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Abstract
Let ν be a rotation invariant Borel probability measure on the complex plane having
moments of all orders. Given a positive integer q, it is proved that the space of ν-
square integrable q-analytic functions is the closure of q-analytic polynomials, and in
particular it is a Hilbert space. We establish a general formula for the corresponding
polyanalytic reproducing kernel. New examples are given and all known examples,
including those of the analytic case are covered. In particular, weighted Bergman and
Fock type spaces of polyanalytic functions are introduced. Our results have a higher
dimensional generalization for measure on C

p which are in rotation invariant with
respect to each coordinate.

Keywords Reproducing kernel · Polyanalytic function · Bergman space · Fock space

Mathematics Subject Classification Primary 32A23 · 32A36 · 30A94

1 Introduction

In their recent work Haimi and Hedenmalm [16,17], established asymptotics for the
Bergman–Fock type space of polyanalytic functions with respect to a given weight
and mentioned that in general finding explicit formula for these kernels is difficult
([17], p. 4668). This problem was also addressed by Alpay ([3], p. 479). The main
goal of this paper is to answer this question in the general context of rotation invariant
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Borel probability measure on the complex plane having moments of all orders. More
precisely, given a positive integer q, we shall establish the formula for the reproducing
kernel for Hilbert spaces of square q-analytic functions with respect to a rotation
invariant Borel probability measure. The reduction of our formula to the unit disc D
gives an explicit formula for the weighted Bergman spaces of polyanalytic functions
on D, which in turn, reduces to the result of Koshelev [20] when the weight is trivial.
We point out that the result of Koshelev is proved by a very specific method based on
integration by parts which does not work for the weighted case. Other applications
are given to provide new results on other Bargmann–Fock type spaces of polyanalytic
functions on C and related projections.

We recall that a function f (z) is called a polyanalytic function of order q (or just
q-analytic) in the domain� ⊆ C if in this domain it satisfies the generalized Cauchy–
Riemann equation

∂q f

∂ z̄q
= 0. (1.1)

Polyanalytic functions inherit some of the properties of analytic functions and the
simplest case is the so-called bianalytic functions. However, as in the theory of several
complex variables, many of the properties break down once we leave the analytic
setting. They are naturally related to polyharmonic functions see [7,18] and [25] for
further results.

The properties of these functions have been studied by several authors see Balk and
Zuev [9], Balk [8] and Dzhuraev [14] and the references therein. It is well known that
any q-analytic function in the domain � can be uniquely expressed as

f (z) =
q−1∑

j=0

z jφ j (z) . (1.2)

where φ j (z) are holomorphic in �. This representation was used to study the bound-
ary behavior and integral representation of polyanalytic functions. Hilbert spaces of
polyanalytic functions and related projections were considered for the case of the unit
disc by Koshelev [20] and later by Vasin [33] and Ramazanov [23] and [24]. In the
latter reference a representation of the space of polyanalytic functions as direct sum of
orthogonal subspaces is given and applied to rational approximation. The case of the
Bargmann–Fock and Bergman spaces of polyanalytic functions was studied by N. L.
Vasilevski [29–31], Sánchez-Nungaray and Vasilevski [32], and later by Abreu [1,2]
in connection with Gabor and time-frequency analysis. A deep study of the general
case of weighted Bargmann–Fock space of polyanalytic functions was considered by
A. Haimi and H. Hedenmalm [16,17], where they obtain the asymptotic expansion of
the polyanalytic Bergman kernel as well as the asymptotic behavior of the generating
kernel and the asymptotic in the bulk for the q-analytic Bergman spaces in the setting
of the weights e−2mQ (see [17]). Their approach relies on the study of polyanalytic
Ginibre ensembles and appeals to the connection with random normal matrix theory
and Landau levels.

Polyanalytic functions of several variables were considered by Avanissian and
Traoré [4] and [5]. They are defined in an analogous way. Namely, a function f (z)



The Polyanalytic Reproducing Kernels 3459

is called a polyanalytic function of order q = (q1, . . . , qp) ∈ N
p
0 (or just q-analytic)

in the domain � ⊂ C
p if in this domain it satisfies the generalized Cauchy–Riemann

equation
∂q1+...qp f

∂ z̄q11 . . . ∂ z̄
qp
p

= 0. (1.3)

These functions can be uniquely expressed as

f (z) =
(q1−1,...,qp−1)∑

j=(0,...,0)

z jφ j (z) (1.4)

where φ j (z) are holomorphic in � where for j = ( j1, . . . , jp), k = (k1, . . . , kp) ∈
N

p
0 and z = (z1, . . . z p) ∈ C

p, the inequality j ≤ k means that jl ≤ kl for all

l = 1, . . . , p and z j := z j11 . . . z
jp
p .

However, few results are available in this case.

2 Statements of theMain Results

In this section we will state the main results in the one dimensional case. The higher
dimensional analogs will be stated at the end of the paper.

The setting is the following. We recall that a sequence s = (sd), d ∈ N0, is said to
be a Stieltjes moment sequence if it has the form

sd =
∫ +∞

0
tddμ(t),

where μ is a non-negative measure on [0,+∞[, called a representing measure for s.
These sequences have been characterized by Stieltjes [27,28] in terms of some positive
definiteness conditions. We denote by S the set of such sequences and if s ∈ S we let
M(s) the convex cone of the representing measures of s. It follows from the above
integral representation that each s ∈ S is either non-vanishing; that is, sd > 0 for all
d, or else sd = δ0 for all d. We denote by S∗

q the set of all non-vanishing elements of
S having a representing measure μ with support containing at least q strictly positive
elements. Fix an element s = (sd) ∈ S∗

q and let μ ∈ M(s). It is known [12] that the

sequence (sd
1
2d ) converges to limit Rs ∈]0,+∞], where Rs is the supremum over all

t > 0 such that t is in the support of μ. We denote by Ds the disc in C centered at the
origin with radius Rs and Ds = C when Rs = +∞.

For each pair of non-negative integers (d, n) such that n ≤ q − 1, let Pn(μ) be
the subspace of the Hilbert L2(xddμ(x)) consisting of all polynomials with degree at
most n furnished with the real inner product

〈 f , g〉 :=
∫ +∞

0
f (x)g(x)xddμ(x), f , g ∈ Pn(μ)
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and denote by Qd,n : (0,+∞) × (0,+∞) → C the corresponding reproducing
kernel.

Consider the following function

Fq,s(λ, x, y) :=
+∞∑

d=0

λd Qd,q−1(x, y) +
q−1∑

d=1

λ̄d Qd,q−1−d(x, y). (2.1)

where λ is a complex number and (x, y) ∈ [0,+∞[×[0,+∞[. Our first result is the
following:

Theorem A For all fixed non-negative real numbers x and y, the series λ �→
Fq,s(λ, x, y) converges uniformly on compact subsets of the disc centered at 0 with
radius R2

s .

Next, let μ ∈ M(s) and ν denote the image measure on C of μ ⊗ σ under the map
(t, ξ) �→ √

tξ from [0,+∞[×T onto C, where σ is the rotation invariant probability
measure on the unit circle T inC. Then ν is rotation invariant. Conversely, it is known
[10] that any rotation invariant Borel probability ν on C is of this form. Since μ is
supported in the interval [0,+Rs], it follows that the support of ν is contained in
closure Ds of the open disc Ds .

We consider the Hilbert space L2(ν) of square integrable complex-valued functions
in Ds with respect to the measure ν. We denote by A2

ν,q the space of those q-analytic
functions onDs which are square integrablewith respect to ν.The natural inner product
inherited from that of L2(ν) turnsA2

ν,q into a pre-Hilbert space. We are now prepared
to state our second main result.

Theorem B The space A2
ν,q is a Hilbert space which coincides with the closure of the

q-analytic polynomials in L2(ν). Moreover, for each compact set K ⊂ Ds we have
that

supz∈K | f (z)| ≤ C ‖ f ‖L2(ν)

for all q-analytic polynomials f ∈ L2(ν), where

C = C(K ) := supz∈K
√
Fq,s(|z|2, |z|2, |z|2).

Furthermore, the reproducing kernel of A2
ν,q is given by

Kν,q(z, w) = Fq,s(zw̄, |z|2, |w|2), z, w ∈ Ds .

Remark C When the measure μ has a finite support and the number of points on
the support of μ is q, then Theorem B gives a Cauchy type formula for polyanalytic
functions. Such an example can be obtained using the Kroutchoukmeasure and related
orthogonal polynomials.
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Afirst application of our results provides theweighted polyanalytic Bergman kernel
of the unit disc {z ∈ C : |z| < 1}. More precisely, for α > −1, we consider the
spaceA2

α,q of all square integrable of q-analytic functions with respect to the measure

dνα(z) := (1 − |z|2)α d A(z)
π

, where d A(z) is the Lebesgue measure on D. We will
prove the following

Theorem D The spaceA2
α,q is a Hilbert space which coincides with the closure of the

q-analytic polynomials in L2(να) and its reproducing kernel is given by

Kα,q(z, w) = q (1−z̄w)q−1

(1−zw̄)α+q+1

∑q−1
j=0(−1) j

(q−1
j

)(
α+q+ j
α+q−1

) |z−w|2 j
|1−zw̄|2 j .

for all z, w ∈ D.

We point out that when α = 0, this result was established by Koshelev [20] by a
different method limited to the case α = 0, but does not work for α �= 0.

A second application of our results provides the weighted polyanalytic Bergman
kernel for the weighted Fock space. Namely, let α > 0, and denote by Fα,q(C) the
space of all square integrable of q-analytic functions with respect to the measure
dνα(z) := |z|2αe−|z|2 d A(z)

π
, where d A(z) is the Lebesgue measure on C. We will

establish the following

Theorem E The space Fα,q(C) is a Hilbert space which coincides with the closure of
the q-analytic polynomials in L2(να) and its reproducing kernel is given by

Kα,q (z, w) =
q−1∑

k=0

Eα,k(zw̄)Lα
q−1−k

(|z − w|2)

+
q−1∑

r=1

r−1∑

d=0

(
1

d!� (r + α + 1)
− 1

r !� (d + α + 1)

)
(z̄w)r (zw̄)d Ld+α+r+1

q−1−r

(|z|2 + |w|2)

for all z, w ∈ C, where Lα
q−1 is the classical weighted Laguerre polynomial of degree

q − 1 and weight α and Eα,k is the generalized Mittag-Leffler’s function defined by

Eα,k(z) := ez

k!
dk

dzk

(
zke−z Eα(z)

)
(2.2)

where Eα is the Mittag-Leffler’s function defined by

Eα(z) =
+∞∑

d=0

zd

� (d + α + 1)
. (2.3)

We point out that when α = 0, then Eα,k(z) = ez and hence

K0,q(z, w) = ezw̄L1
q−1

(
|z − w|2

)
.
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This result was established by Haimi and Hedenmalm [16] using different methods
which do not go through for α �= 0. This particular case was also treated in a very
recently work by Maximenko and Tellería-Romero [22].

3 Preliminary Results

We collect a few preliminary results from [13] or [19]. Let s = (sn) be a Stieltjes
moment sequence and μ ∈ S be a representing measure of s. We assume in this
section that the support of μ has N (μ) ≥ q elements. For each non-negative integers
n ≤ N (μ) − 1 set

Dμ,n :=

∣∣∣∣∣∣∣∣∣

s0 s1 ... sn
s1 s2 ... sn+1
...

... · · · ...

sn sn+1 · · · s2n

∣∣∣∣∣∣∣∣∣

and for x ∈ C, let

Dμ,n(x) :=

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 ... sn
s1 s2 ... sn+1
...

... · · · ...

sn−1 sn · · · s2n−1
1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣

It is well-known that the sequence (Pμ,n)
N (μ)−1
n=0 of orthogonal polynomials with

respect to the measure dμ(x) is given by

Pμ,n(x) = Dμ,n(x)√
Dμ,n−1Dμ,n

. (3.1)

so that the reproducing kernel Qμ,n is given by

Qμ,n(x, y) =
n∑

j=0

Dμ, j (x)Dμ, j (y)

Dμ, j−1Dμ, j
. (3.2)

We recall the following classical theorem of Heine a proof of which can be found
in [13]

Lemma 3.1 The determinants Dμ,n and Dμ,n(x) have the integral representations

Dμ,n = 1

(n + 1)!
∫

[0,+∞[n+1

∏

1≤ j<k≤n+1

(x j − xk)
2dμ(x1) . . . dμ(xn+1)

(3.3)
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Dμ,n(x) = 1

n!
∫

[0,+∞[n

n∏

i=1

(x − xi )
∏

1≤ j<k≤n

(x j − xk)
2dμ(x1) . . . dμ(xn).

(3.4)

In what follows we shall fix the measure μ, and for each d ∈ N0, we consider
determinants and orthogonal polynomials with respect to the measure xddμ(x). Then
we simply set

Dxdμ(x),n := Dd,n and Dxdμ(x),n(x) := Dd,n(x). (3.5)

The sequence of orthogonal polynomials with respect to the measure xddμ(x) will
be then denoted by (Pd,m)

N (μ)−1
m=0 and it is given by

Pd,n(x) = Dd,n(x)√
Dd,n−1Dd,n

, (3.6)

so that the corresponding reproducing kernel Qd,n is given by

Qd,n(x, y) =
n∑

j=0

Dd, j (x)Dd, j (y)

Dd, j−1Dd, j
. (3.7)

Lemma 3.2 Suppose that the support ofμ is unbounded. Then for any positive integer
n and x ∈ [0,+∞[, there exist tx > 0 and a constant Cx > 0 such that

|Pd,n(x)|μ ([tx ,+∞[) ≤ Cx
td/2 (3.8)

for all t ≥ tx .

Proof In view of Lemma 3.1 by Cauchy–Schwarz inequality we see that

∣∣Dd,n(x)
∣∣2 ≤ Dd,n−1

∫

[0,+∞[n

n∏

i=1

(x − xi )
2

∏

1≤ j<k≤n

(x j − xk)
2(x1 . . . xn)

ddμ(x1) . . . dμ(xn).

Since the degree n of the polynomial Dd,n(x) is positive, there is tx > 0 such that

|Dd,n(x)| ≤ |Dd,n(t)|, for all t ≥ tx

and thus by Lemma 3.1 we get

∣∣Dd,n(x)
∣∣2

Dd,n−1

∫ +∞

tx
xdn+1dμ(xn+1) ≤

∫ +∞

tx

∣∣Dd,n(xn+1)
∣∣2 xdn+1dμ(xn+1)

≤ (n + 1)!Dd,n

Taking C = √
(n + 1)! and using (3.6) completes the proof. ��
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4 Orthogonal Polynomials with Respect to Rotation Invariant
Measures

Throughout this section, fix an element s = (sd) ∈ S∗
q and let μ ∈ M(s). For

each pair of non-negative integers (d, n), with d arbitrary and n ≤ q − 1, let
(Pd,k), k ∈ {0, . . . , n} be a sequence of orthonormal polynomials of Hilbert space
Pn(xdμ) equipped with the L2(xddμ(x)) inner product. For all integers m, n ∈ N0,
set

m ∧ n := min(m, n). (4.1)

and for all z = rξ ∈ C, r ≥ 0, |ξ | = 1,

Hm,n(z) := r |m−n|ξm ξ̄n P|m−n|,m∧n(r2). (4.2)

Lemma 4.1 The family (Hm,n) forms an orthogonal system in L2(ν).

Proof Let (m, n), (m′, n′) ∈ N
2
0. We first observe that for m + n′ = m′ + n, we have

∫ +∞

0
Hm,n(r

1/2)Hm′,n′ (r1/2)dμ(r) =
∫ +∞

0
r |m−n|P|m−n|,m∧n(r)P|m−n|,m′∧n′ (r)dμ(r)

= δm∧n,m′∧n′ .

By the change of variables formula, we see that

∫

Ds

Hm,n(z)Hm′,n′(z)dν(z) =
∫ +∞

0

∫

T

Hm,n(r
1/2ξ)Hm′,n′(r1/2ξ)dσ(ξ)dμ(r)

=
∫ +∞

0
Hm,n(r

1/2)Hm′,n′(r1/2)dμ(r)
∫

T

ξm+n′
ξm

′+ndσ(ξ)

= δm+n′,m′+nδm∧n,m′∧n′

= δ(m,n),(m′,n′).

This completes the proof. ��
Lemma 4.2 Let n and d be positive integers such that n ≤ q − 1. Consider a polyno-
mial f in n-variables such that f (x1, . . . , xn) > 0 for all pairwise distinct elements
x1, . . . , xn of [0,+∞[, and set

γd,n( f ) :=
∫ +∞

0
. . .

∫ +∞

0
f (x1, . . . , xn)(x1 . . . xn)

ddμ(x1) . . . dμ(xn). (4.3)

Then

lim
d→+∞

γd+1,n( f )

γd,n( f )
=

(
lim

d→+∞
sd+1

sd

)n

(4.4)
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Proof Letη be the imageof themeasure on [0,+∞[of f (x1, . . . , xn)dμ(x1) . . . dμ(xn)
under the map (x1, . . . , xn) �→ x1 . . . xn . Then

γd,n( f ) :=
∫ +∞

0
xddη(x) (4.5)

so that by [12] we see that

lim
d→+∞

γd+1,n( f )

γd,n( f )
= R, (4.6)

where R is the supremum over all t > 0 such that t is in the support of η. Moreover,

it can be easily checked that if t > 0, then t is in the support of η if and only if t
1
n is

in the support of μ. This completes the proof. ��
Now we can prove Theorem A.

Proof of TheoremA We only need to prove that for all non-negative real numbers x
and y, the series

Ss,q(λ) =
q−1∑

n=1

+∞∑

m=0

λm Pm,n(x)Pm,n(y), (4.7)

converges uniformly on compact sets of Ds . We shall distinguish two cases. First,
assume that the support of μ is bounded; that is Rs is finite. In view (3.6), the latter
series can be written in the form

Ss,q(λ) :=
q−1∑

n=1

+∞∑

m=0

λm
Dm,n(x)Dm,n(y)

Dm,n−1Dm,n
.

Using the integral expressions (3.3) and (3.4) with respect to the measure rmdμ(r)
instead of dμ(r), we see that Dm,n(x) is a finite sum of terms of the form x jγm,n( f )
where j ∈ N0 and f is a function of the form

f (x) = xk11 · · · xknn
∏

1≤ j<k≤n

(x j − xk)
2. (4.8)

The same holds for Dm,n(y) with y instead of x . Finally, we observe that

Dm,n = γm,n(g), and Dm,n−1 = γm,n−1(g)

where

g(x) :=
∏

1≤ j<k≤n

(x j − xk)
2. (4.9)
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Therefore the series Ss,q is a linear combination of series of the form

Ss,q, j,l(λ) :=
q−1∑

n=1

+∞∑

m=0

λmx j yl
γm,n( f )γm,n(h)

γm,n(g)γm,n−1(g)

where f and h are of the form (4.8) and g is given by (4.9). Appealing to Lemma
4.2 and using D’Alembert’s rule yields that the series Ss,q, j,l(λ) converges as long as
|λ| < R2

s . From this it is also clear that the series converges uniformly on compact
sets of Ds .

Next, suppose that Rs = +∞. Let x, y be arbitrary non-negative real numbers.
Then by Lemma 3.2, there is tx,y such that

∣∣Pm,n(x)Pm,n(y)
∣∣ ≤ (n + 1)!

tm
,

for all t ≥ tx,y . This proves that the series (4.7) convergence absolutely. This completes
the proof. ��

Next, we denote by A2(s) the subspace of L2(ν) consisting of all functions of the
form

f (z) =
q−1∑

n=0

+∞∑

m=0

am,nHm,n(z)

on Ds that satisfy

q−1∑

n=1

+∞∑

m=0

∣∣am,n
∣∣2 < +∞.

We equip the space A2(s) with the natural inner product

〈 f , g〉s :=
q−1∑

n=0

+∞∑

m=0

am,nbm,n, (4.10)

for all members f (z) = ∑q−1
n=0

∑+∞
m=0 am,nHm,n(z) and g(z) = ∑q−1

n=0

∑+∞
m=0 bm,n

Hm,n(z) of A2(s). It is standard that this is a Hilbert space which contains all q-
analytic polynomials, which is contained in L2(ν) and its inner product coincides
with the scalar product inherited from the scalar product of L2(ν). Indeed, we have

Theorem 4.3 The space A2(s) consists of q-analytic functions and its reproducing
kernel Ks,q is given by

Ks,q(z, w) = Fs,q(zw̄, |z|2, |w|2), z, w ∈ Ds,

where Fs,q is the function defined by (2.1).
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Proof By virtue of Theorem A, the series

Ks,q(z, w) =
q−1∑

n=0

+∞∑

m=0

Hm,n(z)Hm,n(w). (4.11)

converges uniformly for zw̄ lying in a compact subset of Ds . Since the system
(Hm,n),m, n ∈ N0, n ≤ q − 1 forms an orthonormal basis of A2(s), a little com-
puting shows that

Ks,q(z, w) =
q−1∑

n=0

+∞∑

m=0

Hm,n(z)Hm,n(w)

=
q−1∑

n=0

+∞∑

m=0

(zw̄)m Pm,n(|z|2)Pm,n(|w|2)

+
q−1∑

n=1

n−1∑

m=0

(z̄w)m Pn−m,m(|z|2)Pn−m,m(|w|2).

When q = 1, we are in the analytic case. Since Pm,0 is constant, the latter sum gives

Ks,1(z, w) =
+∞∑

m=0

(zw̄)m Pm,0Pm,0.

However, , when q ≥ 2, we have

Ks,q(z, w) =
+∞∑

m=0

(zw̄)m
q−1∑

n=0

Pm,n(|z|2)Pm,n(|w|2)

+
q−1∑

n=1

n−1∑

m=0

(z̄w)n−m Pn−m,m(|z|2)Pn−m,m(|w|2)

= Fs,q(zw̄, |z|2, |w|2).

Now each element f of A2(s) admits a unique representation

f (z) =
q−1∑

n=0

+∞∑

m=0

am,nHm,n(w).

By Cauchy–Schwarz inequality, it follows that this series converges uniformly on
compact sets of Ds and hence it defines a q-analytic function. Moreover, it can be
easily checked that

f (z) = 〈 f , Ks,q(·, z)〉.
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for all z ∈ Ds . This completes the proof. ��
Now we are ready to prove Theorem B.

Proof of Theorem B It suffices to show that each q-analytic function which belongs to
L2(ν) is an element of the space A2(s). Now let f be a q-analytic function which
belongs to L2(ν). By (1.4) we know that f has a unique representation of the form

f (z) =
q−1∑

n=0

zn fn(z), z ∈ Ds,

where the functions fn are analytic on Ds . Therefore, f can be written in the form

f (z) =
q−1∑

n=0

+∞∑

m=0

zn fm(z), z ∈ Ds,

where fm are analytic polynomials and the series converges uniformly on compact
sets of Ds . In view of Theorem 4.3, we see that f admits a unique representation of
the form

f (z) =
q−1∑

n=0

+∞∑

m=0

cm,nHm,n, z ∈ Ds,

where cm,n are complex coefficients and the series converges uniformly on compact
sets of Ds . Since f is in L2(ν) it follows that

q−1∑

n=0

+∞∑

m=0

|cm,n|2 < +∞,

showing that f ∈ A2(s).
Finally, the inequality in Theorem B follows by Cauchy–Schwarz inequality. The

remaining equality in the theorem is straightforward. The proof is now complete. ��

5 The Polyanalytic Bergman Space on the Unit Disc

In this section we apply our approach to different classes of orthogonal polynomials
to give natural examples of Hilbert spaces of polyanalytic functions.

We startwith theweighted polyanalyticBergman space onD. Consider theweighted
Lebesgue measure on D given by

d Aα(z) :=
(
1 − |z|2

)α d A(z)

π
, α > −1,



The Polyanalytic Reproducing Kernels 3469

where d A(z) is the Lebesgue measure on D. We denote by Aα
q (D), the weighted q-

polyanalytic Bergman space on D where q ∈ N0 and α > −1. This is the space of all
q-polyanalytic functions f on D which are square integrable with respect to d Aα(z).

It can be easily checked that the measure ν is the image measure in D of μ ⊗ σ

under the map (t, ξ) �→ √
tξ from [0, 1[×T onto D where μ is the measure [0, 1[

given by

dμ(t) := (1 − t)α dt .

The corresponding moment sequence is

sd =
∫ 1

0
td (1 − t)α dt = � (d + 1) � (α + 1)

� (d + α + 2)
. (5.1)

Lemma 5.1 Suppose that ϕ is an automorphism of the unit disc. The Bergman kernel
Kq,α of Aα

q (D) follows the transformation rule

Kq,α(z, ξ) =
(
ϕ′(z)ϕ′(ξ)

)(α+q+1)/2

(
ϕ′(z)ϕ′(ξ)

)(q−1)/2
Kq,α(ϕ(z), ϕ(ξ)) (5.2)

for all z, ξ ∈ D.

Proof It is sufficient to assume that ϕ ◦ ϕ(z) = z, for all z ∈ D. We recall
that the measure d A(z)

(1−|z|2)2 is invariant under the action of the automorphism group
of the unit disc. We also observe that for any fixed ξ ∈ D, the function z �→
(ϕ′)(z))(α+q+1)/2

(ϕ′(z))(q−1)/2 Kq,α(ϕ(z), ξ) is an element of Aα
q (D). By the reproducing property

and change of variables formula we see that

(
ϕ′(z)

)(α+q+1)/2

(
ϕ′(z)

)(q−1)/2
Kq,α(ϕ(z), ξ) =

∫

D

(
ϕ′(w)

)(α+q+1)/2

(
ϕ′(w)

)(q−1)/2
Kq,α(ϕ(w), ξ)Kq,α(z, w)d Aα(w)

=
∫

D

(
ϕ′(w)

)(α+q+1)/2

(ϕ′(w))(q−1)/2
Kq,α(w, ξ)Kq,α(z, ϕ(w))d Aα(w)

=
∫

D

(ϕ′(w))(α+q+1)/2

(
ϕ′(w)

)(q−1)/2
Kq,α(ξ, w)Kq,α(ϕ(w), z)d Aα(w)

=
(
ϕ′(ξ)

)(α+q+1)/2

(ϕ′(ξ))(q−1)/2
Kq,α(z, ϕ(ξ)).
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Replacing ξ by ϕ(ξ) the latter equalities yield

(
ϕ′(z)ϕ′(ξ)

)(α+q+1)/2

(
ϕ′(z)ϕ′(ξ)

)(q−1)/2
Kq,α(ϕ(z), ϕ(ξ)) = Kq,α(z, ξ).

This completes the proof. ��
We shall make use of the classical Jacobi polynomials P(α,d)

n with parameters (α, d)

and degree n. An explicit formula for these polynomials is given by

P(α,d)
n (x) = 1

2n

n∑

k=0

(
α + n

k

)(
d + n

n − k

)
(x − 1)n−k(x + 1)k . (5.3)

It is well-known by formula (3.96) in ([26], p. 71) that these polynomials verify the
equality

P(α,d)
n (1 − 2x) = �(n + α + 1)

n!�(n + α + d + 1)

n∑

j=0

(−1) j
(
n

j

)
�(n + j + α + d + 1)

�( j + α + 1)
x j .

(5.4)

The Jacobi polynomials satisfy the orthogonality condition

∫ 1

0
P(α,d)
n (2x − 1)P(α,d)

n′ (2x − 1)xd(1 − x)αdx = δn,n′hα,d
n (5.5)

where

hα,d
n := � (α + n + 1)) � (d + n + 1)

n!� (α + d + n + 1) (α + d + 2n + 1)
. (5.6)

and hence for each non-negative integer d, the reproducing kernel of the space of
polynomials of degree at most q − 1 with respect to the L2-inner product associated
to the measure tddμ(t) is then

Qd,q−1 (x, y) =
q−1∑

n=0

Pα,d
n (2x − 1)Pα,d

n (2y − 1)

hα,d
n

=
q−1∑

n=0

Pd,α
n (1 − 2x)Pd,α

n (1 − 2y)

hα,d
n

.

By the identity (3.114) in ([26], p. 75) we see that

Q0,q−1 (x, 0) = (q + α)P1,α
q−1(1 − 2x) (5.7)
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so that by (5.4) we obtain

Fq,s(0, x, 0) = Q0,q−1 (x, 0)

= q
q−1∑

j=0

(−1) j
(
q − 1

j

)(
α + q + j

α + q − 1

)
x j

We observe that if z ∈ D, then Kq,α(z, 0) = Fq,s(0, |z|2, 0). For z, w ∈ D let

ϕw(z) := z − w

1 − zw̄
.

By Lemma 5.1, we have

Kq,α(z, w) =
(
ϕ′

w(z)ϕ′
w(w)

)(α+q+1)/2

(
ϕ′

w(z)ϕ′
w(w)

)(q−1)/2
Kq,α(ϕw(z), 0).

Since

(
ϕ′

w(z)ϕ′
w(w)

)(α+q+1)/2

(
ϕ′

w(z)ϕ′
w(w)

)(q−1)/2
= (1 − z̄w)q−1

(1 − zw̄)α+q+1

and

|ϕw(z)|2 j = [z − w|2 j
|1 − zw̄|2 j

it follows that

Kq,α(z, w) = q
(1 − z̄w)q−1

(1 − zw̄)α+q+1

q−1∑

j=0

(−1) j
(
q − 1

j

)(
α + q + j

α + q − 1

) |z − w|2 j
|1 − zw̄|2 j .

6 Weighted Polyanalytic Fock Spaces

The second example is the weighted measure defined on C by

dν (z) := |z|2αe−|z|2d A (z) , α > −1,

where d A (z) is the normalized Lebesgue measure on C. We denote by Aα
q (C) the

weighted q-polyanalytic Fock space on C where q is a positive integer. This is the
space of all q-analytic functions f on C which are square integrable with respect to
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dν(z).Themeasure ν is the imagemeasure inC ofμ⊗σ under themap (t, ξ) �→ t1/2ξ
from [0,+∞[×T onto C where μ is the measure on [0,+∞[ given by

dμ(t) := 1

�(α + 1)
tαe−t dt .

The corresponding moment sequence is

sd =
∫ +∞

0
tddμ(t) = � (α + d + 1)

�(α + 1)
. (6.1)

We will use the classical weighted Laguerre polynomials Lα
n of degree n and weight

α. These polynomials satisfy,

∫ +∞

0
Ld+α
n (x) Ld+α

n′ (x) xd+αe−xdx = � (d + α + n + 1)

n! δn,n′ . (6.2)

They have the following explicit representation

Ld+α
n (x) =

n∑

l=0

(n + d + α)!
r !� (n + d + α + 1 − r)

(−x)n−r

(n − r)! . (6.3)

Laguerre polynomials enjoy the following product formula due to Bailey [6]

Ld+α
n (x) Ld+α

n (y) = � (d + α + n + 1)

n!
n∑

l=0

(xy)n−l Ld+α+2n−2l
l (x + y)

(n − l)!� (d + α + n + 1 − l)
.

(6.4)
and the following transfer equalities due to [15]

Lβ
n (x − y) =

n∑

r=0

yr

r ! L
β+r
n−r (x) = e−y

+∞∑

r=0

yr

r ! L
β+r
n (x) . (6.5)

We recall some other useful formulas

Lα+β+1
n (x + y) =

n∑

k=0

Lα
n−k(x)L

β
k (y). (6.6)

In particular, if y = β = 0, then

Lα+1
n =

n∑

j=0

Lα
j . (6.7)

which can be found in ([19], p. 104).
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Finally, a little computing shows that the generalized -Mittag-Leffler’s function
Eα,k defined by (2.2) has the explicit form

Eα,k(z) =
+∞∑

d=0

zd Ld
k (z)

� (d + α + 1)
(6.8)

for all z ∈ C.

Next, we prove Theorem E. For z, w ∈ C, we shall set λ := zw̄, x =: |z|2 and
y := |w|2 so that

xy

λ
:= λ̄ and

xy

λ̄
= λ. (6.9)

To compute the series Fq,s (λ, x, y) in this case, it is sufficient to calculate the following
expressions

Sα,q(λ) =
q−1∑

n=0

+∞∑

d=0

n!λd
� (n + d + α + 1)

Ld+α
n (x) Ld+α

n (y) .

S′
α,q(λ) =

q−1∑

d=1

q−1−d∑

n=0

n!λd
� (n + d + α + 1)

Ld+α
n (x) Ld+α

n (y) , when q ≥ 2.

Using first (6.4) and then (6.5) and (6.6) we have

Sα,q(λ) =
q−1∑

n=0

n!
+∞∑

d=0

λd Ld+α
n (x) Ld+α

n (y)

� (d + α + n + 1)

=
q−1∑

n=0

+∞∑

d=0

n∑

r=0

λd(xy)r

r !� (d + α + r + 1)
Ld+α+2r
n−r (x + y)

=
q−1∑

r=0

+∞∑

d=0

λd(xy)r

r !� (d + α + r + 1)

q−1∑

n=r

Ld+α+2r
n−r (x + y)

=
q−1∑

r=0

+∞∑

d=0

λd(xy)r

r !� (d + α + r + 1)

dr

dxr

⎛

⎝
q−1∑

n=0

Ld+α+r
n (x + y)

⎞

⎠

=
q−1∑

r=0

+∞∑

d=0

λd(xy)r

r !� (d + α + r + 1)
Ld+α+1+2r
q−1−r (x + y)

=
q−1∑

r=0

+∞∑

d=r

λd λ̄r

r !� (d + α + 1)
Ld+α+1+r
q−1−r (x + y)
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=
q−1∑

r=0

+∞∑

d=0

λd λ̄r

r !� (d + α + 1)
Ld+α+1+r
q−1−r (x + y)

−
q−1∑

r=1

r−1∑

d=0

λd λ̄r

r !� (d + α + 1)
Ld+α+1+r
q−1−r (x + y) .

Applying (6.5), (6.6) and (6.8) yields

q−1∑

r=0

+∞∑

d=0

λd λ̄r

r !� (d + α + 1)
Ld+α+1+r
q−1−r (x + y) =

+∞∑

d=0

λd

� (d + α + 1)
Ld+α+1
q−1

(
x + y − λ̄

)

=
q−1∑

k=0

+∞∑

d=0

λd Ld
k (λ)

� (d + α + 1)
Lα
q−1−k

(
x + y − λ̄ − λ

)

=
q−1∑

k=0

Eα,k(λ)Lα
q−1−k

(
x + y − λ̄ − λ

)
.

On the other hand, when q ≥ 2, then using (6.4), (6.5), (6.6) and (6.9), we see that

S′
α,q(λ) =

q−1∑

d=1

q−1−d∑

n=0

n!λ̄d
� (n + d + α + 1)

Ld+α
n (x) Ld+α

n (y)

=
q−1∑

d=1

q−1−d∑

n=0

n∑

r=0

λ̄d+rλr

r !� (d + α + r + 1)
Ld+α+2r
n−r (x + y)

=
q−2∑

r=0

q−1∑

n=r

q−1−n∑

d=1

λ̄d+rλr

r !� (d + α + r + 1)
Ld+α+2r
n−r (x + y)

=
q−2∑

r=0

q−1∑

d=r+1

q−1+r−d∑

n=r

λ̄dλr

r !� (d + α + 1)
Ld+α+r
n−r (x + y)

=
q−2∑

r=0

q−1∑

d=r+1

q−1−d∑

n=0

λ̄dλr

r !� (d + α + 1)
Ld+α+r
n (x + y)

=
q−2∑

r=0

q−1∑

d=r+1

λ̄dλr

r !� (d + α + 1)
Ld+α+r+1
q−1−d (x + y)

=
q−1∑

d=1

d−1∑

r=0

λ̄dλr

r !� (d + α + 1)
Ld+α+r+1
q−1−d (x + y)

=
q−1∑

r=1

r−1∑

d=0

λ̄rλd

d!� (r + α + 1)
Ld+α+r+1
q−1−r (x + y) .
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Hence

Fq,s (λ, x, y) = Sα,q(λ) + S′
α,q(λ)

=
q−1∑

k=0

E (k)
α (λ)Lα

q−1−k

(
x + y − λ̄ − λ

)

+
q−1∑

r=1

r−1∑

d=0

(
λ̄rλd

d!� (r + α + 1)
− λ̄rλd

r !� (d + α + 1)

)
Ld+α+r+1
q−1−r (x + y) .

In particular, when α = 0, we have

Fq,s (λ, x, y) = eλL1
q−1

(
x + y − λ − xy

λ

)
. (6.10)

7 The Higher Dimensional Case

Consider n Stieltjes moment sequences s(1) ∈ S∗
q1 , . . . , s(n) ∈ S∗

qn , where q1, . . . , qn
are positive integers and for each j let μ j ∈ M(s( j)) and denote by ν j denote the
image measure on C of μ j ⊗ σ under the map (t, ξ) �→ √

tξ from [0,+∞[×T onto
C, where σ is the rotation invariant probability measure on the unit circleT inC. Then
the support of each ν j is contained in the closure of the disc D j centered at 0 with
radius Rs( j). Then we set ν := ν1 ⊗ · · · ⊗ νn and consider the Hilbert space L2(ν)

of square integrable complex-valued functions in D1 × · · · × Dn with respect to the
measure ν. Let q = (q1, . . . , qn) and denote by A2

ν,q the space of those q-analytic
functions on D1 × · · ·×Dn which are square integrable with respect to ν. The natural
inner product inherited from that of L2(ν) turnsA2

ν,q into a pre-Hilbert space. We are
now prepared to state the higher dimensional analog of Theorem B.

Theorem B′ The spaceA2
ν,q is a Hilbert space which coincides with the closure of the

q-analytic polynomials in L2(ν). Moreover, for each set compact K ⊂ Ds we have
that

supz∈K | f (z)| ≤ C ‖ f ‖L2(ν)

for all q-analytic polynomials f ∈ L2(ν), where

C = C(K ) := supz∈K
n∏

j=1

√
Fq j ,s( j)(|z j |2, |z j |2, |z j |2).

Furthermore, the reproducing kernel of A2
ν is given by

Kν,q(z, w) =
n∏

j=1

Fq j ,s( j)(z j w̄ j , |z j |2, |w j |2), z, w ∈ D1 × · · · × Dn .
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Remark C′ As in Remark C, when each of the measures μ j has a finite support with
exacly q j elements, Theorem B’ provides the polyanalytic Cauchy type kernel of the
unit polydisc

D
n := {z = (z1, . . . , zn) ∈ C : max

j=1,...,p
|z j | < 1}.

In a similarmanner, fromTheoremB’weobtain theweighted polyanalyticBergman
kernel of the unit polydisc D

n . More precisely, for α > −1, we consider the space
A2

α,n,q of all square integrable q-analytic functions with respect to the measure

dνα,n(z) := 1
πn

∏n
j=1(1−|z j |2)αdV (z) onDn , where dV (z) is the Lebesguemeasure

on Cn . We obtain the following

Theorem D′ The space A2
α,n,q is a Hilbert space which coincides with the closure of

the q-analytic polynomials in L2(να) and its reproducing kernel is given by

Kα,n,q(z, w) = ∏n
j=1 Kα,q j (z j , w j )

for all z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ D
n, where Kα,q j is the weighted

polyanalytic Bergman kernel of the unit disc.

We also obtain by similar arguments the weighted polyanalytic Bergman kernel for
the weighted Fock space in Cn . Namely, let α > 0, and denote by Fα,q(C

n) the space
of all square integrable q-analytic functions with respect to the measure

dνα(z) := |z|2αe−|z|2 dV (z)

πn
, α > −1

where dV (z) is the Lebesgue measure on Cn . We will establish the following

Theorem E′ The space Fα,q(C
n) is a Hilbert space which coincides with the closure

of the q-analytic polynomials in L2(να) and its reproducing kernel is given by

Kα,n,q(z, w) = ∏n
j=1 Kα,q j (z j , w j )

for all z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ C
n, where Kα,q j (z j , w j ) is the one

reproducing kernel of the one dimensional space Fα,q j (C). In particular, when α = 0,
the expression of reproducing kernel K0,n,q(z, w) reduces to

K0,n,q(z, w) = e〈z,w〉 ∏n
j=1 L

1
q j−1(|z j − w j |2),

where 〈z, w〉 := ∑n
j=1 z j w̄ j .
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