.

Corollary 1.7 Let P(z) = ∏n
k=1(z − zk) be a polynomial of degree n having no zeros

in the disc |z| < 1. Then the polynomial

cP(z) + (α − z)P ′(z)

has no zeros in the disc |z| < 1 for any α with |α| < 1 and c ≥ n.

Remark 1.8 For the case c = n, Corollary 1.7 reduces to the Theorem of Laguerre.

2 Lemmas

Weneed the following lemmas to prove our results. The first lemma is due to Karamata
[8], and is given below.

Lemma 2.1 Let I be an interval of the real line and f denote a real-valued, con-
cave function defined on I. If x1, . . . , xn and y1, . . . , yn are numbers in I such that
(x1, . . . , xn) majorizes (y1, . . . , yn), i.e.,

x1 ≥ x2 ≥ · · · ≥ xn and y1 ≥ y2 ≥ · · · ≥ yn,

x1 + · · · + xi ≥ y1 + · · · + yi for all i ∈ {1, . . . , n − 1},

and
x1 + · · · + xn = y1 + · · · + yn

hold, then
f (x1) + · · · + f (xn) ≤ f (y1) + · · · + f (yn).

Our next lemma describes an estimate for the real value of the logarithmic derivative
of a complex polynomial having all its zeros in the closed unit disc. Lemma 2.2 was
first appeared in a paper of Dubinin [4] where it was proved using the Boundary
Schwarz Lemma, and also recently reproved in a paper by Govil and Kumar [6] using
the method of principle of mathematical induction on the degree of the underlying
polynomial. Here we present a different, simpler as well as a shorter proof of it. A
new observation on Lemma 2.2 is made in this paper on the equality case.

Lemma 2.2 Let P(z) = a0 +a1z+· · ·+anzn = an
∏n

k=1(z− zk) be a polynomial of
degree n having all its zeros in |z| ≤ 1. Then for all z on |z| = 1 for which P(z) �= 0,
we have

Re

(
zP ′(z)
P(z)

)
≥ n

2
+ |an| − |a0|

2(|an| + |a0|) . (2.1)

The result is sharp and equality holds for the polynomial P(z) = (zn−1 + 1)(z +
a), 0 ≤ a ≤ 1.
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Proof Since |zk | ≤ 1, 1 ≤ k ≤ n, we have

Re

(
zP ′(z)
P(z)

)
=

n∑
k=1

Re

(
z

z − zk

)
≥

n∑
k=1

1

1 + |zk | (2.2)

for all z on |z| = 1 for which P(z) �= 0.
To prove (2.1) in view of (2.2), it suffices to establish that

n∑
k=1

1

1 + |zk | ≥ n − 1

2
+ 1

1 +
∣∣∣∣a0an

∣∣∣∣
,

or equivalently,
n∑

k=1

(
1

1 + |zk | − 1

2

)
≥ 1

1 + ∏n
k=1 |zk | − 1

2
,

which with further simplification gets the form and thus essentially we need to show
that

n∑
k=1

1 − |zk |
1 + |zk | ≥ 1 − ∏n

k=1 |zk |
1 + ∏n

k=1 |zk | . (2.3)

If any of the zk = 0 for 1 ≤ k ≤ n, then result holds true and hence let us assume that
zk �= 0, for each k = 1, 2, . . . , n.

Let f (x) = 1 − e−x

1 + e−x
.

Then for x ≥ 0, we have

f ′′(x) = 2e−x (e−x − 1)

(1 + e−x )3
≤ 0,

and hence f (x) is concave in [0,∞). Now let |zk | = e−ak , 1 ≤ k ≤ n. Thus each
ak ≥ 0, and without loss of generality let us assume that |zn| ≥ |zn−1| ≥ . . . ≥ |z1|.

Then a1 ≥ a2 ≥ . . . ≥ an .
Note that (a1 +· · ·+an, 0, . . . , 0)majorizes (a1, a2, . . . , an) in [0,∞), and hence

applying Lemma 2.1, we have

n∑
k=1

1 − |zk |
1 + |zk | =

n∑
k=1

1 − e−ak

1 + e−ak
≥ 1 − e−a1−···−an

1 + e−a1−···−an
= 1 − ∏n

k=1 |zk |
1 + ∏n

k=1 |zk | ,

which establishes (2.3).
The inequality (2.1) is best possible and the equality holds for some special class

of polynomials. By considering the circle or line onto which |z| = 1 is mapped by the

Möbius transformation T (z) = z

z − a
, one may easily check that if 0 ≤ a ≤ 1 and
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|z| = 1, then Re

(
z

z − a

)
≥ 1

1 + |a| as presented in the proof of Lemma 2.2 with

equality if and only if either a = 0, or |a| = 1, or z = − a

|a| whenever a �= 0. In view

of this, equality holds in the inequality (2.1) only when all the zeros of P(z) lie on the

unit circle apart from one simple zero say a such that 0 < |a| ≤ 1, and z = − a

|a| .
When a = 0, the equality anyway holds. Therefore it is possible to have the equality
in (2.1) for the polynomial P(z) = zn + azn−1 + z+ a at z = 1 whenever 0 ≤ a ≤ 1.

	

Lemma 2.2 was used to obtain the sharpened version of Turán’s inequality [15]

max|z|=1
|P ′(z)| ≥ n

2
max|z|=1

|P(z)| (2.4)

for the polynomial P(z) having all its zeros in the closed unit disc, in the paper of Govil
and Kumar [6] (see also [4]) and they proved that, if P(z) = a0 + a1z + · · · + anzn

is a polynomial of degree n ≥ 1 having all its zeros in |z| ≤ 1, then

max|z|=1
|P ′(z)| ≥

(
n

2
+ |an| − |a0|

2(|an| + |a0|)
)
max|z|=1

|P(z)|. (2.5)

The paper of Govil and Kumar [6] says that the result is best possible and equality
in (2.5) holds for polynomials having all their zeros on |z| = 1. As this is the same
example cited by Turán [15] for the equality case in (2.4), one can observe that this
example does not reflect the sharpness of the inequality (2.5) over (2.4). In otherwords,
the example cited above does not consider the second term in the right hand side of
(2.5), but the polynomial P(z) = (zn−1 + 1)(z + a) where 0 ≤ a ≤ 1, carries this
information and gives an equality in (2.5), and thus makes a non-trivial example to
justify the sharpness of (2.5).

The more generalized versions of (2.5) can be seen in the recent papers due to
Kumar [9] and, Kumar and Dhankhar [10].

We need the following result to prove Theorem 1.5.

Lemma 2.3 Let P(z) = ∏n
k=1(z − zk) be a polynomial of degree n having no zeros

in the disc |z| < 1, then the polynomial

cP(z) + (γ − 1)z
n∑

k=1

αk Pk(z) (2.6)

has no zeros in the disc |z| < 1, for any complex number γ with |γ | ≤ 1, where
Pk(z) = ∏n

i=1,i �=k(z − zi ), c ≥ 1 and αk > 0 with
∑n

k=1 αk = 1.

Proof If γ = 1, then the result follows directly. So let us assume that γ �= 1, and take

w j = 1

z j
, 1 ≤ j ≤ n. Since c ≥ 1, we can write c = 1+ a, for some a ≥ 0. Now for
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all z with |z| < 1 and using the fact that
∑n

k=1 αk = 1, we will have

z
∑n

k=1 αk Pk(z)

P(z)
− c

1 − γ
=

n∑
k=1

αk

(
z

z − zk

)
− 1 + a

1 − γ

=
n∑

k=1

αk

(
zwk

zwk − 1

)
− 1 + a

1 − γ

= 1

2

∑n

k=1
αk

(
1 − 1 + zwk

1 − zwk

)
− 1 + a

1 − γ

= 1

2

n∑
k=1

αk − 1

2

n∑
k=1

αk

(
1 + zwk

1 − zwk

)
− 1 + a

1 − γ

= −1

2

n∑
k=1

αk

(
1 + zwk

1 − zwk

)
+ 1

2
− 1

1 − γ
− a

1 − γ

= −1

2

n∑
k=1

αk

(
1 + zwk

1 − zwk

)
− (1 + γ )

2(1 − γ )
− a

1 − γ
.

Therefore

Re

(
z
∑n

k=1 αk Pk(z)

P(z)
− c

1 − γ

)

= −1

2

n∑
k=1

Re αk

(
1 + zwk

1 − zwk

)
− Re

(
(1 + γ )

2(1 − γ )

)
− Re

(
a

1 − γ

)
.

It is easy to verify that for any complex number γ with |γ | ≤ 1, Re

(
1 + γ

1 − γ

)
≥ 0,

and in the same way, since |zwk | < 1, and each αk > 0 for 0 ≤ k ≤ n, we must have

Re αk

(
1 + zwk

1 − zwk

)
> 0. Further since a ≥ 0 and |γ | ≤ 1,we have Re

(
a

1 − γ

)
≥ 0.

Thus we have shown that

Re

(
z
∑n

k=1 αk Pk(z)

P(z)
− c

1 − γ

)
< 0,

which establishes the conclusion of the Lemma 2.3. 	


As an immediate consequence of Lemma 2.3, by taking αk = 1/n, 1 ≤ k ≤ n, in
(2.6), we will obtain the following analogous result for the derivative of a complex
polynomial.
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Corollary 2.4 Let P(z) = ∏n
k=1(z − zk) be a polynomial of degree n having no zeros

in the disc |z| < 1, then the polynomial

cP(z) + (γ − 1)zP ′(z) (2.7)

has no zeros in the disc |z| < 1 for any complex number γ with |γ | ≤ 1 and c ≥ n.

3 Proofs of Theorems

Proof of Theorem 1.1 Suppose P(z) has all its zeros in |z| < 1. By Gauss Lucas
Theorem, P ′(z) has all its zeros in |z| < 1. This implies that S(z) has no zeros in
|z| ≤ 1.

Note that R(z) = nzn−1P

(
1

z

)
− zn−2P ′

(
1

z

)
+

[ |an| − |a0|
|an| + |a0|

]
zn−1P

(
1

z

)

= n

[
1 + |an| − |a0|

n(|an| + |a0|)
]
zn−1P

(
1

z

)
− zn−2P ′

(
1

z

)
.

Also on |z| = 1, we have

zR(z)

S(z)
=

z

{
n

[
1 + |an| − |a0|

n(|an| + |a0|)
]
zn−1P

(
1

z

)
− zn−2P ′

(
1

z

)}

zn−1P ′
(
1

z

)

=
nz

[
1 + |an| − |a0|

n(|an| + |a0|)
]
P

(
1

z

)
− P ′

(
1

z

)

P ′
(
1

z

)

=
n

[
1 + |an| − |a0|

|an| + |a0|
]
P(z̄)

z̄ P ′(z̄)
− 1.

Therefore ∣∣∣∣∣∣∣∣
n

[
1 + |an| − |a0|

|an| + |a0|
]
P(z̄)

z̄ P ′(z̄)
− 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣ R(z)

S(z)

∣∣∣∣ on |z| = 1. (3.1)

Since P(z) has all its zeros in |z| < 1, from Lemma 2.2, we have on |z| = 1,

Re

(
zP ′(z)
P(z)

)
>

n

2
+ |an| − |a0|

2(|an| + |a0|) = n

2

[
1 + |an| − |a0|

n(|an| + |a0|)
]

.
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Equivalently

Re

⎛
⎜⎜⎝ zP ′(z)

n

[
1 + |an| − |a0|

n(|an| + |a0|)
]
P(z)

⎞
⎟⎟⎠ >

1

2
on |z| = 1. (3.2)

It is again a simple exercise to verify that if Re(z) > 1
2 , then

∣∣∣∣1z − 1

∣∣∣∣ < 1. Now using

this property in (3.2) we obtain

∣∣∣∣∣∣∣∣
n

[
1 + |an| − |a0|

n(|an| + |a0|)
]
P(z)

zP ′(z)
− 1

∣∣∣∣∣∣∣∣
< 1 on |z| = 1.

Replacing z by z in the last inequality, we get on |z| = 1,

∣∣∣∣∣∣∣∣
n

[
1 + |an| − |a0|

n(|an| + |a0|)
]
P(z̄)

z̄ P ′(z̄)
− 1

∣∣∣∣∣∣∣∣
< 1. (3.3)

The equations (3.1) and (3.3) together give

∣∣∣∣ R(z)

S(z)

∣∣∣∣ < 1 on |z| = 1,

which completes the proof. 	


Proof of Theorem 1.3 We have

|T (z)| < |S(z)| in |z| ≤ 1. (3.4)

So, S(z) �= 0 in |z| ≤ 1. But then zn−1S

(
1

z

)
has all its zeros in |z| < 1. Since for

every complex number z on |z| = 1, the complex number 1
z is also on |z| = 1, it

follows from (3.4) that

∣∣∣∣T
(
1

z

)∣∣∣∣ <

∣∣∣∣S
(
1

z

)∣∣∣∣ ,
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holds for all z on |z| = 1, which further implies

∣∣∣∣zn−1T

(
1

z

)∣∣∣∣ <

∣∣∣∣zn S
(
1

z

)∣∣∣∣ (3.5)

on |z| = 1.

Since the polynomial zn S

(
1

z

)
has all its zeros in |z| < 1, from (3.5) and using

Rouché’s Theorem it follows that the polynomial zn−1T

(
1

z

)
+ zn S

(
1

z

)
has all its

zeros in |z| < 1. A simple calculation shows that

zn−1T

(
1

z

)
+ zn S

(
1

z

)
= nP(z) − zP ′(z) + zP ′(z)

= nP(z).

Therefore P(z) has all its zeros in |z| < 1, and thus the proof is complete. 	

Proof of Theorem 1.5 Since P(z) �= 0 in |z| < 1, it follows from Lemma 2.3 that
cP(z) + (γ − 1)z

∑n
k=1 αk Pk(z) �= 0 in |z| < 1, for any real number c ≥ 1 and any

complex number γ with |γ | ≤ 1. But then γ z
∑n

k=1 αk Pk(z) �= z
∑n

k=1 αk Pk(z) −
cP(z) for |γ | ≤ 1 and |z| < 1. For any fixed z we can appropriately choose the
argument of γ to get |γ z||∑n

k=1 αk Pk(z)| �= |z ∑n
k=1 αk Pk(z) − cP(z)|. Thus we

have

|γ z|
∣∣∣∣∣

n∑
k=1

αk Pk(z)

∣∣∣∣∣ <

∣∣∣∣∣z
n∑

k=1

αk Pk(z) − cP(z)

∣∣∣∣∣ (3.6)

for |z| < 1 and |γ | ≤ 1. Otherwise, if |γ z||∑n
k=1 αk Pk(z)| ≥ |z ∑n

k=1 αk Pk(z) −
cP(z)| for |z| < 1 and |γ | ≤ 1, then small values of γ would contradict our claim.
Hence (3.6) holds and taking |γ | = 1 and |z| → 1 in (3.6) we get

∣∣∣∣∣
n∑

k=1

αk Pk(z)

∣∣∣∣∣ ≤
∣∣∣∣∣z

n∑
k=1

αk Pk(z) − cP(z)

∣∣∣∣∣ (3.7)

for |z| = 1.
Firstly, let us prove that (3.7) is true for |z| ≤ 1, whenever P(z) has no zeros in

|z| ≤ 1. From (3.6), we have z
∑n

k=1 αk Pk(z)−cP(z) �= 0 in |z| < 1,whenever P(z)
has no zeros in |z| < 1. Suppose P(z) �= 0 on |z| = 1 also. Then z

∑n
k=1 αk Pk(z) −

cP(z) �= 0 on |z| = 1, because if z0 were a zero of z
∑n

k=1 αk Pk(z) − cP(z) on
|z| = 1 then by (3.7), we would have

∑n
k=1 αk Pk(z0) = 0, in which case P(z0) = 0,

a contradiction to our hypothesis. Therefore z
∑n

k=1 αk Pk(z)− cP(z) �= 0 in |z| ≤ 1,
whenever P(z) �= 0 in |z| ≤ 1. Now since

g(z) =
∑n

k=1 αk Pk(z)

z
∑n

k=1 αk Pk(z) − cP(z)
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is analytic in |z| < 1 and continuous on |z| = 1, by Maximum Modulus Principle,
(3.7) holds for all z such that |z| ≤ 1, whenever P(z) has no zeros in |z| ≤ 1. The
continuity of the terms on both sides of (3.7) with respect to the polynomial P(z)
ensures that (3.7) continues to hold for all z such that |z| ≤ 1, even if we restrict P(z)
to have no zeros in the open unit disc and allow P(z) to have zeros on |z| = 1. This is
because if this were not true for any possible zero w of z

∑n
k=1 αk Pk(z) − cP(z) on

|z| = 1 becoming a pole of g(z), then (3.7) would be violated for the points on the
unit circle that are ε− close to w.

Therefore (3.7) holds for all z in the disc |z| ≤ 1, if P(z) has no zeros in |z| < 1
which clearly implies

∣∣∣∣∣α
n∑

k=1

αk Pk(z)

∣∣∣∣∣ <

∣∣∣∣∣z
n∑

k=1

αk Pk(z) − cP(z)

∣∣∣∣∣ (3.8)

for any α with |α| < 1 and |z| < 1. Therefore we have

α

n∑
k=1

αk Pk(z) �= z
n∑

k=1

αk Pk(z) − cP(z)

whenever |α| < 1 and |z| < 1, and hence the proof is complete. 	
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