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Abstract

For a given continuous function g : D — C and a given continuous functiony : T —
C, we establish some Schwarz type Lemmas for mappings f satisfying the PDE:
Af = ginD,and f = ¢ in T, where D is the unit disk of the complex plane C
and T = 9D is the unit circle. Then we apply these results to obtain a Landau type
theorem, which is a partial answer to the open problem in Chen and Ponnusamy (Bull
Aust Math Soc 97: 80-87, 2018).
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1 Preliminaries and Main Results

Let C = R? be the complex plane. For a € C and r > 0, we let D(a,r) = {z :
|z — a| < r}sothat D, := ID(0, r) and thus, D := ID; denotes the open unit disk in

the complex plane C. Let T = 0D be the boundary of D. We denote by C" (£2) the set
of all complex-valued m-times continuously differentiable functions from 2 into C,
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where Q is a subset of C and m € Ny := N U {0}. In particular, let C(2) := C%(R),
the set of all continuous functions defined in 2.

For a real 2 x 2 matrix A, we use the matrix norm ||A] = sup{|Az| : |z] = 1}
and the matrix function A(A) = inf{|Az| : |z| = 1}. For z = x 4+ iy € C, the formal
derivative of the complex-valued functions f = u + iv is given by

[ Ux Uy
Df_<vx vy>’

so that
IDfll = If:|+ /2 and A(Dy) = |If] — | f2|.
where
_af 1 _af 1,
f= P z(fx lfy) and f7 = 0z 2(fx+lfy)‘
We use

Jp=detDy = |f|* — | £

to denote the Jacobian of f and

2f  9rf
Af = 2 + 8_)12 =4fz
is the Laplacian of f.
Fort € Rand z, w € D with z # w and |z| + |w]| # 0, let
—w it -z
G(z,w) = log and P(z,é'"')= ————
z—w |1 —Z€7’t|2

be the Green function and Poisson kernel, respectively.
Let v : T — C be abounded integrable function and let g € C(D). For z € D, the
solution to the Poisson’s equation

Af(z) =g(2)

satisfying the boundary condition f|t = v € L'(T) is given by
f(@) =Py @) —Ge(a), (1.1)

where

1 1 27 . )
Go@ = 5 fD Gl g @IdAW), Py =5 /0 Pz, ey (e,
(1.2)
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and d A(w) denotes the Lebesgue measure in ID. It is well known that if ¢ and g are
continuous in T and in I, respectively, then f = Py — G, has a continuous extension
f to the boundary, and f =1 in T (see [18, pp. 118-120] and [2,19,20,22]).

Heinz in his classical paper [17] proved the following result, which is called the
Schwarz Lemma of complex-valued harmonic functions: If f is a complex-valued
harmonic function from D into itself satisfying the condition f(0) = 0, then, for
zeD,

4
[f)| < ;arctan|z|. (1.3)

Later, Pavlovi¢ [30, Theorem 3.6.1] removed the assumption f(0) = 0 and improved
(1.3) into the following sharp form

—lz?
f@)— 1 |2f(O) — arctan |zl (1.4)

where f is a complex-valued harmonic function from D to itself.
The first aim of this paper is to extend (1.4) into mappings satisfying the Poisson’s
equation as follows.

Theorem 1 Fora given g € C(D) and a given € C(T), _if a complex-valued function
f satisfies Af =ginDand f = in'T, then, for z € D,

— |z
1+ |z)?

I/IHOO llglloo

'f(z) 7»()‘ an 2] + == (1 - 1zI),  (L.5)

where
1 2w ) )

Py (z) = —/ P(z, ")y (e")dt, Py lloo = sup|Py (2)| and ||glleo = sup [g(2)].
27 Jo 2eD €D

If we take g(z) = —4M and f(z) = M(1 —|_z|2) forz € D, where M is a positive
constant, then the inequality (1.5) is sharp in D.

The following result is a classical Schwarz Lemma at the boundary.

Theorem A (see [15]) Let f be a holomorphic function from D into itself. If f is
holomorphic at z = 1 with f(0) = 0 and f(1) = 1, then f'(1) > 1. Moreover, the
inequality is sharp.

Theorem A has attracted much attention and has been generalized in various forms
(See [6,23,26,27] for holomorphic functions, and see [21] for harmonic functions).
In the following result, applying Theorem 1, we establish a Schwarz Lemma at the
boundary for mappings satisfying the Poisson’s equation, which is a generalization of
Theorem A.
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Theorem 2 For a given g € C(D), let f € C2(D) N C(T) be a function of D into
itself satisfying Af = g, where ||g]loc < 3%. If f(0) = 0 and, for some ¢ € T,
lim, 1 | f(rO)| = 1, then

23l 16
T 4

timing L&) = f0OI

r—1- 1—r
In particular, if ||gllco = O, then the estimate of (1.6) is sharp.

In [14], Colonna proved a sharp Schwarz-Pick type Lemma of complex-valued
harmonic functions, which is as follows: If f is a complex-valued harmonic function
from I into itself, then, for z € D,

4
I1DfI = = (1.7)
b

1—z)?
We extend (1.7) into the following form.

Theorem 3 Fora given g € C(D) and a given ¥ € C(T), if a complex-valued function
f satisfies Af = ginDand f = in'T, then, for z € D\{0},

APyl 1
1D @)l < ﬁl_—mz +2u(zD). (1.8)
where
nmm<MWD:nmmu—m%F+uP_(rwﬁ>%1+uq<nﬂm
4 - 82| e R E I—lel] = 3

and 1(|z)) is decreasing on |z| € (0, 1). In particular, if z = 0O, then

HPyllw 1
T 1—z)?

4 2
D li 2 == - (1.
I1DrO) < ‘le_r)%+ < + M(|Z|)> - 1Py lloo + 3 llglloo-(1.9)

Moreover, if ||glloo = 0, then the extremal functions

_ 2Ma 14+ ¢(2)
Te== a@<1—¢@J

show that the estimate of (1.8) and (1.9) are sharp, where || = 1 and M > 0 are
constants, and ¢ is a conformal automorphism of .

We remark that if ||g]lcc = 0 and || Py |lcc = 1 in Theorem 3, then (1.8) and (1.9)
coincide with (1.7).
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Let A denote the set of all analytic functions f defined in I satisfying the standard
normalization: f(0) = f/(0) — 1 = 0. In the early 20th century, Landau [24] showed
that there is a constant » > 0, independent of f € A, such that f(ID) contains a
disk of radius r. Let Ly be the supremum of the set of positive numbers r such
that f(ID) contains a disk of radius r, where f € A. Then we call inf ;¢ 4 Ly the
Landau-Bloch constant. One of the long standing open problems in geometric function
theory is to determine the precise value of the Landau—Bloch constant. It has attracted
much attention, see [4,25,28,29,32] and references therein. The Landau theorem is
an important tool in geometric function theory of one complex variable (cf. [5,33]).
Unfortunately, for general class of functions, there is no Landau type theorem (see
[7,32]). In order to obtain some analogs of the Landau type theorem for more general
classes of functions, it is necessary to restrict the class of functions considered (cf.
[1,3,7-11,13,16,32]). Let’s recall some known results as follows.

Theorem B ([7, Theorem 2]) Let f be a harmonic mapping in D such that f(0) =
Jr(0) —1=0and|f(z)| < M for z € D, where M is a positive constant. Then f is
univalent in Dy, with py = 73 /(64mM?), and f(Dy,) contains a univalent disk Dg,
with
R — b4 . 4
0= M T s12mMm
where m = 6.85 is the minimum of the function (3 — r2)/[r(1 — r2)]f0r re (0,1).

Theorem C ([1, Theorem 1]) Let f(z) = 122G (z) + K (z) be a biharmonic mapping,
thatis A(Af) =0, inD suchthat f(0) = K(0) = J£(0)—1 = 0, where G and K are
harmonic satisfying |G(z)|, |K(2)| < M for z € D, where M is a positive constant.
Then there is a constant py € (0, 1) such that f is univalent in D,,. Specifically, p»
satisfies

2
b4 P35 1
— —20poM —2M + —1[=0
4M [(1 — )% (1= p)? ]

and f(IDy,) contains a disk Dg,, where

3 2
—ZMM.

Ry = —
2= P s

For some g € C(D), let Fq (D) denote the class of all complex-valued functions
f € C*(D) N C(T) satisfying Af = g and f(0) = Jr(0) — 1 = 0. We extend
Theorems B and C into the following from.
Theorem 4 Foragiveng € C(D), let f € Fy(D) satisfying l|glloo < M1 and || flloc <
M>, where M1 > 0 and M, > 0 are constants. Then f is univalent in D, where rq
satisfies the following equation

1 4M> ro(2 — ro)
%Mz-l—%Ml T (1—1’0)2

— 2M;[log4(1 + ro) — logro](2 + ro)ro = 0.
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Moreover, f(Dy,) contains an univalent disk Dg, with

>Mh%@—m
0= T =)

Remark 1.1 Theorem 4 gives an affirmative answer to the open problem of [13] for the
u-gradient mapping f € C>(D). If g is harmonic, then all f € Fq (D) are biharmonic.
Furthermore, if || gllc = O, then all f € Fg (D) are harmonic. Hence, Theorem 4 is
also a generalization of a series of known results, such as [1, Theorem 2], [7, Theorems,
3,4, 5 and 6], [8, Theorems 2 and 3].

In the following two Examples, we will show that there is no Landau type Theorem
for f € F,(ID) without the boundedness hypothesis of || f ||co.

Example 1.10 For g = l and z = x + iy € D, let fi(z) = kx + |z|*/4 + i%, where
k e{l,2,...}. Then, forall k € {1, 2, ...}, f is univalent. For all k € {1, 2, ...}, by
simple calculations, we see that J; (0) — 1 = f;(0) = 0, and there is no an absolute
constant pg > 0 such that D, is contained in f; (ID).

Example 1.11 For |[glloc = O and z = x + iy € D, let fi(z) = kx + i, where
ke{l,2,...}.Forall k € {1, 2,...}, it is not difficult to see that f; is univalent and
J£(0) =1 = fi(0) = 0. Moreover, forall k € {1, 2, ...}, fi(ID) contains no disk with
radius bigger than 1/k. Hence, for all k € {1, 2, ...}, there is no an absolute constant
ro > 0 such that D, is contained in f (D).

Corollary 1 Under the same hypothesis of Theorem 4, there is a ro € (0, 1) such that
f is bi-Lipschitz in Dy,.

The proofs of Theorems 1, 2, 3, 4 and Corollary 1 will be presented in Sect. 2.

2 Proofs of the Main Results

Proof of Theorem 1 For a given g € C(DD), by (1.1), we have
f@) =Py —Ge(z), z€D, 2.1

where Py and G, are defined in (1.2). Since Py is harmonic in I, by (1.4), we see
that, for z € D,

Py (z) —

1—|z? 4| P
12 M arctan |z]|. 2.2)
T

1+ |Z|277w(0) =

On the other hand, for a fixed z € D, let

Z—w

é‘_

T l-zw’
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which is equivalent to

z—¢

1-z¢

Then

9@ = ‘%/D(k’g |;_|)g (IZ:;;) (ff—'?;)f“@\
242
< (IO |c|)(|11 lzlwz* A©
—a- |z|2>2||g||oo/01 (% /02” #) rlog - ]dr
=a-1PPlels [ (o [ s Jrog |

B 2
1 2
1
— - |z|2>2||g||oo/ — /
0 T Jo

1

=1~ |Z|2)2||g||oo/ (rlog )Z(n +1D |Z|2n 2n g,
0

(= P gl Y+ 1) |Z|2n/ zm(log )dr

n=0

o0

Z(n + 1)(rz)neint

1
dt | rlog— | dr
r

(1—1z?gl
= fm Z |Z|2"

= %(1 1zI%). (2.3)

Hence, by (2.2) and (2.3), we conclude that

—|zI?
1+| 2

=R s 0 )‘ < ‘m(o — :Z:zm(m + 16 @)

4
< IIP;Tulloo an [z] + ||g||oo(1 2.

f@)—

Now we prove the sharpness part. For z € I, let

g(z) = —4M and f(z) = M(1 — |z]),
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where M is a positive constant. Then ¥ = 0 in T and

—lz?
(@) - T |273¢(0) lf@) =52 G(Z w)g(w)d A(w)
lgll
= ﬁ(l 12,
which shows (1.5) is sharp in ID. The proof of this theorem is complete. O

Proof of Theorem 2 For a given g € C(ID), by (1.1) with f in place of v/, we have

f@)=Pr2) —Ge(z), zeD,

where Py and G, are defined in (1.2). Since f(0) = 0, we see that

IPr0)] = 1G(0)| =

! /logig(w)dA(w)
2n | |

2
< ”g”OO/ dt/ rlog dr

llglloo
= == 2.4
1 2.4
Let z = r¢ € D, where ¢ € T is as in the statement of the theorem. Then, by (2.4)
and Theorem 1, we have

— |z —|z)?
1f() = fro)] = f(c)+7>f<0) TRP —gg() p - f@ro)
|z|? 1— 1z
21—'f(r§)—7’()1+||2 |gg(>|1+||2
4 lglloo 1— 1z
> 1 — —arctan|z |——<1—|z| )—|gg<0>|1+|z|2
4 lglloo 2 llgllso (1 =121
> 1 narctanlzl —(1 [z]7) 1 —1+|Z|2 ,

which, together with L’Hospital’s rule, gives that
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: : 4 lelloo (1 _ 12
iming L@ =D gareanr - FEA ) © T s
r—1- 1—r r—1- 1—r

1 r r
— hd _ T I
r—ljl{l* |:7T 112 ”g”oo2 ”g”oo(l +V2)2:|
2 3llglloo

T 4

Now we prove the sharpness part. For z € D, let

2 2R
f(z) = — arctan L(Z)T
T 1 —|z|

Then f is harmonic in D with f(0) = f(1) — 1 =0, and

4

£(p) = = arctan p,
T

where p € (—1, 1). Elementary calculations show that

lim inf
p—1-

s

lf)—flpl 2
1—0p o

which implies that (1.6) is sharp for || g||cc = 0. The proof of this theorem is complete.
O

Theorem D ([31] or [19, Proposition 2.4]) Suppose that X is an open subset of R, and
Q2 a measure space. Suppose, further, that a function F : X x Q — R satisfies the
following conditions:

(1) F(x,w) is a measurable function of x and w jointly, and is integrable with respect
to w for almost every x € X.

(2) Foralmosteveryw € Q, F(x, w) is an absolutely continuous function with respect
to x. [This guarantees that o F (x, w)/dx exists almost everywhere.]

(3) 0F/0x is locally integrable, that is, for all compact intervals [a, b] contained in

[

Then, fQ F(x,w)dw is an absolutely continuous function with respect to x, and for
almost every x € X, its derivative exists, which is given by

0
— F(x, w)‘ dwdx < 0.
ax

d ad
— F(x,w)dw:/ —F(x, w)dw.
dx Q Q dx
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Proof of Theorem 3 For a given g € C(DD), by (2.1), we have

f(@) =Py (2) —Ge(2), z€D,

where Py, and G, are the same as in (2.1). Applying [19, Lemma 2.3] and Theorem D,
we have

0 1 d
5.9 = 5 s 5,0 wgw)dAw)
1 (1—|w

T )y mg(w)cm(w) e C(D) (2.5)

and
9 1 9
B_Zgg(z) = E/I;)a—ZG(Z, w)g(w)dA(w)
1 (1—w?)

i Jp mg(w)dﬂw) e C(D).

For a fixed z € D\{0}, let

—w

¢ = = (2.6)
I —zw
which implies that
— 1— 2 1— 2 1— 2
w=2"5 1 m= LTEE g = 2 BDA D)
-3¢ 1=z 1T =z

2.7)

Then, by (2.5), (2.7) and the change of variables (2.6), we have

1 (1—Jw
4 Jp |z — wllzw — 1]

g2
< ||g||oo/ (I —[wl9) dAW)
D

4 |z — wllzw — 1|

g (w)|d A(w)

)
’afzgg(Z)

||g||oo/ (1= [wpP) (- |22

= dA

dn Iy e —zwp -z 4@
T NP R

o [ A—P=leP)

dr Jp o lgll -zl

gl — 122 [ LT a
_f/o [(l_”(ﬂ/o |1—Zre”|4)}dr



The Schwarz Type Lemmas and the Landau Type Theorem of... 2059

2
lglloo(l — 2% ! 17 S o in
= f/o |:(1 —r2) (271/0 nX:(:)(n—i—l)(rz) e de | | dr
2 1 o0
= lel=C D) )/0 (1-r?) |;l2=(:)(n+1)2|z|2”r2”:|dr
gl =2 [ (=) + 22D
- 2 o (1—[z2r2)3

_ Ml =z L (3 b
- () 2 (- 5p) o) e

where
1 1
d 1 1 1 1+ |z
5 =/ O Lig | - Lig L ()
o 1=r2zP lzl T Tz lo l2l T VTP
b dr 1 1+ [zlr zlr )|
B T T 2 " e T T
0 1 —|z|*r lz|7r 0
1 1+ |z| 1
= 5—log + (2.10)
2zl T JT—z2 201 —1z1?)
and

1

0

, /1 dr 1 |z|r N 3 zlr N 3 log I+ z|r
3 — ————— T e— ~ ~ T 5 5
o I=r2z 4 \A=r212? " 21 =722 " 2°° JT— 222

1 3 3 1+|z
7log+7|2' 2.11)

= + + .
41—z 81 —1z1»)  8lzl T /1 —z]?

By (2.9), (2.10) and (2.11), we get

1 3 1
—— L+ (= -1)h+2(1-—= )1
2 <|z|2 ) ? ( |z|2) ’

1 [1 +1z2 A=z 1+ Izl]
- — lo ,
4z [ 1 —z]? 2lz] 1—|z|

which, together with (2.8), yields that

a
'8—Zgg(z) < u(lzD), (2.12)




2060 S.Chen, D. Kalaj

where

gl =121+ 122 A=z, 14z
u(zl) = :

— (0]
8122 1— 2P 2z BT

By a similar proof process of (2.12), we have

0
‘a_zgg(z) = p(lzD. (2.13)

By direct calculation (or by [19, Lemma 2.3]), we obtain

Iglloo(I — 214122 A=z, 1+]z]_ lglleo
3 5 — og = , (2.14)
20+ 8z 1— |z 2lz| 1z 3
i M8lled —122) [1 R R |z|] _lglloo
1im ) 5~ 0og =
lz|—1- 8|z] 1—|z| 2|z| 1—|z] 4

and u(|z|) is decreasing on |z| € (0, 1).
On the other hand, since Py, is harmonic in D, by [14, Theorem 3] (see also [11,12]),
we see that, for z € D,

HPylloo 1
1— |z

I1Dp, (DI = (2.15)

Hence (1.8) follows from (2.12), (2.13) and (2.15). Furthermore, applying (1.8) and
(2.14), we get (1.9). The proof of this theorem is complete. O

Now we formulate the following well-known result.

Lemma 1 The improper integral
T b T
/ logsinxdx = [ logcosxdx = ——log?2.
0 0 2

Lemma 2 For z € D\{0}, the improper integral

dA 2
/ (U)) _ / log(l —rCOSt—I—\/H"’Z——Z”COSl‘)dt
D 0

lwllz —w|
—2mlogr + 2m log2
<2mlog4(l +r)—2mlogr,

where r = |z].
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Proof Let z = re'® and w = pe'?. Then

/ dA(w) /1 /2” o
p |lwllz — w 0 0 /r2+4 p%—2prcos(d —a)
1 2w dt
ol
0 0 /r2+4 p%—2prcost
2 1 d
- @), e
0 0 /r2+ p>—2prcost

_/2”{ 1 |:/l 2,0d,0
o 2rcost|Jo \/r2+4 p2—2prcost

Yder? + p? = 2pr cost)]}dt
0 /r2+p2—2prcost

- e ]
o LreostJo /r24 p2—2prcost

- (\/1+r2—2rcost—r)]dt

rcost

_/2ﬂ|: 1 /1 pd,o
o LreostJo /r24 p2 —2prcost

1 +7r2—2rcost 1 :|
+ dt.
rcost cost

(2.16)

By calculations, we get

1
pdp
/ = H(p)lp
0 /r2+ p%—2prcost

=+ 1+7r2—2rcost
—i—rcostlog(l —rcost++14r2 —2rcost>

—r —rcostlogr(l —cost), (2.17)

where

H(p) = p2+r2—2rpcost +rcostlog(p —rcost +r2+ p? —2,orcost>.
By (2.16), (2.17) and Lemma 1, we see that

dA 2
(w) _/ log(] —rcost—i—\/l—i—rz——Zrcost)dl
0

D wllz — w]

2
—/ logr(l — cost)dt
0
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2
=/ log (1 —rcost ++/1+r?—2rcost)dt
0

2 ¢
—2mlogr — / log (2 sin® —) dt
0 2

2
=/ log (1 —rcost ++'1+r2—2rcost)dt
0

ps

—2rlog2r —8 / " log(sin 1)d1
0

2
:/ log (1 —rcost ++'1+r2—2rcost)dt
0

—2mlogr 4+ 2m log?2
< 2mlog4(l +r)—2mlogr. (2.18)

The proof of this lemma is complete. O

LemmakE ([10, Lemma 1]) Let f be a harmonic mapping of D into C such that
|f(@D)| <Mand f(z) =Y neganz"+Y ooy bnZ". Then |ag| < M andforalln > 1,

aM
lan| + by < —.
T

Lemma3 Forx € (0, 1), let

1 4MH x(2 — x)
iMry+3imy o (1-x)?

¢(x) = — 2M[log4(1 + x) — logx](2 + x)x,

where My > 0 and M1 > 0 are constant. Then ¢ is strictly decreasing and there is an
unique xqo € (0, 1) such that ¢ (xg) = 0.
Proof For x € (0, 1), let

_4Myx2-x)
i) =— Ty

and
fr(x) =2M[log2(1 + x) — log x + log2](2 + x)x.
Since, for x € (0, 1),

, _ 8M>, 1
fl(x) = Tm >0
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and

4d+x) 2+x:|

fx) = 2M; [2<x + D log s

1 2
=2M, {2(x+ l)|:10g4+10g(1 + )—C)} - lii}
2+x}

C1+4x

1
> 2M; {2()6 + 1)|:1 + mi|
l(2—}—x)(2x +1) -

14+x -

=2M 0,

we see that fi + f> is continuous and strictly increasing in (0, 1). Then ¢ is continuous
and strictly decreasing in (0, 1), which, together with

lim =———— and lim = —00,
lim $(x) T I lim $(x)
implies that there is an unique xo € (0, 1) such that ¢ (x¢) = 0. O
Lemma4 Forx € (0, 1], let
2 —rox
T1(x) = ———— and 12(x) = x[log4(l + rox) — log(rox)].
(1 — rox)?

where ro € (0, 1) is a constant. Then t| and t> are increasing functions in (0, 1].

Proof of Theorem 4 As before, by (2.1) with f in place of ¥, we have

f@) =Psri)—Gg(a), zeD,
where Py and G, are defined in (2.1). By [19, Lemma 2.3], Theorem D and Lemma 2,

we have

0G,(2) B 3G, (0)|
0z 0z N

1 (1 —w
i /D - ww = WA

L[ d=lwP)
i / ————g(w)dA(w)
T JD w

0= wHA A+ w)? - zw)

B E/D w(iz —w)(izw — 1)

T e ol L L
47 Jp lwllz — wl||1 — zw|

g(w)dA(w)'

dA(w)
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_l@+lhMy [+ w)
- 4 D wllz — w]
- |z|<2+|z|)M1f 1

- 2 p lwllz — wl
< M[log4(l + |z]) — log |z|]IzI(2 + |z]). (2.19)

dA(w)

dA(w)

By a similar argument, we get

0G¢(2) 8Qg(0)
0z

1— 2
f ¥g(w)dA(w)

Z—w)(wz—1)

(1— [w)
- / OV e wydaw)
T JD w

< My[log4(l + |z]) — log|z[]lzI2 + |z]).  (2.20)

On the other hand, Py can be written by

oo o0
Prx) =Y and"+ Y b7
n=0 n=1

because Py is harmonic in ID.
Since |Py(z)| < M> for z € D, by Lemma E, we have

4M>
lan| + |bn| < — (2.21)

forn > 1.
By (2.21), we see that

0Psr(z)  dPr(0) '37)]‘(2) 37)f(0)
— + —
0z 0z a7

o0
Znanz" ! annfn_l
-2
o0

< Y n(lanl + bal) 12"

n=2

4 ||nl

n=2
_ AM |z](2 —|z])
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Applying Theorem 3, we obtain

4 2
1 =Jr0) =D (O)IA(Df(0)) < A(Df(0)) <;M2 + §M1) ,

which gives that

1
A(Df(0)) > W (2.23)
7 2

—
3M

In order to prove the univalence of f in ID,,,, we choose two distinct points z1, z2 €
Dy, and let [z1, z2] denote the segment from z; to zp with the endpoints z; and z2,
where rq satisfies the following equation

1 4M> ro(2 — ro)
%Mz—l—%Ml n (1—rp)?

—2M;[log4(1 + ro) — logro](2 + ro)ro = 0.

By (2.19), (2.20), (2.22), (2.23), Lemmas 3 and 4, we have

fz2) = fzD)l =

/ f-(@dz + fz(z)dz
[z1,22]

=

/ f2(0)dz + fz(0)dz
[z1,22]

/[ (RO = O+ (10— Oz
21,22
> M(Dy(0))|z2 — z1l
- /[ (1EO = £O1 1) - FO)Id
21,22

> MDg(0))|z2 — 21l
_/ ( 9G5(2) _ 3G, 'agg(z) _3G,(0) D de|
[z1,22]

0z 0z 0z 0z
P P (0 Py 0Ps(0
_/ (' 1@ PO 0P 3P/ )D |
[z1,22] 9z 9z 9z 9z

4M> ro(2 — ro)

(1= rp)?

— 2M1[10g 4(1 4+ rg) — log ro](z + r())r()}
1 4M> ro(2 — ro)

Iy +IM, (= r)?

> |z — 21 {A(D£(0) —

> |Zz—Z1|{

—2M,[log4(1 + ro) — logro](2 + VO)VO}
_o. (2.24)
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which yields that f(z2) # f(z1). The univalence of f follows from the arbitrariness
of z1 and z».

Now, for all ¢ = rge’® € 3D, by (2.19), (2.20), (2.22), (2.23), Lemmas 3 and 4,
we obtain

If (&)= fO)] = MQ ]fz(Z)dz+ Jz(z)dz
4

f-(00dz + fz(0)dz

- ’ [0.]
/[0 (@ = [:O)dz+ (@) - f2(0)dz
£
= M(Dy(0)ro
- /[o 7] (1£:@) = f20)] + | fz(2) = fz(0)])1dz]

> AMDy(0))ro
_/ ( 9G,(2) _ 3G; | ‘agg(z) _3G,(0) >|dz|
[0.¢]

0z 0z 0z 0z
dPr(z) 9Pr(0) 0Ps(z)  9OPr(0)
— — + — — — |dz|
[0,] 0z 0z 0z 0z
7 aM 7|2 — |z
> - 02 _ 2f z|( |2|)|dz|
—M> + 5M, 7 Joe (—=1z])

—2M1/ [log4(1 + |z) — log|z|]IzI(2 + |z])|dz]|
[0.¢]

ro 4Mord /1 12 — rot)
IMm+3imy m Jo (—ren)?
1
— 2M1r§/ [10g4(1 + rot) — log(rot)]t(Z + rot)dt
0

ro _AMarg 2—ro) (!

> tdt
%Mz—}-%Ml s (1—7’())2 0

1
—2M 732 + 19) / [log 4(1 + rot) — log(ro)]edt
0

1 2M>5 ro(2 — 1)
NTwm 12, 7 A=)
M2+ 3 M 0

v

—2Mro(2 + ro)[log4(1 + rp) — log ro]}

2M5 r3(2 — ro)
7 (1—rg)?"
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Hence f(ID,) contains an univalent disk D g, with

20 _
Ry > 2M; ry(2 r()).
o (1—ro)?

The proof of this theorem is complete. O

Proof of Corollary 1 For z1, zo € Dy, by (2.24), we see that there is a positive constant
L such that

Lilzi —z2l = 1 f(z1) — f(z2)l,
where rq satisfies the following equation

1 4M> ro(2 — ro)
My +3imy, o (1-rp)?

— 2M;[log4(1 + ro) — logro](2 + ro)ro = 0.

On the other hand, for z1, z2 € D, we use Theorem 3 to get

‘/ df (z)
[z1,22]

< / 1D () lldz]
[z1,22]

aM, 1 2
— 5+ —M, ) |dz|
[z1,22] w1 ) 3

| f(z2) — f(zD)]

A

IA

4My 1 2
=|\— 5+ 7M1 | lz1 — 22,
T 1—rg 3

where [z1, z2] is the segment from z; to zp with the endpoints z; and z». Therefore, f
is bi-Lipschitz in D,,. O
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