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Abstract
In this paper, we study how the notions of geometric formality according to Kotschick
and other geometric formalities adapted to the Hermitian setting evolve under the
action of the Chern-Ricci flow on class VII surfaces, including Hopf and Inoue sur-
faces, and on Kodaira surfaces.

Keywords Formality · Kotschick geometric formality · Hermitian geometric
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1 Introduction

This note is related to the problem of understanding the algebraic structure of coho-
mologies of complex manifolds.

On a differentiable manifold X , the differential complex of forms has a structure
of algebra. The wedge product induces an algebra structure in de Rham cohomology,
but not in a uniform way. We mean that, in general, it is not possible to choose
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a system of representatives having itself a structure of algebra. This is evident if
we want to choose harmonic representatives with respect to a Riemannian metric
on a compact differentiable manifold: indeed, in the words of Sullivan, there is an
“incompatibility of wedge products and harmonicity of forms” [55, page 326]. In
general, on a compact differentiable manifold X , the choice of representatives for the
de Rham cohomology yields just a structure of A∞-algebra in the sense of Stasheff
[51], by the Homotopy Transfer Principle by Kadeishvili [28], see e.g. [40,63]. We
refer to [15,39] for understanding the relationship between the higher multiplications
and theMassey products.When such an A∞-algebra is actually an algebra, we say that
X is formal in the sense of Sullivan [55]. In this case, the differential graded algebra
of forms and the dga of de Rham cohomology share the same minimal model, which
contains information on the rational homotopy: therefore the rational homotopy type
of X “can be computed formally from” the cohomology ring H•

d R(X;R); see [55]
for details. As a special case, when we can fix a Riemannian metric g such that the
harmonic representatives with respect to g have a structure of algebra, say that X is
geometrically formal in the sense of Kotschick [31].

On a complex manifold X , the double complex of forms (∧•,• X , ∂, ∂) has a struc-
ture of bi-differential bi-graded algebra. Then it is possible to investigate analogous
notions for the Dolbeault cohomology. Neisendorfer and Taylor introduced the notion
of (strictly) Dolbeault formality and “complex homotopy groups” in [42]; for Her-
mitian manifolds, the notion of (strictly) geometric-Dolbeault formality has been
investigated by Tomassini and Torelli in [59].

BesidesDolbeault cohomology,Bott–Chern H•,•
BC (X) := ker ∂∩ker ∂

im ∂∂
[13] andAeppli

H•,•
A (X) := ker ∂∂

im ∂+im ∂
[1] cohomologies provide further cohomological invariants on

complex manifolds. They are directly related by morphisms to both the Dolbeault and
the de Rham cohomology, and allow to numerically characterize the strong Hodge
decomposition given by the ∂∂-Lemma [6,7]. The notion of geometrically-Bott–Chern
formality for Hermitian manifolds is introduced and studied in [8]. Here, Bott–Chern-
harmonic forms are in the kernel of the fourth-order Bott–Chern Laplacian introduced
in [30,50]. On the other side, it is not clear how to study a notion of “Bott-Chern and
Aeppli formality”. However, the Bott–Chern cohomology has a structure of algebra,
while the Aeppli cohomology is just a HBC (X)-module. We refer to the discussion in
[3,6].

In this note, we focus on geometric formalities of complex manifolds and its depen-
dence on theHermitianmetric. In [56,59], the authors study the behaviour ofDolbeault
formality, respectively geometric-Bott–Chern formality, under small deformations of
the complex structure. Here, we keep the complex structure fixed, and we study geo-
metric formalities with respect to Hermitian metrics evolving along a geometric flow.
More precisely, we consider theChern-Ricci flow [22,60] that evolvesHermitian struc-
tures ω(t) by the Chern-Ricci form,

∂

∂t
ω = −RicCh(ω),
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and we study the possible algebra structure on the space of (de Rham, Dolbeault,
Bott–Chern, Aeppli) harmonic forms with respect to ω(t) varying t .

We study in details geometric formality according to Kotschick for a whole class of
surfaces evolving by the Chern-Ricci flow, i.e. compact complex non-Kähler surfaces
with Kodaira dimension Kod(X) = −∞ and first Betti number b1(X) = 1, known as
class VII of the Enriques-Kodaira classification. In particular, we first rule out class
VII surfaces with second Betti number b2 > 0 by applying arguments as in [31].
Then, we exploit the structure of quotients of Lie groups with invariant complex and
Hermitian structure on the only class VII surfaces with b2 = 0, that is Hopf and Inoue
surfaces see [11,29,37,57], in order to reduce the description of harmonic forms and
the equation of the Chern-Ricci flow of such surfaces at the level of invariant forms
and thus make explicit computations. We obtain the following.

Theorem 4.1. On class VII surfaces, the Chern-Ricci flow preserves the notion of
geometric formality according to Kotschick starting at initial invariant metrics.

We also study the evolution of geometric formality according to Kotschick on other
compact complex non-Kähler surfaces that are diffeomorphic to solvmanifolds, e.g.
Kodaira surfaces. Since any complex structures on such surfaces is left-invariant, see
[24, Theorem 1], we focus on invariant forms also in this case.

Proposition 4.2 On Kodaira surfaces, geometric formality according to Kotschick is
preserved by the Chern-Ricci flow starting at initial invariant metrics.

We note that, also in this case, it is possible to rule out primary Kodaira surfaces by
the obstructions in [31] or [23], and therefore we focus on secondary Kodaira surfaces
with initial invariant metrics.

Regarding Dolbeault and Bott–Chern geometric formalities evolving by the Chern-
Ricci flow, by applying the analogous procedure onHopf, Inoue, andKodaira surfaces,
we have reached results as follows. We also checked how the algebraic structures of
Aeppli cohomology and its harmonic representatives are modified along the Chern-
Ricci flow.

Proposition 5.1 On Hopf, Inoue, and Kodaira surfaces, the notions of Dolbeault
geometric formality and Bott–Chern geometric formality are all preserved by the
Chern-Ricci flow starting at initial invariant metrics. Moreover the properties of
Aeppli-harmonic forms having a structure of algebra or a structure of HBC -module
are all preserved by the Chern-Ricci flow starting at initial invariant metrics.

Throughout this note, we give a complete description of harmonic forms on such
compact complex surfaces depending on the invariant Hermitian metrics. We made
computations with the aid of SageMath [49].

We ask whether for Dolbeault and Bott–Chern geometric formalities there exist
obstructions (such as the ones found in [31]) which would help complete the picture
for geometric formalities for class VII surfaces. We also ask whether the behaviour
we observed is more general or there exist counterexamples.
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2 Preliminaries on HermitianManifolds

2.1 Cohomologies of Compact Complex Manifolds

For a complex compact manifold X , one can define its real and complex de Rham
cohomology groups by

Hk
d R(X;R) := ker(d : ∧k

(X) → ∧k+1
(X))

im(d : ∧k−1
(X) → ∧k

(X))

Hk
d R(X;C) := ker(d : ∧k

C
(X) → ∧k+1

C
(X))

im(d : ∧k−1
C

(X) → ∧k
C
(X))

which correspond, by the universal coefficients theorem.
In the case of non-Kähler complex compact manifolds, further invariants regarding

the complex structure are given by other cohomologies, such asDolbeault, Bott–Chern
and Aeppli cohomologies, defined respectively by

H•,•
∂

(X) := ker ∂

im ∂
H•,•

BC (X) := ker ∂ ∩ ker ∂

im(∂∂)
H•,•

A (X) := ker ∂∂

im ∂ + im ∂
.

In general, the homomorphisms induced by the identity between those cohomolo-
gies are not necessarily injective nor surjective. However, for compact manifolds
satisfying the ∂∂-lemma, such as compact Kähler manifolds, these natural maps that
are induced by the identity are all isomorphisms, see [19]:

H•,•
BC (X)

H•,•
∂

(X) H•
d R(X;C) H•,•

∂ (X)

H•,•
A (X)

where H•,•
∂ (X) is the conjugate of the Dolbeault cohomology.

Once fixed a Hermitian metric g on X , the Hodge-∗-operator with respect to such
metric induces isomorphisms, see e.g. [50, §2.b, §2.c]:

Hk
d R(X)

∼−→ H2n−k
d R (X), H p,q

∂
(X)

∼−→ Hn−q,n−p
∂ (X),

H p,q
BC (X)

∼−→ Hn−q,n−p
A (X), (2.1)

where dimR X = 2n, 1 ≤ k ≤ 2n, and 1 ≤ p, q ≤ n.
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2.2 Hodge Theory

For a compact Hermitian manifold (Xn, g), we denote by Hk
�(X , g), with k ∈

{1, . . . , 2n},� ∈ {d R, ∂, BC, A} the set of harmonic k-formswith respect to the regu-
lar Laplacian, Dolbeault Laplacian, Bott–Chern Laplacian, Aeppli Laplacian, namely
the following self-adjoint, elliptic operators, see [50, §2.b, §2.c]:

�d R = dd∗ + d∗d, �∂ = ∂ ∂
∗ + ∂

∗
∂

�BC = ∂∂ ∂
∗
∂∗ + ∂

∗
∂∗∂∂ + ∂

∗
∂∂∗∂ + ∂∗∂ ∂

∗
∂ + ∂

∗
∂ + ∂∗∂

�A = ∂∂∗ + ∂ ∂
∗ + ∂

∗
∂∗∂∂ + ∂∂ ∂

∗
∂∗ + ∂∂

∗
∂∂∗ + ∂∂∗∂∂

∗
.

Clearly, those operators depend on the fixed metric g. For � ∈ {∂, BC, A}, we can
define alsoHp,q

� (X , g), i.e. the set of harmonic (p, q)-formswith respect toDolbeault,
Bott–Chern and Aeppli Laplacians.

Both the de Rham (
∧•

C
(X), d) and Dolbeault complexes (

∧•,•
(X), ∂, ∂) of a com-

pact Hermitian manifold (X , g), via harmonic forms, admit decompositions that yield
the following isomorphisms of vector spaces between harmonic forms and cohomol-
ogy classes:

Hk
d R(X , g)

∼−→ Hk
d R(X), Hp,q

∂
(X , g)

∼−→ H p,q
∂

(X),

Hp,q
BC (X , g)

∼−→ H p,q
BC (X), Hp,q

A (X , g)
∼−→ H p,q

A (X).
(2.2)

We note that isomorfisms as in (2.1) still hold at the level of harmonic forms.

2.3 Geometric Formalities

In general, whereas de Rham, Dolbeault and Bott–Chern cohomologies have a struc-
ture of algebra induced by the cup product of cohomology classes, the mentioned
isomorphisms (2.2) do not preserve the structure of algebra, expected by the wedge
product. For Aeppli cohomology, especially, we do not have a structure of algebra a
priori, but a structure of HBC (X)-module; the isomorphism in (2.2) could not preserve
this structure. This remark makes non-trivial the following definitions.

Definition 2.1 Let X be a compact complex manifold, g a fixed Hermitian metric on
X . The metric g is said to be

(1) geometrically formal according to Kotschick if H•
d R(X , g) has a structure of

algebra induced by the wedge product;
(2) Dolbeault-geometrically formal ifH•,•

∂
(X , g) has a structure of algebra induced

by the wedge product;
(3) Bott–Chern-geometrically formal if H•,•

BC (X , g) has a structure of algebra
induced by the wedge product.
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2.4 Chern-Ricci Flow

The Chern-Ricci flow (introduced in [22] and studied in [60]) is a parabolic geometric
flow that preserves the Hermitian condition of the initial given metric. The equations
that describe such flow on a Hermitian manifold (Xn, J , g0) are

∂

∂t
ω(t) = −RicCh(ω(t)), ω(0) = ω0,

where ω0, ω(t) are the foundamental forms associated, respectively, to the Hermitian
initial metric g0 and the evolutionmetric g(t) by the usual relationω(·, ·) = g(J (·), ·).
For an arbitrary real (1, 1)-form ω, RicCh(ω) is the Chern-Ricci form of ω. The first
Chern-Ricci curvature RicCh is defined starting from ∇Ch , the Chern connection on
(X , J , g), i.e. the unique connection ∇ on the holomorphic tangent bundle T 1,0X
such that ∇ is compatible with both g and J and ∇0,1 = ∂ . In a holomorphic chart,
the curvature tensor RCh of such connection has components RCh

i jkl
, for i, j, k, l ∈

{1, . . . , n}. The Chern-Ricci tensor is obtained by contracting the last two indices via
the metric

RicciCh
i j

:= gkl RCh
i jkl

,

where (gkl) is the inverse of the matrix (gkl) representing in local coordinates the
metric g. The Chern-Ricci form is defined by

RicCh := RicciCh(J ( · ), · ).

Such form has important properties, among which a very simple form in local coor-
dinates:

RicCh(ω) = −√−1∂∂ log det(g),

from which we can deduce that RicCh(ω) is a ∂-, ∂-closed form, hence it defines
a cohomology class in H1,1

BC (X). Such class is a holomorphic invariant, denoted by
cBC
1 (X), which plays a fundamental role in the classification of complex manifolds.

3 Preliminaries on Compact Complex Surfaces and Quotients of Lie
Groups

In this section, we analyze in details complex structures, cohomologies, and Chern-
Ricci flow on non-Kähler compact complex surfaces that can be described as quotients
of Lie groups G endowed with invariant complex structure [24], namely Hopf, Inoue,
and Kodaira surfaces. Here, invariant tensors are meant to be defined on the covering
Lie group and invariant by the action of the Lie group on itself by left-translations,
that is, they can be considered as linear tensors over the associated Lie algebra g.
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3.1 Complex Structure

More precisely, we describe the complex structure J by a coframe of invariant (1, 0)-
forms {ϕ1, ϕ2} and their conjugates, and by their structure equations

dϕ I = −cI
H K ϕH ∧ ϕK ,

equivalently, by the dual frame {ϕ1, ϕ2} of (1, 0)-vector fields and their conjugates,
with structure equations [ϕH , ϕK ] = cI

H K ϕI . (Capital letters here vary in the ordered
set (1, 2, 1̄, 2̄) and refer to the corresponding component. The Einstein summation is
assumed, for increasing indices in case of forms. Hereafter, we shorten e.g. ϕ21̄ :=
ϕ2 ∧ ϕ̄1.)

3.2 Hermitian Structure

The arbitrary invariant Hermitian metric g := ω( · , J (·)) has associated (1, 1)-form

2ω = √−1
2∑

I , J =1

gI J ϕ I ∧ ϕ J = √−1r2 ϕ11̄ + √−1s2 ϕ22̄ + u ϕ12̄ − ū ϕ21̄

(3.1)

where the coefficients satisfy

r2 > 0, s2 > 0, r2s2 > |u|2.

That is to say, the Hermitian matrix

(gK L)K ,L = 1

2
·
(

r2 −√−1u√−1ū s2

)

∈ GL(g)

is positive-definite. Its inverse is

(gK L)K ,L := (gK L)−1
K ,L = 2

r2s2 − |u|2 ·
(

s2
√−1u

−√−1ū r2

)

.

The Christoffel symbols of the Chern connection can be computed as follows, see
e.g. [45]:

(�Ch)K
I H = 1

2
cK

I H − 1

2
gK AgB I cB

H A − 1

2
gK AgB H cB

I A + 1

2
gK LCI H L ,

where

CI H L = dω(JϕI , ϕH , ϕL).
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We can then express the (4, 0)-Riemannian curvature of the Chern connection as

(RCh)I H K L = gAL(�Ch)B
H K (�Ch)A

I B − gAL(�Ch)B
I K (�Ch)A

H B − gALcB
I H (�Ch)A

BK ,

and the Chern-Ricci tensor as

(RicciCh)I H = gK L(RCh)I H K L .

Then the Chern-Ricci form is

RicCh = RicciCh(J ( · ), · ) ∈ cBC
1 (X) ∈ H1,1

BC (X;R).

Finally, we collect here some explicit description of the Hodge-star-operator on
forms for the arbitrary Hermitian metric associated to the form (3.1), in order to
describe harmonicity, see also [48, Lemma 2]. It is straightforward to check that:

∗g ϕ1 =
√−1

2
uϕ121̄ + 1

2
s2ϕ122̄,

∗gϕ
2 = −1

2
r2ϕ121̄ +

√−1

2
uϕ122̄, (3.2)

∗gϕ̄
1 = −

√−1

2
uϕ11̄2̄ + 1

2
s2ϕ21̄2̄,

∗gϕ̄
2 = −1

2
r2ϕ11̄2̄ −

√−1

2
uϕ21̄2̄; (3.3)

∗gϕ
12 = ϕ12, ∗gϕ

1̄2̄ = ϕ1̄2̄ (3.4)

V ∗g ϕ11 = |u|2ϕ11 − √−1us2ϕ12 + √−1us2ϕ21 + s4ϕ22, (3.5)

V ∗g ϕ12 = −√−1ur2ϕ11 − r2s2ϕ12 + u2ϕ21 − √−1us2ϕ22

V ∗g ϕ21 = √−1ur2ϕ11 + u2ϕ12 − r2s2ϕ21 + √−1us2ϕ22

V ∗g ϕ22 = r4ϕ11 − √−1ur2ϕ12 + √−1ur2ϕ21 + |u|2ϕ22,

V ∗g ϕ121̄ = −2
√−1 uϕ1 + 2 s2ϕ2, V ∗g ϕ122̄ = −2 r2ϕ1 − 2

√−1 uϕ2,

V ∗g ϕ11̄2̄ = 2
√−1 uϕ̄1 + 2 s2ϕ̄2, V ∗g ϕ21̄2̄ = −2 r2ϕ̄1 + 2

√−1 uϕ̄2;
(3.6)

where we set V = g11g22 − g12g21 = r2s2 − |u|2.

3.3 Cohomologies

Consider the inclusion of invariant forms into the double complex of forms,
ι : (∧•,•g∨, ∂, ∂) ↪→ (∧•,• X , ∂, ∂). By choosing an invariant Hermitian metric, (the
easier finite-dimensional version of) elliptic Hodge theory also applies at the level
of invariant forms; in particular, any cohomology class of invariant forms admits a
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unique invariant harmonic representative. It follows that the above inclusion induces
injective maps in de Rham ιd R , Dolbeault ι∂ , Bott–Chern ιBC , Aeppli ιA cohomology,
see [18, Lemma 9]. We claim that they are in fact isomorphisms.

The de Rham cohomology of Hopf, Inoue, Kodaira surfaces is well known, and
it happens that the above maps ιd R are actually isomorphisms, that is, any de Rham
class admits an invariant representative. In fact, the Hopf surface is diffeomorphic to
the product S1 × S

3 of two compact Lie groups, so one can use the Künneth formula
and e.g. [20, Theorem 1.28]; the primary Kodaira surface is a nilmanifold, so one can
use the Nomizu theorem [43]; the secondary Kodaira surfaces are quotients of primary
Kodaira surfaces byfinite groups; the Inoue surface of type S± is a completely-solvable
solvmanifold, so one can use the Hattori theorem [25]; and the de Rham cohomology
of the Inoue surface of type SM can be computed by exploiting their number-theoretic
construction as [44] does in a more general setting.

As for the Dolbeault cohomology, for compact complex surfaces, we know that
the Frölicher spectral sequence degenerates at the first page, see e.g. [9], that is,
dimC Hk

d R(X;C) = ∑
p+q=k dimC H p,q

∂
(X) for any k. By explicitly computing the

Dolbeault cohomology of invariant forms [4], one then notice that the above maps ι∂
are actually isomorphisms.

Finally, Bott–Chern cohomology of compact complex surfaces is well-undestood
since [58]. By [5, Theorem 1.3, Proposition 2.2], (that fits in the general theory later
developed by [52],) also ιBC are isomorphisms. Explicit computations can be found in
[4]. Finally, ιA are isomorphisms thanks to the Schweitzer duality betweenBott–Chern
and Aeppli cohomologies, where one can use the Hodge-star-operator with respect to
an invariant Hermitian metric.

Finally, by uniqueness of the harmonic representative in a cohomology class, we
also deduce that harmonic representatives with respect to invariant metrics are invari-
ant.

3.4 Chern-Ricci Flow

Recall that the Chern-Ricci form represents the first Bott–Chern class cBC
1 (X) ∈

H1,1
BC (X). Since a class in H1,1

BC (X) contains only one invariant representative, the
Chern-Ricci form RicCh(ω) does not depend on the invariant Hermitian metric ω. In
particular, the Chern-Ricci flow starting at ω0 reduces to

∂

∂t
ω(t) = −RicCh(ω0), ω(0) = ω0. (CRF)

We notice that the solution of the Chern-Ricci flow starting at an invariant metric
remains invariant for any existence time. Indeed, by short existence and uniqueness
assured by parabolicity, the symmetry group is preserved along the flow (and possibly
increases in the limit, see e.g. [35]).

Denote by ρr , ρs , ρu the coefficients of the Chern-Ricci form,

2RicCh = √−1ρrϕ
11̄ + √−1ρsϕ

22̄ + ρuϕ12̄ − ρ̄uϕ21̄,
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and let the initial metric ω0 be of the form

2ω0 = √−1r20 ϕ11̄ + √−1s20 ϕ22̄ + u0 ϕ12̄ − ū0 ϕ21̄, (3.7)

where r0, s0 ∈ R\{0} and u0 ∈ C such that r20 s20 − |u0|2 > 0. The solution ω(t) of
the Chern-Ricci flow starting at ω0 is then

2ω(t) = √−1(r20 − tρr )ϕ
11̄ + √−1(s20 − tρs)ϕ

22̄ + (u0 − tρu)ϕ12̄ − (ū0 − t ρ̄u)ϕ21̄,

defined for times t such that r(t)2 = r20 − tρr > 0, s(t) = s20 − tρs > 0, u(t) =
u0 − tρu ∈ C such that r(t)2s(t)2 − |u(t)|2 > 0.

4 Geometric Formality According to Kotshick

In this section we state the main theorem of this note, regarding class VII surfaces of
the Enriques-Kodaira classification of compact complex surfaces.

Theorem 4.1 On class VII surfaces of the Enriques-Kodaira classification, geometric
formality according to Kotshick is preserved by the Chern-Ricci flow starting at initial
invariant Hermitian metrics.

Proof Let X be a class VII surface, that is, Kod(X) = −∞ and b1(X) = 1. By [31,
Theorem 6], for a compact oriented Kotschick-geometrically formal 4-manifold X ,
the first Betti number satisfies b1(X) ∈ {0, 1, 2, 4}. Since all class VII surfaces are
non-Kähler, they must have odd first Betti number by [14,33], that is, b1(X) = 1. By
[31, Theorem 9], the Euler characteristic of such manifolds vanishes, implying that
b2(X) = 0. Since the characterization result by [11,29,37,57], class VII surfaces with
b2(X) = 0 are necessarilyHopf or Inoue surfaces, thenwe see that the onlyKotschick-
geometrically formal class VII surfaces can be Hopf and Inoue surfaces. Therefore,
Chern-Ricci flow starting at any metric cannot produce geometrically formal metrics
on class VII surfaces other than Hopf and Inoue surfaces: we will then check the
statement for those surfaces.

4.1 Case 1: Hopf Surfaces

Hopf surfaces X are compact complex surfaces in class VII defined as a quotient of
C
2\{0} by a free action of a discrete group generated by a holomorphic contraction

γ (z, w) = (αz + λw p, βw) where α, β, λ ∈ C and p ∈ N are such that 0 < |α| ≤
|β| < 1 and (α − β p)λ = 0, see [34], [53, page 820], see [62, Remark 1].

The diffeomorphism type is S1×SU(2), and the complex structure is a special case
of the Calabi-Eckmann complex structure on product of spheres [16]. See also [47,
Theorem 4.1]. In terms of a coframe (ϕ1, ϕ2) of (1, 0)-forms, they are described as

dϕ1 = √−1ϕ1 ∧ ϕ2 + √−1ϕ1 ∧ ϕ̄2, dϕ2 = −√−1ϕ1 ∧ ϕ̄1.
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The de Rham cohomology of Hopf surfaces is

H•
d R(X;C) = C〈1〉 ⊕ C〈ϕ2 − ϕ2̄〉 ⊕ C〈ϕ121̄ − ϕ11̄2̄〉 ⊕ C〈ϕ121̄2̄〉

wherewe have listed the harmonic representatives with respect to theHermitianmetric
with fundamental form 2ω = √−1ϕ11̄ + √−1ϕ22̄ instead of their classes.

Harmonic representatives for cohomologies We look at how harmonic representatives
of de Rham cohomology change with respect to the invariant Hermitian metric, and
in particular whether their product is still harmonic.

We notice that, varying the invariant Hermitianmetric, the harmonic representatives
are

H•
d R(X;R)

= C〈1〉 ⊕ C〈ϕ2 − ϕ2̄〉 ⊕ C
〈

−1

2
r2ϕ121̄ +

√−1

2
uϕ122̄ + 1

2
r2ϕ11̄2̄ +

√−1

2
uϕ21̄2̄

〉

⊕ C〈ϕ121̄2̄〉.

Indeed, it suffices to check that the harmonic representative of the class [ϕ2 − ϕ̄2]
does not depend on the invariant metric. This is because harmonic representatives are
invariant, and the class [ϕ2 − ϕ̄2] = {ϕ2 − ϕ̄2 + dc : c ∈ R} contains only one
invariant representantive, which is then harmonic with respect to any metric. Then we
compute the harmonic representative of the dual class in H3

d R(X;R) by applying the
Hodge-star-operator to ϕ2 − ϕ̄2 with respect to the arbitrary Hermitian metric. In any
case, the product of an invariant 1-form and an invariant 3-form is either zero or a
scalar multiple of the volume form. It follows that any invariant metric on the Hopf
surface is geometrically formal in the sense of Kotschick.

Chern-Ricci flow Clearly, on the Hopf surface with invariant Hermitian metrics, the
properties of geometric formality in the sense of Kotschick is preserved along the
Chern-Ricci flow. Nonetheless, for completeness and for later use, we compute the
Chern-Ricci form and the Chern-Ricci flow on X .

We start by computing the Chern-Riemann curvature of an invariant Hermitian
metric. We follow notation as in [45, Section 2] (see also [38, Section 6] for another
argument). With respect to the frame (ϕ1, ϕ2, ϕ3, ϕ̄1, ϕ̄2, ϕ̄3) and to the dual coframe(
ϕ1, ϕ2, ϕ3, ϕ̄1, ϕ̄2, ϕ̄3

)
, we set the structure constants

[ϕI , ϕH ] =: cK
I H ϕK .

Here, capital letters vary in {1, 2, 3, 1̄, 2̄, 3̄}, and the Einstein summation is assumed.
In our case, the non-trivial structure constants are
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c112 = −√−1, c2
11̄

= √−1, c2̄
11̄

= √−1, c1
12̄

= −√−1,

c121 = √−1, c1̄
21̄

= −√−1, c2
1̄1

= −√−1, c2̄
1̄1

= −√−1,

c1̄
1̄2

= √−1, c1̄
1̄2̄

= √−1, c1
2̄1

= √−1, c1̄
2̄1̄

= −√−1.

Recall that the Christoffel symbols of the Levi-Civita connections (with respect to the
above non-commutative frame) can be computed as

(�LC )K
I H = 1

2
gK L (g([ϕI , ϕH ], ϕL) − g([ϕH , ϕL ], ϕI ) − g([ϕI , ϕL ], ϕH ))

= 1

2
cK

I H − 1

2
gK AgB I cB

H A − 1

2
gK AgB H cB

I A.

Set V = r2s2 −|u|2 for simplicity. In our case, up to conjugation, the non-trivial ones
are

(�LC )111 = −s2uV −1, (�LC )211 = −√−1u2V −1,

(�LC )112 = 1

2
(−√−1s4 + √−1|u|2)V −1, (�LC )212 = −1

2
(r2 − s2)uV −1,

(�LC )1
11̄

= 1

2
s2ūV −1, (�LC )2

11̄
= 1

2

√−1r2s2V −1,

(�LC )1̄
11̄

= 1

2
s2uV −1, (�LC )2̄

11̄
= 1

2
(
√−1r2s2 − 2

√−1|u|2)V −1,

(�LC )1
12̄

= −1

2

√−1s4V −1, (�LC )2
12̄

= 1

2
s2uV −1,

(�LC )1̄
12̄

= 1

2

√−1u2V −1, (�LC )2̄
12̄

= 1

2
r2uV −1,

(�LC )121 = 1

2
(2

√−1r2s2 − √−1s4 − √−1|u|2)V −1, (�LC )221 = −1

2
(r2 − s2)uV −1,

(�LC )122 = −s2ūV −1, (�LC )222 = −√−1|u|2V −1,

(�LC )1
21̄

= −1

2

√−1ū2V −1, (�LC )2
21̄

= 1

2
r2ūV −1,

(�LC )1̄
21̄

= 1

2
(−2 ∗ √−1r2s2 + √−1s4 + 2

√−1|u|2)V −1, (�LC )2̄
21̄

= 1

2
s2ūV −1,

(�LC )1
22̄

= −1

2
s2ūV −1, (�LC )2

22̄
= −1

2

√−1|u|2V −1,

(�LC )1̄
22̄

= −1

2
s2uV −1, (�LC )2̄

22̄
= 1

2

√−1|u|2V −1.

We can now compute the Christoffel symbols (�Ch)K
I H of the Chern connection by

the formula [45, Equation (7)]:

(�ε,ρ)K
I H = (�LC )K

I H + εgK L TI H L + ρgK LCI H L ,

by setting (ε, ρ) = (
0, 1

2

)
, where

TI H L = −dω(JϕI , JϕH , JϕL), CI H L = dω(JϕI , ϕH , ϕL).
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We get

(�Ch)221 = −r2uV −1, (�Ch)121 = √−1r2s2V −1,

(�Ch)2̄
11̄

= √−1, (�Ch)1̄
21̄

= −√−1,
(�Ch)112 = −√−1s4V −1, (�Ch)212 = s2uV −1,

the others being equal to the corresponding Levi-Civita symbols or deduced by con-
jugation. We can compute the (4, 0)-Riemannian curvature of ∇ε,ρ as

(Rε,ρ)I H K L = gAL(�ε,ρ)B
H K (�ε,ρ)A

I B − gAL(�ε,ρ)B
I K (�ε,ρ)A

H B

−gALcB
I H (�ε,ρ)A

BK .

By using the symmetries for the Chern curvature (RCh)I H K L = −(RCh)H I K L =
−(RCh)I H L K and the conjugation, we get that the only non-zero components are

(RCh)11̄11̄ = 1

2
(2r4s2 − r2s4 − 2(r2 − s2)|u|2)V −1,

(RCh)11̄12̄ = 1

2
(
√−1|u|2u + (−√−1r2s2 − √−1s4)u)V −1,

(RCh)11̄21̄ = 1

2
(−√−1|u|2ū − (−√−1r2s2 − √−1s4)ū)V −1,

(RCh)11̄22̄ = 1

2
s6V −1,

(RCh)12̄11̄ = 1

2
(−√−1r2s2u + 2

√−1|u|2u)V −1,

(RCh)12̄12̄ = 1

2
s2u2V −1,

(RCh)11̄21̄ = −1

2
s2|u|2V −1,

(RCh)12̄22̄ = 1

2

√−1s4uV −1,

(RCh)21̄11̄ = 1

2
(
√−1r2s2ū − 2

√−1|u|2ū)V −1,

(RCh)21̄12̄ = −1

2
s2|u|2V −1,

(RCh)21̄21̄ = 1

2
s2ū2V −1,

(RCh)21̄22̄ = −1

2

√−1s4ūV −1,

(RCh)22̄11̄ = 1

2
r2|u|2V −1,

(RCh)22̄12̄ = −1

2

√−1r2s2uV −1,
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(RCh)22̄21̄ = 1

2

√−1r2s2ūV −1,

(RCh)22̄22̄ = 1

2
s2|u|2V −1.

Finally, we can compute the (first) Chern-Ricci curvature by tracing on the third and
fourth indices:

(RicCh)I H = gK L(RCh)I H K L ;

then the Chern-Ricci form can be defined as

RicCh = (RicCh)ih
√−1dzi ∧ dz̄h .

In our case, the only non-trivial coefficients are

(RicCh)11̄ = 2

and the corresponding (RicCh)1̄1 = −(RicCh)11̄. Therefore the Chern-Ricci form of
any invariant Hermitian metric is

RicCh(ω) = 2
√−1ϕ1 ∧ ϕ̄1.

Therefore the solution of the Chern-Ricci flow starting at ω0 of the form (3.7) is

2ω(t) = √−1(r20 − t)ϕ11̄ + √−1s20ϕ
22̄ + u0ϕ

12̄ − ū0ϕ
21̄, (4.1)

defined as long as t <
r20 s20−|u0|2

s20
< r20 .

4.2 Case 2: Inoue Surfaces

Inoue–Bombieri surfaces [12,27] X are compact complex surfaces in class VII with
second Betti number equal to zero and with no holomorphic curves [10,11,36,37,57].
Their universal cover isC×H, whereH denotes the upper half-plane. They are divided
into three families, SM , S+

N ,p,q,r;t, and S−
N ,p,q,r , depending on parameters.

4.3 Case 2.1: Inoue–Bombieri Surface of Type SM

We focus now on the case SM : it has a structure of fibre bundle over S1, where the
fibre is a 3-dimensional torus.

Inoue–Bombieri surfaces of type SM admit a description as quotients of solvable
Lie groups wih invariant complex structure [24], that we now describe. We can fix a
coframe (ϕ1, ϕ2) of (1, 0)-forms with structure equations
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dϕ1 = α − √−1β

2
√−1

ϕ1 ∧ ϕ2 − α − √−1β

2
√−1

ϕ1 ∧ ϕ̄2,

dϕ2 = −√−1αϕ2 ∧ ϕ̄2,

where α ∈ R\{0} and β ∈ R. The de Rham cohomology of X can be explicitly
described [58], see [4, Theorem 4.1]:

H•
d R(X;R) = C〈1〉 ⊕ C〈ϕ2 − ϕ2̄〉 ⊕ C〈ϕ121̄ − ϕ11̄2̄〉 ⊕ C〈ϕ121̄2̄〉

wherewe have listed the harmonic representatives with respect to theHermitianmetric
with fundamental form 2ω = √−1ϕ11̄ + √−1ϕ22̄ instead of their classes.

Harmonic representatives for cohomologies We list the harmonic representatives with
respect to the arbitrary Hermitian metric as in (3.1):

H•
d R(X;R) = C〈1〉 ⊕ C〈ϕ2 − ϕ2̄〉 ⊕ C
〈

−1

2
r2ϕ121̄ +

√−1

2
uϕ122̄ + 1

2
r2ϕ11̄2̄ +

√−1

2
uϕ21̄2̄

〉

⊕ C〈ϕ121̄2̄〉 (4.2)

We conclude that: any invariant Hermitian metric on an Inoue surface of type SM

is geometrically formal in the sense of Kotschick.

Chern-Ricci flow The Chern-Ricci form of any invariant Hermitian metric is

2RicCh(ω) = −√−1α2ϕ2 ∧ ϕ̄2,

whence the solution of the Chern-Ricci flow (CRF) is given by

2ω(t) = √−1r20ϕ11̄ + √−1
(

s20 + α2t
)

ϕ22̄ + u0ϕ
12̄ − ū0ϕ

21̄, (4.3)

defined for any non-negative time t ≥ 0.
Clearly, on an Inoue surface of type SM with invariant Hermitian metrics, the

properties of geometric formality in the sense of Kotschick is preserved along the
Chern-Ricci flow.

4.4 Case 2.2: Inoue Surfaces of Class S±

In this subsection, we focus on the case of Inoue surfaces of type S±. Inoue–Bombieri
surfaces of type S− have an unramified double cover of type S+: we can then restrict
to Inoue–Bombieri surfaces of type S+, which have a structure of fibre bundle over
S
1, where the fibre is a compact quotient of the 3-dimensional Heisenberg group.
Also Inoue–Bombieri surfaces of type S+ admit a description as quotients of

solvable Lie groups [24], that we now describe. We can fix a coframe (ϕ1, ϕ2) of
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(1, 0)-forms with structure equations

dϕ1 = 1

2
√−1

ϕ1 ∧ ϕ2 + 1

2
√−1

ϕ2 ∧ ϕ̄1 + q
√−1

2
ϕ2 ∧ ϕ̄2,

dϕ2 = 1

2
√−1

ϕ2 ∧ ϕ̄2,

where q ∈ R. The de Rham cohomology of X can be explicitly described [58], see
[4, Theorem 4.1]:

H•
d R(X;C) = C〈1〉 ⊕ C〈ϕ2 − ϕ2̄〉 ⊕ C〈ϕ121̄ − ϕ11̄2̄〉 ⊕ C〈ϕ121̄2̄〉

wherewe have listed the harmonic representatives with respect to theHermitianmetric
with fundamental form ω = √−1ϕ11̄ + √−1ϕ22̄ instead of their classes.

Harmonic representatives for cohomologies The situation is exactly as in (4.2). We
conclude that: any invariant Hermitian metric on an Inoue surface of type S± is
geometrically formal in the sense of Kotschick.

Chern-Ricci flow The Chern-Ricci form of any invariant Hermitian metric is

2RicCh(ω) = −√−1ϕ22̄,

whence the solution of the Chern-Ricci flow (CRF) is given by

2ω(t) = √−1r20ϕ11̄ + √−1
(

s20 + t
)

ϕ22̄ + u0ϕ
12̄ − ū0ϕ

21̄, (4.4)

defined for any non-negative time t ≥ 0.
Clearly, on an Inoue surface of type S± with invariantHermitianmetrics, the proper-

ties of geometric formality in the sense ofKotschick is preserved along theChern-Ricci
flow. ��

We also analyze in details primary and secondary Kodaira surfaces resulting in the
following proposition, for which we give explicit computations.

Proposition 4.2 On any Kodaira surface, the properties of geometric formality in the
sense of Kotschick is preserved along the Chern-Ricci flow starting at initial invariant
Hermitian metrics.

Proof We will look at each case separatedly.

4.5 Case 1: Primary Kodaira Surface

Kodaira surfaces X are compact complex surfaces of Kodaira dimension Kod(X) = 0
and first Betti number b1(X) = 3. Primary Kodaira surfaces have trivial canonical
bundle.
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We note that, by [31, Theorem 6], primary Kodaira surfaces are never Kotschick-
geometrically formal, not evenwith regards to non-invariantmetrics, by havingb1 = 3:
hence Chern-Ricci flow preserves geometric formality according to Kotschick. The
same conclusion follows by [23, Theorem 1] stating that non-tori nilmanifolds are
never formal, therefore never geometrically formal in the sense of Kotschick. Never-
theless we give explicit computations for this fact.

We recall the description of primary Kodaira surfaces as quotients of solvable Lie
groups [24]. There exists a coframe (ϕ1, ϕ2) of (1, 0)-forms with structure equations

dϕ1 = 0, dϕ2 =
√−1

2
ϕ1 ∧ ϕ̄1.

The de Rham cohomology of X can be explicitly described:

H•
d R(X;R) = C〈1〉 ⊕ C〈ϕ1, ϕ1̄, ϕ2 − ϕ2̄〉 ⊕ C〈ϕ12, ϕ12̄, ϕ21̄, ϕ1̄2̄〉

⊕C〈ϕ122̄, ϕ21̄2̄, ϕ121̄ − ϕ11̄2̄〉 ⊕ C〈ϕ121̄2̄〉

wherewe have listed the harmonic representatives with respect to theHermitianmetric
with fundamental form ω = √−1ϕ11̄ + √−1ϕ22̄ instead of their classes.

We list the harmonic representatives with respect to the arbitrary Hermitian metric
as in (3.1):

H•
d R(X;R) = C〈1〉 ⊕ C〈ϕ1, ϕ1̄, ϕ2 − ϕ2̄〉 ⊕ C

〈

ϕ12, ϕ12̄ +
√−1 u

s2
ϕ11̄, ϕ21̄ −

√−1 u

s2
ϕ11̄, ϕ1̄2̄

〉

⊕C

〈
1

2
s2ϕ122̄ +

√−1

2
uϕ121̄,

1

2
s2ϕ21̄2̄ −

√−1

2
uϕ11̄2̄,

−1

2
r2ϕ121̄ +

√−1

2
uϕ122̄ + 1

2
r2ϕ11̄2̄ +

√−1

2
uϕ21̄2̄

〉

⊕ C〈ϕ121̄2̄〉,

We explicitly notice that, on primary Kodaira surfaces, an invariant Hermitian
metric is never geometrically formal in the sense of Kotschick: indeed, ϕ1 ∧ ϕ1̄2̄ is
never harmonic.

As for Chern-Ricci flow, the primary Kodaira surface has trivial canonical bundle,
therefore RicCh(ω) = 0. Then, clearly, the Chern-Ricci flow does not evolve invariant
Hermitian metrics.

4.6 Case 2: Secondary Kodaira Surface

Secondary Kodaira surfaces X are quotients of primary Kodaira surfaces by finite
groups; they have torsion non-trivial canonical bundle.
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We recall the description of secondary Kodaira surfaces as quotients of solvable Lie
groups [24]. There exists a coframe (ϕ1, ϕ2) of (1, 0)-forms with structure equations

dϕ1 = −1

2
ϕ1 ∧ ϕ2 + 1

2
ϕ1 ∧ ϕ̄2, dϕ2 =

√−1

2
ϕ1 ∧ ϕ̄1.

The cohomologies of X can be explicitly described:

H•
d R(X;R) = C〈1〉 ⊕ C〈ϕ2 − ϕ2̄〉 ⊕ C〈ϕ121̄ − ϕ11̄2̄〉 ⊕ C〈ϕ121̄2̄〉,

wherewe have listed the harmonic representatives with respect to theHermitianmetric
with fundamental form ω = √−1ϕ11̄ + √−1ϕ22̄ instead of their classes.

As for the harmonic representatives for de Rham cohomology, the situation is very
similar to the Inoue case. We list the harmonic representatives with respect to the
arbitrary Hermitian metric as in (3.1):

H•
d R(X;R) = C〈1〉 ⊕ C〈ϕ2 − ϕ2̄〉

⊕C

〈

−1

2
r2ϕ121̄ +

√−1

2
uϕ122̄ + 1

2
r2ϕ11̄2̄ +

√−1

2
uϕ21̄2̄

〉

⊕ C〈ϕ121̄2̄〉.

We conclude that any invariant Hermitian metric on an secondary Kodaira is geomet-
rically formal in the sense of Kotschick.

As for the Chern-Ricci flow, the secondary Kodaira surface has torsion canonical
bundle, therefore RicCh(ω) = 0. Therefore, the Chern-Ricci flow does not evolve
invariant Hermitian metrics. ��

5 Dolbeault and Bott–Chern Geometric Formalities

As for Dolbeault or Bott–Chern geometric formality, the situation is clear for Hopf,
Inoue andKodaira surfaces, aswe nowdescribe.We alsomake computations regarding
Aeppli cohomology andharmonic representativeswith respect to theAeppli Laplacian.

Proposition 5.1 On Hopf, Inoue, and Kodaira surfaces, the property of Dolbeault
geometric formality and of Bott–Chern geometric formality is preserved along the
Chern-Ricci flow starting at invariant metrics. In the same situation, the properties
of having a structure of algebra or a structure of HBC -module for harmonic-Aeppli
forms are all preserved by the Chern Ricci flow.

Proof We refer to the complex structures used in Theorem 4.1 and Proposition 4.2,
for the computation of Dolbeault, Bott–Chern, and Aeppli cohomologies.
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5.1 Hopf Surfaces

The Dolbeault cohomology of Hopf surfaces is explicitly described in [26, Appendix
II, Theorem 9.5], and see [4, Section 3.1] for the Bott–Chern cohomology:

H•,•
∂

(X) = C〈1〉 ⊕ C〈ϕ2̄〉 ⊕ C〈ϕ121̄〉 ⊕ C〈ϕ121̄2̄〉,
H•,•

BC (X) = C〈1〉 ⊕ C〈ϕ11̄〉 ⊕ C〈ϕ121̄〉 ⊕ C〈ϕ11̄2̄〉 ⊕ C〈ϕ121̄2̄〉,
H•,•

A (X) = C〈1〉 ⊕ C〈ϕ2〉 ⊕ C〈ϕ2̄〉 ⊕ C〈ϕ22̄〉 ⊕ C〈ϕ121̄2̄〉,

wherewe have listed the harmonic representatives with respect to theHermitianmetric
with fundamental form 2ω = √−1ϕ11̄ + √−1ϕ22̄ instead of their classes.

We look at how the harmonic representatives of such cohomologies change with
respect to the invariant Hermitian metric, and in particular when their product is still
harmonic.

We summarize them as follows:

H•,•
∂

(X) = C〈1〉 ⊕ C〈ϕ2̄〉 ⊕ C

〈

−1

2
r2ϕ11̄2̄ −

√−1

2
uϕ21̄2̄

〉

⊕ C〈ϕ121̄2̄〉,

H•,•
BC (X) = C〈1〉 ⊕ C〈ϕ11̄〉

⊕C

〈

−1

2
r2ϕ121̄+

√−1

2
uϕ122̄

〉

⊕ C

〈

−1

2
r2ϕ11̄2̄−

√−1

2
uϕ21̄2̄

〉

⊕ C〈ϕ121̄2̄〉,

H•,•
A (X) = C〈1〉 ⊕ C〈ϕ2〉 ⊕ C〈ϕ2̄〉

⊕C〈s4ϕ22̄ + |u|2ϕ11 − √−1s2 uϕ12 + √−1s2uϕ21〉 ⊕ C〈ϕ121̄2̄〉,

Let us focus first on the Dolbeault cohomology. Here, the only Dolbeault-harmonic
representative that changes is for the generator in H1,2

∂
(X). We conclude that any

invariant Hermitian metric on the Hopf surface is geometrically-Dolbeault formal.
As regards the Bott–Chern cohomology, to our aim, that is, studying harmonicity

of products of Bott–Chern-harmonic forms, the only case of interest is the product
[ϕ11̄] � [ϕ11̄], the products with the class [1] being trivial and the other products
being zero because of degree reasons. Since the harmonic representatives with respect
to invariant metrics are invariant, the Bott–Chern class [ϕ11] = {ϕ11 + ∂∂c : c ∈ R}
contains only one invariant representantive, that is also harmonic with respect to any
invariant Hermitian metric. Again, we have that any invariant Hermitian metric on
the Hopf surface is geometrically-Bott–Chern formal.

We consider the Aeppli cohomology. On the one side, we can consider the products
between Aeppli-harmonic forms: the only possibly non-trivial products concern the
classes [ϕ2] and [ϕ̄2], [ϕ2] and [ϕ2 ∧ ϕ̄2], [ϕ̄2] and [ϕ2 ∧ ϕ̄2]. Since the classes [ϕ2]
and [ϕ̄2] contain only one invariant representative, we are reduced to study how the
harmonic representative of the Aeppli cohomology class [ϕ2 ∧ ϕ̄2] depends on the
invariant Hermitian metric. The arbitrary representative in the Aeppli cohomology
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class [ϕ22̄] is

h := ϕ2 ∧ ϕ̄2 + ∂
(
λ1ϕ̄

1 + λ2ϕ̄
2
)

+ ∂
(
λ3ϕ

1 + λ4ϕ
2
)

= ϕ22̄ − √−1 (λ2 + λ4) ϕ11̄ + √−1λ1ϕ
21̄ + √−1λ3ϕ

12̄,

where λ1, λ2, λ3, λ4 ∈ C. By (3.5), we compute

V · ∗gh = V ·
(
∗g ϕ22 + √−1λ1 ∗g ϕ21 − √−1 (λ2 + λ4) ∗g ϕ11 + √−1λ3 ∗g ϕ12

)

=
(

r4 − λ1ur2 − √−1(λ2 + λ4)|u|2 + λ3ur2
)

ϕ11

+
(
−√−1ur2 + √−1λ1u2 − (λ2 + λ4)us2 − √−1λ3r2s2

)
ϕ12

+
(√−1ur2 − √−1λ1r2s2 + (λ2 + λ4)us2 + √−1λ3u2

)
ϕ21

+
(
|u|2 − λ1us2 − √−1(λ2 + λ4)s

4 + λ3us2
)

ϕ22.

By using the structure equations, we now compute

∂(∗gh) = √−1
−√−1ur2 + √−1λ1u2 − (λ2 + λ4)us2 − √−1λ3r2s2

r2s2 − |u|2 ϕ122

−√−1
|u|2 − λ1us2 − √−1(λ2 + λ4)s4 + λ3us2

r2s2 − |u|2 ϕ121,

∂(∗gh) = √−1

√−1ur2 − √−1λ1r2s2 + (λ2 + λ4)us2 + √−1λ3u2

r2s2 − |u|2 ϕ212

−√−1
|u|2 − λ1us2 − √−1(λ2 + λ4)s4 + λ3us2

r2s2 − |u|2 ϕ112.

Therefore the Aeppli-harmonicity conditions ∂∂h = ∂ ∗g h = ∂ ∗g h = 0 yield

⎛

⎜
⎜
⎝

√−1u2 −us2 −√−1r2s2 −us2

−us2 −√−1s4 us2 −√−1s4

−√−1r2s2 us2
√−1u2 us2

−us2 −√−1s4 us2 −√−1s4

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

λ1
λ2
λ3
λ4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

√−1ur2

−|u|2
−√−1ur2

−|u|2

⎞

⎟
⎟
⎠ ,

where the rank of the first matrix is 3 thanks to the condition r2s2 − |u|2 > 0. By
solving the system, we get

λ1 = u

s2
,

λ2 =
√−1|u|2

s4
− λ,

λ3 = − u

s2
,
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λ4 = λ,

varying λ ∈ C. We finally get that the harmonic representative of [ϕ22̄] with respect
to g is

h = |u|2
s4

ϕ11 −
√−1u

s2
ϕ12 +

√−1u

s2
ϕ21 + ϕ22.

At the end of the day, we get that: Aeppli-hamornic forms have a structure of algebra
if and only if the metric (3.1) is diagonal, namely, u = 0.

Finally, we consider theAeppli cohomology as a Bott–Chern-cohomology-module.
By the Stokes theorem, there is no invariant exact 4-form other than the zero form;
in particular, any invariant (2, 2)-form is harmonic with respect to any Hermitian
invariant metric. This reduces to consider only the products [ϕ11̄]BC � [ϕ2]A and
[ϕ11̄]BC � [ϕ̄2]A. By the argument above, both [ϕ11̄]BC and [ϕ2]A, respectively
[ϕ̄2]A, contain only one invariant representative that is harmonic with respect to any
Hermitian metric. Therefore: for any invariant Hermitian metric on the Hopf surface,
Aeppli-harmonic forms have a structure of module over Bott–Chern-harmonic forms.

As regards the Chern-Ricci flow, we already have an expression for it computed
in (4.1). Clearly, then, on the Hopf surface with invariant Hermitian metrics, the
properties of geometric-Dolbeault formality, of geometric-Bott–Chern formality, of
the Aeppli-harmonic forms having a structure of algebra, of the Aeppli-hamornic
forms having a structure of module over Bott–Chern-harmonic forms, are all preserved
along the Chern-Ricci flow.

5.2 Inoue–Bombieri Surfaces of Type SM

The cohomologies of Inoue–Bombieri surfaces of type SM can be explicitly described
[58], see [4, Theorem 4.1]:

H•,•
∂

(X) = C〈1〉 ⊕ C〈ϕ2̄〉 ⊕ C〈ϕ121̄〉 ⊕ C〈ϕ121̄2̄〉,
H•,•

BC (X) = C〈1〉 ⊕ C〈ϕ22̄〉 ⊕ C〈ϕ121̄〉 ⊕ C〈ϕ11̄2̄〉 ⊕ C〈ϕ121̄2̄〉,
H•,•

A (X) = C〈1〉 ⊕ C〈ϕ2〉 ⊕ C〈ϕ2̄〉 ⊕ C〈ϕ11̄〉 ⊕ C〈ϕ121̄2̄〉,

wherewe have listed the harmonic representatives with respect to theHermitianmetric
with fundamental form 2ω = √−1ϕ11̄ + √−1ϕ22̄ instead of their classes.

We list the harmonic representatives with respect to the arbitrary Hermitian metric
as in (3.1):

H•,•
∂

(X) = C〈1〉 ⊕ C〈ϕ2̄〉 ⊕ C

〈

−1

2
r2ϕ11̄2̄ −

√−1

2
uϕ21̄2̄

〉

⊕ C〈ϕ121̄2̄〉,

H•,•
BC (X) = C〈1〉 ⊕ C〈ϕ22̄〉 ⊕ C

〈

−1

2
r2ϕ11̄2̄ −

√−1

2
uϕ21̄2̄

〉
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⊕ C

〈

−1

2
r2ϕ121̄ +

√−1

2
uϕ122̄

〉

⊕ C〈ϕ121̄2̄〉,

H•,•
A (X) = C〈1〉 ⊕ C〈ϕ2〉 ⊕ C〈ϕ2̄〉

⊕ C

〈

ϕ11̄ −
√−1 u

r2
ϕ12̄ +

√−1 u

r2
ϕ21̄ + |u|2

r4
ϕ22̄

〉

⊕ C〈ϕ121̄2̄〉, (5.1)

We conclude that: any invariant Hermitian metric on an Inoue surface of type SM is
geometrically-Dolbeault formal, is geometrically-Bott–Chern formal, and the Aeppli-
harmonic forms have a structure of module over Bott–Chern-harmonic forms. On the
other hand, Aeppli-harmonic forms have a structure of algebra if and only if the metric
is diagonal.

The Chern-Ricci flow has expression as in (4.3). Clearly, we can state that on an
Inoue surface of type SM with invariantHermitianmetrics, the properties of Dolbeault-
geometric formality, of Bott–Chern-geometric formality, of the Aeppli-harmonic forms
having a structure of algebra, of the Aeppli-hamornic forms having a structure of
module over Bott–Chern-harmonic forms, are all preserved along the Chern-Ricci
flow.

5.3 Inoue Surfaces of Type S±

The cohomologies of Inoue surfaces of type S± can be explicitly described [58], see
[4, Theorem 4.1]:

H•,•
∂

(X) = C〈1〉 ⊕ C〈ϕ2̄〉 ⊕ C〈ϕ121̄〉 ⊕ C〈ϕ121̄2̄〉,
H•,•

BC (X) = C〈1〉 ⊕ C〈ϕ22̄〉 ⊕ C〈ϕ121̄〉 ⊕ C〈ϕ11̄2̄〉 ⊕ C〈ϕ121̄2̄〉,
H•,•

A (X) = C〈1〉 ⊕ C〈ϕ2〉 ⊕ C〈ϕ2̄〉 ⊕ C〈ϕ11̄〉 ⊕ C〈ϕ121̄2̄〉,

wherewe have listed the harmonic representatives with respect to theHermitianmetric
with fundamental form ω = √−1ϕ11̄ + √−1ϕ22̄ instead of their classes.

As for the harmonic representatives of Dolbeault, Bott–Chern and Aeppli coho-
mologies, the situation is exactly as (5.1).

We conclude that: any invariant Hermitian metric on an Inoue surface of type S± is
geometrically-Dolbeault formal, is geometrically-Bott–Chern formal, and the Aeppli-
harmonic forms have a structure of module over Bott–Chern-harmonic forms. On the
other hand, Aeppli-harmonic forms have a structure of algebra if and only if the metric
is diagonal.

The Chern-Ricci flow has expression as in (4.4). Hence, we have that on an Inoue
surface of type S± with invariant Hermitian metrics, the properties of geometric-
Dolbeault formality, of geometric-Bott–Chern formality, of the Aeppli-harmonic forms
having a structure of algebra, of the Aeppli-hamornic forms having a structure of
module over Bott–Chern-harmonic forms, are all preserved along the Chern-Ricci
flow.
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5.4 Primary Kodaira Surfaces

The cohomologies of primary Kodaira surfaces can be explicitly described [58], see
[4, Theorem 4.1]:

H•,•
∂

(X) = C〈1〉 ⊕ C〈ϕ1〉 ⊕ C〈ϕ1̄, ϕ2̄〉 ⊕ C〈ϕ12〉 ⊕ C〈ϕ12̄, ϕ21̄〉 ⊕ C〈ϕ1̄2̄〉
⊕C〈ϕ121̄, ϕ122̄〉 ⊕ C〈ϕ21̄2̄〉 ⊕ C〈ϕ121̄2̄〉,

H•,•
BC (X) = C〈1〉 ⊕ C〈ϕ1〉 ⊕ C〈ϕ1̄〉 ⊕ C〈ϕ12〉 ⊕ C〈ϕ11̄, ϕ12̄, ϕ21̄〉 ⊕ C〈ϕ1̄2̄〉

⊕C〈ϕ121̄, ϕ122̄〉 ⊕ C〈ϕ11̄2̄, ϕ21̄2̄〉 ⊕ C〈ϕ121̄2̄〉,
H•,•

A (X) = C〈1〉 ⊕ C〈ϕ1, ϕ2〉 ⊕ C〈ϕ1̄, ϕ2̄〉 ⊕ C〈ϕ12〉 ⊕ C〈ϕ12̄, ϕ21̄, ϕ22̄〉 ⊕ C〈ϕ1̄2̄〉
⊕C〈ϕ122̄〉 ⊕ C〈ϕ21̄2̄〉 ⊕ C〈ϕ121̄2̄〉,

wherewe have listed the harmonic representatives with respect to theHermitianmetric
with fundamental form ω = √−1ϕ11̄ + √−1ϕ22̄ instead of their classes.

We list the harmonic representatives with respect to the arbitrary Hermitian metric
as in (3.1):

H•,•
∂

(X) = C〈1〉 ⊕ C〈ϕ1〉 ⊕ C〈ϕ1̄, ϕ2̄〉 ⊕ C〈ϕ12〉
⊕C〈ϕ12̄ − √−1 sϕ11̄, ϕ21̄ + √−1 sϕ11̄〉 ⊕ C〈ϕ1̄2̄〉

⊕C

〈

−1

2
r2ϕ121̄ +

√−1

2
uϕ122̄,

1

2
s2ϕ122̄ +

√−1

2
uϕ121̄

〉

⊕C

〈
1

2
s2ϕ21̄2̄ −

√−1

2
uϕ11̄2̄

〉

⊕ C〈ϕ121̄2̄〉,

H•,•
BC (X) = C〈1〉 ⊕ C〈ϕ1〉 ⊕ C〈ϕ1̄〉 ⊕ C〈ϕ12〉 ⊕ C〈ϕ11̄, ϕ12̄, ϕ21̄〉 ⊕ C〈ϕ1̄2̄〉

⊕C

〈

−1

2
r2ϕ121̄ +

√−1

2
uϕ122̄,

√−1

2
uϕ121̄ + 1

2
s2ϕ122̄

〉

⊕C

〈
1

2
s2ϕ21̄2̄ −

√−1

2
uϕ11̄2̄, −1

2
r2ϕ11̄2̄ −

√−1

2
uϕ21̄2̄

〉

⊕ C〈ϕ121̄2̄〉,

H•,•
A (X) = C〈1〉 ⊕ C〈ϕ1, ϕ2〉 ⊕ C〈ϕ1̄, ϕ2̄〉 ⊕ C〈ϕ12〉 ⊕ C〈ϕ1̄2̄〉

⊕C 〈s2ϕ12̄ + √−1 u ϕ11̄, s2ϕ21̄ − √−1 u ϕ11̄, s4ϕ22̄ − |u|2ϕ11̄〉

⊕C

〈
1

2
s2ϕ122̄ +

√−1

2
uϕ121̄

〉

⊕ C

〈
1

2
s2ϕ21̄2̄ −

√−1

2
uϕ11̄2̄

〉

⊕ C〈ϕ121̄2̄〉,

We notice that for primary Kodaira surfaces an invariant Hermitian metric is never
geometrically-Dolbeault formal, e.g. ϕ1 ∧ ϕ̄1 is never Dolbeault-harmonic. In fact,
Cattaneo and Tomassini noticed in [17, Example 4.3] that primary Kodaira surfaces
have a non-vanishing Dolbeault-Massey triple product, whence they are not Dolbeault
formal in the sense of [42]. Also, it is never geometrically-Bott–Chern formal, e.g.
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ϕ1 ∧ϕ1̄2̄ is never Bott–Chern-harmonic. The space of Aeppli-harmonic forms is never
an algebra, e.g. ϕ1 ∧ ϕ̄1 is never Aeppli-harmonic, neither a module over the space
of Bott–Chern harmonic forms, e.g. ϕ1 ∧ ϕ̄1 is never Aeppli-harmonic.

The primary Kodaira surface has trivial canonical bundle, therefore RicCh(ω) = 0.
Then the Chern-Ricci flow does not evolve invariant Hermitian metrics.

Then clearly on a primary Kodaira surface with invariant Hermitian metrics, the
properties of geometric-Dolbeault formality, of geometric-Bott–Chern formality, of the
Aeppli-harmonic forms having a structure of algebra, of the Aeppli-hamornic forms
having a structure of module over Bott–Chern-harmonic forms, are all preserved along
the Chern-Ricci flow.

5.5 Secondary Kodaira Surfaces

The cohomologies of secondary Kodaira surfaces can be explicitly described [58], see
[4, Theorem 4.1]:

H•,•
∂

(X) = C〈1〉 ⊕ C〈ϕ2̄〉 ⊕ C〈ϕ121̄〉 ⊕ C〈ϕ121̄2̄〉,
H•,•

BC (X) = C〈1〉 ⊕ C〈ϕ11̄〉 ⊕ C〈ϕ121̄〉 ⊕ C〈ϕ11̄2̄〉 ⊕ C〈ϕ121̄2̄〉,
H•,•

A (X) = C〈1〉 ⊕ C〈ϕ2〉 ⊕ C〈ϕ2̄〉 ⊕ C〈ϕ22̄〉 ⊕ C〈ϕ121̄2̄〉,

wherewe have listed the harmonic representatives with respect to theHermitianmetric
with fundamental form ω = √−1ϕ11̄ + √−1ϕ22̄ instead of their classes.

As for the harmonic representatives for Dolbeault, Bott–Chern and Aeppli coho-
mologies, the situation is very similar to the Inoue case, only the computations for the
class [ϕ22̄] ∈ H1,1

A (X) being slightly different.
We list the harmonic representatives with respect to the arbitrary Hermitian metric

as in (3.1):

H•,•
∂

(X) = C〈1〉 ⊕ C〈ϕ2̄〉 ⊕ C

〈

−1

2
r2ϕ11̄2̄ −

√−1

2
uϕ21̄2̄

〉

⊕ C〈ϕ121̄2̄〉

H•,•
BC (X) = C〈1〉 ⊕ C〈ϕ11̄〉 ⊕ C

〈

−1

2
r2ϕ11̄2̄ −

√−1

2
uϕ21̄2̄

〉

⊕C

〈

−1

2
r2ϕ121̄ +

√−1

2
uϕ122̄

〉

⊕ C〈ϕ121̄2̄〉,

H•,•
A (X) = C〈1〉 ⊕ C〈ϕ2〉 ⊕ C〈ϕ2̄〉

⊕C

〈
|u|2ϕ11̄ − √−1 s2uϕ12̄ + √−1 s2uϕ21̄ + s4ϕ22̄

〉
⊕ C〈ϕ121̄2̄〉.

Weconclude that: any invariant Hermitian metric on a secondary Kodaira surface is
geometrically-Dolbeault formal, is geometrically-Bott–Chern formal, and the Aeppli-
harmonic forms have a structure of module over Bott–Chern-harmonic forms. On the
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other hand, Aeppli-harmonic forms have a structure of algebra if and only if the metric
is diagonal.

The secondary Kodaira surface has torsion canonical bundle, therefore RicCh(ω) =
0. Then the Chern-Ricci flow does not evolve invariant Hermitian metrics.

Then clearly on a secondary Kodaira surface with invariant Hermitian metrics,
the properties of geometric-Dolbeault formality, of geometric-Bott–Chern formality,
of the Aeppli-harmonic forms having a structure of algebra, of the Aeppli-hamornic
forms having a structure of module over Bott–Chern-harmonic forms, are all preserved
along the Chern-Ricci flow. ��

We summarize the results in the last two sections in Table 1.
In view of further study, we notice that:

• in any mentioned cases, the Chern-Ricci flow starting at an invariant metric clearly
preserves each one of the above properties, since it preserves diagonal metrics.
(Compare also [32, Proposition 3], showing that, for certain G-homogeneous
spaces, every G-invariant metrics is geometrically formal.) We ask whether this
behaviour is more general, or whether there exists a counterexample for which
the Chern-Ricci flow does not preserve the geometric formality in the sense of
Kotschick, or any other of the geometric Hermitian formalities discussed above.
We notice that the above invariant metrics are Gauduchon, that is pluriclosed
(also known as SKT) being defined on four-dimensional manifolds. Therefore,
as the Referee kindly suggested to us, it may be interesting to further investigate
the 6-dimensional nilmanifolds admitting invariant SKT metrics as classified in
[21].

• Clearly, holomorphically-parallelizable manifolds do not provide such counterex-
amples when restricting to invariant metrics, since they have holomorphically-
trivial canonical bundle, whence invariant Hermitian metrics are Chern-Ricci-
flat. Our attempts on four-dimensional Lie groups (possibly not admitting
compact quotients), as in [46] and references therein, or small deforma-
tions of the Iwasawa manifold [2,41] still have not provided further exam-
ples.

• The same question may be addressed for other geometric flows other than the
Chern-Ricci flow, for example the Hermitian curvature flows in [54] or in partic-
ular the one studied in [61].

• It could be interesting to further investigate Massey triple products and Dol-
beault Massey products, see [17,59], or other Massey products, in partic-
ular on class VII surfaces with b2 > 0 and on primary Kodaira sur-
faces.
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