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Abstract
If P(z) = an

∏n
j=1(z − z j ) is a complex polynomial of degree n having all its zeros

in |z| ≤ K , K ≥ 1 then Aziz (Proc Am Math Soc 89:259–266, 1983) proved that

max|z|=1
|P ′(z)| ≥ 2

1 + Kn

n∑

j=1

K

K + |z j | max|z|=1
|P(z)|. (0.1)

In this paper we sharpen the inequality (0.1) and further extend the obtained result to
the polar derivative of a polynomial. As a consequence we also derive two results on
the generalization of Erdös–Lax type inequality for the class of polynomials having
no zeros in the disc |z| < K , K ≤ 1.
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Mathematics Subject Classification 30A10

1 Introduction and Statement of Results

If P(z) is a polynomial of degree n then from awell-known inequality due to Bernstein
[3], we have

max|z|=1
|P ′(z)| ≤ nmax|z|=1

|P(z)|. (1.1)
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The inequality (1.1) is sharp and equality holds, if P(z) has all its zeros at the origin.
If P(z) is a polynomial of degree n having no zeros in |z| < 1, then Erdös conjectured
and later Lax [12] proved that

max|z|=1
|P ′(z)| ≤ n

2
max|z|=1

|P(z)|. (1.2)

The inequality (1.2) is best possible and equality holds for P(z) = a + bzn , where
|a| = |b|. If P(z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then
Turán [17] proved that

max|z|=1
|P ′(z)| ≥ n

2
max|z|=1

|P(z)|. (1.3)

Aziz [1] considered the modulus of each zero of the underlying polynomial in the
bound and generalized the inequality (1.3) to the class of polynomials having all
their zeros in a closed disc of finite radius greater than or equal to unit length by
proving that, if P(z) = an

∏n
j=1(z − z j ) is a complex polynomial of degree n with

|z j | ≤ K , K ≥ 1, then

max|z|=1
|P ′(z)| ≥ 2

1 + Kn

n∑

j=1

K

K + |z j | max|z|=1
|P(z)|. (1.4)

Recently Govil and Kumar [8] generalized the inequality (1.3) to the class of polyno-
mials having all their zeros in the disc |z| ≤ K , K ≥ 1, by including the information
from leading and constant coefficients of the polynomial, but it did not capture the
modulus of each individual zero, which plays a crucial role in sharpening the bound.
We prove a generalization of (1.3) to the class of polynomials having all their zeros in
the disc |z| ≤ K , K ≥ 1, by obtaining the bound which involves the modulus of each
zero of the underlying polynomial, and at the same time our result sharpens (1.4) and
also several of the earlier results considerably.

Theorem 1.1 If P(z) = a0 + a1z + · · · + an−1zn−1 + anzn = an
∏n

j=1(z − z j ) is a
polynomial of degree n which has all its zeros in the disk |z| ≤ K , K ≥ 1, then

max|z|=1
|P ′(z)|≥

(
2

1+Kn
+ (|an|Kn − |a0|)(K − 1)

(1+Kn)(|an|Kn+K |a0|)
) n∑

j=1

K

K+|z j | max|z|=1
|P(z)|.

(1.5)

The result is best possible and equality in (1.5) holds for the polynomial P(z) =
zn + Kn .

It is clearly seen that Theorem 1.1 includes Aziz’s inequality (1.4), and hence
Theorem 1.1 also includes the Turán’s inequality (1.3) as the case K = 1.

We have not seen any generalization of (1.2) to the class of polynomials having
no zeros in |z| < K , K ≤ 1 except for few special cases. Using the above Theorem
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1.1, we can establish a result that deals with a class of polynomials having no zeros
in |z| < K , K ≤ 1 satisfying the property that the modulus of the derivative of
the polynomial and the modulus of the derivative of the conjugate reciprocal of the
polynomial attain maximum on the unit circle at a same point. The obtained result is
stated below.

Theorem 1.2 Let P(z) = a0 + a1z + · · · + an−1zn−1 + anzn = an
∏n

j=1(z − z j ) be

a polynomial of degree n having no zeros in |z| < K , K ≤ 1, and Q(z) = zn P(1/z).
If |P ′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then

max|z|=1
|P ′(z)|

≤
⎡

⎣n −
(

2Kn

1+Kn
+ Kn(|a0|−|an|Kn)(1−K )

(1+Kn)(|a0|K+|an|Kn)

) n∑

j=1

|z j |
|z j | + K

⎤

⎦max|z|=1
|P(z)|.

(1.6)

The result is best possible and equality in (1.6) holds for the polynomial P(z) =
zn + Kn .

The above Theorem 1.2 gives the following immediate corollary, which was inde-
pendently proved by Govil [5], and thus one can observe considerable improvement
of the result of Govil [5] in Theorem 1.2.

Corollary 1.3 If P(z) is a polynomial of degree n having no zeros in |z| < K , K ≤ 1,
and |P ′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then

max|z|=1
|P ′(z)| ≤ n

1 + Kn
max|z|=1

|P(z)|, (1.7)

where Q(z) = zn P(1/z).

If P(z) is a polynomial of degree n then the polar derivative of P(z) with respect to
a complex number α is defined as

Dα{P(z)} = nP(z) + (α − z)P ′(z).

Note that Dα{P(z)} is a polynomial of degree atmost n−1, and it is a ’generalization’
of the ordinary derivative in the sense that

lim
α→∞

Dα{P(z)}
α

= P ′(z)

uniformly with respect to z for |z| ≤ R, R > 0. For more information on polar
derivatives of polynomials one can refer monographs by Rahman and Schmeisser
[16] or Milovanović et al. [13] and also a recently published book chapter authored
by Govil and Kumar [6].

Bernstein-type inequalities on complex polynomials have been extended exten-
sively from ‘ordinary derivative’ to ‘polar derivative’ of complex polynomials. For
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the latest publications in this direction one can refer some of the papers of this author
[7,10,11]. In this context it is quite natural to seek an extension of Theorem 1.1 involv-
ing ordinary derivative of a restricted polynomial to the one in more generalized form
involving polar derivative of a polynomial with the same restrictions which is stated
below.

Theorem 1.4 Let P(z) = a0 + a1z+· · ·+ an−1zn−1 + anzn = an
∏n

j=1(z− z j ) be a
polynomial of degree n having all its zeros in |z| ≤ K , K ≥ 1. Then for any complex
number α with |α| ≥ K ,

max|z|=1
|Dα{P(z)}| ≥

(

2
(|α| − K )

1 + Kn
+ (|α| − K )

(|an|Kn − |a0|)(K − 1)

(1 + Kn)(|an|Kn + K |a0|)
)

n∑

j=1

K

K + |z j | max|z|=1
|P(z)|. (1.8)

Remark 1.5 If we divide (1.8) by |α| and take |α| → ∞, we get the inequality (1.5),
and thus Theorem 1.4 contains Theorem 1.1.

In the same way let us extend Theorem 1.2 also to the polar derivative of a polyno-
mial as follows.

Theorem 1.6 Let P(z) = a0 + a1z + · · · + an−1zn−1 + anzn = an
∏n

j=1(z − z j ) be

a polynomial of degree n having no zeros in |z| < K , K ≤ 1, and Q(z) = zn P(1/z).
If |P ′(z)| and |Q′(z)| attain maximum at the same point on |z| = 1, then for any
complex number α with |α| ≥ 1,

max|z|=1
|Dα{P(z)}|

≤
⎡

⎣n|α| − (|α| − 1)

(
2Kn

1 + Kn
+ Kn(|a0| − |an|Kn)(1 − K )

(1 + Kn)(|a0|K + |an|Kn)

) n∑

j=1

|z j |
|z j | + K

⎤

⎦

max|z|=1
|P(z)|. (1.9)

Remark 1.7 If we divide (1.9) by |α| and take |α| → ∞, we get (1.6), and thus
Theorem 1.6 includes Theorem 1.2 as a special case.

2 Lemmas

Our first Lemma is the generalization of well-known Schwarz Lemma and due to
Osserman [14].

Lemma 2.1 Let f (z) be analytic in |z| < 1 such that | f (z)| < 1 for |z| < 1 and
f (0) = 0. Then
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| f (z)| ≤ |z| |z| + | f ′(0)|
1 + | f ′(0)||z|

for |z| < 1.

The next lemma is proved by Aziz and Mohammad [2].

Lemma 2.2 If P(z) is a polynomial of degree n then for any R ≥ 1 and 0 ≤ θ ≤ 2π,

|P(Reiθ )| + |Q(Reiθ )| ≤ (1 + Rn)max|z|=1
|P(z)|,

where Q(z) = zn P(1/z).

Lemma 2.3 If P(z) = a0 + a1z + · · · + an−1zn−1 + anzn is a polynomial of degree
n ≥ 1 having no zeros in |z| < 1, then for any R ≥ 1

max|z|=R
|P(z)| ≤

(
(1 + Rn)(|a0| + R|an|)
(1 + R)(|a0| + |an|)

)

max|z|=1
|P(z)|. (2.1)

Proof This result is proved in a paper due to Dubinin [4, Corollary 1]. But for the sake
of completeness we present the proof. Note that since P(z) has no zeros in the disk
|z| < 1, its conjugate reciprocal polynomial Q(z) := zn P(1/z) has all its zeros in
|z| ≤ 1. Then zQ(z)

P(z) satisfies the hypotheses of Lemma 2.1, and hence we have for
|z| < 1,

|zQ(z)| ≤ |z| |z||a0| + |an|
|a0| + |an||z| |P(z)|,

which is nothing but

|Q(z)| ≤ |z||a0| + |an|
|a0| + |an||z| |P(z)|. (2.2)

Replacing z by 1/z in the above inequality (2.2) we have for |z| > 1,

|P(z)| ≤ |a0| + |z||an|
|a0||z| + |an| |Q(z)|. (2.3)

Note that the inequality (2.3) is true for all z on |z| = 1 also, and therefore for any
R ≥ 1, and 0 ≤ θ ≤ 2π,

|P(Reiθ )| ≤ |a0| + R|an|
|a0|R + |an| |Q(Reiθ )|. (2.4)

Using (2.4) in Lemma 2.2, we obtain the required inequality (2.1), and hence the
proof of Lemma 2.3 is complete. ��
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Lemma 2.4 If P(z) = a0 + a1z + · · · + an−1zn−1 + anzn is a polynomial of degree
n which has all its zeros in the disk |z| ≤ K , K ≥ 1, then

max|z|=K
|P(z)| ≥

(
2Kn

1 + Kn
+ Kn(|an|Kn − |a0|)(K − 1)

(1 + Kn)(|an|Kn + K |a0|)
)

max|z|=1
|P(z)|. (2.5)

Proof Since P(z) has all its zeros in |z| ≤ K , K ≥ 1, the polynomial G(z) = P(Kz)
has all its zeros in the unit disc |z| ≤ 1. Let H(z) = znG(1/z). Then H(z) is a
polynomial of degree atmost n having no zeros in |z| < 1. Therefore using Lemma
2.3 we have for K ≥ 1,

max|z|=K
|H(z)| ≤ (1 + Kn)(|an|Kn + K |a0|)

(1 + K )(|an|Kn + |a0|) max|z|=1
|H(z)|.

Since |H(z)| = |G(z)| on |z| = 1,

max|z|=1
|G(z)| ≥ (1 + K )(|an|Kn + |a0|)

(1 + Kn)(|an|Kn + K |a0|) max|z|=K
|H(z)|. (2.6)

But H(z) = znG(1/z) = zn P(K/z) and so,

max|z|=K
|H(z)| = Kn max|z|=1

|P(z)|. (2.7)

Using (2.7) in (2.6) we get

max|z|=1
|G(z)| ≥ Kn (1 + K )(|an|Kn + |a0|)

(1 + Kn)(|an|Kn + K |a0|) max|z|=1
|P(z)|. (2.8)

Using the facts

max|z|=1
|G(z)| = max|z|=K

|P(z)|

and

Kn (1 + K )(|an|Kn + |a0|)
(1 + Kn)(|an|Kn + K |a0|) = 2Kn

1 + Kn
+ Kn(|an|Kn − |a0|)(K − 1)

(1 + Kn)(|an|Kn + K |a0|) ,

in the inequality (2.8) we get the desired inequality (2.5). ��
Lemma 2.4 sharpens the following result which was independently proved first by

Aziz [1], and recently by Govil and Kumar [8] with a shorter and direct proof.

Corollary 2.5 If P(z) is a polynomial of degree n which has all its zeros in the disk
|z| ≤ K , K ≥ 1, then

max|z|=K
|P(z)| ≥ 2Kn

1 + Kn
max|z|=1

|P(z)|. (2.9)
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One can observe that, for the polynomials satisfying the hypothesis of Lemma 2.4
and having some zeros within the circle |z| = K , inequality (2.5) shows considerable
amount of improvement over the inequality (2.9).

Lemma 2.6 If P(z) is a polynomial of degree n then on |z| = 1,

|P ′(z)| + |Q′(z)| ≤ nmax|z|=1
|P(z)|,

where Q(z) = zn P(1/z).

Lemma 2.6 is due to Govil and Rahman [9].

3 Proofs of Theorems

Proof of Theorem 1.1. Since P(z) has all its zeros in |z| ≤ K , K ≥ 1, the polynomial
G(z) = P(Kz) = anKn ∏n

j=1(z− z j
K ) has all its zeros in the closed unit disc |z| ≤ 1.

Since for all z on |z| = 1 for which G(z) 	= 0,

zG ′(z)
G(z)

=
n∑

j=1

z

z − (z j/K )
,

we have

Re

(
zG ′(z)
G(z)

)

≥
n∑

j=1

1

1 + |z j/K | =
n∑

j=1

K

K + |z j | .

But then

∣
∣
∣
∣
zG ′(z)
G(z)

∣
∣
∣
∣ ≥

n∑

j=1

K

K + |z j | ,

for all z on |z| = 1 for which G(z) 	= 0. Therefore

max|z|=1
|G ′(z)| ≥

n∑

j=1

K

K + |z j | max|z|=1
|G(z)|, (3.1)

or equivalently

K max|z|=1
|P ′(Kz)| ≥

n∑

j=1

K

K + |z j | max|z|=1
|P(Kz)|. (3.2)

Using the fact Kn−1 max|z|=1 |P ′(z)| ≥ |P ′(Kz)| (see [15, problem 269, p. 137]
and Lemma 2.4 in (3.2), we get
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Kn max|z|=1
|P ′(z)| ≥

n∑

j=1

K

K+|z j |
(

2Kn

1+Kn
+ Kn(|an|Kn−|a0|)(K−1)

(1+Kn)(|an|Kn+K |a0|)
)

max|z|=1
|P(z)|,

and thereby the proof is complete.

Proof of Theorem 1.2 Since P(z) has no zeros in |z| < K , K ≤ 1, Q(z) = zn P(1/z)
has all its zeros in |z| ≤ 1

K , 1
K ≥ 1. Hence by Theorem 1.1 and using the fact that

max|z|=1 |Q(z)| = max|z|=1 |P(z)|, we have
max|z|=1

|Q′(z)| ≥
(

2

1 + 1/Kn
+ 1

(1 + (1/Kn))

(|a0|/Kn) − |an|)(1/K − 1)

(|a0|/Kn) + (|an|/K )

)

×
n∑

j=1

|z j |
|z j | + K

max|z|=1
|P(z)|. (3.3)

From Lemma 2.6 we have on |z| = 1,

|P ′(z)| + |Q′(z)| ≤ nmax|z|=1
|P(z)|. (3.4)

Since |P ′(z)| and |Q′(z)| attain the maximum at the same point, we have

max|z|=1
{|P ′(z)| + |Q′(z)|} = max|z|=1

|P ′(z)| + max|z|=1
|Q′(z)|. (3.5)

Therefore from (3.3), (3.4) and (3.5) we have,

max|z|=1
|P ′(z)| +

(
2Kn

1 + Kn
+ Kn(|a0| − |an|Kn)(1 − K )

(1 + Kn)(|a0|K + |an|Kn)

) n∑

j=1

|z j |
|z j | + K

max|z|=1
|P(z)|

≤ nmax|z|=1
|P(z)|. (3.6)

Simple rearrangements in (3.6) yields the required inequality. ��
Proof of Theorem 1.4 Since P(z) has all its zeros in |z| ≤ K , K ≥ 1, all the zeros of
G(z) = P(Kz) lie in |z| ≤ 1. Now therefore for |α|/K ≥ 1, it is a straight forward
exercise to obtain

max|z|=1
|Dα/KG(z)| ≥ (|α| − K )

K
max|z|=1

|G ′(z)|,

which is nothing but

max|z|=1
|nP(Kz) + (α/K − z)K P ′(Kz)| ≥ (|α| − K )

K
max|z|=1

|G ′(z)|.
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Using the definition of polar derivative and the inequality (3.1) we have

max|z|=K
|DαP(z)| ≥ (|α| − K )

K

n∑

j=1

K

K + |z j | max|z|=1
|G(z)|,

which is equivalent to

max|z|=K
|DαP(z)| ≥ (|α| − K )

K

n∑

j=1

K

K + |z j | max|z|=K
|P(z)|.

Now applying Lemma 2.4 in the right hand side of the above inequality, we get

max|z|=K
|DαP(z)| ≥ (|α| − K )

K

n∑

j=1

K

K + |z j |

(
2Kn

1 + Kn
+ Kn(|an|Kn − |a0|)(K − 1)

(1 + Kn)(|an|Kn + K |a0|)
)

max|z|=1
|P(z)|.

From the fact that max|z|=K |DαP(z)| ≤ Kn−1 max|z|=1 |DαP(z)|, we have
Kn−1 max|z|=1

|DαP(z)|

≥ (|α| − K )

K

n∑

j=1

K

K + |z j |
(

2Kn

1 + Kn
+ Kn(|an|Kn − |a0|)(K − 1)

(1 + Kn)(|an|Kn + K |a0|)
)

max|z|=1
|P(z)|.

(3.7)

By a simplification of terms in the above inequality (3.7), we get the desired inequal-
ity, and hence the proof is complete. ��

Proof of Theorem 1.6 Note that for any complex number α with |α| ≥ 1, we have on
|z| = 1

|DαP(z)| = |nP(z) + (α − z)P ′(z)|
= |nP(z) − zP ′(z) + αP ′(z)|
≤ |nP(z) − zP ′(z)| + |α||P ′(z)|
= |Q′(z)| + |α||P ′(z)|
≤ nmax|z|=1

|P(z)| − |P ′(z)| + |α||P ′(z)|, by Lemma 2.6

= nmax|z|=1
|P(z)| + (|α| − 1)|P ′(z)|.

Therefore using Theorem 1.2 we have
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max|z|=1
|DαP(z)| ≤ nmax|z|=1

|P(z)|

+(|α| − 1)

⎡

⎣n −
(

2Kn

1 + Kn
+ Kn(|a0| − |an |Kn)(1 − K )

(1 + Kn)(|a0|K + |an |Kn)

) n∑

j=1

|z j |
|z j | + K

⎤

⎦max|z|=1
|P(z)|.

With a minor simplification in the right hand side of the above inequality we get
the required inequality and thus the proof is complete. ��
Remark 3.1 If P(z) is a polynomial of degree n with all coefficients non-negative or
all coefficients non-positive, then |P ′(z)| and |Q′(z)| attain the maximum at z = 1
and therefore Theorems 1.2 and 1.6 hold true for such class of polynomials having no
zeros in |z| ≤ K , K ≥ 1. Let us state this spacial case as a corollary.

Corollary 3.2 Let P(z) = a0 + a1z + · · · + an−1zn−1 + anzn = an
∏n

j=1(z − z j ) be
a polynomial of degree n having no zeros in |z| < K , K ≤ 1 with all the coefficients
either non-positive or non-negative, and α be any complex number with |α| ≥ 1. Then

max|z|=1
|P ′(z)|

≤
⎡

⎣n −
(

2Kn

1 + Kn
+ Kn(|a0| − |an|Kn)(1 − K )

(1 + Kn)(|a0|K + |an|Kn)

) n∑

j=1

|z j |
|z j | + K

⎤

⎦max|z|=1
|P(z)|.

and
max|z|=1

|Dα{P(z)}|

≤
⎡

⎣n|α| − (|α| − 1)

(
2Kn

1 + Kn
+ Kn(|a0| − |an|Kn)(1 − K )

(1 + Kn)(|a0|K + |an|Kn)

) n∑

j=1

|z j |
|z j | + K

⎤

⎦

max|z|=1
|P(z)|.

We believe that Theorems 1.2 and 1.6 are possibly the best available partial answers
so far in an attempt towards the problem of deriving the Erdös–Lax inequality for the
class of polynomials having no zeros in the disc |z| < K , K ≤ 1. The general
problem of this kind without any additional hypothesis is still open.
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