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Abstract
This short note has to make alive the overlooked work of Pedrick. It is rather a tour
guide than exhausted examination of the content and intends to serve potential explor-
ers of diverse kinds of reproducing kernel (Hilbert) spaces, the topic mushrooming
nowadays.

1 Some Extracts from Aronszajn: Updated

Let X be an arbitrary set, refer to it as to underlying set; the function K : X × X → C

is called a kernel on X . Let H be a Hilbert space of complex valued functions on X .
We say that the couple (K ,H) has the reproducing property1 if for the sections Kx of
the kernel K

Kx
def= K (·, x) belongs toH for every x ∈ X , (1)

and2

f (x) = 〈 f , Kx 〉 , f ∈ H, x ∈ X . (2)

1 We maintain the commonly used term reproducing kernel Hilbert space, RKHS briefly, despite linguistic
nuances which may not emphasise enough that both members of the couple have equal rights.
2 The functions Kx may be called kernel functions if necessary, as they are functions of a single variable
and come from the kernel K , a function of two variables like K in Analysis is generally called a kernel;
some authors seem not to be aware of this subtle distinction.
3 We spread the notation “ lin” for the linear span while “ clolin” for the closed linear one.
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The following properties3 are crucial and of perspective usefulness.

1o DK
def= lin{Kx : x ∈ X} is dense inH.

2o The kernel K is positive definite (PD in short), that is

N∑

i, j=1

K (xi , x j )λi λ̄ j ≥ 0, x1, . . . , xN ∈ X , λ1, . . . λN ∈ C (3)

which consequently forces Hermitian symmetry

K (x, y) = K (y, x), x, y ∈ X; (4)

as well as the Schwarz inequality

∣∣∣∣∣∣

M,N∑

i,k=1

K (xi , yk)λi μ̄k

∣∣∣∣∣∣

2

≤
M∑

i, j=1

K (xi , x j )λi λ̄ j

N∑

k,l=1

K (yk, yl)μkμ̄l ,

x1, . . . , xM , y1, . . . , yN ∈ X , λ1, . . . λM , μ1, . . . , μN ∈ C.

3o The evaluation functionals

Φx : f � H 	→ f (x) ∈ C (5)

are continuous for every x ∈ X ; this is an immediate consequence of (2).
4o The reproducing formula (2) gives at once

K (x, y) = 〈
Ky, Kx

〉
, x, y ∈ X . (6)

This is a powerful formula because it is equivalent in a sense to the reproducing
property.

5o The practical formula which goes back to Zaremba (see [15, p. 170]) is

K (x, y) =
∑

α∈A
φα(x)φα(y), x, y ∈ X (7)

provided the right hand side converges (which may be understood as an integral
if A is uncountable).

6o A complex function f on X is in H if and only if there is a constant C > 0 such
that

∣∣∣∣∣

N∑

i=1

f (xi )λi

∣∣∣∣∣

2

≤ C
N∑

i, j=1

K (xi , x j )λi λ̄ j ,

x1, . . . , xN ∈ X , λ1, . . . λN ∈ C;
(8)

in such a situation ‖ f ‖H is the smallest C , for which the formula (8) holds.
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This is a handy RKHS test identifying functions on X which constitute the space
H.
Let us memorise any of the two members of a reproducing couple determines
(uniquely) the other, cf. footnote 1.

Kernel K�⇒ SpaceH

Define DK as in 1o for a given a PD kernel K on X . Reading backwards the property
(6) leads to the definition

〈
M∑

i=1

λi Kxi ,

N∑

k=1

μk Kyk

〉
def=

M,N∑

i,k=1

K (xi , yk)λi μ̄k . (9)

A direct argument convinces us that the function 〈 · ,−〉 : DK × DK → C is well
defined and linear in the first variable; the Hermitian symmetry (4) makes it antilinear
in the second variable and well defined at large. Positive definiteness (3) of K ensures
the aforesaid function to be an semi-inner product. Definition (9) incorporates the
reproducing property (2) satisfied now on DK and this is enough to conclude that the
semi-inner product in question becomes an inner product.

Now we can execute the Hilbert space H with simple (pointwise) completion
according to the lemma below.

Lemma 1 For a unitary space D of complex functions on X the following conditions
are equivalent:

• there exists (necessarily, exactly one) Hilbert space H of functions on X with
reproducing kernel K on X such that D is dense in H;

• the space D has reproducing kernel K such that DK is dense in D;
• the space D has two properties:

– the evaluation functionals4

Φx : f � D 	→ f (x) ∈ C, x ∈ X , (10)

are continuous,
– for each sequence ( fn)∞n=0, which is Cauchy in D, convergence of fn(x) → 0

for all x ∈ X implies ‖ fn‖ → 0.

Kernel K⇐� SpaceH

This way is fast. Suppose a Hilbert spaceH of complex functions on X is granted with
the property 3o. Then immediately theRiesz representation theorem for the functionals
Φx determines the kernel functions Kx and recurring the formula (6) ends up thewhole
story.

4 Notice now, unlike (5) they are defined on an inner product space exclusively.
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Let us notice the strength of 3o is usually caused to happen due to some influential
source out of the space H.

Another way to define the kernel is to use Zaremba’s formula (7) starting from a
given family {ϕα} of functions in H which is total. Then the definition of the kernel
corresponding toH is immediate5.

The basic reference is [1]. As for the further details concerning this part consult
[8]. The monograph [12] would be for the benefit of those who are forbearing; it is
in fact the very extension of [8]. If someone is desperate for having a look at English
version of some parts of [8] the surveys [10,11] may serve for this in a way.

2 Pedrick’s Reinforcement of Aronszajn’s Scheme

George Pedrick, Aronszajn’s PhD student, in his 1959 dissertation [5] extended the
concept of reproducing kernel Hilbert spaces much beyond the customary context of
scalar valued functions and kernels. Even so his ideology was to make the two recipes
equivalent. We pick up here the main points of [5] adjusting them to contemporary
developments and needs rather than to scrutinise his treatise. This means Pedrick’s
main idea itself is implementedhere in a rather effortlessway rectifying somemeanders
which appear in [5]. Active engagement of the reader may be called for.

Given a set X of arbitrary nature, let E be a locally convex space and let E ′ stand
for its topological anti-dual.6 This choice is a kind of sample rather, other dualities
based on E can be taken into account as well.

The following two items are the main objects in [5, cf. p.16]

• a complex Hilbert space G ⊂ E X which is composed of E-valued functions on X ,
• a family of linear operators K (x, y) : E ′ → E , x, y ∈ X , which may be condensed
as7 K : X × X → L(E ′, E) and which in turn let K be thought of as L(E ′, E)-
valued kernel on X .

Think of (K ,G) as the reproducing kernel Hilbert space couple on X if

the functions Kx,e′ def= K (·, x)e′ are in G for any x ∈ X , e′ ∈ E ′ (11)

and 〈
ϕ(x), e′〉

(E,E ′) = 〈
ϕ, Kx,e′

〉
G , ϕ ∈ G, x ∈ X , e′ ∈ E ′ (12)

where the subscript (E,E ′) fixes “anti-duality” between the spaces E and E ′ (the latter
is anti-linear with respect to the second variable), and 〈·,−〉G does the inner product
of the Hilbert space G. Notice the formula (12) is just the reproducing property as
adjusted to the current circumstances.

5 Notice that it needs not to be orthonormal, this comes out a posteriori as an extra condition required, cf.
[8].
6 This is the space of all anti-linear(=linear conjugate) continuous functionals on E , which just coincides
with the space of all complex conjugates of continuous linear functionals on E , the members of the topo-
logical dual of E . For duality consult Sect. 5.
7 L(X ,Y) denotes the totality of all linear operators fromX into Y , which by the way is a complex linear
space; as always shorten L(X ,X ) to L(X ).
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Due to the fact that E ′ separates the points of E the reproducing formula (12) forces
the set

D def= lin{Kx,e′ : x ∈ X , e′ ∈ E ′} (13)

to be dense in G.
Positive definiteness reads as follows

N∑

i, j=1

〈
K (xi , x j )e

′
i , e′

j

〉

(E,E ′)
≥ 0, x1, . . . , xN ∈ X , e′

1, . . . e′
N ∈ E ′. (14)

Like in the scalar case the reproducing formula (12) concludes the evaluation “func-
tional” (or rather the evaluation operator in the current setting)

Φx : ϕ � G 	→ ϕ(x) ∈ E, x ∈ X (15)

is (G, 〈·,−〉G) to (E, σ (E, E ′)) continuous.
Another consequence of the reproducing formula (12) is

〈
K (·, x)e′, K (·, y) f ′〉

G = 〈
K (y, x)e′, f ′〉

(E,E ′) (16)

a counterpart of (6).
Zaremba’s formula (7) as in 5o has its meaning in this setting too.
The criterion 6o (RKHS test) under the present circumstances takes the form.

7o A function ϕ ∈ E X is in G if and only if there is a constant C > 0 such that

∣∣∣∣∣

N∑

i=1

〈
ϕ(xi ), e′

i

〉
(E,E ′)

∣∣∣∣∣

2

≤ C
N∑

i, j=1

〈
K (xi , x j )e

′
i , e′

j

〉

(E,E ′)
,

x1, . . . , xN ∈ X , e1, . . . eN ∈ C.

(17)

Consequently ‖ϕ‖G is the smallest C for which the formula (17) holds.

Because the RKHS test plays an important role in the next section we say a couple
of words about its proof. The reproducing formula (12) makes the “only if” part of
7o. For the other part, (17) makes it possible to apply the Riesz representation to the
functional (well defined on the whole of G indeed)

N∑

i=1

K (·, xi )e
′
iλi 	→

N∑

i=1

〈
ϕ(xi ), e′

i

〉
(E,E ′) λi ,

x1, . . . , xN ∈ X , e′
1, . . . , e′

N ∈ E ′, λ1 . . . λN ∈ C.

Then use (12) and again the fact that E ′ separates the points of E , to identify ϕ as a
member of G.

Needless to say the above arguments work well also for 6o.
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Theverybottomcondition inLemma1which is of rather delicatematter is explained
in §5 of [5]. We deliberately glance through this section because our decisive point is
in what appears in the following one.

3 Pedrick’s “Tilde Correspondence”

This is what definitely has to be brought out of Pedrick’s thesis and put forward. He
suggests to go back from the vector valued case of Sect. 2 to that of scalar valued as
in Sect. 1 by a simple, and as it turns out, very efficient device (cf. [5, §2, p.22]); we
arrange it in a slightly modified way just to make it fit in with the setup of section 1.

With notations of Sect. 2 we offer the following definitions

K̃ (x, e′, y, f ′) def= 〈
K (x, y)e′, f ′〉

(E,E ′) , x, y ∈ X , e′, f ′ ∈ E ′ (18)

and for ϕ ∈ E X encode

ϕ̃(x, e′) def= 〈
ϕ(x), e′〉

(E,E ′) , (x, e′) ∈ X̃
def= X × E ′; (19)

G̃ def={ϕ̃ : ϕ ∈ G and ϕ̃ defined in (19)}. (20)

Remark 2 Now the deal is with complex valued kernel K̃ . Because K̃ is linear in
the second variable and antilinear in the fourth, formula (14) ensures its positive
definiteness in the sense of (3) having now the form

N∑

i, j=1

K̃ (xi , e′
i , x j e

′
j ) ≥ 0, x1, . . . , xN ∈ X , e′

1, . . . e′
N ∈ E ′. (21)

Therefore K̃ has its reproducing kernel Hilbert space H̃ composed of complex func-

tions on X̃
def= X × E ′.

If there is a need to consider other duality, like (E,F) exposed in Sect. 5, then the
topological one (E, E ′) an automatic “copy-paste” solves the problem globally.

Formula (18) allows us to create the kernel functions K̃ y, f ′ as

K̃ y, f ′ def= K̃ (·,−, y, f ′) y, f ′ ∈ X × E ′, (22)

cf. footnote 2.
Due to the fact that E ′ separates the points of E the mapping in (19) as defined on

E X is injective. Even more there is a simple relationship8 between the topologies of
G and G̃.

Even more, the main goal is to check whether G̃ is just the RKHS partner of K̃ .

8 Pedrick declares these topologies to coincide a priori, we prefer to conclude this going another way
around, see Proposition 3.
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Theorem 3 For ϕ ∈ G
‖ϕ‖G = ‖ϕ̃‖G̃, (23)

where ‖ · ‖G̃ stands for the norm in G̃. Consequently, (K̃ , G̃) is a reproducing couple.

Theorem 3 and everything around are the quintessence of Pedrick’s considerations.

Proof The link established in (18) and (19) yields

∣∣∣∣∣

N∑

i=1

〈
ϕ(xi ), e′

i

〉
(E,E ′) λi

∣∣∣∣∣
( N∑

i, j=1

〈
K (xi , x j )e

′
i , e′

j

〉

(E,E ′)
λiλ j

)−1/2

=
∣∣∣∣∣

N∑

i=1

ϕ̃(xi , e′
i )λi

∣∣∣∣∣
( N∑

i, j=1

K̃ (xi , e′
i , x j , e′

j )λiλ j
)−1/2

Carrying out “sup” over

x1, . . . , xN ∈ X , e′
1, . . . e′

N ∈ E ′, λ1, . . . λN ∈ C

in both sides of the above equality, invoking 6o and 7o we arrive at (23). Now (23)
applied to the right hand side of (12) and the defining formula (19) to its left hand side
leads to the reproducing formula for K̃ with G̃ as its Hilbert space. ��

4 Some Upcoming Cases

Due to Theorem 3 the mapping

G � ϕ 	→ ϕ̃ ∈ G̃ (24)

besides being a unitary operator between two Hilbert spaces G and G̃ of functions
preserves the reproducing property of both couples (K ,G) and (K̃ , G̃). Thus we may
think of RKHS isomorphism in all respects.

Looking now at (18) as an equality between K̃ and K one may catch an idea of
going along it in any the two of directions: from operator (vector) valued kernels
to scalar ones and the other way. “The other way” seems to be more interesting to
monitor, let us do this roughly leaving the details for the reader. Anyway it relies on
Proposition 12, which may be helpful.

Remark 4 Notice that the underlying set for the kernel K̃ is X × E amalgamating two
factors X and E of different (usually independent) structure. The set X is often of
algebraic nature while E bears a geometrical structure,

Particularising X and E

The set X can be provided with some algebraic structure, the most notable the struc-
ture of semigroup (or, a bit more generally, a semigroup of actions on X ); we think
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of the semigroup acting multiplicatively unless it is commutative when the additive
notation is customarily in use. Existence of unit in a semigroup is not a common
assumption however for the time being we assume that. We also enrich the structure
of X introducing an involution in it which gives the term *-semigroup, consult [12,
Chapter 2].

Keep the space E normed. If K̃ (1, f , 1, f ) = ‖ f ‖2 we call K̃ isometric. The
embedding

V : E ′ � f ′ → K̃1, f ′ ∈ H̃, (25)

in case of isometric K̃ is just an isometry.
Let K̃ y, f ′ be the kernel functions (22) generated by the scalar kernels K̃ , cf. (1).

Under the current circumstances we can consider the following operators.

The Operators

The semigroup structure of X allows us to introduce two linear operators in H̃ playing
a basic role in dilation theory. Take u ∈ X and define the mapping

C
X×E � F 	→ Fu ∈ C

X×E

with
Fu(s, f )

def= F(us, f ), (s, f ) ∈ X × E, (26)

and the linear space

D(u)
def={F ∈ H : Fu ∈ H̃}. (27)

Now we will try to define two linear operators in H̃ corresponding to u ∈ X . First
of them, Φ(u), can be set definitely right now

D(Φ(u))
def=D(u), Φ(u)F

def= Fu, F ∈ D(u).

The second, Φu , relies on

Φu K̃s, f
def= K̃us, f , s ∈ X , f ⊂ E (28)

and requires some caution, it extends linearly to a well-defined linear operator on

D(Φu)
def=DK̃ if and only if

∑

i

ξi K̃si , fi = 0 �⇒
∑

i

ξi K̃usi , fi = 0, (29)

otherwise it is a linear relation. Regardless Φu is already a well defined operator or
not the formula

Φu V f = Ku, f (30)

holds true, cf. (25), provided X is unital.
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Proposition 5 The basic link is

〈
Φ(u)F, Kx, f ′

〉 = 〈
F, Φu Kx, f ′

〉
, F ∈ D(u), (x, f ′) ∈ X × E ′. (31)

Corollary 6 The following consequences of Proposition 5 are important to be notified.

1 The operator Φ(u) is closed.
2 If Φ(u) is densely defined, that is D(u) is dense in H̃, then the operator Φu is well

defined on D.
3 If Φ(u) is densely defined then

Φ∗
u = Φ(u), Φu is closable and Φu = Φ(u)∗. (32)

Boundedness of Φ(u) and Φu is a subject of separate analysis. In the case of ∗-
involution semigroups there is a bunch of equivalent conditions to (33), cf. [7,9].

Proposition 7 Φu is a well-defined bounded operator if and only if there exists c(u) �
0 such that

N∑

i, j=1

K̃ (usi , fi , us j , f j ) ≤ c(u)

N∑

i, j=1

K̃ (si , fi , s j , f j ),

s1, . . . , sN ∈ X , f1, . . . fN ∈ E . (33)

If this happens Φ(u) is a densely defined operator, and both Φu and Φ(u) bounded
operators with

‖Φu‖ = ‖Φ(u)‖ ≤ c(u). (34)

Let us also have a look at algebraic properties of the mappings u 	→ Φ(u) and
u 	→ Φu .

Proposition 8 Suppose that for each u ∈ X (29) holds. Then D(Φu) is invariant on
Φu, that is, ΦuD(Φu) ⊂ D(Φu), and the mapping u 	→ Φu is multiplicative, that is

Φuv F = ΦuΦv F, u, v ∈ X , F ∈ DK .

The mapping u 	→ Φ(u) is anti-multiplicative, which here means that

Φ(u)Φ(v)F = Φ(vu)F, u, v ∈ X , F ∈ D(Φ(u)Φ(v)).

Since we have all the ingredients ready, it is time for the first and most general
dilation theorem.

Theorem 9 Let X be a unital semigroup, E a normed space, and K a positive definite
isometric kernel on X×E . Then, in the RHKS H̃ corresponding to K̃ we have formulae9

H̃ = clolin{Φu V f : u ∈ X , f ∈ E} = clolin{K̃u, f : u ∈ X , f ∈ E},
9 Note that first of these conditions could be omitted without any loss, since it is a fact contained in the
definition of the reproducing kernel Hilbert space.
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K̃ (s, f , t, g) = 〈Φt V g, Φs V f 〉 = 〈
K̃t,g, K̃s, f

〉
, (s, f ), (t, g) ∈ X × E,

where all the objects mentioned in the conclusion have been defined already.

Remark 10 The remarkable attraction of Pedrick’s “tilde correspondence” is that the
resulting reproducing kernel Hilbert space composed of complex valued (scalar) func-
tions can be decoded using the RKHS test 6o, p. 2. In particular it can help localising
the domains of operators appearing in Corollary 6 as is done in [13] in order to detect
subnormality of unbounded operators.

∗-Invariance

Suppose X is a ∗-semigroup with unit 1 and K , therefor K̃ is invariant in the sense

〈
K (ux, y)e′, f ′〉

(E,E ′) = 〈
K (x, u∗y)e′, f ′〉

(E,E ′)
K (ux, f ′, y, g′) = K (x, f ′, u∗y, g′),

u, s, t ∈ X , f ′, g′ ∈ E ′.

This introduces a new definition

ω(t∗s, f ′, g′) def= K (s, f ′, t, g′) (35)

which reduces the number of variables by one; call ω a form.
In the fundamental paper of Sz.-Nagy [14], which unfortunately is disregarded by

the so called experts, forms generated by bounded operators is considered in “théorème
principal” and dilation results stated by them. Among the forms those determined
by contractions (here the famous Sz.-Nagy 1953 dilation theorem is materialised),
semispectral (POV) measures, operator moment problems on bounded intervals are
included as special cases. This is presented in details though in a rather general setup
in [9].

5 Spaces in Duality: Repository

Remark 11 Suppose H is a complex Hilbert space and 
 is a continuous linear func-
tional on H. Then there is a unique element g
 of H such that


( f ) = 〈 f , g
〉H , f ∈ H.

This is the classical F. Riesz representation theorem; the correspondence 
 ←→ g


is anti-linear.

Duality as it appears in Functional Analysis, cf. [3, Chapter 3], [2, p. 155], [4, p.
59] declares three objects to be given: linear spaces E and F , and a bilinear form

B : E × F � ( f , g) 	→ B(x, y) ∈ C
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which is separating in a sense that

B( f , g) = 0 for all g ∈ F �⇒ f = 0

B( f , g) = 0 for all f ∈ E �⇒ g = 0.

The spaces E and F when accompanied by B are referred to as being in duality. The
most recognised examples are

• E is a linear space and F = E∗, where E∗ is the algebraic dual of E , that is the
space of all linear functionals on E ;

• E is a locally convex space andF = E ′, where E ′ is the topological dual of E , that
is the space of all continuous linear functionals on E

the bilinear form in both these cases is just the standard pairing, that is B = 〈 · ,−〉;
from now on we use the latter instead of B.

The first of these two cases can always be directed in the second by introducing
the so called σ(E,F) topology in E or reversing the role the spaces play a σ(F , E)

topology in F ; in general they are not the only one possibilities. More precisely, if
E and F are arbitrary linear spaces being in duality furnished with the separating
bilinear form B = 〈 · ,−〉 there is always a topology on E , just σ(E,F), making it a
locally convex space and turning F into its topological dual; the same can applied by
reversing the role of spaces. We use the customarily notation σ(E,F) and σ(F , E)

for these topology while for the bilinear form we use the subscript (E,F) or (F , E)

to indicate the proper choice, see [2, Definition (3.84), p 156].
Important change. Because the Riesz representation theorem identifies the topo-

logical dual of a Hilbert space with the space itself establishing merely an antilinear
mapping we prefer to make a change introducing a prefix “anti” to tailor the afore-
said duality to the newly required situation; no essential technical modification is
needed10 to implement this. In practice we start from the duality form B = 〈 · ,−〉
to be Hermitian bilinear, that is linear in the first variable, anti-linear (aka Hermi-
tian linear or even sometimes called linear conjugate) in the second. This approach is
supported by Remark 11.

Here is an excerpt from [2, Theorem (38.7)] in its (antilinear) modified form.

Proposition 12 A linear functional F on E is σ(E,F) continuous if and only if there
is (necessarily a unique) g ∈ F such that F = 〈 · , g〉(E,F). The dual statement holds
as well and says an anti-linear functional G on F is σ(F , E) continuous if and only
if there is f ∈ E such that G = 〈 f , · 〉(E,F).

For some support in this matter look at [5, §1] or [6], both are given the same
flavour.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

10 This is because anti-linear(=linear conjugate) functionals on E coincide with complex conjugates of
linear functionals on E .
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in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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Jagiellońskiego, Kraków (2004)

9. Szafraniec, F.H.: Murphy’s Positive definite kernels and Hilbert C′-modules reorganized. Banach Cen-
ter Public. 89, 275–295 (2010)

10. Szafraniec, F.H.: The reproducing kernel property and its space: the basics. In: Alpay, Daniel (ed.)
Operator Theory, vol. 1, pp. 3–30. Springer, Basel (2015)

11. Szafraniec, F.H.: The reproducing kernel property and its space: more or less standard examples of
applications. In: Alpay, Daniel (ed.) Operator Theory, vol. 1, pp. 31–58. Springer, Basel (2015)

12. Szafraniec, F.H.: The Reproducing Property: Spaces and Operators. Cambridge University Press (in
progress)

13. Szafraniec, F.H.: The Sz.-Nagy “théorème principal” extended. Application to subnormality. Acta Sci.
Math. (Szeged) 57, 249–262 (1993)

14. Sz.-Nagy, B.: Prolongements des transformations de l’espace de Hilbert qui sortent de cet espace.
Appendice au livre “Leçons d’analyse fonctionnelle” par F. Riesz et B. Sz.-Nagy, Akadémiai Kiadó,
Budapest (1955)

15. Zaremba, S.: L’équation biharmonique et une classe remarquable de functions fondamentales har-
moniques. Bull. Int. l’Acad. Sci. Cracovie 147–196 (1907)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Revitalising Pedrick's Approach to Reproducing Kernel Hilbert Spaces
	Abstract
	1 Some Extracts from Aronszajn: Updated
	Kernel K -3mu Space mathcalH
	Kernel K -3mu Space mathcalH

	2 Pedrick's Reinforcement of Aronszajn's Scheme
	3 Pedrick's ``Tilde Correspondence''
	4 Some Upcoming Cases
	Particularising X and mathcalE
	The Operators
	*-Invariance

	5 Spaces in Duality: Repository
	References




