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Abstract
The aim of the paper is to create a link between the theory of reproducing kernel Hilbert
spaces (RKHS) and the notion of a unitary representation of a group or of a groupoid.
More specifically, it is demonstrated on one hand how to construct a positive definite
kernel and anRKHS for a given unitary representation of a group(oid), and on the other
hand how to retrieve the unitary representation of a group or a groupoid from a posi-
tive definite kernel defined on that group(oid) with the help of the Moore–Aronszajn
theorem. The kernel constructed from the group(oid) representation is inspired by the
kernel defined in terms of the convolution of functions on a locally compact group.
Several illustrative examples of reproducing kernels related with unitary represen-
tations of groupoids are discussed in detail. The paper is concluded with the brief
overview of the possible applications of the proposed constructions.
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1 Introduction

The theory of reproducing kernel Hilbert spaces (RKHS) provides research tools in
such domains as complex analysis, probability theory and statistics [2], stochastic
(Gaussian) processes [15], quantum physics [16,17] or computer science (especially
artificial intelligence [9,12]). Basic properties and definitions togetherwith the detailed
analysis of RKHS can be found in [19,25]. In [1] RKHS associatedwith the continuous
wavelet transformgenerated by the irreducible representations of theEuclideanmotion
SE(2) are considered.

Groupoids arewidely used in differential geometry, algebraic topology and physics.
There is a well-known association of groupoids with C∗-algebras [7,23]. The defini-
tion and main properties of (locally compact) groupoids can be found for example in
[6,18]. In [21,22] unitary representations of groupoids are considered. The applications
of theory of finite groudoids and their representations are presented in [13,14]. Con-
cerning representations of locally compact groups, the Haar measure and the tensor
product of the Hilbert spaces, the Reader is referred to [26].

The aim of te present paper is to connect the above two domains. To this end, we
study the relationship between unitary representations of groupoids and reproducing
kernel Hilbert spaces, proposing how to construct one using the other provided certain
conditions are met.

The content of the paper is as follows. In Section 2 the fundamental definitions and
properties of the theory of reproducing kernel Hilbert spaces are introduced. Section 3
covers the concept of groupoids (propositions, examples and the notion of their unitary
representation). Main results of the paper are contained in Section 4. It combines the
ideas presented in the two previous sections. The constructions of reproducing kernels
associated to a unitary representation of a group and to a unitary representation of a
groupoid are described in Subsections 4.1 and 4.2, respectively. The latter subsection
is concluded with several illustrative examples. Section 5 contains brief discussion
on the possible applications of the notions studied in the article. In Section 6 the
conclusions are presented.

2 Reproducing Kernel Hilbert Space

2.1 Basic Concepts and Properties

Definition 1 Let A be a nonempty set. The map K : A × A → C shall be called a
kernel on A. We say that the kernel K is positive definite if

∀n∈N ∀a1,...,an∈A ∀λ1,...,λn∈C
n∑

k=1

n∑

l=1

λk K (ak, al)λ̄l ≥ 0.

Let H be an inner product space of complex-valued functions on A equipped with
the inner product1 〈·, ·〉.
1 We adopt the convention that inner products are anti-linear with respect to the second argument.
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Definition 2 The family {Ka}a∈A ⊂ H is called a reproducing family of H if

∀a∈A ∀ f ∈H f (a) = 〈 f , Ka〉 . (1)

Equality (1) is called the reproducing kernel property, and the function K : A×A → C

defined as

K (b, a) := 〈Ka, Kb〉 = Ka(b), a, b ∈ A

is called a reproducing kernel on the space H . If the latter is a Hilbert space, we call
H a reproducing kernel Hilbert space (RKHS).

Clearly, by the Riesz representation theorem, any RKHS has a unique reproducing
family and thus a unique reproducing kernel, which can be easily shown to be positive
definite. The following seminal result shows that actually the converse is also true:
Every positive definite kernel is a reproducing kernel on a certain Hilbert space.

Theorem 1 [Moore–Aronszajn] Let K be a positive definite kernel on a non-empty
set A. Then there is a unique Hilbert space H(K ) of complex-valued functions on A
with the reproducing kernel K .

Proof (A sketch; for details, see [19, Theorem 2.14]) One considers the vector space
H0(K ) := span{Ka}a∈A. The map 〈·, ·〉H0 : H0(K ) × H0(K ) → C given by

〈
m∑

l=1

λl Kal ,

n∑

k=1

βk Kbk

〉

H0

:=
n∑

k=1

m∑

l=1

λl β̄k K (bk, al) (2)

can be demonstrated to be a well-defined inner product (more information on the
correctness of such definitions can be found e.g. in [10]). Then one shows that the
completion of H0(K ) in the norm induced by that inner product, denoted H(K ) :=
H̃0(K ) = s̃pan{Ka}a∈A, can still be interpreted as a space of complex-valued functions
on A, with K as its reproducing kernel. 
�

Inwhat follows,we shall be using the following generalway of constructing positive
definite kernels.

Theorem 2 Let F : A → H be any function from a nonempty set A to a Hilbert space
H equipped with an inner product 〈·, ·〉. Then:
• Themap K : A×A → C defined as K (b, a) := 〈F(a), F(b)〉 is a positive definite
kernel.

• By Theorem 1, there exists an RKHS H(K ) := s̃pan {K (·, a)}a∈A, for which K is
the reproducing kernel.

• The linear map T : H → H(K ) defined via (T v)(a) := 〈v, F(a)〉 is a surjec-
tive contraction. Moreover, it becomes an isometry when restricted to the closed
subspace V := span F(A) of the space H.
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• Defining S : H(K ) → H as S := T |−1
V , we obtain an isometric embedding of the

RKHS H(K ) into H that satisfies S(Ka) = F(a) for every a ∈ A.

Proof Cf. [25, p. 13]. 
�
Notice that the third bullet of the above theorem carries a lot of information about the
functions belonging to H(K ). For example, if F is weakly continuous, then H(K ) ⊂
C(A).

The (unique) reproducing kernel of a given RKHS turns out be tightly related to
the so-called Parseval frames, which can be thought of as generalizations of complete
orthonormal systems of vectors.

Definition 3 (cf. Definition 2.6&Proposition 2.8 in [19]) Let H be aHilbert space (not
necessarily of functions) with an inner product 〈·, ·〉. The set {w j } j∈I ⊂ H is called
a Parseval frame for H if ‖v‖2 = ∑

j∈I |〈v,w j 〉|2 for every v ∈ H or, equivalently,
if v = ∑

j∈I 〈v,w j 〉w j for every v ∈ H .

Theorem 3 (Papadakis) Let H be an RKHS of functions on A with reproducing kernel
K . Then the family

{
ϕ j

}
j∈I ⊂ H is a Parseval frame for H iff

K (b, a) =
∑

j∈I
ϕ j (b)ϕ j (a), a, b ∈ A, (3)

where the series converges pointwise.

Proof See [19, Theorem 2.10]. 
�

2.2 Reproducing Kernel Defined by the Convolution of Functions on a Locally
Compact Group

Let G be a locally compact group (not necessarily abelian) and let μ be a fixed
left Haar measure on G. For two continuous compactly supported complex-valued
functions f1, f2 ∈ Cc(G), their convolution f1 ∗ f2 is another such function on G
defined via

( f1 ∗ f2)(g) =
∫

G
f1(τ ) f2(τ

−1g)dμ(τ).

The above definition extends to the space L2(G, μ) in the following sense [11, 444O
&444R]: for any f1, f2 ∈ L2(G, μ) the convolution f1∗ f̃2, where f̃2(g) := f2(g−1),
is a well-defined element ofCb(G) and, moreover, |( f1 ∗ f̃2)(g)| ≤ ‖ f1‖L2‖ f2‖L2 for
every g ∈ G (more information on the use of convolution can be found in e.g. [24]).

Example 1 Let G be a locally compact group and μ be a left Haar measure on G. Fix
f ∈ L2(G, μ) and consider the map K : G × G → C defined via

K (h, g) := ( f ∗ f̃ )(g−1h), g, h ∈ G.
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By the preceding discussion, K is bounded and jointly continuous. Moreover, it is a
positive definite kernel, because for any n ∈ N, λ1, . . . , λn ∈ C and g1, . . . , gn ∈ G
one has that

n∑

i, j=1

λi K (gi , g j )λ j =
n∑

i, j=1

λiλ j

∫

G
f (τ ) f̃ (τ−1g−1

j gi )dμ(τ)

=
n∑

i, j=1

λiλ j

∫

G
f (τ ) f (g−1

i g jτ)dμ(τ)

=
n∑

i, j=1

λiλ j

∫

G
f (g−1

j τ) f (g−1
i τ)dμ(τ)

=
∫

G

∣∣∣∣∣∣

n∑

j=1

λ j f (g
−1
j τ)

∣∣∣∣∣∣

2

dμ(τ) ≥ 0,

where in the antepenultimate step we employed the left-invariance of μ.
By Theorem 1, K is a reproducing kernel on a certain Hilbert space H(K ) equipped

with the inner product 〈·, ·〉H(K ) with the reproducing family {Kg := K (·, g)}g∈G . In
fact, H(K ) is a certain space of bounded continuous functions on G, which can be
isometrically embedded into L2(G, μ). To see why this is the case, let Lg : G → G,
ξ �→ gξ denote the left shift by the element g ∈ G. Employing the pullback L∗

g f :=
f ◦ Lg , one can write that

K (h, g) =
∫

G
f (τ ) f̃ (τ−1g−1h)dμ(τ)

=
∫

G
f (g−1τ) f (h−1τ)dμ(τ)

=
〈
L∗
g−1 f , L

∗
h−1 f

〉

L2
(4)

for any g, h ∈ G. Thus, the above construction is actually a special case of the one
described in Theorem 2, with the map F : G → L2(G, μ) defined as F(g) :=
L∗
g−1 f for every g ∈ G. Hence the elements of H(K ) are mappings of the form

g �→ 〈v, L∗
g−1 f 〉 with v ∈ L2(G, μ), which are clearly bounded (by ‖v‖L2‖ f ‖L2 )

and continuous, whereas the isometric embedding S : H(K ) → L2(G, μ) satisfies
S(Kg) = L∗

g−1 f .
As a side remark, observe that the above positive definite kernel K can also be

expressed as

K (h, g) =
∫

G
f (g−1τ) f (h−1τ)dμ(τ) =

∫

G
f̃ (τ−1h) f̃ (τ−1g)dμ(τ)

=
∫

G
L∗

τ−1 f̃ (h)L∗
τ−1 f̃ (g)dμ(τ), g, h ∈ G,
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what is analogous to formula (3), only here instead of a Parseval frame
{
ϕ j

}
j∈I and a

counting measure we have the family {L∗
τ−1 f̃ }τ∈G of the left-translations of the map

f̃ and the left Haar measure μ.

3 Groupoids

Groupoids provide both a generalization of groups [3] and of equivalence relations
[18].

Definition 4 Let �, X be nonempty sets. A groupoid � over a set X is a septuple
(�, X , s, r , ε, ·, −1) with the below described mappings:

1. the source mapping s : � −→ X , which is surjective.
2. the range mapping r : � −→ X , which is surjective.
3. themultiplicationmapping · : �(2) −→ �,where�(2) := {(γ1, γ2)∈�×� | r(γ2)

= s(γ1)}. The multiplication is associative. For simplicity, instead of γ1 · γ2 we
write γ1γ2.

4. the embedding map ε : X −→ � fulfilling

ε(r(γ ))γ = γ = γ ε(s(γ )).

5. the inversion map −1 : � −→ � such that

∀γ∈� γ −1γ = ε(s(γ )) and γ γ −1 = ε(r(γ )).

The element γ ∈ � can be regarded as an arrow with the starting point at x = s(γ )

and the ending point at y = r(γ ), where x, y ∈ X .

•y
γ

•x

Remark 1 From the above definition it follows that the groupoid (�, X , s, r , ε, ·, −1)

can be identified with a small category in which all morphisms are invertible. In this
interpretation X is the set of objects, � is the set of morphisms, s(γ ) is the domain of
γ , r(γ ) is the codomain of γ , ε(x) is the identity morphism at x , · is the composition
of morphisms and γ −1 is the inverse of the morphism γ ∈ �.

Example 2 A group G is a groupoid over the singleton X := {x} with the mappings
defined as ∀g∈G s(g) := x, r(g) := x and ε(x) := e— the unit of the group G. The
inversion and multiplication mappings are given by the respective group operations.

Let � be a groupoid over the set X . It is easy to show that the relation ∼ on the set
X defined as follows:

∀x,y∈X x ∼ y ⇔ ∃γ∈� x = s(γ ) ∧ y = r(γ )
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is an equivalence relation on X . The equivalence class of any element x with respect
to ∼ is the set

Orx := [x]∼ = {
y ∈ X | ∃γ∈� s(γ ) = x ∧ r(γ ) = y

} = r(�x ),

where �x := {γ ∈ � | s(γ ) = x} = s−1(x).
We call Orx the orbit of the element x ∈ X with respect to the groupoid �. We say

that � is transitive if for any x, y ∈ X we have x ∼ y (or, equivalently, if Orx = X
for some and hence for every x ∈ X ).

Defining the fibers of the groupoid � as �x := s−1(x) and �x := r−1(x) and using
the above definition of the equivalence relation ∼, we have r(s−1(x)) = s(r−1(x)).

The set of arrows starting at x and ending at y is denoted by �
y
x := �x ∩ �y . The

set �x
x := �x ∩ �x = {γ ∈ � | r(γ ) = s(γ ) = x} of elements starting and ending at

x together with the groupoid multiplication and inversion map has a group structure,
and we call it the isotropy group of the element x .

Remark 2 If � is a transitive groupoid over X then it is easy to show that for any
y ∈ X the groups �x

x and �
y
y are isomorphic (albeit not canonically!). Without the

transitivity, however, it may happen that for some x �= y the fibers �x
x and �

y
y are not

isomorphic as groups.

Remark 3 If (�, X , s, r , ε, ·, −1) is a groupoid and �, X are topological spaces then
we call � a topological groupoid if all maps s, r , ε, ·,−1 are continuous. In this case
the maps ε,−1 are homeomorphisms onto their images and all isotropy groups are
topological groups.

3.1 Unitary Representation of a Groupoid

Recall that a unitary representation of a groupG is a pair (U , H), where H is a Hilbert
space and U is a map assigning to every g ∈ G a unitary operator U(g) : H → H
satisfying U(g1g2) = U(g1)U(g2) for all g1, g2 ∈ G. A standard example of a unitary
representation of a (locally compact) group is the left regular representation U(g) :=
L∗
g−1 : L2(G, μ) → L2(G, μ), which appeared in Example 1 above.
The notion of a unitary representation can be extended onto groupoids.

Definition 5 Let � be a groupoid over the set X . A pair (U , H) is called a unitary
representation of the groupoid � if H := {Hx }x∈X is a family of Hilbert spaces and U
is a mapping assigning to each γ ∈ � a unitary transformation U(γ ) : Hs(γ ) → Hr(γ )

in such a way that U(γ1γ2) = U(γ1)U(γ2) for every (γ1, γ2) ∈ �(2).

Notice that from the above definition it already follows that

• U(ε(x)) = idHx for every x ∈ X .
• U(γ −1) = U(γ )−1 = U(γ )† for every γ ∈ �.

From the family H := {Hx }x∈X one can construct a new Hilbert space H :=⊕̃
x∈X Hx defined as the completion of the direct sum

⊕
x∈X Hx with respect to the
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norm generated by the inner product
∑

x∈X 〈·, ·〉x , where 〈·, ·〉x denotes the inner
product on Hx .

Many authors [8,18,22] use a more general and somewhat more involved definition
of a unitary representation of a groupoid, inwhichH is aHilbert bundleor ameasurable
field of complex Hilbert spaces. This allows for constructing many more interesting
Hilbert spaces from the fibers Hx than just the completed direct sum H above (see
also [10]). In the present paper, however, we keep the definition simple so that the
constructions of the positive definite kernels and RKHS become more tractable.

Example 3 Let � be a groupoid over X and H be a fixed Hilbert space equipped with
an inner product 〈·, ·〉. Consider the family {Hx := {x} × H}x∈X with Hx endowed
with the inner product 〈(x, h1), (x, h2)〉x := 〈h1, h2〉. For any γ ∈ �

y
x , x, y ∈ X the

transformation U(γ ) : Hx → Hy defined by U(γ )(x, h) := (y, h) (change of the
fiber base point) is of course unitary. Any such a representation of the groupoid � is
called a trivial representation.

A less trivial standard examples of groupoid representations arise for locally
compact topological groupoids. Observe that for any such a groupoid �, the fibers
�x := r−1(x) and �x := s−1(x) for any x ∈ X are locally compact spaces, too,
and the same concerns the base space X itself. On such groupoids one introduces the
following generalization of Haar measures [18,22].

Definition 6 Let � be a locally compact topological groupoid. The family {λx }x∈X of
regular Borel measures on �x is called a left Haar system for the groupoid � if

1. For every f ∈ Cc(�) the function f 0 : X → C given by f 0(x) := ∫
�x f dλx is

continuous,
2. For every γ ∈ � and every f ∈ Cc(�)

∫

�s(γ )

f (γ χ)dλs(γ )(χ) =
∫

�r(γ )

f (χ)dλr(γ )(χ).

Similarly, the family {λx }x∈X of regular Borel measures on �x is called a right Haar
system for the groupoid � if

1.′ For every f ∈ Cc(�) the function f0 : X → C given by f0(x) := ∫
�x

f dλx is
continuous,

2.′ For every γ ∈ � and every f ∈ Cc(�)

∫

�r(γ )

f (χγ )dλr(γ )(χ) =
∫

�s(γ )

f (χ)dλs(γ )(χ).

Observe that both f 0 and f0 are automatically compactly supported. Conditions 1.
and 1.′ express the demand for the measures λx and λx to vary continuously over X ,
whereas conditions 2. and 2.′ generalize the notions of, respectively, left and right
invariance of Haar measures on locally compact groups.
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Example 4 For any x ∈ X let Hx = L2(�x , λx ),where {λx }x∈X is a leftHaar systemon
�. For any γ ∈ �

y
x and for f ∈ Hx define a unitary transformation U(γ ) : Hx → Hy

by
(U(γ ) f )(χ) = f (γ −1χ), χ ∈ �y .

Such a representation (U , {Hx }x∈X ) is called the left regular representation of the
groupoid �.

Example 5 For any x ∈ X let Hx = L2(�x , λx ), where {λx }x∈X is a right Haar
system on �. For any γ ∈ �

y
x and for f ∈ Hx define a unitary transformation

U(γ ) : Hx → Hy by
(U(γ ) f )(χ) = f (χγ ), χ ∈ �y .

Such a representation (U , {Hx }x∈X ) is called the right regular representation of the
groupoid �.

For more examples of unitary representations of groupoids, the Reader is referred
to [13,22].

4 Reproducing Kernels and Unitary Representations

4.1 Reproducing Kernel Associated to a Unitary Representation of a Group

Let G be a group and (U , H) be its unitary representation on a Hilbert space H
equipped with an inner product 〈·, ·〉. Additionally, let v ∈ H be any fixed vector.
Formula (4) in Example 1 suggests considering the kernel K : G × G → C defined
as

K (h, g) := 〈U(g)v,U(h)v〉. (5)

Notice that thus defined K is a special case of the construction presented in Theorem
2 with the map F : G → H given by F(g) := U(g)v, g ∈ G. This means, in
particular, that the RKHS H(K ) provided by theMoore–Aronszajn theorem is a space
of functions of the form g �→ 〈w,U(g)v〉, where w ∈ H . Notice that, if U is a weakly
continuous unitary representation of a topological group G, then H(K ) ⊂ C(G).
Moreover, if {w j } j∈I ⊂ H is a Parseval frame for H , then

K (h, g) = 〈U(g)v,U(h)v〉 =
∑

j∈I
〈U(g)v,w j 〉〈w j ,U(h)v〉 =

∑

j∈I
ϕ j (h)ϕ j (g),

where ϕ j := Tw j ∈ H(K ) (cf. the third bullet in Theorem 2). On the strength of
Theorem 3, {ϕ j } j∈I is a Parseval frame for H(K ).

By the unitarity of the representation, the kernel K satisfies

K (h, g) = K (g−1h, e) for any g, h ∈ G, (6)

where e is the unit element of G.
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Conversely, suppose we are given a positive definite kernel K : G × G → C on
a group G satisfying (6). We can employ the Moore–Aronszajn theorem to define its
representation (U , H(K )). Concretely, for any g ∈ G define U(g)

∑n
i=1 λi Khi :=∑n

i=1 λi Kghi for any element of H0(K ) := span{Kh}h∈G . Since there is no guarantee
that the system {Kh}h∈G is linearly independent, we must check that such a U(g) is
well defined. To this end, it suffices to prove that if

∑n
i=1 λi Khi ≡ 0 on G, then also∑n

i=1 λi Kghi ≡ 0. But thanks to (6) we have that, for any h ∈ G,

n∑

i=1

λi Kghi (h) =
n∑

i=1

λi Khi (g
−1h) = 0

by assumption (see also [10]). Since H0(K ) is dense in H(K ), thus defined U(g) can
be uniquely extended to H(K ). Moreover, also by (6) and by the density argument,
one obtains the unitarity of U(g) by verifying that for any h, h′ ∈ G

〈U(g)Kh,U(g)Kh′ 〉H(K ) = 〈Kgh, Kgh′ 〉H(K )

= K (gh′, gh) = K ((gh)−1gh′, e)
= K (h−1g−1gh′, e) = K (h−1h′, e) = K (h, h′)
= 〈Kh′ , Kh〉H(K ).

Observe, finally, that one can retrieve the kernel K from the above ‘Moore–
Aronszajn representation’ through formula (5). Indeed, one simply has to takev := Ke.

4.2 Reproducing Kernel Associated to a Unitary Representation of a Groupoid

Let us nowgeneralize the above relationship between unitary representations of groups
and reproducing kernels onto the groupoid setting. Let thus � be a groupoid over X
and (U , H = {Hx }x∈X ) be its unitary representation as specified by Definition 5.
Additionally, let v be a fixed vector field, by which we shall understand a mapping
X � x �→ v(x) ∈ Hx (note: vector fields need not belong toH := ⊕̃

x∈X Hx ). Define
the kernel K : � × � → C via

K (χ, γ ) :=
{ 〈U(γ )v(s(γ )),U(χ)v(s(χ))〉r(γ ) for r(γ ) = r(χ),

0 for r(γ ) �= r(χ).
(7)

Observe that for each x ∈ X the restriction K x := K |�x×�x is a positive defi-
nite kernel — it constitutes a special case of the construction presented in Theorem
2 with Fx : �x → Hx given by Fx (γ ) := U(γ )v(s(γ )) for every γ ∈ �x .
Invoking the Moore–Aronszajn theorem (Theorem 1), we obtain an RKHS given

by H(K x ) := s̃pan
{
K x

γ := K x (·, γ )
}

γ∈�x
, whose reproducing kernel is K x . By the

third bullet of Theorem 2, every element of H(K x ) is a function on �x of the form
γ �→ 〈wx ,U(γ )v(s(γ ))〉, where wx ∈ Hx . Finally, by the fourth bullet of Theorem
2, for any x ∈ X the Hilbert space H(K x ) can be isometrically embedded into Hx ,
its image being the closed subspace V x := span{U(γ )v(s(γ ))}γ∈�x .
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Also the kernel K itself is a realization of the general construction described in
Theorem 2. To see this, consider F : � → H given by F(γ ) := U(γ )v(s(γ ))

and observe that 〈F(γ ), F(χ)〉H := ∑
x∈X 〈F(γ ), F(χ)〉x indeed equals K (χ, γ )

for all γ, χ ∈ �, because Hx⊥Hy as subspaces of H for x �= y. Therefore, K
is positive definite and the Moore–Aronszajn theorem yields an RKHS defined as
H(K ) := s̃pan

{
Kγ := K (·, γ )

}
γ∈�

.
Notice that the two above constructions are of RKHS compatible in the sense that

H(K ) =
⊕̃

x∈X H(K x ). (8)

Indeed, observe that both spaces have the same dense subspaces, namely (cf. the sketch
of the proof of Theorem 1 above)

H0(K ) := span
{
Kγ

}
γ∈�

=
⊕

x∈X
span

{
Kγ

}
γ∈�x

=
⊕

x∈X
span

{
K x

γ

}

γ∈�x
=:

⊕

x∈X
H0(K

x ),

where the maps Kγ : � → C and K x
γ : �x → C have been identified (the former

being the extension by zero of the latter). Since both above spaces are equippedwith the
same inner product (given by (2)), they yield the same Hilbert spaces after completion
(see also [10]).

Similarly as before, by the third bullet of Theorem 2, every element of H(K ) is a
function on � of the form γ �→ 〈w,U(γ )v(s(γ ))〉, where w ∈ H. Notice that such
functions must vanish on all but countably many fibers �x . Moreover, if {w j } j∈I ⊂ H
is a Parseval frame for H, then

K (χ, γ ) = 〈U(γ )v(s(γ )),U(χ)v(s(χ))〉H
=

∑

j∈I
〈U(γ )v(s(γ )), w j 〉H〈w j ,U(χ)v(s(χ))〉H

=
∑

j∈I
ϕ j (χ)ϕ j (γ ),

where ϕ j := 〈w j ,U(·)v(s(·))〉H. Similarly as in the group case, by Theorem 3 we
obtain that {ϕ j } j∈I is a Parseval frame for H(K ).

Finally, by the fourth bullet of Theorem 2, the Hilbert space H(K ) can be
isometrically embedded into H, its image being the closed subspace V :=
span{U(γ )v(s(γ ))}γ∈� = ⊕

x∈XV x , where the last equality can be proven com-
pletely analogously to (8).

Additionally, the unitarity of the representation implies that for γ, χ ∈ � such that
r(γ ) = r(χ)

K (χ, γ ) = K (γ −1χ, ε(r(γ −1χ))), (9)
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which is nothing but a straightforward generalization of (6). Indeed, one has

K (χ, γ ) = 〈U(γ )v(s(γ )),U(χ)v(s(χ))〉r(γ )

=
〈
v(s(γ )),U(γ −1χ)v(s(χ))

〉

s(γ )

= K (γ −1χ, ε(s(γ ))) = K (γ −1χ, ε(r(γ −1χ))).

Let us now consider the converse problem. That is, given a groupoid � over X and
a positive definite kernel K : � × � → C such that K (γ, χ) = 0 if r(γ ) �= r(χ) and
(9) holds, we construct the ‘Moore–Aronszajn representation’ (U , {H(K x )}x∈X ) of
�. To this end, define each U(γ ) : H(Ks(γ )) → H(Kr(γ )) first on the dense subspace
H0(Ks(γ )) := span{Kχ }χ∈�s(γ ) by

U(γ )

n∑

i=1

λi Kχi :=
n∑

i=1

λi Kγχi ,

where, similarly as for groups, one can easily check that this definition is sound
(analogously as in the group case, it is here where property (9) steps in). Observe that
r(χi ) = s(γ ) for all i = 1, . . . , n, so the products γχi are all well defined. It is also
straightforward to prove (again, thanks to (9)) that thus defined U(γ ) preserves inner
products. Extending it onto the entire H(Ks(γ )), by the arbitrariness of γ we obtain
the desired unitary representation of �.

Finally, notice that the kernel K can be retrieved from the ‘Moore–Aronszajn rep-
resentation’ through formula (7), where one has to take the vector field v(x) := Kε(x),
x ∈ X .

Before moving to examples, let us remark that formula (7) ‘works well’ with the
basic algebraical operations on the groupoid representations.

Remark 4 Let � be a groupoid over X and let (U ( j), H
( j) := {H ( j)

x }x∈X ), j =
1, 2, . . . , l, be its unitary representations. Fixing l vector fields v1, v2, . . . , vl on X
such that v j (x) ∈ H ( j)

x for x ∈ X and j = 1, 2, . . . , l we can construct positive
definite kernels K1, K2, . . . , Kl on �, respectively, using formula (7). Consider now
the direct sum (

⊕l
j=1 U ( j),

⊕l
j=1 H

( j) := {⊕l
j=1 H

( j)
x }x∈X ) of the above represen-

tations, and, taking the vector field v⊕ := ⊕l
j=1 v j , define a kernel K⊕ on � via (7).

Similarly, consider the tensor product (
⊗l

j=1 U ( j),
⊗l

j=1 H
( j) = {⊗l

j=1 H
( j)
x }x∈X )

of the representations and, taking this time the vector field v⊗ := ⊗l
j=1 v j , define

another kernel K⊗ on �, again employing formula (7). It follows from [25, p. 16,17]
that

K⊕ = K1 + K2 + · · · + Kl and K⊗ = K1 · K2 · · · · · Kl .

Remark 5 Suppose now we have a family of groupoids {(�i , Xi , si , ri , εi , ·i , −1i )}
indexed by i ∈ I . Let also (U (i), H

(i) := {H (i)
x }x∈Xi ) be a unitary representation of the

groupoid �i for every i ∈ I . The disjoint union � := ⊔
i∈I �i has a natural groupoid
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structure with X := ⊔
i∈I Xi as a base space, �(2) := ⊔

i∈I �
(2)
i , γ1 ·γ2 := γ1 ·i γ2 for

γ1, γ2 ∈ �
(2)
i , ε(x) := εi (x) for x ∈ Xi and, moreover, s(γ ) := si (γ ), r(γ ) := ri (γ ),

γ −1 := γ −1i for γ ∈ �i .
Consider now the family ofHilbert spacesH := {Hx }x∈X ,whereweput Hx := H (i)

x
for x ∈ Xi and define a mapping U assigning to each γ ∈ � a unitary transformation
U(γ ) : Hs(γ ) → Hr(γ ) by U(γ ) := U (i)(γ ) for γ ∈ �i . Then (U , H) is a unitary
representation of �.

For any i ∈ I let us fix a vector field Xi � x → vi (x) ∈ H (i)
x and use formula (7) to

obtain a positive definite kernel Ki from the unitary representation (U (i), H
(i)) of �i .

Additionally, introduce a vector field v on X by setting v(x) := vi (x) if x ∈ Xi and
use it together with the representation (U , H) to obtain, again via (7), another positive
definite kernel K on �. It is not difficult to observe that

K (χ, γ ) =
{
Ki (χ, γ ) for χ, γ ∈ �i ,

0 for χ ∈ �i , γ ∈ �i ′ with i �= i ′. (10)

What is more, reasoning analogously as when proving formula (8), one can show
that the RKHS H(K ) obtained from K by means of the Moore–Aronszajn theorem
satisfies H(K ) = ⊕̃

i∈I H(Ki ).

Example 6 Fix a Hilbert space H endowed with the inner product 〈·, ·〉 and let
(U , {Hx := {x} × H}x∈X ) be the trivial representation of the groupoid �. For any
fixed vector field v, which here can be regarded as an element of HX , we have
U(γ )v(s(γ )) = v(r(γ )) and formula (7) yields the kernel

K (χ, γ ) =
{ 〈v(r(γ )), v(r(χ))〉 = ‖v(r(γ ))‖2 for r(γ ) = r(χ),

0 for r(γ ) �= r(χ).

In other words, for every x ∈ X the kernel’s restriction K x is a constant map. Every
H(K x ) is thus either one-dimensional (if v(x) �= 0) or zero-dimensional (if v(x) = 0).
Moreover, if v is a nowhere-vanishing vector field, the set {‖v(x)‖1�x }x∈X (where
1�x : � → {0, 1} denotes the indicator function of the fiber �x ) constitutes an
orthonormal basis of H(K ), and hence the latter Hilbert space is isometrically iso-
morphic to l2(X).

Example 7 As a simple nontrivial example, consider the four-element groupoid � :=
{ε(+), ε(−), α, α−1} over a two-element set X := {+,−}, visualized in Figure 1.
Such a groupoid (the pair groupoid over a two-element set) is studied e.g. in the
context of quantum information [14].

To further simplify the example, let us consider a one-dimensional representation
of �. Concretely, let us take H+ := {+} × C, H− := {−} × C and let the unitary
representation (U , {H+, H−}) be given by

U(α) : H+ → H−, U(α)(+, z) := (−, λz)

and hence U(α−1) : H− → H+, U(α−1)(−, z) := (+, λ̄z), where λ is a fixed
complex number of modulus 1. Choosing a generic vector field v(+) := (+, v+),
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Fig. 1 Structure of the groupoid � in Example 7

Table 1 The kernel obtained
from the representation studied
in Example 7

K (·, ·) ε(+) α−1 α ε(−)

ε(+) |v+|2 λ̄v−v̄+ 0 0

α−1 λv̄−v+ |v−|2 0 0

α 0 0 |v+|2 λ̄v−v̄+
ε(−) 0 0 λv̄−v+ |v−|2

v(−) := (−, v−), where v± ∈ C, formula (7) yields a kernel whose respective values
are presented in Table 1.

Notice that the columns of the above table contain the values of the functions Kε(+),
Kα−1 , Kα , Kε(−), respectively. These four functions span the space H(K ), but they
are not linearly independent. In fact, one can write that H(K ) = span{ϕ+, ϕ−}, where
the functions ϕ± : � → C are defined as

ϕ+(ε(+)) := v̄+, ϕ+(α−1) := λv̄−, ϕ+(α) := 0, ϕ+(ε(−)) := 0,

ϕ−(ε(+)) := 0, ϕ−(α−1) := 0, ϕ−(α) := λ̄v̄+, ϕ−(ε(−)) := v̄−.

Unless v+ = v− = 0, the functions ϕ± can be shown to be orthonormal:

〈ϕ+, ϕ+〉H(K ) = 〈ϕ−, ϕ−〉H(K ) = 1 and 〈ϕ+, ϕ−〉H(K ) = 〈ϕ−, ϕ+〉H(K ) = 0.

Therefore, we have H(K ) ∼= C
2 as Hilbert spaces, and so in this case H(K ) is

isomorphic to H := H+ ⊕ H− and not just isometrically embedded in the latter (cf.
Theorem 2). In addition, observe that the (restricted) functions ϕ+|�+ , ϕ−|�− span the
RKHS’s H(K+), H(K−), respectively, built from the restricted kernels. All in all, we
have that

H(K ) = span{ϕ+, ϕ−} = span{ϕ+} ⊕ span{ϕ−} = H(K+) ⊕ H(K−),

where again we have identified the restricted functions with its extensions by zero, in
full agreement with formula (8).

Finally, the set {ϕ+, ϕ−}, being an orthonormal basis of H(K ), is a Parseval frame
for H(K ), and hence by Theorem 3 we must have, for every χ, γ ∈ �,

K (χ, γ ) = ϕ+(χ)ϕ+(γ ) + ϕ−(χ)ϕ−(γ ),

As one can check directly, the above equality indeed holds in the considered case.
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Example 8 Let � be a locally compact groupoid endowed with a left Haar system
{λx }x∈X , and let (U , {Hx := L2(�x , λx )}x∈X ) be its left regular representation, i.e.
(U(γ ) f )(ξ) := f (γ −1ξ) for any f ∈ Hr(γ ).

For any fixed vector field X � x �→ v(x) ∈ Hx the reproducing kernel reads, in
the case when r(χ) = r(γ ),

K (χ, γ ) =
∫

�r(γ )

v(s(γ ))(γ −1ξ)v(s(χ))(χ−1ξ)dλr(γ )(ξ)

=
∫

�s(γ )

v(s(γ ))(ξ)v(s(χ))(χ−1γ ξ)dλs(γ )(ξ)

=
∫

�s(γ )

v(s(γ ))(ξ)ṽ(s(χ))(ξ−1γ −1χ)dλs(γ )(ξ).

We note that this is an analogue of the kernel defined by the convolution on a group
with respect to a left Haar measure (cf. Example 1). Although there exists a standard
definition of a convolution on a groupoid (see, e.g., [18, p. 38]), the above expression

does not entirely fit into it, because the convoluted functions v(s(γ )) and ṽ(s(χ)) are

not defined over entire �. In fact, v(s(γ )) ∈ L2(�s(γ ), λs(γ )), whereas ṽ(s(χ)) ∈
L2(�s(χ), inv∗λs(χ)) (where inv denotes here the inversion map, inv(γ ) := γ −1) and

as such their convolution is well defined only on �
s(γ )

s(χ).
Of course, when r(γ ) �= r(χ) the kernel is by definition K (χ, γ ) = 0.

Example 9 Let � be a locally compact groupoid endowed this time with a right Haar
system {λx }x∈X , and let (U , {Hx := L2(�x , λx )}x∈X ) be its right regular representa-
tion, i.e. (U(γ ) f )(ξ) := f (ξγ ) for any f ∈ Hr(γ ).

For any fixed vector field X � x �→ v(x) ∈ Hx the reproducing kernel reads, in
the case when r(χ) = r(γ ),

K (χ, γ ) =
∫

�r(γ )

v(s(γ ))(ξγ )v(s(χ))(ξχ)dλr(γ )(ξ)

=
∫

�s(γ )

v(s(γ ))(ξ)v(s(χ))(ξγ −1χ)dλs(γ )(ξ)

=
∫

�s(γ )

v(s(γ ))(ξ)ṽ(s(χ))(χ−1γ ξ−1)dλs(γ )(ξ).

This also can be seen as something analogous to the convolution (only this time, related
to the right Haar measure in the group setting).

Of course, when r(γ ) �= r(χ) the kernel K (χ, γ ) is defined to vanish, just as in
the previous examples.

Example 10 This example is inspired by [4]. Let X be the set of all pairs (�, z), where
� is a domain (nonempty, open and connected set) in C

n and z ∈ �. Let also � be
the set of all pairs (
, z), where 
 : �1 → �2 is a biholomorphism between open
domains in C

n and z ∈ �1. We define the groupoid (�, X , s, r , ε, ·, −1) as follows.
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If (
, z) ∈ �, where 
 : �1 → �2, then s(
, z) := (�1, z) and r(
, z) :=
(�2,
(z)). The embeddingmap is givenby ε(�, z) := (id�, z),whereas the inversion
map reads (
, z)−1 := (
−1,
(z)). Finally, the multiplication · of pairs (
 : �1 →
�2, z) and (� : �3 → �4, ζ ) is defined if �2 = �3 and ζ = 
(z), in which case
(�, ζ )(
, z) := (� ◦ 
, z), where ◦ is an ordinary composition of mappings.

In order to introduce a kernel on �, define a map k : � → C via

k(
, z) := J
(z)

|J
(z)| , (
, z) ∈ �,

where J
(z) denotes the complex Jacobian determinant of 
 at the point z. Notice
that the map k is multiplicative, i.e., k(γ χ) = k(γ )k(χ) for any (γ, χ) ∈ �(2). Indeed,
using elementary properties of the Jacobian, we can write

k((�, ζ )(
, z)) = k(� ◦ 
, z) = J (� ◦ 
)(z)

|J (� ◦ 
)(z)| = J (�)(ζ )

|J (�)(ζ )| · J (
)(z)

|J (
)(z)| = k(�, ζ )k(
, z),

(11)

where ζ = 
(z) by the multiplicability of (�, ζ ), (
, z). What is more, for any
(�, z) ∈ X one trivially has that k(ε(�, z)) = k(id�, z) = 1 and hence, moreover,

k(γ −1) = k(γ )−1k(γ )k(γ −1) = k(γ )−1k(γ γ −1) = k(γ )−1k(ε(r(γ ))) = k(γ )−1 = k(γ )

(12)

for every γ ∈ �.
Let now K : � × � → C be a kernel given by the formula

K (χ, γ ) :=
{
k(γ )k(χ) for r(γ ) = r(χ),

0 for r(γ ) �= r(χ),
(13)

that is

K ((�, ζ ), (
, z)) :=
{

J
(z)
|J
(z)|

J�(ζ)
|J�(ζ)| for r(
, z) = r(�, ζ ),

0 for r(
, z) �= r(�, ζ ).

One can easily show that the above kernel is positive definite. In fact, it is a realization
of the general construction described in Theorem 2 with the function F : � → l2(X)

defined as F(
, z) := k(
, z)δr(
,z), where δx : X → C denotes the Kronecker delta
concentrated at x ∈ X .

Moreover, the above kernel satisfies (9). Indeed, by (11,12) one has that, whenever
r(χ) = r(γ ),

K (χ, γ ) = k(γ )k(χ) = k(γ −1)k(χ)

= k(γ −1χ) = k(ε(γ −1χ))k(γ −1χ)

= K (γ −1χ, ε(r(γ −1χ))).
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On the strength the discussion following formula (9), the just proven properties of
the kernel K mean that the latter can be used to construct a unitary ‘Moore–Aronszajn
representation’ (U , {H(K x )}x∈X ) of �, with each U(γ ) : H(Ks(γ )) → H(Kr(γ ))

satisfying

U(γ )Kχ = Kγχ , χ ∈ �s(γ ). (14)

In order to better understand this representation, notice first that for any χ ∈ �

Kχ = k(χ)k̄ · 1�r(χ) ,

where 1�r(χ) denotes the indicator function of the fiber �r(χ) (cf. Example 6). This in
particular means that for every x ∈ X the space H(K x ) is spanned by the function
k̄ · 1�x , which can be easily shown to be of norm 1. Observe now that, for any chosen
χ ∈ �s(γ )

U(γ )(k̄ · 1�s(γ ) ) = k(χ)−1U(γ )Kχ = k(χ)−1Kγχ = k(χ)−1k(γ χ)k̄ · 1�r(γ χ)

= k(γ )k̄ · 1�r(γ ) ,

where we have used (14) and (11). In other words, under the above choice of the
orthonormal bases of the one-dimensional spaces H(K x ), the transformation U(γ )

can be regarded simply as the multiplication by the complex number k(γ ).
The above groupoid � together with the simple kernel given by (13) is by no means

the only one worth investigating in the context of biholomorphisms. The construction
can be generalized, e.g., by considering, for some fixed natural N > 1, the sets
XN := {(�, z) | z ∈ �N } and �N := {(
, z) | z ∈ �N }, where z := (z1, . . . , zN )

and the symbols � and 
 have the same meaning as before. For any biholomorphism

 : �1 → �2 we put

s(
, z) := (�1, z),

r(
, z) := (�2,
(z)),

(
, z)−1 := (
−1,
(z)),

where 
(z) := (
(z1), . . . , 
(zN )), and we define the multiplication

(�, ζ )(
, z) := (� ◦ 
, z)

provided 
(ζ) = z and � : �2 → �3 is another biholomorphism. Finally, the
embedding map is given by ε(�, z) := (id�, z) for any (�, z) ∈ XN . The septuple
(�N , XN , s, r , ε, ·, −1) is a groupoid and we can define N positive definite kernels
K1, . . . , KN : �N × �N → C via

K j ((�, ζ ), (
, z)) :=
{
k(
, z j )k(�, ζ j ) for r(
, z) = r(�, ζ ),

0 for r(
, z) �= r(�, ζ ),
(15)
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j = 1, . . . , N . Since all K j ’s satisfy condition (9), then for any α1, . . . , αN > 0 and
anynatural exponentsm1, . . . ,mN the function K := α1K

m1
1 +α2K

m2
2 +· · ·+αN K

mN
N

is a positive definite kernel2 on �N also satisfying condition (9). Therefore, K defines
a unitary ‘Moore–Aronszajn representation’ of �N , which no longer offers such a
straightforward interpretation as the one presented above. This, however, goes beyond
the scope of the current article and will be addressed in the future work.

5 Applications

Let us briefly discuss possible applications of the presented relationship between
unitary representations of groupoids and reproducing kernels.

Kernel methods are practically utilized, e.g., in the machine learning field. Cur-
rently, their typical implementation is the classification or regression task, where the
kernel-based method can be used to process the feature vector (representing the ana-
lyzed object) and produce the desired output, ensuring minimum error even if the data
are difficult to distinguish. The most popular method is the support vector machines
classifier (SVC), used to identify linearly inseparable objects. Their original features,
based on which the decision is made, are transformed using the kernel function to a
new space, where separation of examples belonging to various categories is easier [9].
However, one of the requirements for the kernel function K (x, y) = 〈τ(y), τ (x)〉
is that its input arguments are real numbers. This function can be substituted by
K (h, g) = 〈U(g)v,U(h)v〉. As a result, the unitary representation U on the group
(instead of transforming features from the original space to the new one using func-
tion τ ) is used.

Another domain in which kernel-based methods prove their usefulness is optimiza-
tion. The problem, often encountered in data processing modules (implemented in
such fields as electronics or control engineering) is the selection of the optimal kernel
regarding the distance between feature vectors in the multidimensional space. Accord-
ing to [20], such a measure (on the groupoids) can be used to solve the generalized
version of the traveling salesman problem. The overall distance to minimize is given
as: L = ∑N

i=1 d(ci , ci+1),where ci and ci+1 are two subsequent nodes from the graph
in the optimized cycle. Using the kernel to describe distances between nodes in the
new space allows for estimating the distance components as:

d(x, y) = √
K (x, x) − 2K (x, y) + K (y, y),

where kernel K is a real-valued function. This type of distance is described in [12,
p. 78]. In the SVC implementation, selection of the optimal kernel among various
candidates (ensuring the minimal or maximal distance between the points) can be
done without the actual transformation of the original space to the new one (which is
the core of the kernel applicability in the machine learning).

2 It is well known that the finite product of positive definite kernels on A is itself a positive definite kernel
(see, e.g., [25, p. 6,17]). The same, of course, concerns linear combinations with positive coefficients of
positive definite kernels defined on the same set A.
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Yet another possible application concerns quantum physics, where both reproduc-
ing kernels [16] and groupoids and their representations [5] have been used in the
description of quantum systems. For instance, the simple representation of the pair
groupoid of a two-element set, considered in Example 7 above, can be used in the
description of a qubit — the central notion of the theory of quantum information [14].

6 Conclusions

By combining RKHS and unitary representations of groupoids one notion can be
described and studied in terms of the other. For instance, one could examine how the
irreducibility of the representation, the regularity of the representation or the existence
of the imprimitivity system is reflected in terms of reproducing kernels associated with
this representation.

Another interesting problem might be to describe the so-called (unitary) equiva-
lence after extension between two bounded linear operators in Hilbert spaces in terms
of groupoids and their representations (see [24]). This may be applicable in the theory
of partial differential equations and will be investigated in future work.

In future work we shall also investigate the physical meaning and significance
of the kernels and RKHS associated to the quantum-mechanically relevant unitary
representations of groupoids.

On the mathematical side, let us add that the simple definition of a unitary rep-
resentation of a groupoid employed in the paper can be generalized onto the setting
of measurable fields of Hilbert spaces [8,22,23]. The natural question whether the
above-studied relationship between RKHS and unitary groupoid representations still
holds in this more general setting will also be addressed in the future work. This line
of research might in the end offer some new tools and insights in the fields of complex
analysis, quantum physics and computer science.
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