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Abstract
In this paper we connect a celebrated theorem of Nyman and Beurling on the equiv-
alence between the Riemann hypothesis and the density of some functional space in
L2(0, 1) to a trigonometric series considered first by Hardy and Littlewood (see (3.4)).
We highlight some of its curious analytical and arithmetical properties.

Keywords Hardy–Littlewood function · Franel integral · Beurling’s theorem ·
Arithmetic functions

Mathematics Subject Classification 11M32 · 11M38 · 11K70 · 11K65

1 Introduction

The main purpose of this work is to bring to light a new relationship between two
facets of Riemann’s zeta function: On the one hand a functional analysis approach
to the Riemann hypothesis due to Nymann and Beurling, and on the other hand a
trigonometric series first studied by Hardy and Littlewood [16], and then followed by
Flett [15], Segal [25] and Delange [13]. The trigonometric series in question is
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f(x) =
∞∑

n=1

1

n
sin

x

n
. (1.1)

It differs from the finite sum
∑

n≤x

1

n
sin

x

n
, as x tends to ∞, by

∑

n>1

1

n
sin

x

n
= O

(
∑

n>x

x

n2

)
= O(1).

Hardy and Littlewood proved [16] that, as x tends to ∞,

f(x) = O
(
(log x)

3
4 (log log x)

3
4+ε
)

and that

f(x) = �
(
(log log x)

3
4

)

from the fact that for x ≥ 5, the number of n ≤ x whose prime divisors are equivalent

to 1 modulo 4 is C
x

(log x)
1
2

, where C is a constant. Delange [13] showed that f(x)

is not bounded on the real line only from the following result on the reciprocals of
primes in arithmetic progressions

∑

p prime,
p≡1(mod 4)

1

p
= ∞

and obtained the �-result of Hardy and Littlewood just because

∑

p prime≤x,
p≡1(mod 4)

1

p
= 1

2
log log x + c + o(1).

This trigonometric series, despite its simplicity, has many similarities with the
Riemann zeta function [15] and deep relation to the divisor functions through the
sawtooth function

{t} = − 1

π

∞∑

m=1

sin 2mπ t

m
=
⎧
⎨

⎩

t − �t� − 1
2 if t �= �t�

0 if t = �t�.
(1.2)

For s ∈ C we define

σ s(n) =
∑

d|n
ds, σs(n) =

∑

d|n
d−s

so that nsσs(n) = σ s(n). For example if we define
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S1(x) =
∑

n≤x

σ1(n), S1(x) =
∑

n≤x

σ 1(n)

and

ρ(x) =
∑

n≤x

1

n

{ x
n

}
=
∑

n≤x

1

n

(
x

n
−
⌊ x
n

⌋
− 1

2

)

then the divisors and the fractional parts functions are related by

S1(x) =
∑

n≤x

1

n

⌊ x
n

⌋
= x

∑

n≤x

1

n2
− ρ(x)

= π2

2
x − 1

2
log x − ρ(x) + O(1).

Similarly [32] (p.70):

S1(x) = π2

12
x2 − xρ(x) + O(x).

We will see ((3.5) with f (2πx) = sin x) an integral representation of the partial sums
of f(x), using the sawtooth function.

2 Nyman–Beurling Criterion for the Riemann Hypothesis

2.1 Nyman–Beurling Theorem

For x > 0, let ρ(x) be the fractional part of x so that ρ(x) = x − �x�. To each

0 < θ ≤ 1 we associate the function ρθ (x) = ρ(
θ

x
). Then 0 ≤ ρθ (x) ≤ 1 and

ρθ (x) = θ

x
if θ < x . We introduce, as in [4–7,14,22,29] and the more recent book

[23]

M =
{
f , f (x) =

N∑

n=1

anρ(
θn

x
), an ∈ R, θn ∈ (0, 1],

N∑

n=1

anθn = 0, N ≥ 1

}
.

Each function in M has at most a countable set of points of discontinuity, and is
identically zero for x > 0.

Theorem 2.1 (Nyman–Beurling) Let 1 < p ≤ ∞. The subspace M is dense in the
Banach space L p(0, 1) if and only if the Riemann zeta function ζ(s) has no zero in

the right half plane Res >
1

p
.

The fundamental relations in the proof of this theorem are

∫ 1

0
ρ(

θ

x
)xs−1 dx = − θ

1 − s
− θ s

ζ(s)

s
, Res > 1, (2.1)
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which is just a variant of the classical representation

ζ(s) = s

s − 1
− s
∫ ∞

0

u − �u�
(u + 1)s+1 du. (2.2)

It follows from (2.1) that for f (x) ∈ M

∫ 1

0
f (x)xs−1 dx = −ζ(s)

s

N∑

k=1

akθ
s
k .

The study of the function f(x) is intimately linked to that of following function

{t} =
⎧
⎨

⎩

t − �t� − 1
2 if t �= �t�

0 if t = �t�.

We have the formal Fourier series expansion [11,12]

∞∑

n=1

an
n

{nθ} = − 1

π

∞∑

n=1

An

n
{sin 2πnθ} (2.3)

where

An =
∑

d|n
ad .

Davenport considered the cases of

an = μ(n); an = λ(n); an = 
(n); an2 = μ(n), an = 0, n �= m2.

These arithmetical functions have their usual number-theoreticmeanings. For example
if ω(n) is the number of distinct prime factors of n or, in other terms, ω(n) =

∑
b|n 1

and ω(1) = 0, then the Möbius function μ(n) is defined by

μ(n) =
⎧
⎨

⎩

0 if n is divisible by a perfect square > 1

(−1)ω(n) otherwise

and the Von Mangoldt function 
(n) is defined by


(n) =
⎧
⎨

⎩

log p if n = pα for a prime p and some α ∈ N

0 otherwise
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In the case of the Möbius function an = μ(n), Davenport uses Vinogradov’s method,
a refinement of Weyl’s method on estimating trigonometric sums, to prove that for
any fixed h ∑

n≤y

μ(n)e2iπnx = O
(
y(log y)−h

)
(2.4)

uniformly in x ∈ R/Z. The implied constants are not effective. There have been
several results justifying (2.3) for other particular sequences (an). The most general
problem is considered in [17].

It should be noted that the Davenport or Hardy Littlewood estimates admit a com-
mon analysis. For the convenience of the reader we gather together a few classical
results on exponential sums. Let I be an interval of length at most N ≥ 1 and let
f : I → R be a smooth function satisfying the estimates x ∈ I, 2 ≤ N � T , j ≥ 1

| f ( j)(x)| = exp
(
O( j2)

) T

N j

then with f (x) = ex

(1) Van der Corput estimate: For any natural number k ≥ 2, we have

1

N

∑

n∈I
e( f (n)) = O

(
T

Nk

1
2k−2

log
1
2 (2 + T )

)
(2.5)

(2) Vinogradov estimate: For some absolute constant c > 0.

1

N

∑

n∈I
e( f (n)) � N

− c
k2 . (2.6)

2.2 The Functions �x�, �(x) and {x}

The Hardy–Littlewood–Flett function f(x) is related, in many ways, to the three func-
tions �x�, ρ(x) and {x}. The floor function �x� is related to the divisor function
d(n) = 1
1(n), the multiplicative square convolution product of the constant function
1, through the Dirichlet hyperbola method. More generally if g, h are two multiplica-
tive functions and f = g
h. The Dirichlet hyperbola method is just the evaluation of
a sum in two different ways:

∑

n≤x

f (n) =
∑

n≤x

∑

ab=n

g(a)h(b) =
∑

a≤√
x

∑

b≤ x
a

g(a)h(b) +
∑

b≤√
x

∑

a≤ x
a

g(a)h(b)

−
∑

a≤√
x

∑

b≤√
x

g(a)h(b).
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If g = h, then

∑

n≤x

f (n) = 2
∑

a≤√
x

∑

b≤ x
a

g(a)h(b) −
⎛

⎝
∑

a≤√
x

g(a)

⎞

⎠
2

.

As an application we have the estimate [28] (p. 262) for the divisor function d = 1
1:

d(x) = x log x + (2γ − 1)x + O(x
1
2 ).

The importance of the functions {x} and ρ(x) lies in the integral representations of
the Riemann zeta-function:

ζ(s) = −s
∫ ∞

0

{x} − 1
2

xs+1 dx = −s
∫ ∞

0

ρ(x)

xs+1 dx

valid for −1 < Res < 0. Making the change of variable x = 1

u
and applying Mellin

inversion formula gives

ρ(
1

u
) = − 1

2iπ

∫ c+i∞

c−i∞
ζ(s)

s
u−s ds.

For later use, we give some details on the case considered by Davenport in (2.3). From
(2.4) we obtain for −1 < c < 0

∞∑

n=1

μ(n)

n
ρ(nx) = − 1

2iπ

∫ c+i∞

c−i∞
ζ(s)

sζ(1 − s)
xs ds.

By the functional equation of the Riemann ζ -function and the functional equation of
the �-function we obtain for 0 < a < 1

∞∑

n=1

μ(n)

n
ρ(nx) = − 1

2iπ2

∫ a+i∞

a−i∞
�(s) sin

(
1

2
πs

)
(2πx)−s ds = − 1

π
sin(2πx).

Using the classical equivalent formulation of the Prime Number Theorem that
∑∞

n=1

μ(n)

n
= 0 we obtain Davenport’s relation

∞∑

n=1

μ(n)

n
{nx} = − 1

π
sin(2πx) (2.7)

where the convergence is uniform by Davenport estimate (2.4). We will need two
important properties of the function {x}:
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Kubert identity:
∑

l modm

{
x + l

m

}
= {mx} (2.8)

Franel formula: ∫ 1

0
{ax} {bx} dx = lcm(a, b)

12ab
. (2.9)

Kubert identity and Franel’s formula are interesting features shared bymany functions.
Let Br (x) be the Bernoulli polynomial defined by

tetx

et − 1
=

∞∑

r=0

Br (x)t
r , |t | < 2π,

so that

B1(x) = x − 1

2
, 2!B2(x) = x2 − x + 1

6
, · · ·

If r ≥ 2 is even then for 0 ≤ x ≤ 1

(2π)r Br (x) = (−1)
1
2−1

∞∑

l=1

2 cos(2lπx)

lr

with absolute convergence of the series. The Hurwitz zeta function ζ(s, x) is defined
for Res > 1 by

ζ(s, x) =
∞∑

n=0

1

(x + n)s
.

Then Br (x) and ζ(s, x) both satisfy the functional equation [21]

f (x) + f (x + 1

k
) + · · · + f (x + k − 1

k
) = f (k) f (kx),

where f (k) = k1−n if f (x) = Bn(x) and f (k) = ks if f (x) = ζ(s, x). Furthermore,
if a, b denote arbitrary positive integers and (a, b) = gcd(a, b), [a, b] = lcm(a, b)
the greatest common divisor and least common multiple respectively of a and b, then
[21]:

∫ 1

0
Br (ax)Br (bx) dx = (−1)r−1 B2r

(2r)!
(

(a, b)

[a, b]
)r

and for Res > 1
2

∫ 1

0
ζ(1 − s, ax)ζ(1 − s, bx) dx = 2�2(s)ζ(2s)

(2π)2s

(
(a, b)

[a, b]
)s

.



55 Page 8 of 29 A. Sebbar, R. Gay

Similarly to (2.2) we have

ζ(s, w) = 1

(s − 1)ws−1 + 1

ws
− s
∫ ∞

0

u − �u�
(u + w)s+1 du,

and the function ζ(s, w) − 1

(s − 1)ws−1 is analytic in {Res > 0}. In the next section
we use two summation formulas.

If F is an antiderivative of f , then, formally [1]

∫ 1

0
ρ(

θ

t
) f (t)dt = θ

∫ 1

0

f (t)

t
dt −

∞∑

n=1

n

(
F(

θ

n
) − F(

θ

n + 1
)

)
(2.10)

and if μ is the Möbius function and if 0 < θ, x ≤ 1 , we have, pointwise [2]

∞∑

n=1

μ(n)

{
ρ

(
θ

nx

)
− 1

n
ρ

(
θ

x

)}
= −χ]0,θ](x).

3 From Beurling’s Theorem to Hardy–Littlewood–Flett Function f(x)

3.1 The Emergence of Franel Integral Type

To show that the constant function 1 ∈ M one has, as in [2], to minimize the norms
in L2([0, 1])

‖1 +
N∑

j=1

a jρ
(α j

·
)

‖ (3.1)

which brings back to the evaluation of integrals of Franel type, computed in [2]:

J (β) =
∫ 1

0
ρ

(
1

x

)
ρ

(
β

x

)
dx, β ∈ [0, 1].

To show that the function sin x ∈ M one has, this time, to minimize the norms

‖ sin x +
N∑

j=1

a jρ
(α j

·
)

‖ (3.2)

Using (2.7) the minimization problem reduces to evaluation of the scalar products
in L2 (0, 1) giving the Fourier sine series of the function { θ

x }, that is

an = ({ θ

x
}∣∣√2 sin(nπx)) = √

2
∫ 1

0
{ θ

x
} sin(nπx)dx = −π

√
2
∑

j≥1

μ j

j

∫ 1

0
{ θ

x
}{ jnx

2
}dx
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and then to the evaluation of
∫ 1

0
{a
x
}{bx}dx , another kind of integrals of Franel type.

We compute these integrals in the case a = m, b = n, m and n being integers.

3.2 The Second Kind of Franel Type Integrals In,m = ∫ 1
0 {nx}{mx }dx, n,m ∈ N

∗

The values of the integrals In,m are given by the following

Theorem 3.1 For positive integers m, n, the modified Franel integrals are given by

In,m = n

m
+ m logm + m(n − 1) log(mn) − m(log((n − 1)!))

− n(n − 1)

2
− nm2

2
(ζ(2) −

∑

1≤ j≤m

(1 − m

j
)) +

∑

1≤k≤n−1,mn≥ jk

(1 − mn

jk
).

Let us first give few examples:

I(2,1) = 5

2
− log(2) − ζ(2); I(3,1) = 25

6
+ log(2) − 2 log(3) − 3

2
ζ(2)

I(4,1) = 35

6
− 5 log(2) + log(3) − 2ζ(2); I(5,1) = 35

6
− 5 log(2) + log(3) − 2ζ(2)

I(1,2) = 7

2
− 2ζ(2); I(1,3) = 61

8
− 9

2
ζ(2)

I(1,4) = 5989

288
− 25

2
ζ(2); I(2,2) = 49

6
− 2 log(2) − 4ζ(2)

I(2,3) = 171

10
− 3 log(2) − 9ζ(2); I(2,4) = 18469

630
− 4 log(2) − 16ζ(2)

I(2,5) = 15059

336
− 5 log(2) − 25ζ(2); I(3,2) = 196

15
+ 2 log(2) − 4 log(3) − 6ζ(2)

We observe that in all these examples the factor ζ(2) = π2

6
is present.

For the proof we consider the two functions defined on ]0,+∞[

f (x) = fn(x) = xχ[0,1](x){nx}, g(x) = {x}χ[1,+∞](x)

and their multiplicative convolution

( f 
g)(a) =
∫ +∞

0
f (x)g(

a

x
)
dx

x
, ( f 
g)(m) = In,m .

We split the computations in several steps. A natural method is to use first the Mellin
transform with its property M( f 
g)(s) = M( f )(s)M(g)(s), followed by an inver-

sion. The main idea is the decomposition formula (2.10), valid if
∫ 1

0

| f (x)|
x

dx is
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finite:

∫ 1

0
ρθ (x) f (x)dx =

∞∑

n=1

∫ θ
n

θ
n+1

(
θ

x
− n) f (x)dx +

∫ 1

θ

θ

x
f (x)dx,

or in an generalized function form,

ρθ (x) =
∞∑

n=1

(
θ

x
− n

)
χ[ θ

n+1 , θ
n ](x) + θ

x
χ[θ,1]

where χB denotes the characteristic function of the set B.

3.2.1 Computations of Different Integrals

(1) Computation of F(s) = M( f )(s) For σ = Re s > −2 we have

F(s) =
∫ 1

0
{nx}xsdx

=
∑

0≤k≤n−1

∫ k+1
n

k
n

(nx − k)xsdx

= n
∫ 1

0
xs+1dx −

∑

1≤k≤n−1

k
∫ k+1

n

k
n

xsdx

= n

s + 2
− 1

(s + 1)ns+1

∑

1≤k≤n−1

k((k + 1)s+1 − ks+1)

= n

s + 2
− 1

(s + 1)ns+1 {ns+2 − (1 + 2s+1 + 3s+1 + · · · ns+1)}

(2) Computation of G(s) = M(g)(s) For −2 < σ = Res < −1 we have

G(s) =
∫ +∞

1
{x}s−1dx

=
∑

k≥1

∫ k+1

k
(x − k)xs−1dx

=
∫ +∞

1
xsdx −

∑

k≥1

k
∫ k+1

k
xs−1dx

=
∫ +∞

1
xsdx − 1

s

∑

k≥1

k((k + 1)s − ks)

= 1

s + 1
− ζ(−s)

s
σ < −1
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Hence for −2 < c < −1 we can write

In,m = 1

2iπ

∫ c+i∞

c−i∞

(
1

s + 1
− ζ(−s)

s

)(
n

s + 2
− 1

(s + 1)ns+1 (ns+1

−(1 + 2s+1 + 3s+1 + · · · (n − 1)s+1)
) ds

ms
.

and, by changing s to −s, we get for 1 < c < 2

In,m = 1

2iπ

∫ c+i∞

c−i∞

(
1

1 − s
+ ζ(s)

s

)(
n

2 − s
− 1

(1 − s)n1−s
(n1−s

−(1 + 21−s + 31−s + · · · (n − 1)1−s)
) ds

m−s
.

By expanding we find:

In,m = 1

2iπ

∫ c+i∞

c−i∞
n.ms

(1 − s)(2 − s)
ds

− 1

2iπ

∫ c+∞

c−i∞
ms

(1 − s)2n1−s
(n1−s − (1 + 21−s + 31−s + · · · (n − 1)1−s))ds

+ 1

2iπ

∫ c+i∞

c−i∞
ζ(s)

s
(

n

2 − s
− 1

(1 − s)n1−s
(n1−s − (1 + 21−s + · · ·

+ (n − 1)1−s))msds

We treat the last integral by expanding the ζ function in Dirichlet series. We will
treat each type of integrals appearing separately. Then we proceed to the necessary
groupings in order to conclude.

In the following we write
∫

(c)
instead of

∫ c+i∞

c−i∞
, with 1 < c < 2.

(3) Computation of
n

2iπ

∫

(c)

ms

(1 − s)(2 − s)
ds. We set f (x) = −1

x
for 0 < x ≤ 1

and f (x) = − 1

x2
for x > 1. ItsMellin transform is

1

(1 − s)(2 − s)
for 1 < σ < 2.

We obtain
n

m
for m ≥ 1.

(4) Computation of− 1

2iπ

∫

(c)

ms

(1 − s)2
ds. We take f (x) = log x

x
for 0 < x < 1 and

0 for x ≥ 1. Its Mellin transform is − 1

(s − 1)2
for σ > 1. Here we obtainm logm

for m ≥ 1.

(5) Computation of
k

n

∫

(c)

(m n)sds

(1 − s)2 ks
. As before we find m log(

m n

k
) if mn ≥ k and

0 if mn < k.

(6) Computation of
n

2iπ

∫

(c)

msds

s(2 − s) j s
, j ≥ 1. We take f (x) = −1

2
for 0 < x ≤ 1

and f (x) = − 1

2x2
for x > 1. We get −n

2
if j ≤ m and −nm2

2 j2
if j > m.
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(7) Computation of − 1

2iπ

∫

(c)

msds

s(1 − s) j s
, j ≥ 1. Here we take f (x) = 1 − 1

x
if

0 < x ≤ 1 and 0 for x > 1. We obtain 1 − m

j
if m ≥ j and 0 otherwise.

(8) Computation of
k

n

1

2iπ

∫

c)

(nm)s

s(1 − s)( jk)s
. Here we obtain 1 − nm

jk
if mn ≥ jk

and 0 otherwise.

By putting together these partial results we end the proof of Theorem (3.1).

3.3 Second Approach
{

�
x

}

The most interesting approach for the evaluation of the integral
∫ 1

0

{
θ

t

}
sin(nπ t)dt

is to use (2.10):

∫ 1

0

{
θ

t

}
sin(nπ t)dt =

∫ θ

0

{
θ

t

}
sin(nπ t)dt + θ

∫ 1

θ

1

t
sin(nπ t)dt .

Moreover

∫ θ

0

{
θ

t

}
sin(nπ t)dt =

∑

p≥1

∫ θ
p

θ
p+1

sin(nπ t)(
θ

t
− p)dt

= θ
∑

p≥1

∫ θ
p

θ
p+1

sin(nπ t)

t
dt −

∑

p≥1

p
∫ θ

p

θ
p+1

sin(nπ t)dt

= θ

∫ θ

0

sin(nπ t)

t
dt + 1

nπ

∑

p≥1

p
(
cos

nπθ

p
− cos

nπθ

p + 1

)

Hence the n-th Fourier coefficient

an = ({θ

x
}∣∣√2 sin(nπx)) = √

2
∫ 1

0
{θ

x
} sin(nπx)dx

is also

an = √
2

⎛

⎝θ

∫ 1

0

sin(nπ t)

t
dt + 1

nπ

∑

p≥1

p
(
cos

nπθ

p
− cos

nπθ

p + 1

)
⎞

⎠ .

Seeking for the coefficient corresponding to f (x) =∑1≤ν≤N cν{ θν

x } the first integral
does not matter since

∑
1≤ν≤N cνθν = 0. It remains to compute

A =
∑

p≥1

p
(
cos

nπθ

p
− cos

nπθ

p + 1

)
.
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A depends on n and θ . We first consider the finite sum

AN =
∑

1≤p≤N

p
(
cos

nπθ

p
− cos

nπθ

p + 1

)

and set x = nπθ . We have by a partial summation

AN = cos
x

1
+ · · · + cos

x

N
− N cos

x

N + 1

= (cos
x

1
− 1) + · · · + (cos

x

N
− 1) + N (1 − cos

x

N + 1
)

= −2
N∑

k=1

sin2
x

k
+ 2N sin2

x

N + 1
.

Hence

lim
N→+∞ AN = −2

∞∑

k=1

sin2
x

k
. (3.3)

We thus obtain one of our main results: the n-th Fourier coefficient an of the funda-
mental function { θ

• } is related to the value at n of the antiderivative of the function
f(x) given in (1.1)

an = √
2

(
θ

∫ 1

0

sin(nπ t)

t
dt − 1

nπ

∞∑

k=1

sin2
nπθ

k

)
, (3.4)

bearing in mind that the derivative of
∑∞

k=1
sin2

u

k
is f(2u).

To give some useful integral representations we adapt an interesting method, due
to Delange [13], and use a result of Saffari and Vaughan [24]. First we introduce for
0 < α ≤ 1

cα(u) =
⎧
⎨

⎩

1 if u − �u� = ρ(u) < α

0 otherwise

Furthermore for x > 0, y > 1 let

ϑx,y(u) = 1

log y

∑

n≤y

1

n
cα(

x

n
).

According to [24] we have

Lemma 3.1 We have the estimate

ϑx,y(u) = u + O
(
(log x)

2
3 (log y)−1

)
,
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the O is uniform in u.

If f is continuously differentiable function on [0, 1]

f (2π
x

n
) = −2π

∫ 1

{ xn }
f ′(2πu) du = −2π

∫ 1

0
cu(

x

n
) f ′(2πu) du.

Hence
∑

n≤x

1

n
f (2π

x

n
) = −2π(log x)

∫ 1

0
ϑx,x (u) f ′(2πu), (3.5)

since

∫ 1

0
ϑx,x (u) f ′(2πu) du =

∫ 1

0
f ′(2πu) du +

∫ 1

0

(
ϑx,x (u) − u

)
f ′(2πu) du

=
∫ 1

0

(
ϑx,x (u) − u

)
f ′(2πu) du.

From the Lemma (3.1) we get, since f ′ is bounded on (0, 1)

∑

n≤x

1

n
f (2π

x

n
) = O (log x)

2
3 .

A natural example is to consider a Dirichlet character modulo N , χ . In this case

∑

n≤x

χ(n)

n
sin(2π

x

n
) = O (log x)

2
3 .

We shall not try to give sufficient conditions to justify the process here. The main
interest of the remark is that it suggests a method of dealing with various other sums
than f(x).

4 Almost Periodicity

The goal of this section is to show, by elementarymethods, that theHardy–Littelwood–

Flett function f(x) =
∑∞

n=1

1

n
sin

x

n
is not bounded on the real line. First we recall

two fundamental results on Bohr-almost periodic functions [8] (p.39, 44, and 58).

Theorem 4.1 (The Mean value theorem) For every almost periodic function f (x),
there exists a mean value

lim
T→+∞

1

T

∫ T

0
f (x)dx = M{ f (x)}
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and

lim
T→+∞

1

T

∫ a+T

a
f (x)dx = M{ f (x)}

uniformly with respect to a. In particular if f is an odd almost periodic function, then
its mean M{ f (x)} is zero.

Theorem 4.2 (The antiderivative theorem) The integral F(x) =
∫ x

0
f (t)dt of an

almost-periodic function f (x) is almost-periodic if and only if it is bounded.

Let

F(x) =
∞∑

n=1

1

n2
cos

x

n
.

The series defining F(x) is uniformly convergent on the real line. The partial sums

Fn(x) =
n∑

p=1

1

p2
cos

x

p

are almost periodic [8] (Corollary, p.38), and then F(x) is also almost periodic
[8] (Theorem IV, p.38). It is interesting to note that Fn is periodic of period
pn = lcm(1, 2, · · · , n) = eψ(n), with ψ(x) is the Chebyshev function, given by
ψ(x) =

∑
p≤x


(p), where 
(n) is the Mangoldt function.

The prime number theorem asserts that pn = en(1+o(1)) as n → ∞ [26] (p.261).
Actually pn ≤ 3n .

Lemma 4.1 We have

lim
x→+∞

1

x

∞∑

n=1

sin2
x

n
= π

2
.

Let x > 0 and nx =
⌊
2x

π

⌋
. The function h : x → sin2

1

x
, being bounded on [0, π

2 ]
and continuous on each [α,

π

2
], is Riemann-integrable on [0, π

2 ], so by considering

Riemann sums

lim
x→+∞

1

x

nx∑

n=1

sin2
x

n
=
∫ 2

π

0
sin2

1

t
dt =

∫ ∞
π
2

sin2 u

u2
du. (4.1)
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For x > 0 the function of g(t) = sin2 x
t is decreasing on (

2x

π
, +∞) and thus

∣∣∣∣∣∣

∞∑

n=nx+1

sin2
x

n
−
∫ ∞

2x
π

sin2
x

t
dt

∣∣∣∣∣∣
≤ 1. (4.2)

Since
∫ ∞

2x
π

sin2
x

t
dt = x

∫ π
2

0

sin2 u

u2
du we deduce the lemma from (4.8) (4.9) and

the relations

∫ ∞

0

sin2 u

u2
du =

∫ ∞

0

sin u

u
du = π

2
.

Corollary 4.1 The function f(x) =
∞∑

n=1

1

n
sin

x

n
is not bounded on the real line.

Proof Assume that f(x) is bounded on R then it would be almost periodic by the
antiderivative theorem (4.2) and the remark that f′(x) = F(x). Since f(x) is odd its

mean is zero. This is in contradiction with the limit
π

2
given by the Lemma (4.1). ��

Remark 4.1 The same analysis applies to the series
∑∞

n=1

χ(n)

n
sin(

x

n
), χ being a

Dirichlet character modulo N .

We will need to consider some Bessel functions. We recall that for Res > 0 the
�-function is

�(s) =
∫ ∞

0
us−1e−u du.

By Fubini’s theorem

�2(s) =
∫ ∞

0

∫ ∞

0
(uv)s−1e−(u+v) dudv =

∫ ∞

0
us−1ξ0(u) du,

where

ξ0(u) =
∫ ∞

1

2e2t
√
u

√
t2 − 1

dt .

More generally the iterated integrals [30,31]

ξ1(x) =
∫ ∞

x
ξ0(t) dt, . . . , ξk(x) =

∫ ∞

x
ξk−1(t) dt .
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satisfy the differential equation of Bessel type:

x
d2ξk(x)

dx2
+ (1 − k)

dξk(x)

dx
− ξk(x) = 0.

The ordinary Bessel function of order ν is

Jν(z) =
∞∑

m=0

(−1)m(z/2)2m+ν

m!�(m + 1 + ν)
, Iν(z) = i−ν Jν(i z), |z| < ∞.

The K -Bessel function of order ν, for ν not an integer, is

Kν(z) = π

2

I−ν(z) − Iν(z)

sin πν
.

When ν is an integer we take the limiting value. It could be also defined by

Kν(z) = 1

2

∫ ∞

0
tν−1e−z/2(t+1/t)dt, Reν ≥ 0. (4.3)

The Mellin transform of the J0-Bessel function is:

∫ ∞

0
J0(

√
x)xs−1dx = 4s

�(s)

�(1 − s)
.

We will need two Mellin transforms, due essentially to Voronoi

∫ ∞

0
xs−1K0(4π

√
x) dx = 1

2
(2π)−2s�2(s),

∫ ∞

0
xs−1Y0(4π

√
x) dx = − 1

π
(2π)−2s cos(πs)�2(s).

4.1 Summations Formulas and Beyond

Various classical summation formulas, as Poisson summation formula, Voronoi sum-
mation formula or Hardy–Ramanujan summation formula can all be given a unified
formulation. The following Generalized Poisson summation formula is proved in [9]

Theorem 4.3 Let a = a(n) be an arithmetic function with moderate growth. We define
the Dirichlet series

L(a, s) =
∞∑

n=1

a(n)n−s, Res > 1

and we suppose that L(a, s) has an analytic continuation to C with only a possible
pole at s = 1. We suppose also that there are positive constants A, a1, . . . , ag such
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that with the �-factors

γ (s) = As
g∏

j=1

�(a j s)

L(a, s) satisfies the functional equation

γ (s)L(a, s) = γ (1 − s)L(a, 1 − s).

Furthermore for f ∈ S(R), the Schwartz space, we define a very special Hankel’s
transform:

g(x) =
∫ ∞

0
f (y)K (xy)dy, with K (x) =

∫

Res= 3
2

γ (s)

γ (1 − s)
x−sds.

Then,

∞∑

n=1

a(n) f (n) = f (0)L(a, 0) + Ress=1M( f )(s)L(a, s) +
∞∑

n=1

a(n)g(n)

where Ress=1 is the evaluation of the residue at s = 1.

4.2 2 Classical Choices

(1) For a(n) = 1 we have L(a, s) = ζ(s) and

γ (s) = π− s
2 �(

s

2
), K (x) = 2 cos(2πx).

We recover Poisson summation formula for even functions in f (x) ∈ S(R):

∞∑

n=1

f (n) = −1

2
f (0) +

∫ ∞

0
f (x)dx + 2

∞∑

n=1

∫ ∞

0
f (y) cos(2πny)dy. (4.4)

(2) If a(n) = d(n) we have L(d, s) = ζ 2(s) and

γ (s) = π−s�(
s

2
)2,

γ (s)

γ (1 − s)
= (2π)−2s(2 + 2 cosπs)�(s)2

and

K (x) = 4K0(4π
√
x) − 4Y0(4π

√
x).
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We recover Voronoi summation formula

∞∑

n=1

f (n)d(n) = 1

4
f (0) +

∫ ∞

0
f (x) (2γ + log x) dx+

∞∑

n=1

d(n)

∫ ∞

0
f (y)

(
4K0

(
4π(ny)

1
2

)
− 2πY0

(
4π(ny)

1
2

))
dy.

As a consequence we have Koshliakov’s formula valid for a > 0:

√
a

(
γ − log

(
4π

a

)
+ 4

∞∑

n=1

d(n)K0(2πan)

)

= 1√
a

(
γ − log(4πa) + 4

∞∑

n=1

d(n)K0

(
2πn

a

))
.

This formula was proved by Ramanujan about ten years earlier (He did not appeal to
Voronoi’s formula) and by many authors later.

4.3 Another Function of Hardy and Littlewood

Hardy and Littlewood gave in [16] (p.269) the following relation

F(z) =
∞∑

n=1

1

n

(
1 − e−z/n) = 2 log z + 2γ

− 2
∞∑

n=1

{
K0

(√
2nπ i z

)
+ K0

(√−2nπ i z
)}

(4.5)

where Rez > 0, γ is Euler’s constant.
For |z| < 1:

∞∑

n=1

1

n

(
1 − e− z

n

)
= −

∞∑

n=1

ζ(n + 1)
(−z)n

n! . (4.6)

An immediate consequence of this expansion is obtained by taking real and imaginary
parts with z = i x, x ∈ R, |x | < 1:

∞∑

n=1

1

n

(
1 − cos

x

n

)
= 2

∞∑

n=1

1

n
sin2

x

2n
= −

∑

k≥0

ζ(4k + 1)
x4k

(4k)! +
∑

k≥0

ζ(4k + 3)
x4k+2

(4k + 2)!

=
∑

k≥0

(−1)k−1ζ(2k + 1)
x2k

(2k)!
∞∑

n=1

1

n
sin

x

n
=
∑

k≥0

ζ(4k + 2)
x4k+1

(4k + 1)! −
∑

k≥0

ζ(4k + 4)
x4k+3

(4k + 3)! .
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More generally we define the series

Gν(z) =
∑

n>Reν+1

ζ(n − ν)
(−z)n

n!

which has a Mellin-Barnes type integral representation when x > 0, c is fixed with
Reν + 1 < c < Reν + 2:

Gν(z) = 1

2iπ

∫

(c)
�(−s)ζ(s − ν)xsds.

The proof of the main equality results from the deformation of the path of integration
and the fact that the pair

xνKν(x), 2s+ν−2�(s/2)�(s/2 + ν), Res > max(0,−2Reν)

is a pair of Mellin transforms [18,19].
The series (4.6) has many remarkable properties. It may be differentiated term by term
to get G(−x) where G(x) is the function defined in [26] (p.243):

G(x) =
∞∑

n=1

1

n2
e
x
n . (4.7)

The following formula is mentioned in [27]

lim
K→∞

1

K

K∑

k=1

G(2iπnk) =
∑

d|n

1

d2
.

4.4 Laplace Transform of a
√
tJ1(a

√
t), a > 0, t > 0, Another Approach to Segal’s

Formula

In [25] (formula (12)) Segal proves the following result

Theorem 4.4 If g(z) :=
∑

k≥1

(1 − cos
z

k
) then

g(z) = π z

2
− 1

2
+ 1

4

∑

k≥1

2
√
2kπ

√
z

k
J1(2

√
2kπ

√
z).

This formula is interesting compared to (4.5), as we have for real z, g(z) = ReF(i z).
The proof given in [25] uses a rather elaborated tools such the three Bessel functions
J1, J2, J3, the functional equation of the Riemann ζ -function etc.We give here a proof
which we think is simpler.
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Let

g1(z) = π z

2
− 1

2
+ 1

4

∑

k≥1

2
√
2kπ

√
z

k
J1(2

√
2kπ

√
z).

In the Laplace transform

L(a
√
t J1(a

√
t))(p) = a

∫ +∞

0

√
t J1(a

√
t)e−tpdt, Re p > 0

we set u2 = t and obtain

L(a
√
t J1(a

√
t))(p) = 2a

∫ +∞

0
J1(au)e−pu2u2du, Re p > 0.

According to [33] (page 394, formula(4)) we have for with |Arg p| < π
4

∫ +∞

0
Jν(au)e−p2u2uν+1du = aν

(2p2)ν+1 e
− a2

4p2 .

Replacing p by
√
p with |Arg p| < π

2 and taking ν = 1 we obtain

∫ +∞

0
J1(au)e−pu2u2du = a

4p2
e− a2

4p .

Hence

L(a
√
t J1(a

√
t))(p) = a2

2p2
e

−a2
4p Rep > 0.

Note that a
√
t J1(a

√
t) is not in L2([0,+∞[) since its Laplace transform is not

bounded in the L2-norm on the lines Rep = c. With a = 2
√
2kπ we get

L(2
√
2kπ t J1(2

√
2kπ t))(p) = 4kπ

p2
e− 2kπ

p .

As we have

L
(

π t − 1

2

)
(p) = π

2p2
− 1

2p

and, by continuity, the Laplace transform of the sum in

g1(t) = π t − 1

2
+ 1

4

∑

k≥1

2
√
2kπ t

k
J1(2

√
2kπ t)
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is

π

p2
∑

k≥1

(e− 2π
p )k

which converges in Rep > 0, the Laplace transform of g1(t) is

π

2p2
− 1

p
+ π

p2
e− 2π

p

1 − e− 2π
p

= π

2p2
− 1

p
+ π

p2
1

e
2π
p − 1

.

On the other hand

L(1 − cos
t

k
)(p) = 1

p
− p

p2 + k−2 = 1

p(p2k2 + 1)

and

L(g)(p) =
∞∑

k=1

1

p(p2k2 + 1)
.

The equalityL(g)(p) = L(g1)(p) is obtained byusing thewell knownpartial fractions
decomposition

z

ez − 1
= 1 − z

2
+
∑

k≥1

2z2

z2 + 4k2π2 , z ∈ C\2iπZ,

where we have to set z = 2π

p
. Hence g = g1 by injectivity of Laplace Transform.

4.5 SomeMellin Transforms and the Cube of Theta Functions

It has been noticed in [15] (p.14) that the function

R(t) =
∑

n≤t

1

n
e
it
n

is very similar to ζ(1+i t) in its asymptotic behaviour as t → +∞. This could suggest

a link between this function and the theta series ϑ3(q) =
∑

n∈Z q
n2 . In this section,

following a suggestion of Crandall [10], we would like to briefly show by considering
Mellin transforms an unexpected link to the third power of the (fourth) Jacobi theta

function ϑ4(q) =
∑

n∈Z(−1)nqn
2
, |q| < 1. We define

χ̃ (s, t) =
∞∑

n=1

e− t
n

ns
, (4.8)
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χ(s, t) =
∞∑

n=1

(−1)n
e− t

n

ns
. (4.9)

These two functions are defined for s ∈ C and Res > 1 for χ̃ (s, t), Res > 0 for
χ(s, t). They are related by

χ(s, t) = 1

2s−1 χ̃ (
s

2
, t) − χ̃ (s, t).

We have

∫ ∞

0
t s−1χ̃2(s, t) dt = �(s)

∞∑

n,m=1

1

(n + m)s
= �(s) (ζ(s − 1) − ζ(s))

∫ ∞

0
t s−1χ2(s, t) dt = �(s)

∞∑

n,m=1

(−1)n+m

(n + m)s
= �(s) (η(s − 1) − η(s)) ,

where

η(s) =
∞∑

n=0

(−1)n

(2n + 1)s

is the Dirichlet η-function. Furthermore

1

�(s)

∫ ∞

0
t s−1χ̃3(s, t) dt =

∞∑

p,q,r=1

1

(pq + qr + rp)s

and for χ(s, t) we have a more interesting result

1

�(s)

∫ ∞

0
t s−1χ3(s, t) dt =

∞∑

p,q,r=1

(−1)p+q+r

(pq + qr + rp)s
. (4.10)

We have the following lemma due to Andrews [3] (p.124)

Lemma 4.2 For |q| < 1

ϑ3
4 (q) =

∑

n∈Z
(−1)nr3(n)qn = 1 + 4

∞∑

n=1

(−1)nqn

1 + qn
− 2

∞∑

n=1| j |≤n

qn
2− j2(1 − qn)(−1) j

1 + qn

(4.11)

where r3(n) is the number of representations of n as sum of three squares. According
to a result of Fermat an integer is a sum of three squares if and only if it is not of form
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4n(8m+7). There are some gaps in the expansion in power series of the left hand side
of (4.11). Similarly to (4.10) we have

1

�(s)

∫ ∞

0
t s−1

(
ϑ3
4 (q) − 1

)
dt =

∞∑

p,q,r∈Z
′ (−1)p+q+r

(p2 + q2 + r2)s
. (4.12)

A link between (4.10) and (4.12) is given byCrandall [10] (p.372) as a relation between
two Epstein zeta functions associated with the two not equivalent ternary forms

q1(u, v, w) = u2 + v2 + w2, q2(u, v, w) = uv + vw + wu

in the form

∞∑

p,q,r∈Z

′ (−1)p+q+r

(p2 + q2 + r2)s
= −6(1 − 21−s)2ζ 2(s) − 4

∞∑

p,q,r=1

(−1)p+q+r

(pq + qr + rp)s
.

(4.13)
Next we establish a functional equation

Theorem 4.5 For t > 0 the functionχ(
1

2
, t) satisfies the following functional equation

χ(
1

2
, t) =

∞∑

n=1

(−1)n√
n

e−t/n = √
i
∑

O

e−γ
√
2πdt

√
d

, (4.14)

with γ = 1 − i and O is the set of odd integers.

We could also seek for a result similar to (4.14) for

χ̃ (s, t) =
∞∑

n=1

1

ns
e−t/n, Res > 1. (4.15)

The relevance of this function lies in its relation to a Hardy–Littlewood–Flett like
function:

Imχ̃ (1,−i t) = Im
∞∑

n=1

1

n
eit/n =

∞∑

n=1

1

n
sin(

t

n
).

In order to prove (4.14) we consider, for a fixed t > 0, the function

f (x) = eiπx e
−t/x

√
x

, x > 0
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extended to the origin by f (0) = 0 and toR as an even function. The obtained function
is C∞ on the real line to whichwe apply the Poisson summation formula (4.4) to obtain

∞∑

n=1

(−1)n√
n

e−t/n =
∫ ∞

0
eiπx e

−t/x

√
x

dx+2
∞∑

n=1

∫ ∞

0
eiπx e

−t/x

√
x

cos(2πnx)dx . (4.16)

Remark 4.2 The function y �→ e
−t
y

√
y
is continuous on [0,∞[ and decreases to 0 at

infinity, hence the proper integrals
∫ ∞

0
f (y) cos(2πny)dy, n ≥ 0 are convergent.

We compute F( f )(n) as follows

F( f )(n) =
∫ ∞

0
eiπ y e

−t
y

√
y
cos(2nπ y) dy

= 1

2

{∫ ∞

0
e(iπ+2iπn)y−t/y y−1/2 dy +

∫ ∞

0
e(iπ−2iπn)y−t/y y−1/2 dy

}
.

(4.17)

We recall the modified Bessel function (4.3), written in the form

∫ ∞

0
wν−1e−w−a/w dw = 2

(
1

a

)ν/2

Kν

(
2
√
a
)

that we use in the form
∫ ∞

0
wν−1e−bw−a/w dw = 2

(a
b

)ν/2
Kν

(
2
√
ab
)

. (4.18)

Actually for (4.17) we need only the simplest case of

K 1
2
(z) =

√
π

2z
e−z . (4.19)

The first integral in the left hand side of (4.17), with

a = t, −b = iπ + 2iπn = iπ(2n + 1)

is equal to

2

(
t

−iπ(2n + 1)

)1/4
K1/2

(
2
√
t (−iπ(2n + 1))

)
. (4.20)

The second integral with

a = t, −b = iπ − 2iπn = iπ(−2n + 1)
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is equal to

2

(
t

−iπ(−2n + 1)

)1/4
K1/2

(
2
√
t (−iπ(−2n + 1))

)
. (4.21)

By using (4.19) we see that (4.17) is the sum of

(
t

−iπ(2n + 1)

)1/4√
π

4
√
t (−iπ(2n + 1))

e−2
√
t(−iπ(2n+1))

and

(
t

−iπ(−2n + 1)

)1/4√
π

4
√
t (−iπ(−2n + 1))

e−2
√
t(−iπ(−2n+1)).

As in [10] we denote by γ = 1 − i, d = ±2n + 1, n ∈ N

 with

√−|d| = i
√|d|.

Then d describes O\{1} and
(

t

−iπd

)1/4√
π

4
√
t (−iπd)

e−2
√−i tπd = 1

2

√
i
e−γ

√
tπd

√
d

.

Hence

2
∞∑

n=1

∫ ∞

0
f (y) cos(2πny)dy = √

i
∑

d∈O, d �=1

e−γ
√
tπd

√
d

. (4.22)

For the remaining term in (4.16) we use (4.20), with n = 0, to obtain

∫ ∞

0
f (x)dx = F( f )(0) = √

i e−γ
√
2π t

which together with (4.22) gives finally (4.14):

χ(
1

2
, t) = √

i
∑

O

e−γ
√
2πdt

√
d

.

In close analogy to Jacobi’s transformation of Theta functions (4.14) appears as a
convergence acceleration of a slowly convergent series.

Incidentally χ(
1

2
; t

2

4
) is a Fourier transform of a function of the Schwartz class.

Indeed let g(x) = 1

1 + ex2
, the reciprocity formulas are

ĝ(t) = 1

2π

∫

R

1

1 + ex2
eitx dx, g(x) =

∫

R

ĝ(t)e−i t x dt
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with

ĝ(t) = − 1

2π

∑

n>0

(−1)n
∫

R

eitx e−nx2dx

= − 1

2
√

π

∑

n>0

(−1)n√
n

e− t2
4n = − 1

2
√

π
χ(

1

2
; t

2

4
).

Remark 4.3 The convolution of three functions f , g, h ∈ S(R) is, as well known,

( f 
 (g
h)) (x) =
∫

R

f (y)(g
h)(x − y)dy

=
∫

R

f (y)

(∫

R

g(z)h(x − y − z)

)
dy

=
∫ ∫

R×R

f (y)g(z)h(x − y − z)dzdy.

With f (x) = g(x) = h(x) = 1

1 + ex2
we have

( f 
 (g
h)) (x) =
∫ ∫

R2

dt du

(1 + ey2)(1 + ez2)(1 + e(x−y−z)2)

so that for the Fourier transform

f̂ 
g
h(t) = (2π)2 ĝ3(t) = (2π)2
1

8π
√

π
χ3(

1

2
; t

2

4
) =

√
π

2
χ3(

1

2
; t

2

4
)

or

f 
g
h(x) =
√

π

2

∫

R

χ3(
1

2
; t

2

4
)e−i t x dt .

Evaluating at x = 0 we obtain

∫ ∫

R2

dy dz

(1 + ey2)(1 + ez2)(1 + e(−y−z)2)

=
∫ ∫

R2

dy dz

(1 + ey2)(1 + ez2)(1 + e(y−z)2)

=
√

π

2

∫

R

χ3(
1

2
; t

2

4
) dt = √

π

∫ ∞

0

1√
u

χ3(
1

2
; u) du.

From (4.10), with s = 1
2 , we have (Compare with [10])

∞∑

p,q,r=1

(−1)p+q+r

(pq + qr + rp)
1
2

= − 1

π

∫ ∫

R2

dy dz

(1 + ey2)(1 + ez2)(1 + e(y−z)2)
. (4.23)
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We end this study by using an interesting integral representation due to Mellin [20]
(p. 22, 23):

�(s)

(w0 + w1 + · · · + wq)s
= 1

(2iπ)q

∫ κ1+i∞

κ1−i∞
· · ·
∫ κq+i∞

κq−i∞
�(s − z1 · · · zq)

w
s−z1···zq
0

(4.24)

�(z1) · · · �(zq)

w
z1
1 · · ·wzq

q
dz1 · · · dzq ,

κν > 0, ν = 1, · · · , q; Res > κ1 + · · · + κq > 0.

In the case of q = 2 we obtain at once, as in (4.23)

∑

p,q,r≥1

(−1)p+q+r

(pq + qr + rp)s
= − 1

4π2 �(s)

∫ κ1+i∞

κ1−i∞

∫ κ2+i∞

κ2−i∞
�(s − u1u2)�(u1)�(u2)

∑

p≥1

(−1)p

ps+u1−u1u2

∑

q≥1

(−1)q

ps+u2−u1u2

∑

r≥1

(−1)r

ru1+u2
du1du2

= − 1

4π2

∫ κ1+i∞

κ1−i∞

∫ κ2+i∞

κ2−i∞
�(s − u1u2)�(u1)�(u2)K (s; u1, u2) du1du2,

where

K (s; u1, u2) = η(s + u1 − u1u2)η(s + u2 − u1u2)η(u1 + u2).

This representation of the Epstein zeta function of the ternary form q2(u, v, w) =
uv + vw + wu in terms of the Dirichlet η-function and similar other representations
can shed some light on their analytic continuation.
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