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Abstract

The main target of this paper is to discuss operator Hermite—-Hadamard inequality
for convex functions, without appealing to operator convexity. Several forms of this
inequality will be presented and some applications including norm and mean inequal-
ities will be shown too.
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operator - Convex function
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1 Introduction and Preliminaries

Let B (H) be the C*-algebra of all bounded linear operators on a Hilbert space H.

As usual, we reserve m, M for scalars and 14 for the identity operator on H. A self
adjoint operator A is said to be positive (written A > 0) if (Ax, x) > O forall x € H,
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while it is said to be strictly positive (written A > 0) if A is positive and invertible. If
A and B are self adjoint, we write B > A incase B — A > 0.

The Gelfand map f (¢) — f (A) is anisometrical #—isomorphism between the C*—
algebra C (sp (A)) of continuous functions on the spectrum sp (A) of a self adjoint
operator A and the C*—algebra generated by A and the identity operator 1. If f, g €
C (sp(A)),then f (r) > g (¢) (t € sp(A)) implies that f (A) > g (A). This is called
the functional calculus for the operator A.

A real valued continuous function f defined on the interval J is said to be operator
convex if f((1—v)A+vB) < (1l—v)f(A) +vf(B)forevery0 < v < 1 and
for every pair of bounded self adjoint operators A and B whose spectra are both in J.
One of the most important examples is the power function ¢ +— t” for 1 < p < 2.

The Hermite—-Hadamard inequality, named after Charles Hermite and Jacques
Hadamard, states that if a function f : J — R is convex, then the following chain of
inequalities hold:

b
f(a+b>§ 1a/f<’>‘”fw’ @bed, a<b). (L1

2

Since (see, e.g. [4] [Lemma 2.1])

b 1 1
;/ f(x)dx:/ f((l—t)a+tb)dt=/ f (1 —1)b+ta)dt,
b—a ), 0 0

we can rewrite (1.1) in the following form

1
f(“;b)gf f((l—t)a+tb)dt§w. (1.2)
0

The Hermite—Hadamard inequality plays an essential role in research on inequalities
and has quite a sizeable technical literature; as one can see in [1,2,5,8-11].

Obtaining operator inequalities corresponding to certain scalar inequalities have
been an active research area in operator theory. Dragomir [3] gave an operator version
of Hermite—Hadamard inequality and proved that

1
f(A-;B>§/ f((l—t)A+tB)dt§M (1.3)
0

2 ’

whenever f : J — R is an operator convex and A, B are two self adjoint operators
with spectra in J.

We emphasize here that the assumption operator convexity is essential to obtain
(1.3). For example, if

A=<%D, B:(éﬁ) and f (1) =1,
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then simple computations show that

A+ B\ _(17/47/4\ [fA)+fB) _ (7 4
N7 )= s 3a) — 2 = \asp

and X
_(31/65/2
/(;f((l—t)AnLtB)a’t_<5/2 4/3).

It is easily seen that

A+ B J A+ 1B

1
f<T>7§/O f—=1)A+1B)dt £ 5

So, even though f(t) = 13 is convex (not operator convex), (1.3) does not hold;
showing that operator convexity cannot be dropped.

It is then natural to ask about which conditions one should have so that the inequal-
ities in (1.3) are valid for any convex function.

In [7], it is shown that convex functions satisfy (1.3) if some empty intersection
conditions are imposed on the spectra of A, B. We also refer the reader to [12]. In this
article, we present several forms of (1.3) using the Mond—Pecari¢ method for convex
functions. For example, we show that for appropriate constants ¢, 3,

1
/ f((l_t)A+tB)dt§ﬁ1H+a(M>,
0

> 1.4)
when mly < A, B < M1y and f, g are certain functions. Then several converses
and variants of (1.4) are presented. See Theorem 2.1 and the results that follow for
the details.

In the end, we present other forms using properties of inner product; without appeal-
ing to the Mond—Pecari¢ method. Our results generalize some known inequalities
presented in [3,9].

In our proofs, we will frequently use the basic inequality [6, Theorem 1.2]

f ({Ax, x)) = (f(A)x, x) (1.5

valid for the convex function f : J — R, the self adjoint operator A with spectrum
in J and the unit vector x € H.

2 Main Results

We present our main results in this section; where the Mond—Pecari¢ method is dis-
cussed first. Throughout this section, we use the following two standard notations for
the function f : [m, M] — R;
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_ S M) = f(m) _ Mf (m) —mf (M)
GUETM—w ST T Mo

2.1 Hermite-Hadamard Inequalities Using the Mond-Pecari¢ Method

Our first convex (not operator convex) version of (1.3) reads as follows.

Theorem 2.1 Let A, B € B (H) be two self adjoint operators satisfying mly <
A, B < M1y andlet f,g : [m, M] — R be two continuous functions. If f and g
are both convex functions, then for a given a > 0,

! A B
f f((l—t)A+tB)dt§ﬁ1H+a<g()_;—g()>, @.1)
0
h = br— .
where 8 mgast {afx+ F—oag (x)}
Proof It follows from the convexity of f : [m, M] — R that
f(x)<arx+by 2.2)

foranym < x < M. Since mly < A, B < M1y, thenmly < (1 —t)A+1tB <
M14. Applying functional calculus for the operator T = (1 —¢) A 4+ tB in (2.2)
implies

fA=A+1tB)<ay (1 —-t)A+1tB)+bsly.

Integrating the inequality over ¢ € [0, 1], we get

1
/1f«l—ﬂA+ﬁBﬁh§af<£%£)+bﬂH.
0

Now, let x € H be a unit vector. One can write

1
<</ f —t)A+tB)dt>x,x>_a<<M>x’x>
0

Saf<(A—;B)x,x>+bf—a<(—g(A);g(B))x,x>

_ A+B . (g (A)x,x)+ (g (B)x,x)

=ay > X, x)+bf—a >

saf<<A;B>x,x>+bf—a(g(mx’x));g(wx’x))) 2.3)

Saf<(A;B)x,x>+bf—ag<(Ax’x);(Bx’x>> 2.4)
A+ B A+ B

=ar((555) o e (((257) =)

< max {afx +by—ag (x)}

<x<M

3
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where in (2.3) we used (1.5), and (2.4) follows directly from convexity of g.
Consequently,

1
<</ f((l—l)A+tB)dt>x,x>§ﬁ+a<<w>x’x>
0

for any unit vector x € H. This completes the proof of inequality (2.1). O

Now we present some applications of Theorem 2.1.

Corollary 2.1 Let A, B € B (H) be two self adjoint operators satisfying mly <
A, B < M1y and let f,g : [m, M] — R be two continuous functions. If f and
g > 0 are convex, then

1
[ ra-nasimaza (S0 os)
where o = max, {“Z“(If’ ! }
Further, 1
/ (=1 A+1B)dt 551H+M,
0

where f = max {afx + by —g(x)}

m<x<M

Proof Notice that when @ = max { agxtby }, thenasx + by —ag(x) < 0. There-
m<x<M 8(x)

fore, from Theorem 2.1, 8 < 0 and (2.1) implies (2.5). The other inequality follows

similarly from Theorem 2.1. O

Remark 2.1 Setting f = g > 0 the inequality (2.5) implies

(2.6)

1
[ sz (LOZLD)
0

2

where « = max
m<x<M

in [9, Theorem 3.9]. Therefore, Theorem 2.1 can be considered as an extension of [9,
Theorem 3.9].

{ af;(if i } We remark that a similar result as in (2.6) was shown

Notice that Theorem 2.1 and its consequences above present operator order inequali-
ties. In the next result, we obtain operator norm inequalities. Here, |A| = (A*A)l/ 2,
where A* is the adjoint operator of A.

Proposition 2.1 Let A, B € B (H) be two self adjoint operators satisfying mly <
|Al,|B| < M1y and let f : [m, M] — R be a nonnegative continuous increasing
convex function. Then for a given a > 0,

A+ B
(%7

1
/0 S =0)|Al+1|B])dt

§ﬁ+a"f(|A|);f(|B|) ”
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where f = max {afx +by—af (x)}

m=<x=<

Proof Recall thatif T € B (H) is a self adjoint operator, then ||T'|| = sup [(Tx, x)|.
llxlI=1
Let x € H be a unit vector. Then

Py ) = o (g

- f<|(Ax , X)| + [(Bx, X>|>

(by the triangle inequality)

=f (by (1.5))

((IAlx, X>
2

(Ile,X)>

1

5/0 £ =0 (A x.x)+ 1 (Blx, x)de (by (1.2))
1

=/0 £ = 1) 1Al +11BD x, x)) dr
1

5/0 F (1= |Al+11B)x, x)dt by (15))

1
=<(/ f((l—f)|A|+l|B|)dt>x,x>
0

1
/0 F@=0)]Al+1|B)dt|.

2.7
Now, by taking supremum over x € H with ||x|| = 1 in (2.7) and noting that f is
increasing,
A+B !
f(H 5 H) < /0 F (=10 |Al+1|B|)dt
A B
< ,31H+a<f(| I)-;f(l I))H
A B
Sﬂ+aHf(| D+ f I)H
2
thanks to (2.1). This completes the proof. O

We end this section by giving the weighted generalization of operator Hermite—
Hadamard inequality. For convenience, we use AV, B to denote (1 — 1) A + AB. We
then show that Theorem 2.2 is a generalization of (1.3).

Theorem 2.2 Let A, B € B(H) be two self adjoint operators satisfying mly <
A, B < M1y andlet f : [m, M] — R be an operator convex function. Then for any
0<x<l,

1
f (AV,.B) 5/ J ((AV,.B) Vy A) V), f ((AV,.B) Vy B) dv
0

= f(AVLf(B).
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Proof Since forO < A,v <1,
AV; B = ((AV,B) VyA) V, ((AV,B) Vy B)
holds, we infer from the operator convexity of f that

f (AVyB) = f (((AViB) VyA) V, ((AV,.B) V,, B))
< f ((AVLB) Vy A) V, f ((AVyB) V, B)
= {f(AViB)V, f(A)} Vi {f (AVLB)V, f(B)}
= {(f(AVrf(B) Vy f(A} ViA(f(AVif(B)) Vy f(B)}
= fAVLf(B).

Integrating the inequality over v € [0, 1], we get

1
f (AV,.B) S/ J ((AViB) Vy A) V) f ((AV).B) VyB) dv
0
= fA)VLf(B)

which is the statement of the theorem. O

Remark 2.2 To show that Theorem 2.2 is a generalization of (1.3), put A = 1/2 . Thus
A+ B
(%57)
1 1
! / f((l — ) (#)"‘UA)dU-F/ f((l—v)(A;LB> +vB>dv:| (2.8)
0 0

=2
Sf(A);f(B)'

On making use of the change of variable v = 1 — 2¢ we have

1! A+B 3
—/ f ((1 —v) <—> —l—vA) dv =/ f(—t)A+1tB)dt. 2.9)
2 0 2 0

and by the change of variable v = 2t — 1,

1! A+ B 1
5/0J’((l—v)<T>+vB)dv=/l f(A—=tA+tB)ydt. (2.10)
2

Relations (2.9) and (2.10), gives

%[/01f<(1—v)<A+B>+vA>dv+/01f<(1—v)(A;B)+UB)dU}

1
=/ f(—=t)A+1tB)dt
0

@2.11)
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and the assertion follows by combining (2.8) and (2.11).

2.2 Reverse Hermite-Hadamard Inequalities Using the Mond-Pecari¢ Method

In the forthcoming theorem, we give additive, and multiplicative type reverses for the
first and the second inequalities in (1.3).

Theorem 2.3 Let A, B € B(H) be two self adjoint operators satisfying mly <
A, B < M1y and let f,g : [m, M] — R be two continuous functions. If f is a
convex function, then for a given o > 0

! A+ B
/ f((l—t)A+tB)dt§ﬁ1H+(xg< 5 ), (2.12)
0
and .
w < Bly ~|—a/ g((1—1t)A+1tB)dt, (2.13)
0
where B = I<na<xM {afx +by—ag (x)}.

Proof From (2.2) and by applying functional calculus for the operator T = (1 — t) A+
t B, we have
fA=0A+1tB)<ay (1 —-t)A+1tB)+bsly.

Integrating both sides of the above inequality over ¢ € [0, 1], we have

1 A+ B
/ f((1—t)A+tB)dt <ay <T)+bf1H.
0

Therefore,
! A+ B
f(@A—=t)A+1tB)dt —ag 5
0
_ A+ B b A+ B
=ars ) fAH — g )
< : by — 1.
< mISnanxM {afx +byr—ag (x)} H
Consequently,

! A+ B
/ f(—1t)A+1tB)dt < Bly+ag 5
0
which proves (2.12). To prove (2.13), notice that (2.2) implies, for0 <7 < 1,

(I=DfA)<ar(l=0A+br(1—1)1y, (2.14)
tf (B) <astB+bystly. (2.15)
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From (2.14) and (2.15) we infer that

(I=0fA)+tf(B)<ar((1—-t)A+1tB)+bsly.

Therefore
A=0fA)+tf(B)—ag((l—t)A+1B)
<ay (1 -)A+tB)+bsly —ag((1—-1t)A+1B)
< max lapx + by —ag ()} 1.

Thus,

A-0fA)+tf(B)<ply+ag((l—t)A+1tB). (2.16)
Integrating both sides of (2.16) over [0, 1] we get (2.13) and the proof is complete. O
2.3 Operator Hermite-Hadamard Inequality Using the Gradient Inequality

In this subsection, we present versions of the operator Hermite-Hadamard inequality
using the gradient inequality

@@=+ fE)=f®, (2.17)

where f : J — Ris convex differentiable and s, ¢ € J.

Theorem 2.4 Let A, B € B(H) be self adjoint operators with spectra in the interval
J and let f : J — R be a differentiable convex function. Then

A+ B 1
f( > )s/ f (1 —v)A+vB)dv+6ly, (2.18)
0

where

= (527 (57 )b (557) ol (557) o))

lxl=1

Proof Since f is convex differentiable, (2.17) applies. By applying functional calculus

for the operator s = # we get

A+ B A+ B A+ B A+ B
(557 () (7)o (557 = o

So, for any unit vector x € H,

(5 (22) (52 b (452) 10
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Again, by applying functional calculus for the operator t = (1 — v) A + vB we get

()i (22) (552 ()

=f((I1-v)A+vB)).

Integrating both sides over ¢ € [0, 1] implies

(57) ) (57) - (57 (557 e (1 (557 )

1
5/ f ({1 —=v)A+vB)dv.
0

Whence, for any unit vector x € H,

(352l (552 ) =)= (552) (557 ) =+ (457 =)
§<(/01 f((l—v)A+vB)dv>x,x>.

Thus,
A+ B !
(557 = () 7o emran) )+
0
where

= e (57 (57 )b (557) ol (557) o))

lxl=1
Therefore,
A+ B !
flmm—) = | f@=vA+vB)dv+ily,
0
which completes the proof. O

Our last result in this direction is as follows.

Theorem 2.5 Let A, B € B(H) be self adjoint operators with spectra in the interval
J and let f : J — R be a differentiable convex function. Then

AOREACH er LB | ey, (2.19)

1
/ f(@d—-v)A+vB)dv <
0
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where

1
£ = sup {/ (" (@=v)A+vB)((1 —v)A+vB)x,x)dv
xeH 0
llxll=1

1
—/ (f"(@=v)A+vB)x, x)(((1 —v)A—i—vB)x,x)dv}.
0

Proof By applying functional calculus for the operator T = (1 — v) A+vB in (2.17),
we have

tF (1= vA+vB)— f (1—v)A+vB) (1 —v)A+vB)+ f(1—v)A+vB) < f () 14.
Hence for any unit vector x € H,

t{f (1—v)A+vB)x,x)—(f (1 —v)A+vB) (1 —v) A+ vB)x,x)
+{f (A =v)A+vB)x,x) < f(1).

Again, it follows from the functional calculus for t = A and r = B, respectively

A= {f (A=v)A+vB)x,x)A-A—-v)(f (1-v)A+vB) (1 —v) A+ vB)x, x)1y

+ (A=) (f(A=v)A+vB)x,x) 1y < (1 —v) f(A),
(2.20)

and

v(f (A =v)A+vB)x,x)B—v(f' (1 —v)A+vB) (1 —v)A+vB)x,x)1y

+v(f((1—-—v)A+vB)x,x)1y <vf (B).
(2.21)
By combining (2.20) and (2.21) we obtain

(ff(@=vA+vB)x,x)(1—v)A+vB)—(f (1 —v)A+vB) (1 —v) A+ vB)x,x)1y
+{(f (A=) A+vB)x,x) 1y < (1 —v) f(A) +vf (B).

This implies

(f'(@=v)A+vB)x,x)(((1 —v) A+ vB)x,x)
—(f(1=v)A+vB) (1 —v) A+ vB)x,x)+ (f (1 —v) A+ vB) x, x)
<(((1 —=v) f(A) +vf(B))x,x)

for any unit vector x € H. Integrating both sides over v € [0, 1] we get

1
<(/0 f((l—v)A+vB)dv>x,x>§<(w>x,x>+é
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where

1
£ = sup {/ (f (1 =v)A+vB)((1 —v)A+vB)x,x)dv
xeH 0
Ixll=1

1
—/ (f’((l—v)A+uB)x,x)(((1—v)A+uB)x,x>dv}.
0

Consequently,

A B
f( );Lf( )+§1H7

1
/ f({(=v)A+vB)dv <
0

as desired. O

Remark 2.3 Notice that in both Theorems 2.4 and 2.5, a quantity of the form

sup {(Af'(A)x, x) — (Ax, x)(f'(A)x, x)}

lxl=1

has been found as a refining term, for some self adjoint operator A. We show here that
this quantity is always non-negative, when f is such a convex function.
Applying functional calculus for s = A in (2.17), we obtain

f(A) = f(O)1y < Af'(A) —1f'(A),
which implies
(f(A)x,x) = f(1) < (Af'(A)x, x) = 1{f'(A)x,x),x € H, [|lx]| = 1.
Now replacing 7 by (Ax, x) and noting (1.5), we obtain
(Af'(A)x, x) = (Ax, x)(f'(A)x, x) = (f(A)x, x) — f ((Ax,x)) = 0,

as desired.
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