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Abstract

In this paper we study operators originated from semi-B-Fredholm theory and as a
consequence we get some results regarding boundaries and connected hulls of the cor-
responding spectra. In particular, we prove that a bounded linear operator 7" acting on
a Banach space, having topological uniform descent, is a BR operator if and only if O is
not an accumulation point of the associated spectrum or(T) = {A € C: T —AI ¢ R},
where R denote any of the following classes: upper semi-Weyl operators, Weyl
operators, upper semi-Fredholm operators, Fredholm operators, operators with finite
(essential) descent and BR the B-regularity associated to R as in Berkani (Studia Math-
ematica 140(2):163-174,2000). Under the stronger hypothesis of quasi-Fredholmness
of T, we obtain a similar characterisation for 7 being a BR operator for much larger
families of sets R.
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1 Introduction

Let N (Np) denote the set of all positive (non-negative) integers, and let C denote the set
of all complex numbers. We use L (X) to denote the Banach algebra of bounded linear
operators acting on an infinite dimensional complex Banach space X. The group of
all invertible operators is denoted by L (X )~ Let Z(X) denote the set of all bounded
below operators and let S(X) denote the set of all surjective operators. For T € L(X),
denote by o (T'), 0,(T), 04, (T) and oy, (T) its spectrum, point spectrum, approximate
point spectrum and surjective spectrum, respectively. Also, write N (7T') for its null-
space, R(T') for its range, o (T') for its nullity and B(T') for its defect. The compression
spectrumof T € L(X), denoted by o.,(T), is the set of all complex A such that T —A[
does not have dense range.

An operator T € L(X) is upper semi-Fredholm if a(T) < oo and R(T) is closed,
while T is lower semi-Fredholmif B(T) < oo.Inthe sequel @ (X) (resp. D_ (X)) will
denote the set of upper (resp. lower) semi-Fredholm operators. If T is upper or lower
semi-Fredholm, then T is called semi-Fredholm. The set of semi-Fredholm operators
is denoted by @ (X). For semi-Fredholm operators the index is defined by ind(7) =
«(T) — B(T). The set of Fredholm operators is defined as ®(X) = & (X) NP _(X).
The sets of upper semi-Weyl, lower semi-Weyl and Weyl operators are defined as
Wi(X) ={T € ®4(X) : ind(T) <0}, W_(X) ={T € ®_(X) :ind(T) > 0} and
W(X) ={T € ®(X) : ind(T) = 0}, respectively.

For T € L(X), the upper semi-Fredholm spectrum, the lower semi-Fredholm
spectrum, the semi-Fredholm spectrum, the Fredholm spectrum, the upper semi-Weyl
spectrum, the lower semi-Weyl spectrum and the Weyl spectrum are defined, respec-
tively, by:

00, (T)={heC:T — Al ¢ DL (X)),
0o (T)={neC:T—il ¢ d_(X)},
0o, (T) ={h e C: T — 1l ¢ (X)),
0o(T) ={AeC:T — Al ¢ d(X)},
ow, (T) = (A € C: T — Al ¢ Wi (X)),
ow (T) ={heC:T —Arl ¢ Wi (X))},
ow(T) = {h e C: T — Al ¢ W(X)).

For n € Ny we set ¢,(T) = dimR(T")/R(T"*!) and ¢/, (T) = dimN(T"+!)/
N(T™). From [21, Lemmas 3.1 and 3.2] it follows that ¢, (T) = codim (R(T) +
N(T™)) and ¢},(T) = dim(N(T) N R(T™)). Obviously, the sequences (¢, (T)), and
(¢, (T)), are decreasing. For each n € Ny, T induced a linear transformation from the
vector space R(T")/R(T"*) to the space R(T"+")/R(T"+?) and let k,(T) denote
the dimension of the null space of the induced map. From [14, Lemma 2.3] it follows
that

kn(T) = dim(R(T™) N N(T))/(R(T" 1) N N(T))
= dim(R(T) + N(T"))/(R(T) + N(T™)).
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From this it is easily seen that k,(T) = ¢, (T) — ¢, (T) if ¢, ,(T) < oo and
kn(T) = cn(T) — cu41(T) if cp1(T) < 00.

The descent §(T) and the ascent a(T) of T are defined by 6(7T) = inf{n € Ny :
cn(T) =0} = inf{n € No : R(T") = R(T"T")} and a(T) = inf{n € Ny : c/,(T) =
0} =inf{n € Ny : N(T") = N(T"+1)}. We set formally inf § = oo.

The essential descent 5.(T) and the essential ascent a,(T) of T are defined by
8¢(T) = inf{n € Ny : ¢,(T) < oo} and a.(T) = inf{n € Ny : ¢, (T) < 00}.

The sets of upper semi-Browder, lower semi-Browder and Browder operators are
defined as B4 (X) = {T € &4 (X) : a(T) <00}, B_(X) ={T € ®_(X) : §(T) <
oo} and B(X) = B4 (X) N B_(X), respectively. For T € L(X), the upper semi-
Browder spectrum, the lower semi-Browder spectrum and the Browder spectrum are
defined, respectively, by:

o5, (T) = (h € C: T — Al ¢ B (X)),
o (T)={LeC:T -l ¢ B_(X))},
og(T) = {, € C: T — Al ¢ B(X)).

Sets of left and right Drazin invertible operators, respectively, are defined as
LD(X) = {T € L(X) : a(T) < ooand R(T*M+1) isclosed} and RD(X) =
(T € L(X) : 8(T) < oo and R(T*T)) is closed}. If a(T) < oo and 8(T) < oo, then
T is called Drazin invertible [3,4]. By D(X) we denote the set of Drazin invertible
operators.

Anoperator T € L(X) is aleft essentially Drazin invertible operator if a,(T) < oo
and R(T% D+ is closed. If §,(T) < oo and R(T% D)) is closed, then T is called
right essentially Drazin invertible. In the sequel L D¢ (X) (resp. RD¢(X)) will denote
the set of left (resp. right) essentially Drazin invertible operators.

For T € L(X), the left Drazin spectrum, the right Drazin spectrum, the Drazin
spectrum, the left essentially Drazin spectrum, the right essentially Drazin spectrum,
the descent spectrum and the essential descent spectrum are defined, respectively, by:

orp(T) ={reC:T -1l ¢ LD(X)},
orp(T) = {L e C: T — il ¢ RD(X)},
op(T) ={»eC:T — il ¢ D(X)},
ofp(T) ={r e C:T — Al ¢ LD*(X)},
o4p(T) =L eC:T — 1Al ¢ RD*(X)},
04sc(T) =L e C:8(T —AI) = 00},
05(T) = {r € C: 8,(T — L) = o0}

An operator T € L(X) is said to be quasi-Fredholm if there is d € Np such that
ko(T) = 0forall n > d and R(T?*") is closed. The set of quasi-Fredholm operators
includes many sets of operators such as left (right) Drazin invertible operators, left
(right) essentially Drazin invertible operators, upper (lower) semi-B-Weyl operators
(see [7)).
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For T € L(X) we say thatitis Kato if R(T) isclosed and N(T) C R(T") for every
n € N. An operator T € L(X) is nilpotent when T" = (O for some n € N. An operator
T € L(X) is said to be of Kato type if there exist closed subspaces X1, X» such
that X = X| @ X, T(X;) C X;,i = 1,2, T|x, is nilpotent and T}y, is Kato. Every
operator of Kato type is a quasi-Fredholm operator. In the case of Hilbert spaces, the
set of quasi-Fredholm operators coincides with the set of Kato type operators.

For T € L(X) and every d € Ny, the operator range topology on R(T¢) is defined
by the norm || - ||4 such that for every y € R(T9),

Iylla = inf{||lx]| : x € X, y = T9x}.

Operators which have eventual topological uniform descent were introduced by
Grabiner in [14]:

Definition 1.1 LetT € L(X).Ifthereisd € Ngforwhichk,(T) = Oforn > d,then T
is said to have uniform descent for n > d. If in addition, R(7T") is closed in the operator
range topology of R(T%) for n > d, then we say that T has eventual topological
uniform descent and, more precisely, that T has topological uniform descent for (TUD
for brevity) n > d.

It is easily seen that if 7" has finite nullity, defect, ascent or essential ascent, then it has
uniform descent. If T has finite descent or essential descent, then 7 has TUD. Also,
the set of operators which have TUD contains the set of quasi-Fredholm operators [7].

For T € L(X), the Kato type spectrum, the quasi-Fredholm spectrum and the
topological uniform descent spectrum are defined, respectively, by:

ok:(T) ={x € C: T — A isnot of Kato type},
040(T) ={A € C: T — X is not quasi-Fredholm},
oryp(T) = {» € C: T — 1 does not have TUD}.

We use the following notation [7,23]:

R;=S(X) R;=B_(X) Rz=RDX)
Ry = ®_(X) Rs= RD(X)
Re=7(X) R;=B.(X) Rg=LDX)
Ry = ®.(X) Rip=LD(X)

and

R} ={T € L(X) : 8(T) < o0},
R2 = (T € L(X) : 8°(T) < o0}.

For a bounded linear operator 7 and n € Ny define 7, to be the restriction of
T to R(T™") viewed as a map from R(T") into R(T") (in particular, Ty = T). If
T € L(X) and if there exist an integer n for which the range space R(T") is closed
and 7, belongs to the class R, we will say that T belongs to the class BR, where



Topological Uniform Descent, Quasi-Fredholmness and... 3599

Re{R;:i=1,..., 100 U{R], R§}U{D(X), B(X), Wi (X), W_(X), W(X)}. For
T eL(X)letor(T)={L€C:T—AlI ¢ R}andopr(T) ={» € C: T—AI ¢ BR}.
More details, if for an integer n the range space R(T") is closed and T}, is Fredholm
(resp. upper semi-Fredholm, lower semi-Fredholm, Browder, upper semi-Browder,
lower semi-Browder), then 7 is called a B-Fredholm (resp. upper semi-B-Fredholm,
lower semi-B-Fredholm, B-Browder, upper semi-B-Browder, lower semi-B-Browder)
operator. If T € L(X) is upper or lower semi-B-Fredholm, then T is called semi-
B-Fredholm. The index ind(7T") of a semi-B-Fredholm operator 7 is defined as the
index of the semi-Fredholm operator 7,,. By [6, Proposition 2.1] the definition of the
index is independent of the integer n. An operator 7 € L(X) is B-Weyl (resp. upper
semi-B-Weyl, lower semi-B-Weyl) if T is B-Fredholm and ind(T) = 0 (resp. T is upper
semi-B-Fredholm and ind(7) < 0, T is lower semi-B-Fredholm and ind(7") > 0).
For T € L(X), the upper semi-B-Fredholm spectrum, the lower semi-B-Fredholm
spectrum, the B-Fredholm spectrum, the upper semi-B-Weyl spectrum, the lower semi-
B-Weyl spectrum, the B-Weyl spectrum, the upper semi-B-Browder spectrum, the lower
semi-B-Browder spectrum and the B-Browder spectrum are defined, respectively, by:

oBo, (T) ={x € C: T — Al isnot upper semi-B-Fredholm},
opo_(T) ={x € C: T — Al is not lower semi-B-Fredholm},
opp(T) = {1 € C: T — Al isnot B-Fredholm},

opw, (T) ={» € C: T — Al is not upper semi-B-Weyl},

opw_(T) ={, € C: T — Al isnot lower semi-B-Weyl},
opw(T) ={A € C: T — Al isnot B-Weyl},

0B, (T) = {A € C: T — Al is not upper semi-B-Browder},
opp_(T) ={L € C: T — Al isnotlower semi-B-Browder},
opp(T) ={A € C: T — Al isnot B-Browder}.

We recall that the set of Drazin invertible operators (resp, L D(X), RD(X)) coin-
cides with the set of B-Browder (resp. upper semi-B-Browder, lower semi-B-Browder)
operators, while the set of left (right) essentially Drazin invertible operator coincides
with the set of upper (lower) semi-B-Fredholm operators [7, Theorem 3.6], [3,4].
Therefore, for any T € L(X) it holds:

op(T) = opp(T), oLp(T) =0pp, (T), orp(T) =ops_(T),

and
o/ p(T) =0po, (T), oxp(T) =o0pae_(T).

An operator T € L(X) is said to have the single-valued extension property at
Ao € C (SVEP at A for breviety) if for every open disc D;,, centerd at Ao the only
analitic function f : D,, — X satisfying (T — A) f(A) = O for all A € D, is the
function f = 0.
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If K C C, then 9K is the boundary of K, acc K is the set of accumulation points
of K, int K is the set of interior points of K and iso K is the set of isolated points of
K. For a compact set K C C, nK denotes its connected hull.

The aim of this paper is to give characterization of the BR classes through prop-
erties such as topological uniform descent or quasi-Fredholmness, and properties of
the appropriate spectra oR, as well as to get some results regarding boundaries and
connected hulls of BR-spectra.

Jiang et al. in [19, Theorem 3.2] characterize the set of left Drazin invertible oper-
ators proving that if 7 — A7 has TUD, then T — A[ is left Drazin invertible if and
only if 04, (T) does not cluster at A, and also, if and only if A is not an interior point
of 04,(T). M. Berkani, N. Castro and S.V. Djordjevi¢ proved in [11, Theorem 2.5]
that, under the same condition that T — Al has TUD, o, (T) does not cluster at A if
and only if a(T — AI) < oo. Further Jiang et al. in [19, Theorem 3.4] proved that if
T — Al has TUD, then §(T — AI) < oo if and only if oy, (T) does not cluster at A,
and also, if and only if X is not an interior point of oy, (T).

In this paper we characterize the sets of upper and lower semi-B-Weyl operators,
as well as the sets of left and right essentially Drazin invertible operators. We also
give further characterisations of left and right Drazin invertible operators. By using
Grabiner’s punctured neighborhood theorem [14, Theorem 4.7], [7, Thorem 4.5] we
prove that

T € BR < T is quasi-Fredholm and 0 ¢ accor(T)
<= T is quasi-Fredholm and O ¢ intor(7), (1.1)

for R € {R3, R3, R4, R5, W_(X)}. By an example we show that the condition that T’
is quasi-Fredholm in the previous formulas can not be replaced by a weaker condition
that 7" has topological uniform descent.

Further we prove that

T € BR <= T has TUD and O ¢ accor(T)
<= T has TUD and O ¢ intor(T), (1.2)

for R € {R7, Rs, Ry, Ry, R}, RE, W, (X), W(X), ®(X), B(X)}.

The condition that 7 has TUD in the previous equivalences (1.2) cannot be omitted
and it is demonstrated by an example. Also, the condition that T is quasi-Fredholm in
the equivalences (1.1) cannot be omitted which is also demonstrated by an example.

As a consequence of these characterizations, for R € {Ry, Rz, R4, Rg, R7, Ro} U
Wi (X), W_(X), W(X), ®(X)} weobtainthatint or (T") = int ogr(T"),d oBr(T) C
d or(T) and the set or (T')\oBRr (T') consists of at most countably many isolated points.
Also we obtain that the boundary of ogr(7'), for R € {R¢, R7, Rs, Rg, Ryg, R}, RE,
Wi (X), W(X), ®(X), B(X)} is contained in o7yp(T), while the boundary of
oBr(T), where R € {Ry, Rz, R3, R4, Rs, W_(X)}, is contained in 044 ('), and by
an example it is shown that it is not contained in the TUD spectrum.

Boundaries of spectra originated from Fredholm theory were investigated by Milici¢
and Veseli¢ in [25, Theorem 7]. They proved the following inclusions:
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300, (T)
c C

9o5(T) C dow(T) C doe(T) 900, (T).
c

804;_ (T)

V. Rakocevic¢ proved (see [27, Theorem 1]) that doy (T) C oy, (T) and hence
there is the inclusion doWw (T) C doyy, (T). In [28, Corollary 2.5] it is proved that
dop(T) C dop, (T) C dow, (T), as well as that nog(T) = nog, (T) = now, (T).
The following inclusions are known:

do, (T) C doy, (T) C oo, (T)

c c c -

303(T) C dow(T) C doo(T) C d0¢, (T).
C

C C C
dop_(T) C doyw_ (T) C doe_(T)

We generalize these results to the case of spectra originated from semi-B-Fredholm
theory and prove the following inclusions:

dopp, (T) C dopw, (T) C dope, (T)
C C C

C
0opp(T) C dopw(T) C dope(T) C 9040 (T),
C C c
dopp_(T) C dopw_(T) C dope_(T)

dopp, (T) C  dopw, (T)
C @

-
dopp(T) C dopw(T) C dope(T) C dope, (T) C doryp(T),
C C c
90dsc(T) C 305, (T)

as well as that the connected hulls of all spectra mentioned in the previous inclusions
are mutually equal and also coincide with the connected hull of Kato type spectrum.

As an application we get that a bounded linear operator 7 is meromorphic, that is
its non-zero spectral points are poles of its resolvent, if and only if ope (7)) C {0} and
this is exactly when o7y p(T) C {0}. This result was obtained earlier (see [10] and
[20]). Jiang et al. in [20, Corollary 3.3] proved it by using the local constancy of the
mappings A — KA —T)+ Hy(A —T)and A — K(AI —T) N Hy(Al — T) [20,
Theorem 2.6] and results about SVEP established in [19], but our method of proof is
rather different and more direct. Jiang et al. also obtained that if p7y p (T') has only one
component, then op(T) = oryp(T) [20, Theorem 3.1] and hence, if o (T') is count-
able or contained in a line segment, then op(T) = oryp(T) [20, p. 1156]. We give
here an alternative proof of these results and get more than this: if o (T") is contained
in a line, then op(T) = oryp(T), and moreover, if or(T') is contained in a line for
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R € {R¢, R7, Rg, Rg, Ry, Ri, Rg, Wi (X), W(X), ®(X), B(X)}, then ogr(T) =
oryp(T). On the other side if R € {Ry, Rz, R3, Rg, R5, W_(X)} and or(T) is con-
tained in a line, then ogr(7T) = o, r(T). We also prove that if 0, (T') is contained in
a line for o, € {oBe, oW, 0] s OBW, » OLD, 0. Odsc}, then 04 (T) = oryp(T),
while if 0, (T) is contained in a line for o, € {0}, 0 _,orp}, then 0, (T) =
04r(T). In particular, if o,(T) (ocp(T)) is countable or contained in a line, then
oLp(T) = oryp(T) (orp(T) = 04 (T) and 045 (T) = oryp(T)). Furthermore,
by using connected hulls we show that if C\o,(7T') has only one component where o
is one of 0y, 0k, OB®, OBW, OF 1, OBW, » OLD: O s OBW_» ORD, O g¢,» Odsc> then
0«(T) = op(T). Also we give an alternative proof of Theorem 2.10in [10]. As aconse-
quence we get thatif 0,(T) = 00, (T) = acc 0«(T), then 0, (T) = oryp(T) foro, €
{ow,.ow_,ow,0pW_,00,,00_,00, 0k, Oaps Osu> OB, , OB_, OB, ORp, 0}. In
particular, if 0,,(T) = 90(T) (05, (T) = 00(T)) and every A € do(T) is not
isolated in o (T), then o7y p(T) = 04p(T) (o7up(T) = 04, (T)). It improves the
corresponding results of P. Aiena and E. Rosas [2, Theorem 2.10, Corollary 2.11].
These results are then used to find the TUD spectrum of arbitrary non-invertible isom-
etry. We also use them to find the TUD spectrum and B-spectra of the forward and
backward unilateral shifts on co(N), ¢(N), £oo(N) or £,(N), p > 1, and also of Ceséro
operator.

2 Semi-B-Weyl and Semi-B-Fredholm Operators

We start with the following auxiliary assertions.

Lemma2.1 Let T € L(X) have TUD for n > d and finite essential ascent. Then
R(T") is closed in X for each integer n > d.

Proof Since T has finite essential ascent and TUD for n > d, we have that
dim(N(T) N R(T™)) < oo foralln > d.

It means that «(7;,) < oo for T, : R(T") — R(T") and hence a(Tnd) <d-a(T,) <
0. So we have that

dim(N(Td) NR(T") < oo foralln > d. 2.1

From [14, Theorem 3.2] it follows that N (T¢) + R(T") is closed in X for everyn > 0.
According to (2.1), N(T4NR(T™) is closed for every n > d and then by [26, Lemma
20.3] we obtain that R(T") is closed for every n > d. O

Lemma2.2 Let T € L(X). Then:

(1) T has TUD and a,(T) < oo <= T is left essentially Drazin invertible.
(2) T has TUD and a(T) < oo <= T is left Drazin invertible.

Proof (1) Suppose that T has TUD for n > d and that a.(T) < co. From Lemma 2.1
it follows that there exists n > a,(T') + 1 such that R(T") is closed. According to [23,
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Lemma 7] it follows that R (7% T)+1) is closed and hence 7 is left essentially Drazin
invertible.

The opposite inclusion is clear (see [7, p. 166 and 172]).

(2) can be proved similarly. O

In the following two theorems we characterize upper and lower semi-B-Weyl oper-
ators.

Theorem2.3 Let A € C, T € L(X) and let T — Al have TUD for n > d. Then the
following statements are equivalent:

(1) ow, (T) does not cluster at X;

(2) A is not an interior point of oy, (T);

(3) opw, (T) does not cluster at 1;

(4) A is not an interior point of ogwy, (T);

(5) T — Al is an upper semi-B-Weyl operator.

Proof (1)=—=(2), (3)==(4) Clear.
(1H)=(@3), (2)==4) It follows from the inclusion o, (T) C oy, (T).
(4)=—(5) Since T — AI has TUD for n > d, from [14, Theorem 4.7] it follows
that there exists an € > 0 such that for every u € C the following implication holds:

O<|u—Al<e =
cn(T — pul) = cq(T — A1) and ¢, (T — pl) = c;(T — A1) foralln > 0.
2.2)

Suppose that A is not an interior point of oy, (T). Then there exists u € C such
that 0 < |u — A| < € and T — pl is an upper semi-B-Weyl operator. Therefore,
(T — pul) = dim(N(T — pnI) N R(T — nI)")) < oo for n large enough and
according to (2.2) we obtain that c:i(T —Al) <oo,and so a.(T — A1) <d.

From Lemma 2.1 it follows that R((T — Al)d) and R((T — )J)d“) are closed. As
dim(N(T =) NR((T —rD)%)) = c;(T — M) < o0, we have that the restriction of
T — A1 to R((T — AI)“) is an upper semi-Fredholm operator. Consequently, 7 — A/
is an upper semi-B-Fredholm operator and since

ind(T — A1) = dim(N(T — AI) N R((T — AD%)
—dimR((T — AD)*)/RUT — AD)4th)
=cy(T = M) —cg(T — M) = (T — ul) — cy(T — pI)
= ind(T — pul) <0,

it follows that T — A [ is an upper semi-B-Weyl operator.

(5)==(1) Suppose that T — Al is an upper semi-B-Weyl operator. Then there
exists d € N such that 7 — A7 has TUD forn > d, and ¢/,(T — A1) = dim(N(T —
A1) N R(T — AN%) < oo and ind(T — 1) = (T =) —cq(T — A1) < 0.
For arbitrary © € C such that 0 < |u — A| < €, according to (2.2) we obtain
that a(T — pl) = c((T — pl) = (T — Al) < oo and since R(T — pl) is
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closed by [14, Theorem 4.7], we conclude that T — w1 is upper semi-Fredholm with

ind(T — ul) = c((T — ul) — co(T — pl) = c)(T — 1I) — cq(T — A1) <0, that is

T — wl is upper semi-Weyl. Therefore, A is not an accumulation point of oy, (T).
O

Theorem2.4 Let A € C, T € L(X) and let T — Al have TUD for n > d. Then the
following statements are equivalent:

(1) oyw_(T) does not cluster at 1,

(2) X is not an interior point of oyy_(T);

(3) opw_(T) does not cluster at A;

(4) X is not an interior point of ogyy_(T).
In particular, if T — Al is quasi-Fredholm, then the statements (1)—(4) are equiv-
alent to the following satement:

(5) T — Al is a lower semi-B-Weyl operator.

Proof (1)=—(2), (3)=—=(4) Clear.

(H=(3), (2)==(4) It follows from the inclusions oy, (T) C oy _(T).

(4)==(1) Suppose that A is not an interior point of o)y (T). Since T — AI has
TUDforn > d,according to [ 14, Theorem 4.7] there exists an € > (O such that for every
w € C the implication (2.2) holds. From A ¢ intogyy (T) it follows that there exists
1o € CsuchthatO < |pup—A| < €1 T — uol is alower semi-B-Weyl operator. Hence
there exists n € Ng such that ¢, (T — uol) = dimR((T — o l)")/R((T — o )" 1) <
oo and ind(T — pol) = ¢, (T — pnol) — cp(T — pol) > 0, which according to (2.2)
implies that ¢4 (T — AI) < oo and c’d(T — Al) — cq(T — A1) > 0. Using (2.2) again
we get that for every u € C such that 0 < |u — A| < € we have that (T — ul) =
co(T — ul) = cq(T — AI) < oo and hence T — ul is lower semi-Fredholm with
ind(T — ul) = co(T — ul) — co(T — ul) = (T — rl) — cq(T — AI) > 0. This
means that X is not an accumulated point of oyy_(T).

(4)=(5) Suppose that T — A[I is quasi-Fredholm. Then there exists d € Ny such
that R(T — A1) + N((T — AI)") = R(T — A1) + N((T — »D?) for all n > d and
R({(T — Al)d+l) is closed. So T' — AI has TUD for n > d. From [14, Theorem 4.7]
it follows that there exists an € > 0 such that for every u € C the implication (2.2)
holds.

Further, suppose that A ¢ intogyy (7). Then there exists © € C such that 0 <
l[w — Al < eand T — pl is a lower semi-B-Weyl operator. Therefore,

cn(T — ul) = dim(R((T — nI)™)/R((T — uI)"*') < oo for n large enough,

and according to (2.2) we obtain that ¢4 (T —Al) < co. As R((T — A4t is closed,
from [23, Lemma 12], we conclude that R((T — AI)?) is closed. Since

dim(R(T — ADY/R(T — A1) = cq(T — A1) < o0,

we have that the restriction of 7 — A to R((T — AI)%) is a lower semi-Fredholm
operator. Therefore, T — A1 is a lower semi-B-Fredholm operator and, as in the proof
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of the implication (4)==(5) in Theorem 2.3, we conclude that ind(7 — A7) = ind(T —
wl) > 0. Consequently, T — Al is a lower semi-B-Weyl operator.

(5)=(1) Suppose that T — AI is a lower semi-B-Weyl operator. Then there is
d € Ny such that T — AI has TUD for n > d and hence there exists an € > 0 such
that for every . € C the implication (2.2) holds. Also we have that

ca(T = iI) = dim(R((T — A" /R((T — 1)) < 00
and
0 <ind(T — A1) = cy(T = AI) = ca(T — AD).

For arbitrary u € C such that 0 < |u — A| < €, according to (2.2), we obtain that
B(T — ul) = co(T — pl) = ca(T —Al) < o0 and ind(T — pul) = c((T — pl) —
co(T — pl) = /(T — A1) — cq(T — A1) > 0, which implies that T — 1 is a lower
semi-Weyl operator. Consequently, A is not an accumulation point of ayy_(T). O

Theorem 2.5 Let A € C, T € L(X) and let T — Al have TUD for n > d. Then the
following statements are equivalent:

(1) ow(T) does not cluster at A;

(2) A is not an interior point of oy (T);
(3) opw(T) does not cluster at A;

(4) X is not an interior point of ogw (T);
(5) T — Al is a B-Weyl operator.

Proof (4)—>(5) Suppose that A ¢ intogyy(T) and that T — A has TUD forn > d.
According to [14, Theorem 4.7] there exists an € > 0 such that for every u € C
the implication (2.2) holds. From A ¢ int oz (T) it follows that there exists u € C
such that 0 < | — A| < € and T — pl is a B-Weyl operator. Therefore, for n large
enough we have that ¢, (T — nl) = dim(R((T — nI)*)/R(T — ;LI)”“)) < 00,
(T —pl) = dim(N(T —uNRU(T —pn)")) < coand 0 = ind(T —pul) = ¢, (T —
wl)—cy (T — pI). According to (2.2) we obtain that ¢4 (T — A1) = c:[(T —Al) < o0,
that is

dim(N(T — A1) N R((T — AD%Y) = dim(R(T — AD)?)/RU(T — A1) < 0.

It means that the restriction of 7 — A to R(T — AI)%) is a Weyl operator. Therefore,
T — Al is a B-Weyl operator.
The implication (5)==-(1) follows from Theorems 2.3 and 2.4. m]

We need the following well-known results (see [23], [9, Remark A (iii)], [6, Propo-
sition 3.1], [12, Corollary 1.3], [13, Corollary 2.5], [14, Theorem 4.7 and Corollary
4.8], [1, Corollary 1.45]).

Proposition 2.6 For T € L(X) the set 0. (T) is compact, where o € {op,oLp, ofD,
OBW, OBds OBW, » Odscs Oyger ORDs O s OBW_» OK1» Oqd, OTUD)-
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Corollary 2.7 Let T € L(X). Then

(1) opw, (T) = oryp(T) Vintow(T) = oryp(T) Uaccox(T),
Jor oy € {ow, . opw, };

(2) opw_(T) = 040(T) Uint 0u(T) = 0,9 (T) U acc oy (T);
forox € {ow_,opw_};

(3) opw(T) = orup(T) Uintow(T) = oryp(T) Uaccow(T);
for oy € {ow, opw}.

(4) intow, (T) = intopw, (T), for Wy € (W, W_, W},

(5) dopw,(T) C dow,(T), for Wy € (W4, W_, W},

(6) ow, (T)\opw, (T) = (isoow, (T)\orup(T),
ow_(T)\ogw_(T) = (isoow_(T)\ogr(T),
ow(T)\opw(T) = (isoow(T)\orup(T);

(7) ow, (T)\opw,(T), where W, € (W4, W_, W}, consists of at most countably
many isolated points.

Proof (1) Let oy € {0y, , oy, }. From Theorem 2.3 it follows that 7 — A[ is upper
semi-Weyl if and only if 7 — A7 has TUD and A is not an interior point of 0, (7), that
is there is the following equality:

opw, (T) = oryp(T) Uint o (T). (2.3)

Also from Theorem 2.3 it follows that 7 — A/ is upper semi-Weyl if and only if
T — XI has TUD and A is not an accumulation point of o, (7), which implies that
opw, (T) = orup(T) Uacc o (T).

The equalities in (2) and (3) follow from Theorems 2.4 and 2.5, respectively.

(4) For Wy, € (W4, W_, W}, from (1), (2) and (3) it follows that int oy, (T) C
opw,(T) and hence, intoy, (T) C intopgyy, (T). The converse inclusion follows
from the inclusion oy, (T) C ow, (T).

(5) Since opyy, (T) is closed (Proposition 2.6), we have that dopwy, (T) C
opw,(T). As oy, (T) C ow,(T) and oW, (T) = 9oy, (T) Uintoyy, (T) since
ow, (T) is also closed, from (4) it follows that d oy, (T) C 0 oW, (T).

(6) Let A € oy, (T)\opwy, (T). From (1) we get that A ¢ acc oy, (T) and hence,
A € isoow, (T). As A ¢ opyw, (T), it follows that A ¢ o7yp(T) and so, A €
(isoow, (T)\orup(T).

Suppose that A € (isoow, (T)\orup(T). Then A € oy (T), A ¢ accoyy, (T)
and T — AI has TUD. According to Theorem 2.3 we get that T — A/ is upper semi-
B-Weyl and thus, A € oy, (T)\opw, (T).

The rest of equalities can be proved similarly.

(7) follows from (6). O

In the following theorem we characterize left essentially Drazin invertible operators,
that is, upper semi-B-Fredholm operators.

Theorem 2.8 Let A € C, T € L(X) and let T — Al have TUD for n > d. Then the
following statements are equivalent:

(1) 09, (T) does not cluster at A;
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(2) A is not an interior point of oo, (T);

(3) o} p(T) does not cluster at A;

(4) A is not an interior point of o} ,(T);

(5) a.(T — 1) < o0,

(6) T — Al is left essentially Drazin invertible.

Proof (1)==(2), (3)==(4) Obvious.
(H=(@3), 2)==(4) It follows from the inclusions ozD(T) Cog, (T).
(4)==(5) Suppose that A is not an interior point of o7 ,(T). Since T — AI has
TUD for n > d, according to [14, Theorem 4.7] there exists an € > 0 such that if
0 < |A — u| < € we have that

c;l(T —ul) = c’d(T — Al) foralln > 0. 2.4)

Since A ¢ intoy ,(T), there is u € Csuch that O < | — Al < € and T — 1 is left
essentially Drazin invertible. Thus a, (T —ul) < oo, which implies that ¢), (T —ul) <
oo for some n € Ny. According to (2.4) we conclude that c:i (T — AI) < oo and hence
a.(T —Al) <d.

(5)==(6) It follows from Lemma 2.2 (1).

(6)==(5) It is obvious.

5)==(1) Let a.(T — AI) < oo. Since T — AI has TUD, from [14, Corolary 4.8
(f)] we get that there is an € > 0 such that for every u € C, from 0 < |A — u| < € it
follows that T — 1 is upper semi-Fredholm. This means that A is not an accumulation
points of g, (T). O

We need the following result.
Proposition 2.9 [7, Proposition 3.4] Let T € L(X). Then

(1) T is quasi-Fredholm and §(T) < 0o <= T is right Drazin invertible.
(2) T is quasi-Fredholm and §,(T) < oo <= T is right essentially Drazin invertible.

Example 2.10 Let H be a Hilbert space with an orthonormal basis {e;; };’oj:1 and let
the operator 7' defined by:

0 if j =1,
Teij =1 tei, ifj=2
ej,j—1, otherwise

It is easily seen that R(7T) = R(T?) and R(T) is not closed. Hence R(T™") is
not closed for all » > 1 and so T is neither a right Drazin invertible operator nor
a right essentially Drazin invertible operator. However, since R(T) = R(T?), then
T has uniform descent forn > 1 and N(T) + R(T) = X. Hence N(T) + R(T) is
closed and from [14, Theorem 3.2] it follows that 7" has TUD for n > 1. We remark
that finite descent or finite essential descent of a bounded operator imply that it has
TUD but does not imply closeness of ranges of its powers. So, T is an operator with
8(T) = 8§.(T) < oo which hence has TUD, but T is neither right Drazin invertible
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nor right essentially Drazin invertible and this shows that the condition that T is quasi-
Fredholm in the assertions (1) and (2) in Proposition 2.9 can neither be omitted nor
replaced by a weaker condition that 7 has TUD.

In the following theorem we give some characterizations of right essentially Drazin
invertible, that is, lower semi-B-Fredholm operators.

Theorem 2.11 Let A € C, T € L(X) and let T — Al have TUD for n > d. Then the
following statements are equivalent:

(1) oo_(T) does not cluster at A;

(2) A is not an interior point of oo_(T);

(3) o} p(T) does not cluster at X;

(4) A is not an interior point of o, (T);

(5) 0,.(T) does not cluster at \;

(6) M is not an interior point of oj (T);

(7) 8.(T — AI) < oc.
In particular, if T — M is quasi-Fredholm then the statements (1)—(7) are equiv-
alent to the following satement:

(8) T — Al is right essentially Drazin invertible.

Proof (1)=—=(2), 3)=(4), (5)==(6) Obvious.

(HD=03)==(5), 2)=@4)=(6) It follows from the inclusions o (T) C
o;p(T) Coo_(T).

(6)==(7) Suppose that A is not an interior point of o 7, .(T'). Since T — AI has TUD
for n > d, by [14, Theorem 4.7] there exists an € > 0 such that for every u € C,
from 0 < |A — u| < € it follows that ¢, (T — wl) = cq(T — A1) for all n > 0. Since
A ¢ intoj (T), thereis 4 € Csuch that 0 < |u — A| < € and 8,(T — ul) < oc.
This implies that ¢4 (T — AI) < oo and hence §,(T — Al) <d.

(7)=(1) Let §.(T — AI) < oco. Then T — Al has TUD and from [14, Corolary
4.8 (g)] it follows that there is an € > 0 such that if 0 < |A — u| < € we have that
T — wl is lower semi-Fredholm. This means that A is not an accumulation points of
Op_ (T)

Under assumption that 7 — A1 is quasi-Fredholm, the equivalence (7)<=(8) fol-
lows from Proposition 2.9 (2). O

Theorem2.12 Let A € C, T € L(X) and let T — Al have TUD for n > d. Then the
following statements are equivalent:

(1) oo (T) does not cluster at \;

(2) A is not an interior point of oo (T);
(3) opa(T) does not cluster at \;

(4) X is not an interior point of oo (T);
(5) T — Al is a B-Fredholm operator.

Proof (4)—>(5): It can be proved similarly to the proof of the implication (4)—(5)
in Theorem 2.5.
(5)=(1) It follows from Theorems 2.8 and 2.11. O
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Corollary 2.13 Let T € L(X). Then

(1) o7 p(T) = orup(T)Uintow(T) = oryp(T) U acc ox(T),
where oy € {00, , 0] p};
(2) 04, (T) =oryp(T)Uinto,(T) = oryp(T) Uacco.(T),
where o, € {0g_, al‘éD, ojsc};
(3) 0jp(T) = 040(T) Uint oy (T) = 049 (T) U acc oy (T),
where oy € {0¢_, 0Fp, ajxc};
4) opo(T) =oryp(T)Uintou(T) = oryp(T) U acc oy (T),
where o, € {0, 0Bd}s
(5) intog (T) =intoyf ,(T),
intog_(T) =intog,(T) = intoy, (T), intoe(T) = intope(T);
6) 30§ () C 00, (T),
005, (T) Cdopp(T) Cdoe_(T),
dope(T) Cdoe(T);
(7 00, (T)\of p(T) = (isooe, (T)\orup(T),
06_(T)\0, (T) = (is000_(T)\orun(T),
06 (T)\ofp(T) = (isoge_(T)\ogr(T),
oo (T)\opa(T) = (isooe(T))\orup(T);
8) 00, (T\0f (T), g0 (TG, (T, 0o_(TV\0hp(T), oo (T)\opae(T) are at
most countable.

Proof (1) follows from Theorem 2.8, (2) and (3) follow from Theorem 2.11 and (4)
follows from Theorem 2.12. (5) and (7) follow from (1), (2), (3) and (4), while (6)
follows from (5) and Proposition 2.6. (8) follows from (7). O

Further we focus to left and right Drazin invertible operators. Jiang et al. proved
thatif A € C,T € L(X)and T — Al has TUD forn > d, then the following statements
are equivalent (see [19, Theorem 3.2] and the proof of this theorem):

(1) T — Al is left Drazin invertible;
2) a(T — Al) < o0;

(3) 04p(T) does not cluster at A;

(4) A is not an interior point of o4, (T),

while M. Berkani, N. Castro and S.V. Djordjevi¢ proved in [11, Theorem 2.5] that,
under the same condition that 7 — A/ has TUD, o, (T") does not cluster at A if and
only if a(T — AI) < oo. In the following theorem we add some characterisations of
left Drazin invertible operators.

Theorem2.14 Let A € C, T € L(X) and let T — A1l have TUD for n > d. Then the
following statements are equivalent:

(1) A is not an interior point of o, (T);
(2) o, (T) does not cluster at A;

(3) A is not an interior point of o, (T);
4) opp(T) does not cluster at A;

(5) A is not an interior point of o p(T);
(6) T — Al is left Drazin invertible.
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Proof (2)=—(3), (4)=(5) It is obvious.

(2)=@), (3)==(5) It follows from the inclusion o7 p(T') C o, (T).

(1)==(6) Suppose that A is not an interior point of 0, (T’). Since T — AI has TUD,
from [14, Corolary 4.8 (d)] it follows thata = a(T —XI) < co. Now from Lemma 2.2
(2) we get that T — Al is a left Drazin invertible operator.

(5)==(6) Suppose that X is not an interior point of orp(T). As T — Al has
TUD, according to [14, Corolary 4.8, (a)] we conclude that a(T — AI) < oo and
by Lemma 2.2 (2) T — A[ is left Drazin invertible.

(6)=(2) It follows from the implication (6)==(5) in [19, Theorem 3.2].

(6)==(1) It follows from [11, Theorem 2.5]. O

Jiang et al. in [19, Theorem 3.4] proved thatif . € C, T € L(X) and T — A[ has
TUD for n > d, then the following statements are equivalent:

(1) 05, (T) does not cluster at A;
(2) X is not an interior point of oy, (T);
3) (T — 1l) < oo.

In the following theorem we add some statements equivalent to those ones in [19,
Theorem 3.4].

Theorem 2,15 Let A € C, T € L(X) and let T — Al have TUD for n > d. Then the
following statements are equivalent:

(1) o¢p(T) does not cluster at \;
(2) A is not an interior point of o¢p(T);
(3) op_(T) does not cluster at \;
(4) X is not an interior point of op_(T);
(5) orp(T) does not cluster at A;
(6) X is not an interior point of ogrp(T);
(7) 045¢(T) does not cluster at A\,
(8) A is not an interior point of 645.(T);
9) (T — AI) < o0.
In particular, if T — Al is quasi-Fredholm, then the statements (1)—(7) are equiv-
alent to the following satement:
(10) T — Ml is right Drazin invertible.

Proof (1)=—(2), 3)=(4), (5)=(6), (7)==(8) Obvious.

B)=0B)=(7), ()==(6)==(8) It follows from the inclusions o ,.(T) C
orp(T) Cop_(T).

(2)==(1), (2)==(3) Suppose that A is not an interior point of o, (T'). Since T — A1
has TUD for n > d, from [14, Theorem 4.7] we have that there is an € > 0 such that
if 0 < |A — u| < € it follows that R(T — wu[I) is closed and

en(T — 1) = cg(T — AI) for all n € Ny. 2.5)

From X ¢ int o, (T) it follows that there exists 19 € C such that 0 < [A — ol < €
and T — ol has dense range. As R(T — uol) is closed, it implies that T — o1 is onto
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and hence ¢, (T — o) = O for all n € Ny. Consequently, ¢y (T — A1) = 0 and hence
forall u € Csuchthat 0 < |A — u| < € we have that (T — ul) = co(T — ul) =0,
i.e. T — ul is surjective, which means that A ¢ acc o, (T) and A ¢ accop_(T).

(8)==(9) Suppose that A is not an interior point of o5.(T). Since T — AI has
TUD for n > d, from [14, Theorem 4.7] we have that there is an € > 0 such that if
0 < |A — u| < €, then the equalities (2.5) hold. From A ¢ into,,.(T) we have that
there exists g € C such that 0 < |A — gl < € and §(T — puol) < 00. So there
is n € Ny such that ¢, (T — uol) = 0 and hence, according to (2.5), it follows that
cg(T —Al) =0.Thus §(T — AI) < o0.

(9)==(1) It follows from [14, Corollary 4.8 (c)].

Under assumption that 7 — A/ is quasi-Fredholm, the equivalence (9)<=(10)
follows from Proposition 2.9 (1). O

Remark 2.16 Since the operator 7' in Example 2.10 has the finite descent, then accord-
ing to [14, Theorem 4.7 and Corollary 4.8] there exists an € > 0 such that for u € C
from 0 < |u| < € it follows that §(T — wl) = 0, i.e. T — wl is surjective. This
means that 0 is not an accumulation point of oy, (T"), as well as o¢_(T), oy _(T),
orp(T), opw_(T) and o, (T). As for every n € N, R(T") = R(T) is not closed,
then 7 is neither a lower semi-Fredholm nor a lower semi-B-Weyl operator, and as
we have already mentioned T is neither right Drazin invertible nor right essentially
Drazin invertible. This means that the condition that T — A is quasi-Fredholm in
Theorems 2.4, 2.8 and 2.15 can not be replaced by a weaker condition that 7" — A/
has TUD.

The next theorem follows immediately from [19, Theorems 3.2 and 3.4] and The-
orems 2.14 and 2.15.

Theorem2.17 Let . € C, T € L(X) and let T — Al have TUD for n > d. Then the
following statements are equivalent:

(1) o(T) does not cluster at \;

(2) A is not an interior point of o (T);
(3) og(T) does not cluster at A,

(4) X is not an interior point of og(T);
(5) op(T) does not cluster at A;

(6) X is not an interior point of op(T);
(7) T — Al is Drazin invertible.

Corollary 2.18 Let T € L(X). Then

(1) opp(T) =oryp(T)Vintow(T) = oryp(T) Uaccox(T),
where 0, € {0p, 0up, 0B, LD},

(2) 04sc(T) = oryp(T) U intoy(T) = o7y p(T) U accox(T),
where 0y € {05y, Ocp, OB_, ORD Odsc}s

(3) orp(T) = 040 (T) U intoy(T) = 040(T) U accox(T),
where oy € {05y, Ocp, OB_, ORD, Odsc}s

4) op(T) = oryp(T)VUintow(T) = oryp(T) Uacco.(T),
where o, € {0,0B,0p},
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(5) intog,(T) = int O‘B+(T) =intozp(T),
intos, (T) =intop_(T) = intorp(T) = intoys.(T),
into(T) =intop(T) = intop(T);
(6) doLp(T) Cdop, (T) C dogp(T),
d04sc(T) CAorp(T) Cdop_(T) C o (T),
dop(T) Cc dop(T) C do(T);
(7) ox(T)\orLp(T) = (isoo(T)\orup(T) for ox € {0ap, O’3+},
0+ (T)\04sc(T) = (isoox(T))\orup(T) for oy € {O5u, 0B_, OrRD},
0« (T)\orp(T) = (iso U*(T))\O'qF(T)fOI’ 0% € {Osu, OB_, Odsc}
0x(T)\op(T) = (1so0x(T))\orup(T) for o« € {0, 0B}.

Proof Tt follows from Theorems 2.14 and 2.15, [19, Theorem 3.2], [11, Theorem 2.5],
Theorem 2.17 and Proposition 2.6, similarly to the proof of Corollary 2.7. O

We remark that from [7, Lemma 3.1] it follows that
BR] =R}, BR; =Ri. (2.6)
Now we can formulate a general assertion:

Theorem 2.19 Let T € L(X).
(1) IfR € {Ry, Ry, R3, Ry, Rs, W_(X)}, then

T € BR <= T is quasi — Fredholm A 0 ¢ accor(T)
<= T is quasi — Fredholm A 0 ¢ intor(T).

IfR € {Rg, R7, Rg, Ro, Ryg, R3, R2, W, (X), W(X), ®(X), B(X), LX)},
then

T €e BR <= T hasTUD A 0 ¢ accor(T)
<= T hasTUD A 0 ¢ intor(T).

(2) If R € {R1, Rz, R4, R6, R7, Ro} U (W1 (X), W_(X), W(X), ®(X), B(X),
L(X)™ '}, then

intogr(T) = intogr(7T),
dor(T) C dor(T)

and or (T)\oBr(T) consists of at most countably many isolated points.

3 Boundaries and Connected Hulls of Corresponding Spectra

The connected hull of a compact subset K of the complex plane C, denoted by nK, is
the complement of the unbounded component of C\ K [16, Definition 7.10.1]. Given
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a compact subset K of the plane, a hole of K is a bounded component of C\ K, and
so a hole of K is a component of nK\ K.

We shall need the following well-known result (see [17, Theorems 1.2, 1.3], [16,
Theorems 7.10.2, 7.10.3]).

Proposition 3.1 Let K, H C C be compact and let
0K C HCK.

Then
0K COHCHCKCnK =nH.

If Q is a component of C\H, then Q C K or QN K = {.
The set K can be obtained from H by filling in some holes of H.

Remark 3.2 If K C C is at most countable, then nK = K. Therefore, for com-
pact subsets H, K C C, if nK = nH, then H is finite (countable) if and only if
K is finite (countable), and in that case H = K. Particulary, for compact subsets
H,K C C,if nK = nH, then K is empty if and only if H is empty.

Corollary 3.3 Let T € L(X).

(1) d04(T) C doryp(T), where ox € {opW,,0BW, O] p» Ofs.s OB®, OLD, Odsc>
op};
(2) 004(T) C 004 (T), where o € {opy_, ORD, UED}.

Proof Since opyy, (T) is closed (Proposition 2.6), it follows that dopyy, (T) C
opw, (T). Hence, by using Corollary 2.7 (1), we obtain that

dopw, (T) = dopw, (T) Nopw, (T) = dopgw, (T) Norup(T) Corup(T).

Now from dogwy, (T) C oryp(T) C opw, (T), according to Proposition 3.1, it
follows that dopw, (T) C doryp(T).
Similarly for the rest of inclusions. O

It is known that [1, Theorem 1.65 (i)]
doe(T) Naccogp(T) C ok (T).

We remark that it holds more than this: do¢(T) N accoep(T) C doryp(T) (see
Corollary 3.5 (5)).

Further we establish the inclusions of the similar type for other essential spectra.
Corollary 3.4 Let T € L(X). Then

(1) dow, (T) Naccow, (T) C dow, (T) Nopw, (T) C doryp(T);
(2) doyw_(T)Naccow (T) C doryp(T);
(3) 9oy (T)Naccopyy (T) C dogy (T) Naccoy (T) C doryp(T);
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4) 9ow(T) Naccow(T) C dow(T) Nopw(T) C dorup(T).

Proof (1) By using the first equality in Corollary 2.7 (1) we get

dow, (T) Nopw, (T) = dow, (T) N (orup(T) Uintow, (T))
= dow, (T) Noryp(T),

and therefore
doe (T) Nopw, (T) Coryp(T). 3.1

Let A € dow, (T) Nopw, (T). Then there exists a sequence (A,) which converges
to A and such that 7 — A, is upper semi-Weyl for every n € N. As T — A, is upper
semi-Fredholm, then it has TUD and so A,, ¢ oryp(T), n € N. As (&,,) converges to
X and since A € o7y p(T) according to (3.1), we get that A € dory p(T). Therefore,
dow, (T) Nopw, (T) C dorup(T).

Further, from the second equality in Corollary 2.7 (1) it follows that

dow, (T) Naccow, (T) C dow, (T) Nogw, (T).

(2)LetT—Al have TUD andletA € doyy (T).Since A ¢ intoyy_ (T),according to
Theorem 2.4 we conclude that & ¢ acc oyy_(T). Therefore, doyy_(T)Naccoyy (T) C
oryp(T). Now proceeding as in the proof of (1) we get doyy (T) Naccoy (T) C
doryp(T).

(3) Suppose that T —AI has TUD and A € dopgyy_ (T). From Theorem 2.3 it follows
that A ¢ accoyy (T). Thus dogyy (T) Naccow (T) C oryp(T). As in the proof
of (1), we obtain that

dopyw_(T) Naccoy (T) C doryp(T).

From oy (T) C oy (T) it follows that accopgyy (T) C accoy (T), which
implies the first inclusion in (3).
(4) Similarly to the proof of (1) by using Corollary 2.7 (3). O

Corollary 3.5 Let T € L(X).

(1) 306, (T) Naccow, (T) C doe, (T) N ot (T) C doryp(T);

(2) d0e_(T) Naccoo (T) C doe (T) N6l (T) C doryp(T);

(3) dogp(T) Naccoy,(T) C dog,(T) Naccogp (T) C dog,(T) Nog (T) =
00} (T) Noryp(T) C doryp(T);

4) dogp_(T)N (TE,D(T) =0doe_(T)Noye(T) C doge(T);

(5) doe(T)Naccop(T) C d0e(T) Noga(T) C doryp(T).

Proof 1t follows from Corollary 2.13, similarly to the proof of Corollary 3.4. O

Corollary 3.6 Let T € L(X). Then

(1) 904p(T) Naccoy,(T) C doup(T) Norpp(T) C doryp(T);
(2) dop, (T)Naccop, (T) C dop, (T) Norp(T) C doryp(T);
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(3) dop(T) Nacco,(T) C do,(T)NoLp(T) Corup(T);
(4) 004, (T) Naccogy,(T) C 305, (T) Nogse(T) C doryp(T);
(5) aacp(T) Naccoe,(T) C ach(T) Nogse(T) Coryp(T);
(6) dop_(T) Naccop_(T) C dop_(T) Nogsc(T) C doryp(T);
(7) dorp(T) Naccorp(T) C dorp(T) Nogse(T) = dorp(T) Noryp(T) C
dorup(T);
(8) d05u(T) Norp(T) C 8oqc1>(T);
9) aac'p(T) Norp(T) = aacp(T) N UqQD(T) C qu)(T):'
(10) do(T)Nacco(T) C do(T)Nop(T) C doryp(T);
(11) dop(T) Naccop(T) C dog(T) Nop(T) C doryp(T).

Proof 1t follows from Corollary 2.18. O

Remark 3.7 For the operator T in Example 2.10, from Remark 2.16, we can conclude
that 0 € do.(T) where o, € {05y, 00_, OW_, ORD, OpW)_, al‘éD}. As T has TUD, we
have that 0 ¢ oryp(T). So, in the inclusions (2) in Corollary 3.3, as well as in the
inclusion (4) in Corollary 3.5, and in the inclusion (8) in Corollary 3.6, 0,4 (7)) can
not be replaced by o7y p(T).

In the proof of the next theorem we use the following inclusions:
orp(T) C opw, (T) C orp(T)

C C
orup(T) C 040(T) C og(T) C opa(T) C opw(T) C op(T).

- c c c
C oxp(T) C opw_ (T) C orp(T)
C C
stc(T) C odsc(T)

Theorem 3.8 Let T € L(X). Then
1.

dorp(T)  C  dopw, (T) C 3ot (T)
c c c

C
dop(T) C dopw(T) - dope(T) C doryp(T),
C

C C
004sc(T) C 30’5SC(T)

dorp(T) C 3O'BW+(T) C 3G£D(T)
C C C c

dop(T) C dopw(T) C dope(T) C do,0(T),
C

C C C
dorp(T) C aGBW_(T) C aUI%D(T)

dop(T) C dopw(T) C dopa(T) C dok:(T).
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norup(T) = noge(T) = nog(T) = nope(T) = nogw(T) = nop(T)
= 107 p(T) = nopw, (T) = norp(T)
= nogp(T) = nopw_(T) = nogp(T)
= TIU(;SC(T) = n04sc(T).

3. The set op(T) consists of .(T) and possibly some holes in o.(T) where o, €
{aqq)v OKt> OB, GBW9 U[(ny UBW+7 OLD, O§Dv UBW_v ORD> U;SC’ Gdsc'}~

Proof It follows from Proposition 3.1, the previous inclusions, Proposition 2.6 and
Corollary 3.3. O

From Theorem 3.8 and Remark 3.2 it follows thatif one of o7y p(T), 04 (T), ok (T),
oo (T),opwW(T),op(T),0f n(T), 08w, (T),0Lp(T),05p(T),0pw_(T),0rp(T),
03,.(T) and 045 (T) is finite (countable), then all of them are equal and therefore finite
(countable). This result is already obtained in [20, Corollary 3.4], but our method of
proofing is different.

Example 3.9 Let Q : £,(N) — £>(N) be the operator defined by

1 1
Q(sh 52’ §37 .. ) = (07 ‘i:l’ 5521 5537 .. ) 5 (517 ‘523 537 .. ) S Ez(N)

From lim,,_, o ||Q”||% = limn_mo(%)% = 0 we see that Q is quasinilpotent. It
follows that 0 is not an accumulation point of or(Q) for R € {R; : 1 < i <
10} U{RE, RE}U W, (X), W_(X), W(X), (X), B(X), L(X)~'}. As Q is the limit
of finite rank operators, Q is compact. Since Q" is compact and R(Q") is infinite
dimensional, we conclude that R(Q") is not closed for every n € N. Therefore, Q is
not quasi-Fredholm and so, 0 € o, (Q) C 0(Q) = {0}. Thus o,r(Q) = {0}, which
implies that o7 p (Q) = {0}, thatis Q does not have TUD. It means that the condition
that 7 has TUD can not be omitted in Theorems 2.3, 2.5, 2.8, 2.11, 2.12, 2.14, 2.15,
2.17, and 2.19. Also, the condition that T is quasi-Fredholm can not be omitted in
Theorems 2.3, 2.8, 2.15, and 2.19.

Remark 3.10 Similar results can get for the Jeribi essential spectrum of operators
defined on a Banach space which has no reflexive infinite dimensional subspace.
The Jeribi essential spectrum is defined for T € L(X) by

oi ()= () o +K),
KeWi(X)

where W, (X) denotes the set of all weakly compact operators on a Banach X (see the
definition and some properties in [5,18]). Obviously, o;(T) is compact and

oj(T)= [\ o@+Kyc () o+K) =ow@). (3.2)
KeW,(X) KeK(X)
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According to [5, Theorem 3.3], if X is a Banach space which has no reflexive
infinite dimensional subspace and T € L(X), then

oo(T) Coj(T). (3.3)
As d oy (T) C o¢(T), from (3.2) and (3.3) it follows that
dow(T) C o;(T) C ow(T),
which according to Proposition 3.1 implies that
dow(T) C d0;(T), noj(T) = now(T)

and the spectrum o)y (T') can be obtained from o;(T) by filling in some holes of
0;(T). Also, if o (T) is connected, oy, (T') is connected.

4 Applications

An operator T € L(X) is meromorphic if its non-zero spectral points are poles of
its resolvent. We say that T is polinomially meromorphic if there exists non-trivial
polynomial p such that p(7T") is meromorphic.

In [10, Theorem 2.11] it is given a characterization of meromorphic operators in
terms of B-Fredholm operators: an operator 7 € L(X) is meromorphic if and only if
oo (T) C {0}. Thisresultis extended by Jiang et al. in [20, Corollary 3.3] by including
the characterization of meromorphic operators in terms of operators of topological
uniform descent: 7 € L(X) is meromorphic if and only if oryp(T) C {0}. Their
proof is based on the local constancy of the mappings A +— KAl —T)+ Hoy(Al —T)
and A — K(AI — T) N Hy(AI — T) and results about SVEP established in [19]. We
obtain the same assertion as a corollary of Theorem 3.8 and our method of proofing
is rather different.

Theorem 4.1 Let T € L(X). Then the following conditions are equivalent:

1. T is a meromorphic operator;
2. oryp(T) C {0}
3. opo(T) C {0}.

Proof Since T is a meromorphic operator if and only if op(T) C {0}, the assertion
follows from Theorem 3.8 (see the comment after Theorem 3.8). O

For T € L(X) set pryp(T) = C\oryp(T).

Theorem 4.2 Let T € L(X). If Q is a component of pryp(T), then Q C op(T) or
Q\E C p(T), where E = {1 € C : A is the pole of the resolvent od T'}.

Proof Since dop(T) C oryp(T), from Proposition 3.1 it follows that

Q Cop(T) or QNop(T) =49. 4.1
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If the second formula in (4.1) holds, then, as op(T) = o(T)\E, we obtain that
(Q\E) N o (T) = ¥, which implies Q\E C p(T). m]

In [20, Corollary 2.12] Jiang et al. obtained the same result as Theorem 4.2 by
using the constancy of the mappings A +— KAl — T) + NOAI — T) and A +—
K(OI —T)N Hy(Al — T) on the components of pryp(T), however our proof is
rather different. They also obtained that if pryp(7’) has only one component, then
oryp(T) = op(T). We get this result in a different way and also obtain that analogous
assertion holds for other spectra.

Theorem 4.3 Let T € L(X) and let o« € {0TUD, Oqa: OKt» OBds OBW: Of s OBW, »
OLD>Ofps OBW._ > ORD; O, Odsc)- Then there is implication

C\0«(T) has only one component = 0,(T) = op(T).

Proof Since C\o,(T) has only one component, it follows that o, (7") has no holes
and hence 0, (T) = no.(T). According to Theorem 3.8 we conclude that op(T) C
nop(T) = nox(T) = 04(T) C op(T) and hence op(T) = 04(T). O

Let Fp(X) denote set of finite rank operators on X. Now we can prove Theorem
2.10 in [10] in a different way.

Theorem 4.4 Let T € L(X) and suppose that oy (T) is simply connected. Then
T + F satisfies the generalized version Il of the Weyl’s theorem for every F € Fy(X).

Proof From F € Fy(X) it follows that ogw(T) = o (T + F) [9, Theorem 4.3]
and oy (T + F) is simply connected. According to Theorem 3.8, since there are no
holes in og (T + F), we conclude that op (T + F) = opgw(T + F),andso T + F
satisfies the generalized version II of the Weyl’s theorem. O

Corollary 4.5 Let T € L(X).

(1) If op(T) C 30, (T), then or.p(T) = oryp(T).

(2) Ifocp(T) C d0ep(T), then 045 (T) = oryp(T) and orp(T) = 040 (T).

3) If 0.(T) = 004(T), where o, € {op,oLp, O‘ED, OBd, OBW, » opw}, then
0.(T) = orup(T).

4) If 0dsc(T) = d045c(T), then 045 (T) = oryp(T) and ogp(T) = Uq<I>(T)-

(5) Ifog, (T) =005, (T), thenoj (T) = oryp(T) and o, (T) = 04 (T).

(6) Ifopw_(T) = dopyy_(T), then opyy_(T) = 0qo(T).

Proof (1) From o,(T) C d0,(T) it follows thatint o, (T) = §. Using Corollary 2.18
(1) we getopp(T) = oryp(T).

The rest of assertions can be proved similarly by using Corollaries 2.18, 2.13 and
2.7. O

Remark 4.6 Jiang et al. concluded in [20, p. 1156] that if o (T') is contained in a line
segment, then op(T) = oryp(T). From Corollary 4.5 (3) we get that if o(T) is
contained in a line, then op(T) = oryp(T).If T is unitary operator on Hilbert space,
then its spectrum is contained in a line and so, op(T) = oryp(T).
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From Corollary 4.5 it follows also that if 0,(7) is contained in a line for
0x €{0LD, 0D, 0] p, OBW,» OBW, OB®, O, Odsc}, then o4 (T) = oryp(T). Also,
if 04 (T) is contained in a line for o, € {ofw, opw_,0rp}, then 0, (T) = oy p(T).

Therefore, if or(T') is contained in a line for R € {R¢, R7, Rg, Rg, Ryg, R}, RE,
Wi (X), W(X), @(X), B(X), L(X)™"}, then or(T) = orup(T). If R € {R1, Ry,
R3, R4,Rs5, W_(X)} and or(T) is contained in a line, then ogr(T) = o,r(T) (see
also Theorem 2.19).

Furthermore, if 6. (T) (045c(T)) is contained in a line, then o ;,(T) = oy (T)
(orp(T) = o4p(T)). If 0,(T) (0.p(T)) is countable or contained in a line, then
oLp(T) = oryp(T) (orp(T) = 04 (T) and 045 (T) = oryp(T)).

Example 4.7 If X is one of co(Z) and £,(Z), p > 1, then for the forward and backward
bilateral shifts Wi, W, € L(X) there are equalities o (W) = o (W;) = 9D, where
D= {A € C: |Al < 1}. From acco (W) = acco(W,) = 0D we conclude that
op(Wp) = op(W>) = 0D and since o (W;) and o (W) are contained in a line, we
obtain o7y p(W1) = oryp(W3) = dD.

Corollary 4.8 Let T € L(X).
If o € {ow,,oWw_,oW,0BW_,00,,00_,00, 0y Oap: Osus OB, » OB_, OB,
ORD, O} and
04+(T) = 004 (T) = acco,(T), “4.2)

then
oryp(T) = 0 (T). 4.3)

Proof From Corollaries 3.4, 3.5 and 3.6 we have that 0o (T)Nacc o4 (T) C oryp(T),
which together with the equalities (4.2) gives the inclusion 0 (7)) C oryp(T). Since
orup(T) C 0.(T), we get (4.3). O

We recall that if K C C is compact, then for A € 9K the following equivalence
holds:
A €accK <= A € accikK. “4.4)

The following corollary is an improvement of Theorem 2.10 and Corollary 2.11 in

(2].
Corollary 4.9 Let T € L(X).

1. Let T be an operator for which 6,,(T) = 00 (T) and every A € do(T) is not
isolated in o (T'). Then 64, (T) = oryp(T).

2. Let T be an operator for which o5,(T) = 90 (T) and every » € do(T) is not
isolated in o (T). Then o5,(T) = oryp(T).

Proof From 0,,(T) = 90 (T) and d0(T) C 904,(T) C 04p(T) it follows that
04p(T) = 004, (T), while from (4.4) it follows that every A € do (T') is not isolated
in o (T'). Therefore, every A € do (T) is not isolated in o4, (T') and hence, 0,4, (T) C
acc 04p(T). Thus 04y (T) = 004, (T) = acc 04p(T) and from Corollary 4.8 it follows
that (Iap(T) =oryp(T).

The assertion (2) can be proved similarly. O
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Example 4.10 For each X € {co(N), c(N), £xo(N), £,(N)}, p > 1, and the forward
and backward unilateral shifts U, V € L(X) there are equalities o (U) = o (V) =D,
op(U) = op(V) = D and 04p(U) = 04, (V) = 0D. By using Corollary 4.8 (or
Corollary 4.9) we obtain that o7y p(U) = 04p(U) = 0D and o7y p (V) = o5 (V) =
oD. It implies that

orup(U) =040 (U) =0 p(U) = opw, (U) =0orpU) = 04p(U) = D

and

orup(V) = 040(V) = 0 (V) = 0opyy_ (V) = orp(V)
= 04sc(V) = 04, (V) = 05 (V) = 0D.

As oy, (U) = D, from Corollary 2.18 ((2), (3)) itfollows that o5 (U) = ogp(U) =
D. Since 0¢(U) = 0¢(V) = 0D [29, Theorem 4.2], from Remark 4.6 we get that
opo(U) = oryp(U) = 0D and similarly, ope (V) = 0D. From the inclusions
oryp(U) C og;(U) C opep(U) we have that o, (U) = 9D and similarly, og, (V) =
aD.

Fromdoe(U) C op_(U) C 09 (U)itfollowsthatogp_(U) = 0D, thatisogp_(U)is
contained in the line and hence, by Remark 4.6 we get that ojs U) =orypU) = 3D
and o}, (U) = 049 (U) = ID.

From dog(V) C 09, (V) C 0e(V) we conclude that op, (V) = 9D which
according to Remark 4.6 implies that o7 /,(V) = oryp(V) = 9D. Asogp(V) = dD
and op(V) = D, we get o p(V) = D. From 0¢(V) = 9D, 0,,(V) = D and
05, (V) = 0D, we conclude that for |A| < 1 it holds that V — LI is Fredholm with
positive index and so, {A € C : |A| < 1} C oy, (V) C ow(V) C D, which
implies that oy, (V) = ow(V) = D. From Corollary 2.7 (1), (3) it follows that
opw, (V) =D and opy (V) = D. Similarly, from 0¢ (U) = 9D, 0,4, (U) = D and
05, (U) = D it follows that oy (U) = oy (U) = D, which by Corollary 2.7 (2), (3)
implies that ogyy_(U) = oy (U) = D.

Example 4.11 Every non-invertible isometry 7 has the property that o (7)) = D and
04p(T) = 0D [2,p. 187]. Hence 0,,,(T) = do (T') and every A € do (T') isnotisolated
in o (T). Therefore, according to Corollary 4.9, for arbitrary non-invertible isometry
T we getthat o7y p(T) = 040 (T) = o ,(T) = opw, (T) = orp(T) = 04p(T) =
aD.

Example 4.12 For the Cesaro operator C, defined on the classical Hardy space
H, (D), D the open unit disc and 1 < p < oo, by

A
(CpH) = % Mdu, forall f € H,(D) and A € D,
0

I—n

it is known that its spectrum is the closed disc I'), centered at p/2 with radius
p/2, ok (Cp) = 04p(Cp) = 9I'p and also 0¢(Cp) = 9I', [2,24]. According to
Corollary 4.8 or Corollary 4.9 we get that o7y p(Cp) = 040(Cp) = azD(Cp) =
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opw, (Cp) = orp(Cp) = 04p(Cp) = II'p. Since 0¢(C,) is contained in the
line and hence also og, (C)) and o¢_(C)) are contained in the line, according to
Remark 4.6 we conclude that 03¢ (C,) = 07, .(Cp) = oryp(Cp) = 3I', and
opp(Cp) = 04r(Cp) = 0I'p. From o(C,) = I') and 04,(Cp) = T, it fol-
lows that and oy,(Cp,) = I'), which together with 0¢(C,) = 0I',, implies that
ow_(Cp) = ow(Cp) = I'p. Now from Corollary 2.7 (2), (3) we obtain that
opw_(Cp) = opw(Cp) =T,. Asop(Cp) =T and o7p(Cp) = 9T, it follows
that ogp(Cp) = I', which by Corollary 2.18 (2) implies that o45.(Cp) = I'p.
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