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Abstract
In this paper we study operators originated from semi-B-Fredholm theory and as a
consequence we get some results regarding boundaries and connected hulls of the cor-
responding spectra. In particular, we prove that a bounded linear operator T acting on
a Banach space, having topological uniform descent, is aBR operator if and only if 0 is
not an accumulation point of the associated spectrum σR(T ) = {λ ∈ C : T −λI /∈ R},
where R denote any of the following classes: upper semi-Weyl operators, Weyl
operators, upper semi-Fredholm operators, Fredholm operators, operators with finite
(essential) descent andBR theB-regularity associated toR as inBerkani (StudiaMath-
ematica 140(2):163–174, 2000). Under the stronger hypothesis of quasi-Fredholmness
of T , we obtain a similar characterisation for T being a BR operator for much larger
families of sets R.
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1 Introduction

LetN (N0) denote the set of all positive (non-negative) integers, and letC denote the set
of all complex numbers. We use L(X) to denote the Banach algebra of bounded linear
operators acting on an infinite dimensional complex Banach space X . The group of
all invertible operators is denoted by L(X)−1. Let I(X) denote the set of all bounded
below operators and let S(X) denote the set of all surjective operators. For T ∈ L(X),
denote by σ(T ), σp(T ), σap(T ) and σsu(T ) its spectrum, point spectrum, approximate
point spectrum and surjective spectrum, respectively. Also, write N (T ) for its null-
space, R(T ) for its range, α(T ) for its nullity and β(T ) for its defect. The compression
spectrum of T ∈ L(X), denoted by σcp(T ), is the set of all complex λ such that T −λI
does not have dense range.

An operator T ∈ L(X) is upper semi-Fredholm if α(T ) < ∞ and R(T ) is closed,
while T is lower semi-Fredholm ifβ(T ) < ∞. In the sequel�+(X) (resp.�−(X))will
denote the set of upper (resp. lower) semi-Fredholm operators. If T is upper or lower
semi-Fredholm, then T is called semi-Fredholm. The set of semi-Fredholm operators
is denoted by �±(X). For semi-Fredholm operators the index is defined by ind(T ) =
α(T )−β(T ). The set of Fredholm operators is defined as �(X) = �+(X)∩�−(X).

The sets of upper semi-Weyl, lower semi-Weyl and Weyl operators are defined as
W+(X) = {T ∈ �+(X) : ind(T ) ≤ 0}, W−(X) = {T ∈ �−(X) : ind(T ) ≥ 0} and
W(X) = {T ∈ �(X) : ind(T ) = 0}, respectively.

For T ∈ L(X), the upper semi-Fredholm spectrum, the lower semi-Fredholm
spectrum, the semi-Fredholm spectrum, the Fredholm spectrum, the upper semi-Weyl
spectrum, the lower semi-Weyl spectrum and the Weyl spectrum are defined, respec-
tively, by:

σ�+(T ) = {λ ∈ C : T − λI /∈ �+(X)},
σ�−(T ) = {λ ∈ C : T − λI /∈ �−(X)},
σ�±(T ) = {λ ∈ C : T − λI /∈ �±(X)},
σ�(T ) = {λ ∈ C : T − λI /∈ �(X)},

σW+(T ) = {λ ∈ C : T − λI /∈ W+(X)},
σW−(T ) = {λ ∈ C : T − λI /∈ W+(X)},
σW (T ) = {λ ∈ C : T − λI /∈ W(X)}.

For n ∈ N0 we set cn(T ) = dimR(T n)/R(T n+1) and c′
n(T ) = dimN (T n+1)/

N (T n). From [21, Lemmas 3.1 and 3.2] it follows that cn(T ) = codim (R(T ) +
N (T n)) and c′

n(T ) = dim(N (T ) ∩ R(T n)). Obviously, the sequences (cn(T ))n and
(c′

n(T ))n are decreasing. For each n ∈ N0, T induced a linear transformation from the
vector space R(T n)/R(T n+1) to the space R(T n+1)/R(T n+2) and let kn(T ) denote
the dimension of the null space of the induced map. From [14, Lemma 2.3] it follows
that

kn(T ) = dim(R(T n) ∩ N (T ))/(R(T n+1) ∩ N (T ))

= dim(R(T ) + N (T n+1))/(R(T ) + N (T n)).
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From this it is easily seen that kn(T ) = c′
n(T ) − c′

n+1(T ) if c′
n+1(T ) < ∞ and

kn(T ) = cn(T ) − cn+1(T ) if cn+1(T ) < ∞.
The descent δ(T ) and the ascent a(T ) of T are defined by δ(T ) = inf{n ∈ N0 :

cn(T ) = 0} = inf{n ∈ N0 : R(T n) = R(T n+1)} and a(T ) = inf{n ∈ N0 : c′
n(T ) =

0} = inf{n ∈ N0 : N (T n) = N (T n+1)}. We set formally inf ∅ = ∞.
The essential descent δe(T ) and the essential ascent ae(T ) of T are defined by

δe(T ) = inf{n ∈ N0 : cn(T ) < ∞} and ae(T ) = inf{n ∈ N0 : c′
n(T ) < ∞}.

The sets of upper semi-Browder, lower semi-Browder and Browder operators are
defined as B+(X) = {T ∈ �+(X) : a(T ) < ∞}, B−(X) = {T ∈ �−(X) : δ(T ) <

∞} and B(X) = B+(X) ∩ B−(X), respectively. For T ∈ L(X), the upper semi-
Browder spectrum, the lower semi-Browder spectrum and the Browder spectrum are
defined, respectively, by:

σB+(T ) = {λ ∈ C : T − λI /∈ B+(X)},
σB−(T ) = {λ ∈ C : T − λI /∈ B−(X)},
σB(T ) = {λ ∈ C : T − λI /∈ B(X)}.

Sets of left and right Drazin invertible operators, respectively, are defined as
LD(X) = {T ∈ L(X) : a(T ) < ∞ and R(T a(T )+1) is closed} and RD(X) =
{T ∈ L(X) : δ(T ) < ∞ and R(T δ(T )) is closed}. If a(T ) < ∞ and δ(T ) < ∞, then
T is called Drazin invertible [3,4]. By D(X) we denote the set of Drazin invertible
operators.

An operator T ∈ L(X) is a left essentially Drazin invertible operator if ae(T ) < ∞
and R(T ae(T )+1) is closed. If δe(T ) < ∞ and R(T δe(T )) is closed, then T is called
right essentially Drazin invertible. In the sequel LDe(X) (resp. RDe(X)) will denote
the set of left (resp. right) essentially Drazin invertible operators.

For T ∈ L(X), the left Drazin spectrum, the right Drazin spectrum, the Drazin
spectrum, the left essentially Drazin spectrum, the right essentially Drazin spectrum,
the descent spectrum and the essential descent spectrum are defined, respectively, by:

σLD(T ) = {λ ∈ C : T − λI /∈ LD(X)},
σRD(T ) = {λ ∈ C : T − λI /∈ RD(X)},
σD(T ) = {λ ∈ C : T − λI /∈ D(X)},

σ e
LD(T ) = {λ ∈ C : T − λI /∈ LDe(X)},

σ e
RD(T ) = {λ ∈ C : T − λI /∈ RDe(X)},

σdsc(T ) = {λ ∈ C : δ(T − λI ) = ∞},
σ e
dsc(T ) = {λ ∈ C : δe(T − λI ) = ∞}.

An operator T ∈ L(X) is said to be quasi-Fredholm if there is d ∈ N0 such that
kn(T ) = 0 for all n ≥ d and R(T d+1) is closed. The set of quasi-Fredholm operators
includes many sets of operators such as left (right) Drazin invertible operators, left
(right) essentially Drazin invertible operators, upper (lower) semi-B-Weyl operators
(see [7]).
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For T ∈ L(X)we say that it isKato if R(T ) is closed and N (T ) ⊂ R(T n) for every
n ∈ N. An operator T ∈ L(X) is nilpotentwhen T n = 0 for some n ∈ N. An operator
T ∈ L(X) is said to be of Kato type if there exist closed subspaces X1, X2 such
that X = X1 ⊕ X2, T (Xi ) ⊂ Xi , i = 1, 2, T|X1 is nilpotent and T|X2 is Kato. Every
operator of Kato type is a quasi-Fredholm operator. In the case of Hilbert spaces, the
set of quasi-Fredholm operators coincides with the set of Kato type operators.

For T ∈ L(X) and every d ∈ N0, the operator range topology on R(T d) is defined
by the norm ‖ · ‖d such that for every y ∈ R(T d),

‖y‖d = inf{‖x‖ : x ∈ X , y = T dx}.

Operators which have eventual topological uniform descent were introduced by
Grabiner in [14]:

Definition 1.1 Let T ∈ L(X). If there is d ∈ N0 forwhich kn(T ) = 0 for n ≥ d, then T
is said to have uniform descent for n ≥ d. If in addition, R(T n) is closed in the operator
range topology of R(T d) for n ≥ d, then we say that T has eventual topological
uniform descent and, more precisely, that T has topological uniform descent for (TUD
for brevity) n ≥ d.

It is easily seen that if T has finite nullity, defect, ascent or essential ascent, then it has
uniform descent. If T has finite descent or essential descent, then T has TUD. Also,
the set of operators which have TUD contains the set of quasi-Fredholm operators [7].

For T ∈ L(X), the Kato type spectrum, the quasi-Fredholm spectrum and the
topological uniform descent spectrum are defined, respectively, by:

σKt (T ) = {λ ∈ C : T − λ is not of Kato type},
σq�(T ) = {λ ∈ C : T − λ is not quasi-Fredholm},

σTUD(T ) = {λ ∈ C : T − λ does not have TUD}.

We use the following notation [7,23]:

R1 = S(X) R2 = B−(X) R3 = RD(X)

R4 = �−(X) R5 = RDe(X)

R6 = I(X) R7 = B+(X) R8 = LD(X)

R9 = �+(X) R10 = LDe(X)

and

Ra
4 = {T ∈ L(X) : δ(T ) < ∞},

Ra
5 = {T ∈ L(X) : δe(T ) < ∞}.

For a bounded linear operator T and n ∈ N0 define Tn to be the restriction of
T to R(T n) viewed as a map from R(T n) into R(T n) (in particular, T0 = T ). If
T ∈ L(X) and if there exist an integer n for which the range space R(T n) is closed
and Tn belongs to the class R, we will say that T belongs to the class BR, where
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R ∈ {Ri : i = 1, . . . , 10} ∪ {Ra
4 ,R

a
5} ∪ {�(X),B(X),W+(X),W−(X),W(X)}. For

T ∈ L(X) let σR(T ) = {λ ∈ C : T−λI /∈ R} and σBR(T ) = {λ ∈ C : T−λI /∈ BR}.
More details, if for an integer n the range space R(T n) is closed and Tn is Fredholm

(resp. upper semi-Fredholm, lower semi-Fredholm, Browder, upper semi-Browder,
lower semi-Browder), then T is called a B-Fredholm (resp. upper semi-B-Fredholm,
lower semi-B-Fredholm, B-Browder, upper semi-B-Browder, lower semi-B-Browder)
operator. If T ∈ L(X) is upper or lower semi-B-Fredholm, then T is called semi-
B-Fredholm. The index ind(T ) of a semi-B-Fredholm operator T is defined as the
index of the semi-Fredholm operator Tn . By [6, Proposition 2.1] the definition of the
index is independent of the integer n. An operator T ∈ L(X) is B-Weyl (resp. upper
semi-B-Weyl, lower semi-B-Weyl) if T is B-Fredholm and ind(T) = 0 (resp. T is upper
semi-B-Fredholm and ind(T ) ≤ 0, T is lower semi-B-Fredholm and ind(T ) ≥ 0).

For T ∈ L(X), the upper semi-B-Fredholm spectrum, the lower semi-B-Fredholm
spectrum, the B-Fredholm spectrum, the upper semi-B-Weyl spectrum, the lower semi-
B-Weyl spectrum, theB-Weyl spectrum, the upper semi-B-Browder spectrum, the lower
semi-B-Browder spectrum and the B-Browder spectrum are defined, respectively, by:

σB�+(T ) = {λ ∈ C : T − λI is not upper semi-B-Fredholm},
σB�−(T ) = {λ ∈ C : T − λI is not lower semi-B-Fredholm},
σB�(T ) = {λ ∈ C : T − λI is not B-Fredholm},

σBW+(T ) = {λ ∈ C : T − λI is not upper semi-B-Weyl},
σBW−(T ) = {λ ∈ C : T − λI is not lower semi-B-Weyl},
σBW (T ) = {λ ∈ C : T − λI is not B-Weyl},
σBB+(T ) = {λ ∈ C : T − λI is not upper semi-B-Browder},
σBB−(T ) = {λ ∈ C : T − λI is not lower semi-B-Browder},
σBB(T ) = {λ ∈ C : T − λI is not B-Browder}.

We recall that the set of Drazin invertible operators (resp, LD(X), RD(X)) coin-
cideswith the set of B-Browder (resp. upper semi-B-Browder, lower semi-B-Browder)
operators, while the set of left (right) essentially Drazin invertible operator coincides
with the set of upper (lower) semi-B-Fredholm operators [7, Theorem 3.6], [3,4].
Therefore, for any T ∈ L(X) it holds:

σD(T ) = σBB(T ), σLD(T ) = σBB+(T ), σRD(T ) = σBB−(T ),

and
σ e
LD(T ) = σB�+(T ), σ e

RD(T ) = σB�−(T ).

An operator T ∈ L(X) is said to have the single-valued extension property at
λ0 ∈ C (SVEP at λ0 for breviety) if for every open disc Dλ0 centerd at λ0 the only
analitic function f : Dλ0 → X satisfying (T − λ) f (λ) = 0 for all λ ∈ Dλ0 is the
function f ≡ 0.
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If K ⊂ C, then ∂K is the boundary of K , acc K is the set of accumulation points
of K , int K is the set of interior points of K and iso K is the set of isolated points of
K . For a compact set K ⊂ C, ηK denotes its connected hull.

The aim of this paper is to give characterization of the BR classes through prop-
erties such as topological uniform descent or quasi-Fredholmness, and properties of
the appropriate spectra σR, as well as to get some results regarding boundaries and
connected hulls of BR-spectra.

Jiang et al. in [19, Theorem 3.2] characterize the set of left Drazin invertible oper-
ators proving that if T − λI has TUD, then T − λI is left Drazin invertible if and
only if σap(T ) does not cluster at λ, and also, if and only if λ is not an interior point
of σap(T ). M. Berkani, N. Castro and S.V. Djordjević proved in [11, Theorem 2.5]
that, under the same condition that T − λI has TUD, σp(T ) does not cluster at λ if
and only if a(T − λI ) < ∞. Further Jiang et al. in [19, Theorem 3.4] proved that if
T − λI has TUD, then δ(T − λI ) < ∞ if and only if σsu(T ) does not cluster at λ,
and also, if and only if λ is not an interior point of σsu(T ).

In this paper we characterize the sets of upper and lower semi-B-Weyl operators,
as well as the sets of left and right essentially Drazin invertible operators. We also
give further characterisations of left and right Drazin invertible operators. By using
Grabiner’s punctured neighborhood theorem [14, Theorem 4.7], [7, Thorem 4.5] we
prove that

T ∈ BR ⇐⇒ T is quasi-Fredholm and 0 /∈ acc σR(T )

⇐⇒ T is quasi-Fredholm and 0 /∈ int σR(T ), (1.1)

for R ∈ {R2,R3,R4,R5,W−(X)}. By an example we show that the condition that T
is quasi-Fredholm in the previous formulas can not be replaced by a weaker condition
that T has topological uniform descent.

Further we prove that

T ∈ BR ⇐⇒ T has TUD and 0 /∈ acc σR(T )

⇐⇒ T has TUD and 0 /∈ int σR(T ), (1.2)

for R ∈ {R7,R8,R9,R10,Ra
4,R

a
5,W+(X),W(X),�(X),B(X)}.

The condition that T has TUD in the previous equivalences (1.2) cannot be omitted
and it is demonstrated by an example. Also, the condition that T is quasi-Fredholm in
the equivalences (1.1) cannot be omitted which is also demonstrated by an example.

As a consequence of these characterizations, for R ∈ {R1,R2,R4,R6,R7,R9} ∪
{W+(X),W−(X),W(X),�(X)}weobtain that int σR(T ) = int σBR(T ), ∂ σBR(T ) ⊂
∂ σR(T ) and the setσR(T )\σBR(T ) consists of atmost countablymany isolated points.
Also we obtain that the boundary of σBR(T ), for R ∈ {R6,R7,R8,R9,R10,Ra

4,R
a
5,

W+(X),W(X),�(X),B(X)} is contained in σTUD(T ), while the boundary of
σBR(T ), where R ∈ {R1,R2,R3,R4,R5,W−(X)}, is contained in σq�(T ), and by
an example it is shown that it is not contained in the TUD spectrum.

Boundaries of spectra originated fromFredholm theorywere investigated byMiličić
and Veselić in [25, Theorem 7]. They proved the following inclusions:
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∂σ�+(T )

⊂ ⊂
∂σB(T ) ⊂ ∂σW (T ) ⊂ ∂σ�(T ) ∂σ�±(T ).

⊂ ⊂
∂σ�−(T )

V. Rakočević proved (see [27, Theorem 1]) that ∂σW (T ) ⊂ σW+(T ) and hence
there is the inclusion ∂σW (T ) ⊂ ∂σW+(T ). In [28, Corollary 2.5] it is proved that
∂σB(T ) ⊂ ∂σB+(T ) ⊂ ∂σW+(T ), as well as that ησB(T ) = ησB+(T ) = ησW+(T ).
The following inclusions are known:

∂σB+(T ) ⊂ ∂σW+(T ) ⊂ ∂σ�+(T )

⊂ ⊂ ⊂ ⊂
∂σB(T ) ⊂ ∂σW (T ) ⊂ ∂σ�(T ) ⊂ ∂σ�±(T ).

⊂ ⊂ ⊂ ⊂
∂σB−(T ) ⊂ ∂σW−(T ) ⊂ ∂σ�−(T )

We generalize these results to the case of spectra originated from semi-B-Fredholm
theory and prove the following inclusions:

∂σBB+(T ) ⊂ ∂σBW+(T ) ⊂ ∂σB�+(T )

⊂ ⊂ ⊂ ⊂
∂σBB(T ) ⊂ ∂σBW (T ) ⊂ ∂σB�(T ) ⊂ ∂σq�(T ),

⊂ ⊂ ⊂ ⊂
∂σBB−(T ) ⊂ ∂σBW−(T ) ⊂ ∂σB�−(T )

∂σBB+(T ) ⊂ ∂σBW+(T )

⊂ ⊂ ⊂
∂σBB(T ) ⊂ ∂σBW (T ) ⊂ ∂σB�(T ) ⊂ ∂σB�+(T ) ⊂ ∂σTUD(T ),

⊂ ⊂ ⊂
∂σdsc(T ) ⊂ ∂σ e

dsc(T )

as well as that the connected hulls of all spectra mentioned in the previous inclusions
are mutually equal and also coincide with the connected hull of Kato type spectrum.

As an application we get that a bounded linear operator T is meromorphic, that is
its non-zero spectral points are poles of its resolvent, if and only if σB�(T ) ⊂ {0} and
this is exactly when σTUD(T ) ⊂ {0}. This result was obtained earlier (see [10] and
[20]). Jiang et al. in [20, Corollary 3.3] proved it by using the local constancy of the
mappings λ �→ K (λI − T ) + H0(λI − T ) and λ �→ K (λI − T ) ∩ H0(λI − T ) [20,
Theorem 2.6] and results about SVEP established in [19], but our method of proof is
rather different andmore direct. Jiang et al. also obtained that if ρTUD(T ) has only one
component, then σD(T ) = σTUD(T ) [20, Theorem 3.1] and hence, if σ(T ) is count-
able or contained in a line segment, then σD(T ) = σTUD(T ) [20, p. 1156]. We give
here an alternative proof of these results and get more than this: if σ(T ) is contained
in a line, then σD(T ) = σTUD(T ), and moreover, if σR(T ) is contained in a line for
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R ∈ {R6,R7,R8,R9,R10,Ra
4,R

a
5,W+(X),W(X),�(X),B(X)}, then σBR(T ) =

σTUD(T ). On the other side if R ∈ {R1,R2,R3,R4,R5,W−(X)} and σR(T ) is con-
tained in a line, then σBR(T ) = σqF (T ). We also prove that if σ∗(T ) is contained in
a line for σ∗ ∈ {σB�, σBW , σ e

LD, σBW+ , σLD, σ e
dsc, σdsc}, then σ∗(T ) = σTUD(T ),

while if σ∗(T ) is contained in a line for σ∗ ∈ {σ e
RD, σBW− , σRD}, then σ∗(T ) =

σqF (T ). In particular, if σp(T ) (σcp(T )) is countable or contained in a line, then
σLD(T ) = σTUD(T ) (σRD(T ) = σq�(T ) and σdsc(T ) = σTUD(T )). Furthermore,
by using connected hulls we show that if C\σ∗(T ) has only one component where σ∗
is one of σq�, σKt , σB�, σBW , σ e

LD, σBW+ , σLD, σ e
RD, σBW− , σRD, σ e

dsc, σdsc, then
σ∗(T ) = σD(T ).Alsowegive an alternative proof ofTheorem2.10 in [10].As a conse-
quence we get that if σ∗(T ) = ∂σ∗(T ) = acc σ∗(T ), then σ∗(T ) = σTUD(T ) for σ∗ ∈
{σW+ , σW− , σW , σBW− , σ�+ , σ�− , σ�, σ e

RD, σap, σsu, σB+ , σB− , σB, σRD, σ }. In
particular, if σap(T ) = ∂σ(T ) (σsu(T ) = ∂σ(T )) and every λ ∈ ∂σ(T ) is not
isolated in σ(T ), then σTUD(T ) = σap(T ) (σTUD(T ) = σsu(T )). It improves the
corresponding results of P. Aiena and E. Rosas [2, Theorem 2.10, Corollary 2.11].
These results are then used to find the TUD spectrum of arbitrary non-invertible isom-
etry. We also use them to find the TUD spectrum and B-spectra of the forward and
backward unilateral shifts on c0(N), c(N), �∞(N) or �p(N), p ≥ 1, and also of Cesáro
operator.

2 Semi-B-Weyl and Semi-B-FredholmOperators

We start with the following auxiliary assertions.

Lemma 2.1 Let T ∈ L(X) have TUD for n ≥ d and finite essential ascent. Then
R(T n) is closed in X for each integer n ≥ d.

Proof Since T has finite essential ascent and TUD for n ≥ d, we have that

dim(N (T ) ∩ R(T n)) < ∞ for all n ≥ d.

It means that α(Tn) < ∞ for Tn : R(T n) → R(T n) and hence α(T d
n ) ≤ d · α(Tn) <

∞. So we have that

dim(N (T d) ∩ R(T n)) < ∞ for all n ≥ d. (2.1)

From [14, Theorem 3.2] it follows that N (T d)+R(T n) is closed in X for every n ≥ 0.
According to (2.1), N (T d)∩ R(T n) is closed for every n ≥ d and then by [26, Lemma
20.3] we obtain that R(T n) is closed for every n ≥ d. ��
Lemma 2.2 Let T ∈ L(X). Then:

(1) T has TUD and ae(T ) < ∞ ⇐⇒ T is left essentially Drazin invertible.
(2) T has TUD and a(T ) < ∞ ⇐⇒ T is left Drazin invertible.

Proof (1) Suppose that T has TUD for n ≥ d and that ae(T ) < ∞. From Lemma 2.1
it follows that there exists n ≥ ae(T )+1 such that R(T n) is closed. According to [23,
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Lemma 7] it follows that R(T ae(T )+1) is closed and hence T is left essentially Drazin
invertible.

The opposite inclusion is clear (see [7, p. 166 and 172]).
(2) can be proved similarly. ��
In the following two theorems we characterize upper and lower semi-B-Weyl oper-

ators.

Theorem 2.3 Let λ ∈ C, T ∈ L(X) and let T − λI have TUD for n ≥ d. Then the
following statements are equivalent:

(1) σW+(T ) does not cluster at λ;
(2) λ is not an interior point of σW+(T );
(3) σBW+(T ) does not cluster at λ;
(4) λ is not an interior point of σBW+(T );
(5) T − λI is an upper semi-B-Weyl operator.

Proof (1)�⇒(2), (3)�⇒(4) Clear.
(1)�⇒(3), (2)�⇒(4) It follows from the inclusion σBW+(T ) ⊂ σW+(T ).
(4)�⇒(5) Since T − λI has TUD for n ≥ d, from [14, Theorem 4.7] it follows

that there exists an ε > 0 such that for every μ ∈ C the following implication holds:

0 < |μ − λ| < ε �⇒
cn(T − μI ) = cd(T − λI ) and c′

n(T − μI ) = c′
d(T − λI ) for all n ≥ 0.

(2.2)

Suppose that λ is not an interior point of σBW+(T ). Then there exists μ ∈ C such
that 0 < |μ − λ| < ε and T − μI is an upper semi-B-Weyl operator. Therefore,
c′
n(T − μI ) = dim(N (T − μI ) ∩ R((T − μI )n)) < ∞ for n large enough and
according to (2.2) we obtain that c′

d(T − λI ) < ∞, and so ae(T − λI ) ≤ d.
From Lemma 2.1 it follows that R((T −λI )d) and R((T −λI )d+1) are closed. As

dim(N (T −λI )∩ R((T −λI )d)) = c′
d(T −λI ) < ∞, we have that the restriction of

T − λI to R((T − λI )d) is an upper semi-Fredholm operator. Consequently, T − λI
is an upper semi-B-Fredholm operator and since

ind(T − λI ) = dim(N (T − λI ) ∩ R((T − λI )d)

−dimR((T − λI )d)/R((T − λI )d+1)

= c′
d(T − λI ) − cd(T − λI ) = c′

n(T − μI ) − cn(T − μI )

= ind(T − μI ) ≤ 0,

it follows that T − λI is an upper semi-B-Weyl operator.
(5)�⇒(1) Suppose that T − λI is an upper semi-B-Weyl operator. Then there

exists d ∈ N0 such that T − λI has TUD for n ≥ d, and c′
d(T − λI ) = dim(N (T −

λI ) ∩ R((T − λI )d)) < ∞ and ind(T − λI ) = c′
d(T − λI ) − cd(T − λI ) ≤ 0.

For arbitrary μ ∈ C such that 0 < |μ − λ| < ε, according to (2.2) we obtain
that α(T − μI ) = c′

0(T − μI ) = c′
d(T − λI ) < ∞ and since R(T − μI ) is
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closed by [14, Theorem 4.7], we conclude that T − μI is upper semi-Fredholm with
ind(T − μI ) = c′

0(T − μI ) − c0(T − μI ) = c′
d(T − λI ) − cd(T − λI ) ≤ 0, that is

T − μI is upper semi-Weyl. Therefore, λ is not an accumulation point of σW+(T ).
��

Theorem 2.4 Let λ ∈ C, T ∈ L(X) and let T − λI have TUD for n ≥ d. Then the
following statements are equivalent:

(1) σW−(T ) does not cluster at λ;
(2) λ is not an interior point of σW−(T );
(3) σBW−(T ) does not cluster at λ;
(4) λ is not an interior point of σBW−(T ).

In particular, if T − λI is quasi-Fredholm, then the statements (1)–(4) are equiv-
alent to the following satement:

(5) T − λI is a lower semi-B-Weyl operator.

Proof (1)�⇒(2), (3)�⇒(4) Clear.
(1)�⇒(3), (2)�⇒(4) It follows from the inclusions σBW−(T ) ⊂ σW−(T ).
(4)�⇒(1) Suppose that λ is not an interior point of σBW−(T ). Since T − λI has

TUDforn ≥ d, according to [14, Theorem4.7] there exists an ε > 0 such that for every
μ ∈ C the implication (2.2) holds. From λ /∈ int σBW−(T ) it follows that there exists
μ0 ∈ C such that 0 < |μ0−λ| < ε i T −μ0 I is a lower semi-B-Weyl operator. Hence
there exists n ∈ N0 such that cn(T −μ0 I ) = dimR((T −μ0 I )n)/R((T −μ0 I )n+1) <

∞ and ind(T − μ0 I ) = c′
n(T − μ0 I ) − cn(T − μ0 I ) ≥ 0, which according to (2.2)

implies that cd(T − λI ) < ∞ and c′
d(T − λI ) − cd(T − λI ) ≥ 0. Using (2.2) again

we get that for every μ ∈ C such that 0 < |μ − λ| < ε we have that β(T − μI ) =
c0(T − μI ) = cd(T − λI ) < ∞ and hence T − μI is lower semi-Fredholm with
ind(T − μI ) = c′

0(T − μI ) − c0(T − μI ) = c′
d(T − λI ) − cd(T − λI ) ≥ 0. This

means that λ is not an accumulated point of σW−(T ).
(4)�⇒(5) Suppose that T − λI is quasi-Fredholm. Then there exists d ∈ N0 such

that R(T − λI ) + N ((T − λI )n) = R(T − λI ) + N ((T − λI )d) for all n ≥ d and
R((T − λI )d+1) is closed. So T − λI has TUD for n ≥ d. From [14, Theorem 4.7]
it follows that there exists an ε > 0 such that for every μ ∈ C the implication (2.2)
holds.

Further, suppose that λ /∈ int σBW−(T ). Then there exists μ ∈ C such that 0 <

|μ − λ| < ε and T − μI is a lower semi-B-Weyl operator. Therefore,

cn(T − μI ) = dim(R((T − μI )n)/R((T − μI )n+1) < ∞ for n large enough,

and according to (2.2) we obtain that cd(T −λI ) < ∞. As R((T −λI )d+1) is closed,
from [23, Lemma 12], we conclude that R((T − λI )d) is closed. Since

dim(R((T − λI )d)/R((T − λI )d+1) = cd(T − λI ) < ∞,

we have that the restriction of T − λI to R((T − λI )d) is a lower semi-Fredholm
operator. Therefore, T − λI is a lower semi-B-Fredholm operator and, as in the proof
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of the implication (4)�⇒(5) in Theorem 2.3, we conclude that ind(T −λI ) = ind(T −
μI ) ≥ 0. Consequently, T − λI is a lower semi-B-Weyl operator.

(5)�⇒(1) Suppose that T − λI is a lower semi-B-Weyl operator. Then there is
d ∈ N0 such that T − λI has TUD for n ≥ d and hence there exists an ε > 0 such
that for every μ ∈ C the implication (2.2) holds. Also we have that

cd(T − λI ) = dim(R((T − λI )d)/R((T − λI )d+1) < ∞

and

0 ≤ ind(T − λI ) = c′
d(T − λI ) − cd(T − λI ).

For arbitrary μ ∈ C such that 0 < |μ − λ| < ε, according to (2.2), we obtain that
β(T − μI ) = c0(T − μI ) = cd(T − λI ) < ∞ and ind(T − μI ) = c′

0(T − μI ) −
c0(T − μI ) = c′

d(T − λI ) − cd(T − λI ) ≥ 0, which implies that T − μI is a lower
semi-Weyl operator. Consequently, λ is not an accumulation point of σW−(T ). ��
Theorem 2.5 Let λ ∈ C, T ∈ L(X) and let T − λI have TUD for n ≥ d. Then the
following statements are equivalent:

(1) σW (T ) does not cluster at λ;
(2) λ is not an interior point of σW (T );
(3) σBW (T ) does not cluster at λ;
(4) λ is not an interior point of σBW (T );
(5) T − λI is a B-Weyl operator.

Proof (4)�⇒(5) Suppose that λ /∈ int σBW (T ) and that T − λI has TUD for n ≥ d.
According to [14, Theorem 4.7] there exists an ε > 0 such that for every μ ∈ C

the implication (2.2) holds. From λ /∈ int σBW (T ) it follows that there exists μ ∈ C

such that 0 < |μ − λ| < ε and T − μI is a B-Weyl operator. Therefore, for n large
enough we have that cn(T − μI ) = dim(R((T − μI )n)/R((T − μI )n+1)) < ∞,
c′
n(T−μI ) = dim(N (T−μI )∩R((T−μI )n)) < ∞ and 0 = ind(T−μI ) = c′

n(T−
μI )−cn(T −μI ). According to (2.2) we obtain that cd(T −λI ) = c′

d(T −λI ) < ∞,
that is

dim(N (T − λI ) ∩ R((T − λI )d)) = dim(R((T − λI )d)/R((T − λI )d+1)) < ∞.

It means that the restriction of T −λI to R((T −λI )d) is a Weyl operator. Therefore,
T − λI is a B-Weyl operator.

The implication (5)�⇒(1) follows from Theorems 2.3 and 2.4. ��
We need the following well-known results (see [23], [9, Remark A (iii)], [6, Propo-

sition 3.1], [12, Corollary 1.3], [13, Corollary 2.5], [14, Theorem 4.7 and Corollary
4.8], [1, Corollary 1.45]).

Proposition 2.6 For T ∈ L(X) the set σ∗(T ) is compact, where σ∗ ∈ {σD, σLD, σ e
LD,

σBW , σB�, σBW+ , σdsc, σ
e
dsc, σRD, σ e

RD, σBW− , σKt , σq�, σTUD}.
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Corollary 2.7 Let T ∈ L(X). Then

(1) σBW+(T ) = σTUD(T ) ∪ int σ∗(T ) = σTUD(T ) ∪ acc σ∗(T ),
for σ∗ ∈ {σW+ , σBW+};

(2) σBW−(T ) = σq�(T ) ∪ int σ∗(T ) = σq�(T ) ∪ acc σ∗(T );
for σ∗ ∈ {σW− , σBW−};

(3) σBW (T ) = σTUD(T ) ∪ int σ∗(T ) = σTUD(T ) ∪ acc σ∗(T );
for σ∗ ∈ {σW , σBW }.

(4) int σW∗(T ) = int σBW∗(T ), forW∗ ∈ {W+,W−,W};
(5) ∂ σBW∗(T ) ⊂ ∂ σW∗(T ), forW∗ ∈ {W+,W−,W};
(6) σW+(T )\σBW+(T ) = (iso σW+(T ))\σTUD(T ),

σW−(T )\σBW−(T ) = (iso σW−(T ))\σqF (T ),
σW (T )\σBW (T ) = (iso σW (T ))\σTUD(T );

(7) σW∗(T )\σBW∗(T ), where W∗ ∈ {W+,W−,W}, consists of at most countably
many isolated points.

Proof (1) Let σ∗ ∈ {σW+ , σBW+}. From Theorem 2.3 it follows that T − λI is upper
semi-Weyl if and only if T − λI has TUD and λ is not an interior point of σ∗(T ), that
is there is the following equality:

σBW+(T ) = σTUD(T ) ∪ int σ∗(T ). (2.3)

Also from Theorem 2.3 it follows that T − λI is upper semi-Weyl if and only if
T − λI has TUD and λ is not an accumulation point of σ∗(T ), which implies that
σBW+(T ) = σTUD(T ) ∪ acc σ∗(T ).

The equalities in (2) and (3) follow from Theorems 2.4 and 2.5, respectively.
(4) For W∗ ∈ {W+,W−,W}, from (1), (2) and (3) it follows that int σW∗(T ) ⊂

σBW∗(T ) and hence, int σW∗(T ) ⊂ int σBW∗(T ). The converse inclusion follows
from the inclusion σBW∗(T ) ⊂ σW∗(T ).

(5) Since σBW∗(T ) is closed (Proposition 2.6), we have that ∂ σBW∗(T ) ⊂
σBW∗(T ). As σBW∗(T ) ⊂ σW∗(T ) and σW∗(T ) = ∂ σW∗(T ) ∪ int σW∗(T ) since
σW∗(T ) is also closed, from (4) it follows that ∂ σBW∗(T ) ⊂ ∂ σW∗(T ).

(6) Let λ ∈ σW+(T )\σBW+(T ). From (1) we get that λ /∈ acc σW+(T ) and hence,
λ ∈ iso σW+(T ). As λ /∈ σBW+(T ), it follows that λ /∈ σTUD(T ) and so, λ ∈
(iso σW+(T ))\σTUD(T ).

Suppose that λ ∈ (iso σW+(T ))\σTUD(T ). Then λ ∈ σW+(T ), λ /∈ acc σW+(T )

and T − λI has TUD. According to Theorem 2.3 we get that T − λI is upper semi-
B-Weyl and thus, λ ∈ σW+(T )\σBW+(T ).

The rest of equalities can be proved similarly.
(7) follows from (6). ��
In the following theoremwe characterize left essentiallyDrazin invertible operators,

that is, upper semi-B-Fredholm operators.

Theorem 2.8 Let λ ∈ C, T ∈ L(X) and let T − λI have TUD for n ≥ d. Then the
following statements are equivalent:

(1) σ�+(T ) does not cluster at λ;
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(2) λ is not an interior point of σ�+(T );
(3) σ e

LD(T ) does not cluster at λ;
(4) λ is not an interior point of σ e

LD(T );
(5) ae(T − λI ) < ∞;
(6) T − λI is left essentially Drazin invertible.

Proof (1)�⇒(2), (3)�⇒(4) Obvious.
(1)�⇒(3), (2)�⇒(4) It follows from the inclusions σ e

LD(T ) ⊂ σ�+(T ).
(4)�⇒(5) Suppose that λ is not an interior point of σ e

LD(T ). Since T − λI has
TUD for n ≥ d, according to [14, Theorem 4.7] there exists an ε > 0 such that if
0 < |λ − μ| < ε we have that

c′
n(T − μI ) = c′

d(T − λI ) for all n ≥ 0. (2.4)

Since λ /∈ int σ e
LD(T ), there is μ ∈ C such that 0 < |μ − λ| < ε and T − μI is left

essentiallyDrazin invertible. Thus ae(T −μI ) < ∞, which implies that c′
n(T −μI ) <

∞ for some n ∈ N0. According to (2.4) we conclude that c′
d(T −λI ) < ∞ and hence

ae(T − λI ) ≤ d.
(5)�⇒(6) It follows from Lemma 2.2 (1).
(6)�⇒(5) It is obvious.
(5)�⇒(1) Let ae(T − λI ) < ∞. Since T − λI has TUD, from [14, Corolary 4.8

(f)] we get that there is an ε > 0 such that for every μ ∈ C, from 0 < |λ − μ| < ε it
follows that T −μI is upper semi-Fredholm. This means that λ is not an accumulation
points of σ�+(T ). ��

We need the following result.

Proposition 2.9 [7, Proposition 3.4] Let T ∈ L(X). Then

(1) T is quasi-Fredholm and δ(T ) < ∞ ⇐⇒ T is right Drazin invertible.
(2) T is quasi-Fredholm and δe(T ) < ∞ ⇐⇒ T is right essentially Drazin invertible.

Example 2.10 Let H be a Hilbert space with an orthonormal basis {ei j }∞i, j=1 and let
the operator T defined by:

T ei, j =
⎧
⎨

⎩

0 if j = 1,
1
i ei,1, if j = 2
ei, j−1, otherwise

It is easily seen that R(T ) = R(T 2) and R(T ) is not closed. Hence R(T n) is
not closed for all n ≥ 1 and so T is neither a right Drazin invertible operator nor
a right essentially Drazin invertible operator. However, since R(T ) = R(T 2), then
T has uniform descent for n ≥ 1 and N (T ) + R(T ) = X . Hence N (T ) + R(T ) is
closed and from [14, Theorem 3.2] it follows that T has TUD for n ≥ 1. We remark
that finite descent or finite essential descent of a bounded operator imply that it has
TUD but does not imply closeness of ranges of its powers. So, T is an operator with
δ(T ) = δe(T ) < ∞ which hence has TUD, but T is neither right Drazin invertible
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nor right essentially Drazin invertible and this shows that the condition that T is quasi-
Fredholm in the assertions (1) and (2) in Proposition 2.9 can neither be omitted nor
replaced by a weaker condition that T has TUD.

In the following theoremwe give some characterizations of right essentially Drazin
invertible, that is, lower semi-B-Fredholm operators.

Theorem 2.11 Let λ ∈ C, T ∈ L(X) and let T − λI have TUD for n ≥ d. Then the
following statements are equivalent:

(1) σ�−(T ) does not cluster at λ;
(2) λ is not an interior point of σ�−(T );
(3) σ e

RD(T ) does not cluster at λ;
(4) λ is not an interior point of σ e

RD(T );
(5) σ e

dsc(T ) does not cluster at λ;
(6) λ is not an interior point of σ e

dsc(T );
(7) δe(T − λI ) < ∞.

In particular, if T − λI is quasi-Fredholm then the statements (1)–(7) are equiv-
alent to the following satement:

(8) T − λI is right essentially Drazin invertible.

Proof (1)�⇒(2), (3)�⇒(4), (5)�⇒(6) Obvious.
(1)�⇒(3)�⇒(5), (2)�⇒(4)�⇒(6) It follows from the inclusions σ e

dsc(T ) ⊂
σ e
RD(T ) ⊂ σ�−(T ).
(6)�⇒(7) Suppose that λ is not an interior point of σ e

dsc(T ). Since T −λI has TUD
for n ≥ d, by [14, Theorem 4.7] there exists an ε > 0 such that for every μ ∈ C,
from 0 < |λ − μ| < ε it follows that cn(T − μI ) = cd(T − λI ) for all n ≥ 0. Since
λ /∈ int σ e

dsc(T ), there is μ ∈ C such that 0 < |μ − λ| < ε and δe(T − μI ) < ∞.
This implies that cd(T − λI ) < ∞ and hence δe(T − λI ) ≤ d.

(7)�⇒(1) Let δe(T − λI ) < ∞. Then T − λI has TUD and from [14, Corolary
4.8 (g)] it follows that there is an ε > 0 such that if 0 < |λ − μ| < ε we have that
T − μI is lower semi-Fredholm. This means that λ is not an accumulation points of
σ�−(T ).

Under assumption that T − λI is quasi-Fredholm, the equivalence (7)⇐⇒(8) fol-
lows from Proposition 2.9 (2). ��
Theorem 2.12 Let λ ∈ C, T ∈ L(X) and let T − λI have TUD for n ≥ d. Then the
following statements are equivalent:

(1) σ�(T ) does not cluster at λ;
(2) λ is not an interior point of σ�(T );
(3) σB�(T ) does not cluster at λ;
(4) λ is not an interior point of σB�(T );
(5) T − λI is a B-Fredholm operator.

Proof (4)�⇒(5): It can be proved similarly to the proof of the implication (4)�⇒(5)
in Theorem 2.5.

(5)�⇒(1) It follows from Theorems 2.8 and 2.11. ��
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Corollary 2.13 Let T ∈ L(X). Then

(1) σ e
LD(T ) = σTUD(T ) ∪ int σ∗(T ) = σTUD(T ) ∪ acc σ∗(T ),

where σ∗ ∈ {σ�+ , σ e
LD};

(2) σ e
dsc(T ) = σTUD(T ) ∪ int σ∗(T ) = σTUD(T ) ∪ acc σ∗(T ),

where σ∗ ∈ {σ�− , σ e
RD, σ e

dsc};
(3) σ e

RD(T ) = σq�(T ) ∪ int σ∗(T ) = σq�(T ) ∪ acc σ∗(T ),

where σ∗ ∈ {σ�− , σ e
RD, σ e

dsc};
(4) σB�(T ) = σTUD(T ) ∪ int σ∗(T ) = σTUD(T ) ∪ acc σ∗(T ),

where σ∗ ∈ {σ�, σB�};
(5) int σ�+(T ) = int σ e

LD(T ),
int σ�−(T ) = int σ e

RD(T ) = int σ e
dsc(T ), int σ�(T ) = int σB�(T );

(6) ∂ σ e
LD(T ) ⊂ ∂ σ�+(T ),

∂ σ e
dsc(T ) ⊂ ∂ σ e

RD(T ) ⊂ ∂ σ�−(T ),
∂ σB�(T ) ⊂ ∂ σ�(T );

(7) σ�+(T )\σ e
LD(T ) = (iso σ�+(T ))\σTUD(T ),

σ�−(T )\σ e
dsc(T ) = (iso σ�−(T ))\σTUD(T ),

σ�−(T )\σ e
RD(T ) = (iso σ�−(T ))\σqF (T ),

σ�(T )\σB�(T ) = (iso σ�(T ))\σTUD(T );
(8) σ�+(T )\σ e

LD(T ), σ�−(T )\σ e
dsc(T ), σ�−(T )\σ e

RD(T ), σ�(T )\σB�(T ) are at
most countable.

Proof (1) follows from Theorem 2.8, (2) and (3) follow from Theorem 2.11 and (4)
follows from Theorem 2.12. (5) and (7) follow from (1), (2), (3) and (4), while (6)
follows from (5) and Proposition 2.6. (8) follows from (7). ��

Further we focus to left and right Drazin invertible operators. Jiang et al. proved
that if λ ∈ C, T ∈ L(X) and T −λI has TUD for n ≥ d, then the following statements
are equivalent (see [19, Theorem 3.2] and the proof of this theorem):

(1) T − λI is left Drazin invertible;
(2) a(T − λI ) < ∞;
(3) σap(T ) does not cluster at λ;
(4) λ is not an interior point of σap(T ),

while M. Berkani, N. Castro and S.V. Djordjević proved in [11, Theorem 2.5] that,
under the same condition that T − λI has TUD, σp(T ) does not cluster at λ if and
only if a(T − λI ) < ∞. In the following theorem we add some characterisations of
left Drazin invertible operators.

Theorem 2.14 Let λ ∈ C, T ∈ L(X) and let T − λI have TUD for n ≥ d. Then the
following statements are equivalent:

(1) λ is not an interior point of σp(T );
(2) σB+(T ) does not cluster at λ;
(3) λ is not an interior point of σB+(T );
(4) σLD(T ) does not cluster at λ;
(5) λ is not an interior point of σLD(T );
(6) T − λI is left Drazin invertible.
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Proof (2)�⇒(3), (4)�⇒(5) It is obvious.
(2)�⇒(4), (3)�⇒(5) It follows from the inclusion σLD(T ) ⊂ σB+(T ).
(1)�⇒(6) Suppose that λ is not an interior point of σp(T ). Since T −λI has TUD,

from [14, Corolary 4.8 (d)] it follows that a = a(T −λI ) < ∞. Now from Lemma 2.2
(2) we get that T − λI is a left Drazin invertible operator.

(5)�⇒(6) Suppose that λ is not an interior point of σLD(T ). As T − λI has
TUD, according to [14, Corolary 4.8, (a)] we conclude that a(T − λI ) < ∞ and
by Lemma 2.2 (2) T − λI is left Drazin invertible.

(6)�⇒(2) It follows from the implication (6)�⇒(5) in [19, Theorem 3.2].
(6)�⇒(1) It follows from [11, Theorem 2.5]. ��
Jiang et al. in [19, Theorem 3.4] proved that if λ ∈ C, T ∈ L(X) and T − λI has

TUD for n ≥ d, then the following statements are equivalent:

(1) σsu(T ) does not cluster at λ;
(2) λ is not an interior point of σsu(T );
(3) δ(T − λI ) < ∞.

In the following theorem we add some statements equivalent to those ones in [19,
Theorem 3.4].

Theorem 2.15 Let λ ∈ C, T ∈ L(X) and let T − λI have TUD for n ≥ d. Then the
following statements are equivalent:

(1) σcp(T ) does not cluster at λ;
(2) λ is not an interior point of σcp(T );
(3) σB−(T ) does not cluster at λ;
(4) λ is not an interior point of σB−(T );
(5) σRD(T ) does not cluster at λ;
(6) λ is not an interior point of σRD(T );
(7) σdsc(T ) does not cluster at λ;
(8) λ is not an interior point of σdsc(T );
(9) δ(T − λI ) < ∞.

In particular, if T −λI is quasi-Fredholm, then the statements (1)–(7) are equiv-
alent to the following satement:

(10) T − λI is right Drazin invertible.

Proof (1)�⇒(2), (3)�⇒(4), (5)�⇒(6), (7)�⇒(8) Obvious.
(3)�⇒(5)�⇒(7), (4)�⇒(6)�⇒(8) It follows from the inclusions σdsc(T ) ⊂

σRD(T ) ⊂ σB−(T ).
(2)�⇒(1), (2)�⇒(3) Suppose that λ is not an interior point of σcp(T ). Since T −λI

has TUD for n ≥ d, from [14, Theorem 4.7] we have that there is an ε > 0 such that
if 0 < |λ − μ| < ε it follows that R(T − μI ) is closed and

cn(T − μI ) = cd(T − λI ) for all n ∈ N0. (2.5)

From λ /∈ int σcp(T ) it follows that there exists μ0 ∈ C such that 0 < |λ − μ0| < ε

and T −μ0 I has dense range. As R(T −μ0 I ) is closed, it implies that T −μ0 I is onto
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and hence cn(T −μ0 I ) = 0 for all n ∈ N0. Consequently, cd(T −λI ) = 0 and hence
for all μ ∈ C such that 0 < |λ − μ| < ε we have that β(T − μI ) = c0(T − μI ) = 0,
i.e. T − μI is surjective, which means that λ /∈ acc σcp(T ) and λ /∈ acc σB−(T ).

(8)�⇒(9) Suppose that λ is not an interior point of σdsc(T ). Since T − λI has
TUD for n ≥ d, from [14, Theorem 4.7] we have that there is an ε > 0 such that if
0 < |λ − μ| < ε, then the equalities (2.5) hold. From λ /∈ int σdsc(T ) we have that
there exists μ0 ∈ C such that 0 < |λ − μ0| < ε and δ(T − μ0 I ) < ∞. So there
is n ∈ N0 such that cn(T − μ0 I ) = 0 and hence, according to (2.5), it follows that
cd(T − λI ) = 0. Thus δ(T − λI ) < ∞.

(9)�⇒(1) It follows from [14, Corollary 4.8 (c)].
Under assumption that T − λI is quasi-Fredholm, the equivalence (9)⇐⇒(10)

follows from Proposition 2.9 (1). ��
Remark 2.16 Since the operator T in Example 2.10 has the finite descent, then accord-
ing to [14, Theorem 4.7 and Corollary 4.8] there exists an ε > 0 such that for μ ∈ C

from 0 < |μ| < ε it follows that δ(T − μI ) = 0, i.e. T − μI is surjective. This
means that 0 is not an accumulation point of σsu(T ), as well as σ�−(T ), σW−(T ),
σRD(T ), σBW−(T ) and σ e

RD(T ). As for every n ∈ N, R(T n) = R(T ) is not closed,
then T is neither a lower semi-Fredholm nor a lower semi-B-Weyl operator, and as
we have already mentioned T is neither right Drazin invertible nor right essentially
Drazin invertible. This means that the condition that T − λI is quasi-Fredholm in
Theorems 2.4, 2.8 and 2.15 can not be replaced by a weaker condition that T − λI
has TUD.

The next theorem follows immediately from [19, Theorems 3.2 and 3.4] and The-
orems 2.14 and 2.15.

Theorem 2.17 Let λ ∈ C, T ∈ L(X) and let T − λI have TUD for n ≥ d. Then the
following statements are equivalent:

(1) σ(T ) does not cluster at λ;
(2) λ is not an interior point of σ(T );
(3) σB(T ) does not cluster at λ;
(4) λ is not an interior point of σB(T );
(5) σD(T ) does not cluster at λ;
(6) λ is not an interior point of σD(T );
(7) T − λI is Drazin invertible.

Corollary 2.18 Let T ∈ L(X). Then

(1) σLD(T ) = σTUD(T ) ∪ int σ∗(T ) = σTUD(T ) ∪ acc σ∗(T ),

where σ∗ ∈ {σp, σap, σB+ , σLD};
(2) σdsc(T ) = σTUD(T ) ∪ int σ∗(T ) = σTUD(T ) ∪ acc σ∗(T ),

where σ∗ ∈ {σsu, σcp, σB− , σRD, σdsc};
(3) σRD(T ) = σq�(T ) ∪ int σ∗(T ) = σq�(T ) ∪ acc σ∗(T ),

where σ∗ ∈ {σsu, σcp, σB− , σRD, σdsc};
(4) σD(T ) = σTUD(T ) ∪ int σ∗(T ) = σTUD(T ) ∪ acc σ∗(T ),

where σ∗ ∈ {σ, σB, σD};
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(5) int σap(T ) = int σB+(T ) = int σLD(T ),
int σsu(T ) = int σB−(T ) = int σRD(T ) = int σdsc(T ),
int σ(T ) = int σB(T ) = int σD(T );

(6) ∂ σLD(T ) ⊂ ∂ σB+(T ) ⊂ ∂ σap(T ),
∂ σdsc(T ) ⊂ ∂ σRD(T ) ⊂ ∂ σB−(T ) ⊂ ∂ σsu(T ),
∂ σD(T ) ⊂ ∂ σB(T ) ⊂ ∂ σ(T );

(7) σ∗(T )\σLD(T ) = (iso σ∗(T ))\σTUD(T ) for σ∗ ∈ {σap, σB+},
σ∗(T )\σdsc(T ) = (iso σ∗(T ))\σTUD(T ) for σ∗ ∈ {σsu, σB− , σRD},
σ∗(T )\σRD(T ) = (iso σ∗(T ))\σqF (T ) for σ∗ ∈ {σsu, σB− , σdsc},
σ∗(T )\σD(T ) = (iso σ∗(T ))\σTUD(T ) for σ∗ ∈ {σ, σB}.

Proof It follows from Theorems 2.14 and 2.15, [19, Theorem 3.2], [11, Theorem 2.5],
Theorem 2.17 and Proposition 2.6, similarly to the proof of Corollary 2.7. ��

We remark that from [7, Lemma 3.1] it follows that

BRa
4 = Ra

4, BRa
5 = Ra

5 . (2.6)

Now we can formulate a general assertion:

Theorem 2.19 Let T ∈ L(X).

(1) If R ∈ {R1,R2,R3,R4,R5,W−(X)}, then

T ∈ BR ⇐⇒ T is quasi − Fredholm ∧ 0 /∈ acc σR(T )

⇐⇒ T is quasi − Fredholm ∧ 0 /∈ int σR(T ).

If R ∈ {R6,R7,R8,R9,R10,Ra
4,R

a
5,W+(X),W(X),�(X),B(X), L(X)−1},

then

T ∈ BR ⇐⇒ T has TUD ∧ 0 /∈ acc σR(T )

⇐⇒ T has TUD ∧ 0 /∈ int σR(T ).

(2) If R ∈ {R1,R2,R4,R6,R7,R9} ∪ {W+(X),W−(X),W(X),�(X),B(X),

L(X)−1}, then

int σR(T ) = int σBR(T ),

∂ σBR(T ) ⊂ ∂ σR(T )

and σR(T )\σBR(T ) consists of at most countably many isolated points.

3 Boundaries and Connected Hulls of Corresponding Spectra

The connected hull of a compact subset K of the complex plane C, denoted by ηK , is
the complement of the unbounded component of C\K [16, Definition 7.10.1]. Given
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a compact subset K of the plane, a hole of K is a bounded component of C\K , and
so a hole of K is a component of ηK\K .

We shall need the following well-known result (see [17, Theorems 1.2, 1.3], [16,
Theorems 7.10.2, 7.10.3]).

Proposition 3.1 Let K , H ⊂ C be compact and let

∂K ⊂ H ⊂ K .

Then

∂K ⊆ ∂H ⊆ H ⊆ K ⊆ ηK = ηH .

If 
 is a component of C\H, then 
 ⊂ K or 
 ∩ K = ∅.
The set K can be obtained from H by filling in some holes of H.

Remark 3.2 If K ⊆ C is at most countable, then ηK = K . Therefore, for com-
pact subsets H , K ⊆ C, if ηK = ηH , then H is finite (countable) if and only if
K is finite (countable), and in that case H = K . Particulary, for compact subsets
H , K ⊆ C, if ηK = ηH , then K is empty if and only if H is empty.

Corollary 3.3 Let T ∈ L(X).

(1) ∂σ∗(T ) ⊂ ∂σTUD(T ), where σ∗ ∈ {σBW+ , σBW , σ e
LD, σ e

dsc, σB�, σLD, σdsc,

σD};
(2) ∂σ∗(T ) ⊂ ∂σq�(T ), where σ∗ ∈ {σBW− , σRD, σ e

RD}.
Proof Since σBW+(T ) is closed (Proposition 2.6), it follows that ∂σBW+(T ) ⊂
σBW+(T ). Hence, by using Corollary 2.7 (1), we obtain that

∂σBW+(T ) = ∂σBW+(T ) ∩ σBW+(T ) = ∂σBW+(T ) ∩ σTUD(T ) ⊂ σTUD(T ).

Now from ∂σBW+(T ) ⊂ σTUD(T ) ⊂ σBW+(T ), according to Proposition 3.1, it
follows that ∂σBW+(T ) ⊂ ∂σTUD(T ).

Similarly for the rest of inclusions. ��
It is known that [1, Theorem 1.65 (i)]

∂σ�(T ) ∩ acc σ�(T ) ⊂ σKt (T ).

We remark that it holds more than this: ∂σ�(T ) ∩ acc σ�(T ) ⊂ ∂σTUD(T ) (see
Corollary 3.5 (5)).

Further we establish the inclusions of the similar type for other essential spectra.

Corollary 3.4 Let T ∈ L(X). Then

(1) ∂σW+(T ) ∩ acc σW+(T ) ⊂ ∂σW+(T ) ∩ σBW+(T ) ⊂ ∂σTUD(T );
(2) ∂σW−(T ) ∩ acc σW−(T ) ⊂ ∂σTUD(T );
(3) ∂σBW−(T ) ∩ acc σBW−(T ) ⊂ ∂σBW−(T ) ∩ acc σW−(T ) ⊂ ∂σTUD(T );
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(4) ∂σW (T ) ∩ acc σW (T ) ⊂ ∂σW (T ) ∩ σBW (T ) ⊂ ∂σTUD(T ).

Proof (1) By using the first equality in Corollary 2.7 (1) we get

∂σW+(T ) ∩ σBW+(T ) = ∂σW+(T ) ∩ (σTUD(T ) ∪ int σW+(T ))

= ∂σW+(T ) ∩ σTUD(T ),

and therefore
∂σ�+(T ) ∩ σBW+(T ) ⊂ σTUD(T ). (3.1)

Let λ ∈ ∂σW+(T )∩σBW+(T ). Then there exists a sequence (λn) which converges
to λ and such that T − λn is upper semi-Weyl for every n ∈ N. As T − λn is upper
semi-Fredholm, then it has TUD and so λn /∈ σTUD(T ), n ∈ N. As (λn) converges to
λ and since λ ∈ σTUD(T ) according to (3.1), we get that λ ∈ ∂σTUD(T ). Therefore,
∂σW+(T ) ∩ σBW+(T ) ⊂ ∂σTUD(T ).

Further, from the second equality in Corollary 2.7 (1) it follows that

∂σW+(T ) ∩ acc σW+(T ) ⊂ ∂σW+(T ) ∩ σBW+(T ).

(2) Let T−λI haveTUDand letλ ∈ ∂σW−(T ). Sinceλ /∈ int σW−(T ), according to
Theorem2.4weconclude thatλ /∈ acc σW−(T ). Therefore, ∂σW−(T )∩acc σW−(T ) ⊂
σTUD(T ). Now proceeding as in the proof of (1) we get ∂σW−(T ) ∩ acc σW−(T ) ⊂
∂σTUD(T ).

(3) Suppose that T −λI has TUD and λ ∈ ∂σBW−(T ). FromTheorem 2.3 it follows
that λ /∈ acc σW−(T ). Thus ∂σBW−(T ) ∩ acc σW−(T ) ⊂ σTUD(T ). As in the proof
of (1), we obtain that

∂σBW−(T ) ∩ acc σW−(T ) ⊂ ∂σTUD(T ).

From σBW−(T ) ⊂ σW−(T ) it follows that acc σBW−(T ) ⊂ acc σW−(T ), which
implies the first inclusion in (3).

(4) Similarly to the proof of (1) by using Corollary 2.7 (3). ��
Corollary 3.5 Let T ∈ L(X).

(1) ∂σ�+(T ) ∩ acc σ�+(T ) ⊂ ∂σ�+(T ) ∩ σ e
LD(T ) ⊂ ∂σTUD(T );

(2) ∂σ�−(T ) ∩ acc σ�−(T ) ⊂ ∂σ�−(T ) ∩ σ e
dsc(T ) ⊂ ∂σTUD(T );

(3) ∂σ e
RD(T ) ∩ acc σ e

RD(T ) ⊂ ∂σ e
RD(T ) ∩ acc σ�−(T ) ⊂ ∂σ e

RD(T ) ∩ σ e
dsc(T ) =

∂σ e
RD(T ) ∩ σTUD(T ) ⊂ ∂σTUD(T );

(4) ∂σ�−(T ) ∩ σ e
RD(T ) = ∂σ�−(T ) ∩ σq�(T ) ⊂ ∂σq�(T );

(5) ∂σ�(T ) ∩ acc σ�(T ) ⊂ ∂σ�(T ) ∩ σB�(T ) ⊂ ∂σTUD(T ).

Proof It follows from Corollary 2.13, similarly to the proof of Corollary 3.4. ��
Corollary 3.6 Let T ∈ L(X). Then

(1) ∂σap(T ) ∩ acc σap(T ) ⊂ ∂σap(T ) ∩ σLD(T ) ⊂ ∂σTUD(T );
(2) ∂σB+(T ) ∩ acc σB+(T ) ⊂ ∂σB+(T ) ∩ σLD(T ) ⊂ ∂σTUD(T );
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(3) ∂σp(T ) ∩ acc σp(T ) ⊂ ∂σp(T ) ∩ σLD(T ) ⊂ σTUD(T );
(4) ∂σsu(T ) ∩ acc σsu(T ) ⊂ ∂σsu(T ) ∩ σdsc(T ) ⊂ ∂σTUD(T );
(5) ∂σcp(T ) ∩ acc σcp(T ) ⊂ ∂σcp(T ) ∩ σdsc(T ) ⊂ σTUD(T );
(6) ∂σB−(T ) ∩ acc σB−(T ) ⊂ ∂σB−(T ) ∩ σdsc(T ) ⊂ ∂σTUD(T );
(7) ∂σRD(T ) ∩ acc σRD(T ) ⊂ ∂σRD(T ) ∩ σdsc(T ) = ∂σRD(T ) ∩ σTUD(T ) ⊂

∂σTUD(T );
(8) ∂σsu(T ) ∩ σRD(T ) ⊂ ∂σq�(T );
(9) ∂σcp(T ) ∩ σRD(T ) = ∂σcp(T ) ∩ σq�(T ) ⊂ σq�(T );
(10) ∂σ(T ) ∩ acc σ(T ) ⊂ ∂σ(T ) ∩ σD(T ) ⊂ ∂σTUD(T );
(11) ∂σB(T ) ∩ acc σB(T ) ⊂ ∂σB(T ) ∩ σD(T ) ⊂ ∂σTUD(T ).

Proof It follows from Corollary 2.18. ��
Remark 3.7 For the operator T in Example 2.10, from Remark 2.16, we can conclude
that 0 ∈ ∂σ∗(T ) where σ∗ ∈ {σsu, σ�− , σW− , σRD, σBW− , σ e

RD}. As T has TUD, we
have that 0 /∈ σTUD(T ). So, in the inclusions (2) in Corollary 3.3, as well as in the
inclusion (4) in Corollary 3.5, and in the inclusion (8) in Corollary 3.6, σq�(T ) can
not be replaced by σTUD(T ).

In the proof of the next theorem we use the following inclusions:

σ e
LD(T ) ⊂ σBW+(T ) ⊂ σLD(T )

⊂ ⊂ ⊂ ⊂
σTUD(T ) ⊂ σq�(T ) ⊂ σKt (T ) ⊂ σB�(T ) ⊂ σBW (T ) ⊂ σD(T ).

⊂ ⊂ ⊂ ⊂
⊂ σ e

RD(T ) ⊂ σBW−(T ) ⊂ σRD(T )

⊂ ⊂
σ e
dsc(T ) ⊂ σdsc(T )

Theorem 3.8 Let T ∈ L(X). Then

1.

∂σLD(T ) ⊂ ∂σBW+(T ) ⊂ ∂σ e
LD(T )

⊂ ⊂ ⊂ ⊂
∂σD(T ) ⊂ ∂σBW (T ) ⊂ ∂σB�(T ) ⊂ ∂σTUD(T ),

⊂ ⊂ ⊂
∂σdsc(T ) ⊂ ∂σ e

dsc(T )

∂σLD(T ) ⊂ ∂σBW+(T ) ⊂ ∂σ e
LD(T )

⊂ ⊂ ⊂ ⊂
∂σD(T ) ⊂ ∂σBW (T ) ⊂ ∂σB�(T ) ⊂ ∂σq�(T ),

⊂ ⊂ ⊂ ⊂
∂σRD(T ) ⊂ ∂σBW−(T ) ⊂ ∂σ e

RD(T )

∂σD(T ) ⊂ ∂σBW (T ) ⊂ ∂σB�(T ) ⊂ ∂σKt (T ).
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2.

ησTUD(T ) = ησq�(T ) = ησKt (T ) = ησB�(T ) = ησBW (T ) = ησD(T )

= ησ e
LD(T ) = ησBW+(T ) = ησLD(T )

= ησ e
RD(T ) = ησBW−(T ) = ησRD(T )

= ησ e
dsc(T ) = ησdsc(T ).

3. The set σD(T ) consists of σ∗(T ) and possibly some holes in σ∗(T ) where σ∗ ∈
{σq�, σKt , σB�, σBW , σ e

LD, σBW+ , σLD, σ e
RD, σBW− , σRD, σ e

dsc, σdsc}.
Proof It follows from Proposition 3.1, the previous inclusions, Proposition 2.6 and
Corollary 3.3. ��
FromTheorem 3.8 andRemark 3.2 it follows that if one of σTUD(T ), σq�(T ), σKt (T ),
σB�(T ),σBW (T ),σD(T ),σ e

LD(T ),σBW+(T ),σLD(T ),σ e
RD(T ),σBW−(T ),σRD(T ),

σ e
dsc(T ) and σdsc(T ) is finite (countable), then all of them are equal and therefore finite

(countable). This result is already obtained in [20, Corollary 3.4], but our method of
proofing is different.

Example 3.9 Let Q : �2(N) → �2(N) be the operator defined by

Q(ξ1, ξ2, ξ3, . . .) =
(

0, ξ1,
1

2
ξ2,

1

3
ξ3, . . .

)

, (ξ1, ξ2, ξ3, . . .) ∈ �2(N).

From limn→∞ ||Qn|| 1n = limn→∞( 1
n! )

1
n = 0 we see that Q is quasinilpotent. It

follows that 0 is not an accumulation point of σR(Q) for R ∈ {Ri : 1 ≤ i ≤
10}∪{Ra

4,R
a
5}∪{W+(X),W−(X),W(X),�(X),B(X), L(X)−1}. As Q is the limit

of finite rank operators, Q is compact. Since Qn is compact and R(Qn) is infinite
dimensional, we conclude that R(Qn) is not closed for every n ∈ N. Therefore, Q is
not quasi-Fredholm and so, 0 ∈ σqF (Q) ⊂ σ(Q) = {0}. Thus σqF (Q) = {0}, which
implies that σTUD(Q) = {0}, that is Q does not have TUD. It means that the condition
that T has TUD can not be omitted in Theorems 2.3, 2.5, 2.8, 2.11, 2.12, 2.14, 2.15,
2.17, and 2.19. Also, the condition that T is quasi-Fredholm can not be omitted in
Theorems 2.3, 2.8, 2.15, and 2.19.

Remark 3.10 Similar results can get for the Jeribi essential spectrum of operators
defined on a Banach space which has no reflexive infinite dimensional subspace.

The Jeribi essential spectrum is defined for T ∈ L(X) by

σ j (T ) =
⋂

K∈W∗(X)

σ (T + K ),

whereW∗(X) denotes the set of all weakly compact operators on a Banach X (see the
definition and some properties in [5,18]). Obviously, σ j (T ) is compact and

σ j (T ) =
⋂

K∈W∗(X )

σ (T + K ) ⊂
⋂

K∈K (X)

σ (T + K ) = σW (T ). (3.2)
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According to [5, Theorem 3.3], if X is a Banach space which has no reflexive
infinite dimensional subspace and T ∈ L(X), then

σ�(T ) ⊂ σ j (T ). (3.3)

As ∂ σW (T ) ⊂ σ�(T ), from (3.2) and (3.3) it follows that

∂ σW (T ) ⊂ σ j (T ) ⊂ σW (T ),

which according to Proposition 3.1 implies that

∂ σW (T ) ⊂ ∂ σ j (T ), ησ j (T ) = ησW (T )

and the spectrum σW (T ) can be obtained from σ j (T ) by filling in some holes of
σ j (T ). Also, if σ j (T ) is connected, σW (T ) is connected.

4 Applications

An operator T ∈ L(X) is meromorphic if its non-zero spectral points are poles of
its resolvent. We say that T is polinomially meromorphic if there exists non-trivial
polynomial p such that p(T ) is meromorphic.

In [10, Theorem 2.11] it is given a characterization of meromorphic operators in
terms of B-Fredholm operators: an operator T ∈ L(X) is meromorphic if and only if
σB�(T ) ⊂ {0}. This result is extended by Jiang et al. in [20, Corollary 3.3] by including
the characterization of meromorphic operators in terms of operators of topological
uniform descent: T ∈ L(X) is meromorphic if and only if σTUD(T ) ⊂ {0}. Their
proof is based on the local constancy of the mappings λ �→ K (λI −T )+ H0(λI −T )

and λ �→ K (λI − T ) ∩ H0(λI − T ) and results about SVEP established in [19]. We
obtain the same assertion as a corollary of Theorem 3.8 and our method of proofing
is rather different.

Theorem 4.1 Let T ∈ L(X). Then the following conditions are equivalent:

1. T is a meromorphic operator;
2. σTUD(T ) ⊂ {0};
3. σB�(T ) ⊂ {0}.
Proof Since T is a meromorphic operator if and only if σD(T ) ⊂ {0}, the assertion
follows from Theorem 3.8 (see the comment after Theorem 3.8). ��

For T ∈ L(X) set ρTUD(T ) = C\σTUD(T ).

Theorem 4.2 Let T ∈ L(X). If 
 is a component of ρTUD(T ), then 
 ⊂ σD(T ) or

\E ⊂ ρ(T ), where E = {λ ∈ C : λ is the pole of the resolvent od T }.
Proof Since ∂σD(T ) ⊂ σTUD(T ), from Proposition 3.1 it follows that


 ⊂ σD(T ) or 
 ∩ σD(T ) = ∅. (4.1)
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If the second formula in (4.1) holds, then, as σD(T ) = σ(T )\E , we obtain that
(
\E) ∩ σ(T ) = ∅, which implies 
\E ⊂ ρ(T ). ��
In [20, Corollary 2.12] Jiang et al. obtained the same result as Theorem 4.2 by
using the constancy of the mappings λ �→ K (λI − T ) + N (λI − T ) and λ �→
K (λI − T ) ∩ H0(λI − T ) on the components of ρTUD(T ), however our proof is
rather different. They also obtained that if ρTUD(T ) has only one component, then
σTUD(T ) = σD(T ).We get this result in a differentway and also obtain that analogous
assertion holds for other spectra.

Theorem 4.3 Let T ∈ L(X) and let σ∗ ∈ {σTUD, σq�, σKt , σB�, σBW , σ e
LD, σBW+ ,

σLD, σ e
RD, σBW− , σRD, σ e

dsc, σdsc}. Then there is implication

C\σ∗(T ) has only one component �⇒ σ∗(T ) = σD(T ).

Proof Since C\σ∗(T ) has only one component, it follows that σ∗(T ) has no holes
and hence σ∗(T ) = ησ∗(T ). According to Theorem 3.8 we conclude that σD(T ) ⊂
ησD(T ) = ησ∗(T ) = σ∗(T ) ⊂ σD(T ) and hence σD(T ) = σ∗(T ). ��

Let F0(X) denote set of finite rank operators on X . Now we can prove Theorem
2.10 in [10] in a different way.

Theorem 4.4 Let T ∈ L(X) and suppose that σBW (T ) is simply connected. Then
T + F satisfies the generalized version II of the Weyl’s theorem for every F ∈ F0(X).

Proof From F ∈ F0(X) it follows that σBW (T ) = σBW (T + F) [9, Theorem 4.3]
and σBW (T + F) is simply connected. According to Theorem 3.8, since there are no
holes in σBW (T + F), we conclude that σD(T + F) = σBW (T + F), and so T + F
satisfies the generalized version II of the Weyl’s theorem. ��
Corollary 4.5 Let T ∈ L(X).

(1) If σp(T ) ⊂ ∂σp(T ), then σLD(T ) = σTUD(T ).
(2) If σcp(T ) ⊂ ∂σcp(T ), then σdsc(T ) = σTUD(T ) and σRD(T ) = σq�(T ).
(3) If σ∗(T ) = ∂σ∗(T ), where σ∗ ∈ {σD, σLD, σ e

LD, σB�, σBW+ , σBW }, then
σ∗(T ) = σTUD(T ).

(4) If σdsc(T ) = ∂σdsc(T ), then σdsc(T ) = σTUD(T ) and σRD(T ) = σq�(T ).
(5) If σ e

dsc(T ) = ∂σ e
dsc(T ), then σ e

dsc(T ) = σTUD(T ) and σ e
RD(T ) = σq�(T ).

(6) If σBW−(T ) = ∂σBW−(T ), then σBW−(T ) = σq�(T ).

Proof (1) From σp(T ) ⊂ ∂σp(T ) it follows that int σp(T ) = ∅. Using Corollary 2.18
(1) we get σLD(T ) = σTUD(T ).

The rest of assertions can be proved similarly by using Corollaries 2.18, 2.13 and
2.7. ��
Remark 4.6 Jiang et al. concluded in [20, p. 1156] that if σ(T ) is contained in a line
segment, then σD(T ) = σTUD(T ). From Corollary 4.5 (3) we get that if σ(T ) is
contained in a line, then σD(T ) = σTUD(T ). If T is unitary operator on Hilbert space,
then its spectrum is contained in a line and so, σD(T ) = σTUD(T ).
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From Corollary 4.5 it follows also that if σ∗(T ) is contained in a line for
σ∗ ∈ {σLD, σD, σ e

LD, σBW+ , σBW , σB�, σ e
dsc, σdsc}, then σ∗(T ) = σTUD(T ). Also,

if σ∗(T ) is contained in a line for σ∗ ∈ {σ e
RD, σBW− , σRD}, then σ∗(T ) = σqF (T ).

Therefore, if σR(T ) is contained in a line for R ∈ {R6,R7,R8,R9,R10,Ra
4,R

a
5,

W+(X),W(X),�(X),B(X), L(X)−1}, then σBR(T ) = σTUD(T ). If R ∈ {R1,R2,

R3,R4,R5,W−(X)} and σR(T ) is contained in a line, then σBR(T ) = σqF (T ) (see
also Theorem 2.19).

Furthermore, if σ e
dsc(T ) (σdsc(T )) is contained in a line, then σ e

RD(T ) = σqF (T )

(σRD(T ) = σqF (T )). If σp(T ) (σcp(T )) is countable or contained in a line, then
σLD(T ) = σTUD(T ) (σRD(T ) = σq�(T ) and σdsc(T ) = σTUD(T )).

Example 4.7 If X is one of c0(Z) and �p(Z), p ≥ 1, then for the forward and backward
bilateral shifts W1, W2 ∈ L(X) there are equalities σ(W1) = σ(W2) = ∂D, where
D = {λ ∈ C : |λ| ≤ 1}. From acc σ(W1) = acc σ(W2) = ∂D we conclude that
σD(W1) = σD(W2) = ∂D and since σ(W1) and σ(W2) are contained in a line, we
obtain σTUD(W1) = σTUD(W2) = ∂D.

Corollary 4.8 Let T ∈ L(X).
If σ∗ ∈ {σW+ , σW− , σW , σBW− , σ�+ , σ�− , σ�, σ e

RD, σap, σsu, σB+ , σB− , σB,

σRD, σ } and
σ∗(T ) = ∂σ∗(T ) = acc σ∗(T ), (4.2)

then
σTUD(T ) = σ∗(T ). (4.3)

Proof FromCorollaries 3.4, 3.5 and 3.6we have that ∂σ∗(T )∩acc σ∗(T ) ⊂ σTUD(T ),
which together with the equalities (4.2) gives the inclusion σ∗(T ) ⊂ σTUD(T ). Since
σTUD(T ) ⊂ σ∗(T ), we get (4.3). ��

We recall that if K ⊂ C is compact, then for λ ∈ ∂K the following equivalence
holds:

λ ∈ acc K ⇐⇒ λ ∈ acc ∂K . (4.4)

The following corollary is an improvement of Theorem 2.10 and Corollary 2.11 in
[2].

Corollary 4.9 Let T ∈ L(X).

1. Let T be an operator for which σap(T ) = ∂σ(T ) and every λ ∈ ∂σ(T ) is not
isolated in σ(T ). Then σap(T ) = σTUD(T ).

2. Let T be an operator for which σsu(T ) = ∂σ(T ) and every λ ∈ ∂σ(T ) is not
isolated in σ(T ). Then σsu(T ) = σTUD(T ).

Proof From σap(T ) = ∂σ(T ) and ∂σ(T ) ⊂ ∂σap(T ) ⊂ σap(T ) it follows that
σap(T ) = ∂σap(T ), while from (4.4) it follows that every λ ∈ ∂σ(T ) is not isolated
in ∂σ(T ). Therefore, every λ ∈ ∂σ(T ) is not isolated in σap(T ) and hence, σap(T ) ⊂
acc σap(T ). Thus σap(T ) = ∂σap(T ) = acc σap(T ) and from Corollary 4.8 it follows
that σap(T ) = σTUD(T ).

The assertion (2) can be proved similarly. ��
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Example 4.10 For each X ∈ {c0(N), c(N), �∞(N), �p(N)}, p ≥ 1, and the forward
and backward unilateral shifts U , V ∈ L(X) there are equalities σ(U ) = σ(V ) = D,
σD(U ) = σD(V ) = D and σap(U ) = σsu(V ) = ∂D. By using Corollary 4.8 (or
Corollary 4.9) we obtain that σTUD(U ) = σap(U ) = ∂D and σTUD(V ) = σsu(V ) =
∂D. It implies that

σTUD(U ) = σq�(U ) = σ e
LD(U ) = σBW+(U ) = σLD(U ) = σap(U ) = ∂D

and

σTUD(V ) = σq�(V ) = σ e
RD(V ) = σBW−(V ) = σRD(V )

= σdsc(V ) = σ e
dsc(V ) = σsu(V ) = ∂D.

Asσsu(U ) = D, fromCorollary 2.18 ((2), (3)) it follows thatσdsc(U ) = σRD(U ) =
D. Since σ�(U ) = σ�(V ) = ∂D [29, Theorem 4.2], from Remark 4.6 we get that
σB�(U ) = σTUD(U ) = ∂D and similarly, σB�(V ) = ∂D. From the inclusions
σTUD(U ) ⊂ σKt (U ) ⊂ σB�(U )we have that σKt (U ) = ∂D and similarly, σKt (V ) =
∂D.

From ∂σ�(U ) ⊂ σ�−(U ) ⊂ σ�(U ) it follows thatσ�−(U ) = ∂D, that isσ�−(U ) is
contained in the line and hence, byRemark 4.6we get that σ e

dsc(U ) = σTUD(U ) = ∂D

and σ e
RD(U ) = σq�(U ) = ∂D.

From ∂σ�(V ) ⊂ σ�+(V ) ⊂ σ�(V ) we conclude that σ�+(V ) = ∂D which
according to Remark 4.6 implies that σ e

LD(V ) = σTUD(V ) = ∂D. As σRD(V ) = ∂D

and σD(V ) = D, we get σLD(V ) = D. From σ�(V ) = ∂D, σap(V ) = D and
σsu(V ) = ∂D, we conclude that for |λ| < 1 it holds that V − λI is Fredholm with
positive index and so, {λ ∈ C : |λ| < 1} ⊂ σW+(V ) ⊂ σW (V ) ⊂ D, which
implies that σW+(V ) = σW (V ) = D. From Corollary 2.7 (1), (3) it follows that
σBW+(V ) = D and σBW (V ) = D. Similarly, from σ�(U ) = ∂D, σap(U ) = ∂D and
σsu(U ) = D it follows that σW−(U ) = σW (U ) = D, which by Corollary 2.7 (2), (3)
implies that σBW−(U ) = σBW (U ) = D.

Example 4.11 Every non-invertible isometry T has the property that σ(T ) = D and
σap(T ) = ∂D [2, p. 187]. Hence σap(T ) = ∂σ(T ) and every λ ∈ ∂σ(T ) is not isolated
in σ(T ). Therefore, according to Corollary 4.9, for arbitrary non-invertible isometry
T we get that σTUD(T ) = σq�(T ) = σ e

LD(T ) = σBW+(T ) = σLD(T ) = σap(T ) =
∂D.

Example 4.12 For the Cesáro operator Cp defined on the classical Hardy space
Hp(D), D the open unit disc and 1 < p < ∞, by

(Cp f )(λ) = 1

λ

∫ λ

0

f (μ)

1 − μ
dμ, for all f ∈ Hp(D) and λ ∈ D,

it is known that its spectrum is the closed disc �p centered at p/2 with radius
p/2, σKt (Cp) = σap(Cp) = ∂�p and also σ�(Cp) = ∂�p [2,24]. According to
Corollary 4.8 or Corollary 4.9 we get that σTUD(Cp) = σq�(Cp) = σ e

LD(Cp) =
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σBW+(Cp) = σLD(Cp) = σap(Cp) = ∂�p. Since σ�(Cp) is contained in the
line and hence also σ�+(Cp) and σ�−(Cp) are contained in the line, according to
Remark 4.6 we conclude that σB�(Cp) = σ e

dsc(Cp) = σTUD(Cp) = ∂�p and
σ e
RD(Cp) = σqF (Cp) = ∂�p. From σ(Cp) = �p and σap(Cp) = ∂�p it fol-

lows that and σsu(Cp) = �p which together with σ�(Cp) = ∂�p implies that
σW−(Cp) = σW (Cp) = �p. Now from Corollary 2.7 (2), (3) we obtain that
σBW−(Cp) = σBW (Cp) = �p. As σD(Cp) = �p and σLD(Cp) = ∂�p, it follows
that σRD(Cp) = �p, which by Corollary 2.18 (2) implies that σdsc(Cp) = �p.
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