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Abstract
A classical inequality of Szász bounds polynomials with no zeros in the upper half
plane entirely in terms of their first few coefficients. Borcea–Brändén generalized
this result to several variables as a piece of their characterization of linear maps on
polynomials preserving stability. In this paper, we use determinantal representations
to prove Szász type inequalities in two variables and then prove that one can use the
two variable inequality to prove an inequality for several variables.
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1 Introduction

We say p ∈ C[z] is stable if p has no zeros in C+ := {z ∈ C : Imz > 0}.
This note is about improvements and generalizations of the following classical

inequality of O. Szász.

Theorem 1.1 (Szász [8]) If p(z) = ∑d
j=0 c j z

j ∈ C[z] is stable and p(0) = 1 then

|p(z)| ≤ exp(|z||c1| + 3|z|2(|c1|2 + |c2|)).

The purpose of the theorem is to prove

FC = {p ∈ C[z] : pis stable, p(0) = 1, |p′(0)|, |p′′(0)| ≤ C}

is a normal family whose local uniform limits are entire functions of order at most
2. One can use this to give a complete characterization of the local uniform limits of
stable polynomials. See Theorem 4 Chapter VIII (page 334) of [6].

Only recently have multivariable Szász type inequalities been considered. We say
p ∈ C[z1, . . . , zn] is stable if p has no zeros in (C+)n . In their groundbreaking char-
acterization of linear operators on polynomials T : C[z1, . . . , zn] → C[z1, . . . , zn]
that preserve stability, Borcea–Brändén [1] established a Szász type inequality. Its
purpose was to prove that the symbol of T

GT (z, w) =
∑

α∈Nn

(−1)αT (zα)
wα

α!

is actually an entire function. Formally, the symbol is given as GT (z, w) = T [e−z·w].
We let e1, . . . , en be standard basis vectors of Zn .

Theorem 1.2 (Borcea–Brändén Theorem 6.5 [1]) Suppose that p(z) = ∑
β a(β)zβ ∈

C[z1, . . . , zn] is stable with p(0) = 1. Let

B = 2n−1

√
2e2 − e

e − 1
= 2n−1 · 2.0210 . . . ,

C = 6e2
(

n∑

i=1

|a(ei )|
)2

+ 4e2
n∑

i, j=1

|a(ei + e j )|.

Then,
|p(z)| ≤ B exp(C‖z‖2∞).

Here ‖z‖∞ = max{|z j | : 1 ≤ j ≤ n}.
The original proof of this theorem uses an inequality of Szász (actually inequality

(2.1) below) along with some linear operators that preserve stability to bound all of
the coefficients {a(β)} and then reassemble p to obtain the bound above.
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The goal of this paper is to present improvements to both Theorem 1.1 and Theorem
1.2 and to give a more function theoretic proof in the multivariable case. Our strategy
is to use determinantal representations of two variable stable polynomials to prove a
version of Theorem 1.2 in two variables and then to show that an inequality in the two
variable case yields an inequality in several variables. We also show how to handle
the case where p(0) = 0.

We think it is instructive to present and prove a sharper inequality in the one variable
case. The following inequality is due to de Branges. We take this opportunity to prove
that the inequality is sharp in a certain sense.

Theorem 1.3 (de Branges, Lemma 5 [2]) Suppose p(z) = ∑d
j=0 p j z j ∈ C[z] is

stable and p(0) = 1. Then,

|p(z)| ≤ exp(Re(p1z) + 1

2
(|p1|2 − 2Re(p2))|z|2).

The inequality is sharp on the imaginary axis for stable p ∈ R[z]. Specifically, given
c1, c2 ∈ R with γ := 1

2 (c
2
1 − 2c2) > 0 there exist stable polynomials pn ∈ R[z] with

pn = 1 + c1z + c2z2 + . . . such that

lim
n→∞ |pn(iy)| = exp(γ y2).

We are unsure about sharpness more generally. Note that necessarily c21 − 2c2 ≥ 0
if p = 1 + c1z + c2z2 + · · · ∈ R[z] is stable (e.g. examine c1, c2 in terms of roots)
and c21 − 2c2 = 0 if and only if p ≡ 1.

The next inequality subsumes this one, however the elementary one variable
argument in Sect. 2 is a good warm-up for what follows. Using determinantal rep-
resentations for stable two variable polynomials we are able to offer the following

improvement on Theorem 1.2. Below, p j = ∂ p
∂z j

and p j,k = ∂2 p
∂z j ∂zk

.

Theorem 1.4 Let p ∈ C[z1, z2] be stable. If p(0) = 1, then

|p(z)| ≤ exp

⎛

⎝Re

⎛

⎝
2∑

j=1

z j p j (0)

⎞

⎠ + 1

2
‖z‖2∞

⎛

⎝|
2∑

j=1

p j (0)|2 − Re

⎛

⎝
2∑

j,k=1

p j,k(0)

⎞

⎠

⎞

⎠

⎞

⎠ .

(1.1)

For comparison, using a ≤ (1 + a2)/2 for the first term in the exponential and
writing p = 1 + ∑

β �=0 a(β)zβ we get

|p(z)| ≤ √
e exp(C‖z‖2∞)

C =
⎛

⎝
2∑

j=1

|a(e j )|
⎞

⎠

2

+
2∑

j,k=1

|Re[a(e j + ek)]|.

Here we used p j j (0) = 2a(2e j ) and p jk(0) = a(e j + ek) for j �= k.
It turns out that the two variable result can be used to prove an n-variable result.
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Theorem 1.5 Suppose p ∈ C[z1, . . . , zn] is stable. If p(0) = 1 then

|p(z)| ≤ exp(
√
2|∇ p(0)||z| + (|∇ p(0)|2 + ‖ReHp(0)‖)|z|2)

where Hp is the Hessian of p and ‖ · ‖ denotes operator norm.

We also get an inequality more comparable to Theorem 1.2:

|p(z)| ≤ √
e exp(C‖z‖2∞)

C = 2

⎛

⎝
n∑

j=1

|a(e j )|
⎞

⎠

2

+ 2
n∑

j,k=1

|Re[a(e j + ek)]|).

To close the introduction we discuss what happens when p(0) = 0. In one variable
there is only aminor issue because we can factor p(z) = zkq(z) = pkzk+ pk+1zk+1+
pk+2zk+2 + . . . and get a bound depending on pk �= 0, pk+1, pk+2:

|p(z)| ≤ |pk | exp
[

k(|z| − 1) + Re

(
pk+1

pk
z

)

+ 1

2
|z|2

(∣
∣
∣
∣
pk+1

pk

∣
∣
∣
∣

2

− 2Re

(
pk+2

pk

))]

for stable p ∈ C[z] with a zero of order k at 0. We used the inequality log |z|k ≤
k(|z| − 1).

In several variables the case p(0) = 0 is a little more delicate. Borcea–Brändén
covered this case as follows.Given p(z) = ∑

α a(α)zα ∈ C[z1, . . . , zn] let supp(p) =
{α ∈ N

n : a(α) �= 0} and let M(p) denote the set of minimal elements of supp(p)
with respect to the partial order ≤ on Nn . Also, for fixed M ⊂ N

n let

M2 = {α + β : α ∈ M, β ∈ N
n, |β| ≤ 2}

Theorem 1.6 (Borcea–Brändén Theorem 6.6 [1]) Let M ⊂ N
n be a finite nonempty

set and p(z) = ∑
α a(α)zα ∈ C[z1, . . . , zn] be stable with M(p) = M. Then, there

are constants B and C depending only on the coefficients a(α) with α ∈ M2 such
that

|p(z)| ≤ B exp(C‖z‖2∞).

Moreover, Band C can be chosen so that they depend continuously on the aforemen-
tioned set of coefficients.

With our approach we are able to to get a more explicit estimate in two and several
variables. Set �1 = (1, . . . , 1) ∈ C

n .

Theorem 1.7 Let p ∈ C[z1, z2] be stable and assume p vanishes to order r at 0. Write
out the homogeneous expansion of p:

p(z) =
d∑

j=r

Pj (z)
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where Pj is homogeneous of degree j . Then,

|p(z)| ≤ |Pr (�1)|e−r/2 exp

⎡

⎣Re

⎛

⎝
2∑

j=1

c j z j

⎞

⎠ + B‖z‖2∞
⎤

⎦

where

c j = 1

Pr (�1)

[
∂Pr
∂z j

(�1)
(

1 − Pr+1(�1)
Pr (�1)

)

+ ∂Pr+1

∂z j
(�1)

]

B = 1

2

⎛

⎝

∣
∣
∣
∣
∣

Pr+1(�1)
Pr (�1)

∣
∣
∣
∣
∣

2

− 2Re

(
Pr+2(�1)
Pr (�1)

)

+ r

⎞

⎠ .

This is proved in Sect. 6.
Finally, we present a multivariable Szász inequality for the case p(0) = 0.

Theorem 1.8 Suppose p ∈ C[z1, . . . , zn] is stable and vanishes to order r at 0. If we
write out the homogeneous expansion of p

p(z) =
d∑

j=r

Pj (z)

then

|p(z)| ≤ ‖z‖r∞|Pr (�1)| exp(C0 + C1‖z‖∞ + C2‖z‖2∞)

where C0,C1,C2 are constants depending on r , Pr (�1), Pr+1(�1), Pr+2(�1),∇Pr (�1),
∇Pr+1(�1).

The constants C0,C1,C2 along with the proof of this theorem are explicitly given
in Sect. 8.

2 One Variable Inequality

In this section we prove Theorem 1.3 whose main inequality is due to de Branges [2].
lema

Lemma 2.1 Suppose α1, . . . , αd ∈ C with Imα j ≤ 0. Then,

d∑

j=1

|α j |2 ≤ |
d∑

j=1

α j |2 − 2Re
∑

j<k

α jαk .

Equality holds if and only if α j ∈ R for all but at most one j .
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Proof Note

|
d∑

j=1

α j |2 =
d∑

j=1

|α j |2 + 2Re
∑

j<k

α jαk

So, our inequality reduces to showing the following is non-negative:

2Re
∑

j<k

(α jαk − α jαk) = 2Re
∑

j<k

α j (−2i)Imαk = 4
∑

j<k

Imα j Imαk .

The last quantity is evidently non-negative and equals zero exactly when Imα j Imαk =
0 for all j �= k, which means Imα j = 0 for all j or there is one j such that Imα j �= 0
while Imαk = 0 for all k �= j . ��

Szász uses the inequality |(1 + z)e−z | ≤ e|z|2 instead of the stronger inequality:

Lemma 2.2 For z ∈ C, z �= −1

log |1 + z| ≤ Rez + 1

2
|z|2.

Proof Since log(1 + x) ≤ x we have

log |1 + z| = 1

2
log |1 + z|2

= 1

2
(log(1 + 2Rez + |z|2)

≤ 1

2
(2Rez + |z|2).

��
Proof (Proof of Theorem 1.3) Write p(z) = ∏d

j=1(1 + α j z) where Imα j ≤ 0. Note∑
j α j = p1 and

∑
j<k α jαk = p2. By Lemmas 2.2 and 2.1

log |p(z)| ≤
∑

j

(Re(α j z) + 1

2
|α j |2|z|2)

= Re(p1z) + 1

2
(
∑

j

|α j |2)|z|2

≤ Re(p1z) + 1

2
(|p1|2 − 2Rep2)|z|2.

Regarding sharpness define γ = (c21 − 2c2)/2 > 0. Choose n large enough that
dn = γ − c21/(2n) ≥ 0. Then, the polynomial

pn(z) =
(
1 + c1z

n

)n
(

1 − dnz2

n

)n
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is stable, belongs to R[z], and has the correct normalizations. Since pn(z) →
exp (c1z − γ z2) locally uniformly, we have

lim
n→∞ |pn(iy)| = exp γ y2

which is exactly what was claimed. ��
It is worth pointing out that Szász proves

∑

j

|α j |2 ≤ 2|
∑

j

α j |2 + |
∑

j

α2
j |

and then converts
∑

j α
2
j = p21 − 2p2 to get the estimate

∑

j

|α j |2 ≤ 3|p1|2 + 2|p2|. (2.1)

By sidestepping the former inequality and estimating
∑

j |α j |2 directly in terms
of polynomial coefficients we get a better bound. The inequality (2.1) is used in [1]
to prove multivariable Szász inequalities. So, using Lemma 2.1 in their proof would
already improve Theorem 1.2.

3 Two Variable Szász Inequality

Using determinantal formulas it is possible to establish a Szász inequality for two
variable polynomials.

Definition 3.1 We shall say a stable polynomial p ∈ C[z1, . . . , zn] of total degree d
has a determinantal representation if there exist d × d matrices A, B1, . . . , Bn and a
constant c ∈ C such that

1. ImA := 1
2i (A − A∗) ≥ 0

2. for all j , Bj ≥ 0
3.

∑n
j=1 Bj = I .

4. p(z) = c det(A + ∑n
j=1 z j B j ).

Theorem 1.4 will be broken into two theorems.

Theorem 3.2 If p ∈ C[z1, z2] is stable, then p has a determinantal representation.

Several different determinantal representations are closely related to this one but
not quite equivalent. There are determinantal representations for three variable hyper-
bolic polynomials, two variable real-zero polynomials, and two variable real-stable
polynomials (see [3,4,9]). It turns out this formula can be derived from a determi-
nantal representation for polynomials with no zeros on the bidisk D

2 = {(z1, z2) :
|z1|, |z2| < 1} from [3]. We show how to convert from the bidisk formula to Theorem
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3.2 in Sect. 4. The method of conversion is a very slight modification of what is done
in the paper [5]. We include the argument for the reader’s convenience; the essence of
Sect. 4 is not new.

In Sect. 5 we prove the following Szász inequality for stable polynomials with
determinantal representations.

Theorem 3.3 Suppose p ∈ C[z1, . . . , zn] has a determinantal representation as
above. If p(0) = 1, then

|p(z)| ≤ exp(Re(
n∑

j=1

z j p j (0)) + 1

2
‖z‖2∞(|

n∑

j=1

p j (0)|2 − Re(
n∑

j,k=1

p j,k(0)))).

Theorems 3.2 and 3.3 combine to give Theorem 1.4.

4 Determinantal Representations

In this section we prove Theorem 3.2. We begin by recalling the following.

Theorem 4.1 (See [3] Theorem 2.1) If q ∈ C[z1, z2] has no zeros in D2 and bidegree
(n,m), then there exists a constant c and an (n +m) × (n +m) contractive matrix D
such that

q(z) = c det(I − D�(z)) (4.1)

where �(z) = z1P1 + z2P2 and

P1 =
(
In 0
0 Om

)

P2 =
(
On 0
0 Im

)

.

Let p ∈ C[z1, z2] be stable and have bidegree (n,m). Define φ(ζ ) = i 1+ζ
1−ζ

and

q(z1, z2) = p(φ(z1), φ(z2))

(
1 − z1
2i

)n (
1 − z2
2i

)m

.

One can calculate that φ−1(ζ ) = ζ−i
ζ+i and

p(z1, z2) = q(φ−1(z1), φ
−1(z2))(z1 + i)n(z2 + i)m .

Then, q has no zeros in D
2 and so the conclusion of Theorem 4.1 holds. Then, con-

verting (4.1) to a formula for p yields

p(z) = c det((z1 + i)P1 + (z2 + i)P2 − D((z1 − i)P1 + (z2 − i)P2))

= c det((I − D)�(z) + i(I + D))
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Since D is a contraction, the eigenspace corresponding to eigenvalue 1 is reducing (if
nontrivial). Thus, there exists a unitary U such that

D = U

(
I 0
0 K

)

U∗

where K is a contractive k × k matrix for which 1 is not an eigenvalue. Here k is the
codimension of the eigenspace of D corresponding to eigenvalue 1.

Then,

p(z) = c det

((
0 0
0 I − K

)

U∗�(z)U + i

(
2I 0
0 I + K

))

= c det(I − K ) det

((
0 0
0 I

)

U∗�(z)U +
(
2i I 0
0 A

))

where A = i(I + K )(I − K )−1.
Let Bj equal the bottom right k × k block of U∗PjU . Then,

p(z) = c det(I − K ) det

(
2i I 0
∗ A + ∑

j z j B j

)

= c0 det(A +
∑

j

z j B j )

where c0 is a new constant (the ∗ denotes a block we are unconcerned with). Since
P1 + P2 = I , B1 + B2 = I . Also note that p(t, t) = c0 det(A + t I ) has degree k so
that k ≤ deg p. On the other hand, the determinantal formula for p has total degree at
most k, so that deg p ≤ k. Therefore the matrices in our formula have size matching
the total degree of p. Finally,

ImA = (I − K )−1(I − KK ∗)(I − K ∗)−1 ≥ 0.

This proves Theorem 3.2.

5 Szász Inequality for Determinantal Polynomials

In this section we prove Theorem 3.3.
Suppose p(z) = c det(A + ∑n

j=1 z j B j ) where
∑n

j=1 Bj = I , Bj ≥ 0, ImA ≥ 0,
and p(0) = 1. By the last normalization A is invertible with c det A = 1 so that

p(z) = det

⎛

⎝I +
n∑

j=1

z j X j

⎞

⎠

where X j = Bj A−1. As with complex numbers, Im(A−1) ≤ 0.
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It helps to make note of a few formulas for the derivatives of p. Recall that if A(t)
is a differentiable matrix function then

d

dt
det A(t) = tr(A′(t)A(t)−1)) det A(t)

whenever A(t) is invertible. Here tr is the trace of a matrix.
Letting X(z) = I + ∑n

j=1 z j X j , whenever p(z) �= 0 we have

p j (z) = tr(X j (X(z))−1)p(z)

p jk(z) = −tr(X j (X(z))−1Xk(X(z))−1)p(z) + tr(X j (X(z))−1)tr(Xk(X(z))−1)p(z)

so that

p j (0) = trX j p jk(0) = −tr(X j Xk) + tr(X j )tr(Xk).

For a positive definite matrix P we have log P ≤ P − I simply because the same
inequality holds for the eigenvalues of P . Therefore,

log |p(z)| = 1

2
log det(X(z)∗X(z)) (5.1)

= (1/2)tr log X(z)∗X(z) (5.2)

≤ (1/2)tr(X(z)∗X(z) − I )

= (1/2)tr

⎛

⎝2Re

⎛

⎝
n∑

j=1

z j X j

⎞

⎠ +
⎛

⎝
n∑

j=1

z j X j

⎞

⎠

∗ (
n∑

k=1

zk Xk

)⎞

⎠ . (5.3)

Now,

tr

⎛

⎝
∑

j

z j X j

⎞

⎠

∗ (
∑

k

zk Xk

)

= tr
[
(A∗)−1

(∑
j z j B j

)∗ (∑
k zk Bk

)
A−1

]

= tr
[(∑

j z j B j

)∗ (∑
k zk Bk

)
A−1(A∗)−1

]
.

By Lemmas 5.1, 5.2 and 5.3 below we have

tr

⎛

⎝
∑

j

z j X j

⎞

⎠

∗ (
∑

k

zk Xk

)

≤ ‖
∑

j

z j B j‖2tr
[
(A∗)−1A−1

]

≤ ‖z‖2∞
[
|tr(A−1)|2 − Re((trA−1)2 − trA−2)

]
.

Finally, since
∑

j B j = I we have

∑

j

p j (0) = trA−1
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and

∑

j,k

p jk(0) = (trA−1)2 − trA−2.

Thus,

log |p(z)| ≤ Re

⎛

⎝
n∑

j=1

p j (0)z j

⎞

⎠ + 1

2
‖z‖2∞

⎛

⎝|
n∑

j=1

p j (0)|2 − Re

⎛

⎝
n∑

j,k=1

p jk(0)

⎞

⎠

⎞

⎠

which proves Theorem 3.3 modulo the following three lemmas.

Lemma 5.1 Let P, M be n × n matrices. If P ≥ 0, then

|tr(MP)| ≤ ‖M‖trP

Proof Since P ≥ 0, we can decompose P = ∑
j v jv

∗
j where v j ∈ C

n . Then,

|trMP| ≤
∑

j

|trMv jv
∗
j | =

∑

j

|〈Mv j , v j 〉| ≤ ‖M‖
∑

j

‖v j‖2 = ‖M‖trP.

��
The following is a standard result (the finite dimensional version of the Naimark

dilation theorem—see [7]).

Lemma 5.2 Suppose B1, . . . , Bn are N × N matrices. Assume for all j , B j ≥ 0 and∑
j B j = I . Then, there exist pairwise orthogonal projection matrices P1, . . . , Pn of

size m × m where m = nN such that

B j = (IN , 0, . . . , 0)Pj (IN , 0, . . . , 0)t . (5.4)

In particular, for z = (z1, . . . , zn) ∈ C
n

‖
∑

j

z j B j‖ ≤ ‖z‖∞.

Proof We can factor Bj = A∗
j A j with N × N matrix A j . The nN × N matrix

T =
⎛

⎜
⎝

A1
...

An

⎞

⎟
⎠

is an isometry from C
N to C

nN since T ∗T = ∑
j B j = I . We can extend T to

a m × m unitary U . Let Q j be the orthogonal projection onto the j-th block of
C
m = C

N ⊕ · · · ⊕ C
N . Set Pj = U∗Q jU . Then, (5.4) holds and
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‖
∑

j

z j B j‖ ≤ ‖
∑

j

z j Pj‖ ≤ ‖z‖∞.

��
The following lemma is an adaptation of our one variable argument.

Lemma 5.3 If M is a square matrix with ImM ≥ 0, then

trM∗M ≤ |trM |2 − Re((trM)2 − trM2).

Proof Write A = ReM, B = ImM . Then,

|trM |2 = (trA)2 + (trB)2,

trM∗M = tr(A2 + B2 + i(AB − BA)) = trA2 + trB2,

Re(trM)2 = (trA)2 − (trB)2,

Re[trM2] = Re[tr(A2 − B2 + i(AB + BA))] = trA2 − trB2.

Then,

|trM |2 − trM∗M − Re((trM)2 − trM2) = 2((trB)2 − trB2)

If B has eigenvalues β j ≥ 0 then

(trB)2 − trB2 =
(∑

β j

)2 −
∑

β2
j =

∑

j �=k

β jβk ≥ 0.

This proves the claimed inequality. ��

6 Szász Inequality for Determinants with p(0) = 0

As with Theorem 1.4 we will prove a Szász inequality for polynomials with determi-
nantal representations and Theorem 1.7 will follow via Theorem 3.2.

Theorem 6.1 Suppose p ∈ C[z1, . . . , zn] has a determinantal representation as in
Definition 3.1. Assume p vanishes to order r at0.Write out the homogeneous expansion
of p:

p(z) =
d∑

j=r

Pj (z)

where Pj is homogeneous of degree j . Then,

|p(z)| ≤ |Pr (�1)|e−r/2 exp

⎡

⎣Re

⎛

⎝
n∑

j=1

c j z j

⎞

⎠ + B‖z‖2∞
⎤

⎦
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where

c j = 1

Pr (�1)

[
∂Pr
∂z j

(�1)
(

1 − Pr+1(�1)
Pr (�1)

)

+ ∂Pr+1

∂z j
(�1)

]

B = 1

2

⎛

⎝

∣
∣
∣
∣
∣

Pr+1(�1)
Pr (�1)

∣
∣
∣
∣
∣

2

− 2Re

(
Pr+2(�1)
Pr (�1)

)

+ r

⎞

⎠

and �1 = (1, . . . , 1) ∈ C
n.

Proof Write p(z) = c det(A + ∑d
j=1 z j B j ) as in Definition 3.1. Since p(0) = 0,

det A = 0. Since ImA ≥ 0, the eigenspace corresponding to eigenvalue 0 is reducing
for A; see Lemma 6.1 below. Let s equal the dimension of the kernel of A.

So, after conjugating by a unitary we can rewrite p in the form

p(z) = c det

⎛

⎝
(
0 0
0 C

)

+
d∑

j=1

z j B j

⎞

⎠

where C is an invertible (d − s) × (d − s) matrix with ImC ≥ 0 and the Bj are
relabelled after conjugating (they satisfy all of the same properties as before). Define

X j = Bj

(
I 0
0 C−1

)

and J =
(
Os 0
0 Id−s

)

. Then,

p(z) = c0 det

⎛

⎝J +
d∑

j=1

z j X j

⎞

⎠

where c0 = c detC . Let X(z) = J +∑d
j=1 z j X j . Let Xs(z) be the top left s× s block

of X(z). Evaluating det X starting with the top left s × s block gives

det X(z) = det Xs(z) + higher order terms.

Note that det Xs(z) is homogeneous of degree s and Xs(�1) = Is since
∑

j B j = I .
This proves s = r .

We can follow some of the argument in Sect. 5. Equations (5.1), (5.2), (5.3) hold
when p(z) �= 0 but (5.3) rearranges into

log |p(z)/c0| ≤ (1/2)tr

((−Ir 0
0 0

)

+ 2Re
(∑n

j=1 z j X j

)
+

(∑
j z j X j

)∗ (∑
k zk Xk

)
)

≤ −r/2 + Re
(∑n

j=1 z j tr(X j )
)

+ (1/2)tr
(∑

j z j X j

)∗ (∑
k zk Xk

)
.
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As before using Lemmas 5.1, 5.2, 5.3 we have

tr

⎛

⎝
∑

j

z j X j

⎞

⎠

∗ (
∑

k

zk Xk

)

≤ ‖
∑

j

z j B j‖2tr
((

Ir 0
0 (C∗)−1C−1

))

≤ ‖z‖2∞(r + |tr(C−1)|2 − Re((trC−1)2 − trC−2)).

Now we must relate these quantities to intrinsic quantities of p.

First, p(t�1) = c0 det

(
t Ir 0
0 I + tC−1

)

= c0tr det(I+tC−1).So, using this formula

and the homogeneous expansion of p we get

t−r p(t�1)∣∣t=0 = c0 = Pr (�1)
d

dt

∣
∣
t=0t

−r p(t�1) = c0trC
−1 = Pr+1(�1)

d2

dt2
∣
∣
t=0t

−r p(t�1) = c0((trC
−1)2 − trC−2) = 2Pr+2(�1).

It is more difficult to calculate trX j . Define

q(s, t) = p(se j + t�1) = c0 det

(

J + sX j + t

(
I 0
0 C−1

))

.

Note

∂q

∂s
(0, t) = ∂ p

∂z j
(t�1).

Then,

∂q

∂s
(0, t) = tr

(

X j

(
t−1 Ir 0
0 (I + tC−1)−1

))

p(t�1)

= tr

(

X j

(
Ir 0
0 t(I + tC−1)−1

))

c0t
r−1 det(I + tC−1)

Thus, we can do the following computation with matrices and also with the homoge-
neous expansion of p

t−r+1 ∂q

∂s
(0, t)

∣
∣
∣
t=0

= c0tr

(

X j

(
Ir 0
0 0

))

= ∂Pr
∂z j

(�1)

Therefore,

∂q

∂s
(0, t) − t−1 p(t�1)

Pr (�1)
∂Pr
∂z j

(�1) = tr

(

X j

(
0 0
0 t(I + tC−1)−1

))

c0t
r−1 det(I + tC−1)
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which implies

t−r

(
∂q

∂s
(0, t) − t−1 p(t�1)

Pr (�1)
∂Pr
∂z j

(�1)
)

∣
∣
∣
t=0

= tr

(

X j

(
0 0
0 I

))

c0 = ∂Pr+1

∂z j
(�1) − Pr+1(�1)

Pr (�1)
∂Pr
∂z j

(�1)

Therefore,

c0trX j =
(

1 − Pr+1(�1)
Pr (�1)

)
∂Pr
∂z j

(�1) + ∂Pr+1

∂z j
(�1).

If we reassemble we get

log |p(z)/Pr (�1)| ≤ −r/2 + Re(
n∑

j=1

c j z j ) + B‖z‖2∞

where

c j = 1

Pr (�1)

[(

1 − Pr+1(�1)
Pr (�1)

)
∂Pr
∂z j

(�1) + ∂Pr+1

∂z j
(�1)

]

B = 1

2

⎛

⎝r +
∣
∣
∣
∣
∣

Pr+1(�1)
Pr (�1)

∣
∣
∣
∣
∣

2

− 2Re

(
Pr+2(�1)
Pr (�1)

)⎞

⎠

and this concludes the proof. ��
Lemma 6.1 Suppose A is a matrix with ImA ≥ 0. If 0 is an eigenvalue of A with
eigenspace of dimension s, then there exists a unitary U such that

U∗AU =
(
Os 0
0 C

)

where ImC ≥ 0 and C is invertible.

Proof If we write A using an orthonormal basis for its kernel followed by an orthonor-
mal basis for the orthogonal complement of its kernel, we can put A into the form

(
Os B
0 C

)

by conjugating by a unitary. Thismatrixwill still have positive semi-definite imaginary
part:

(
Os

1
2i B− 1

2i B
∗ ImC

)

≥ 0.
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This implies B = 0. Note C is invertible because it cannot have 0 as an eigenvalue. ��

7 Multivariable Szász Inequalities

Using the two variable Szász inequality we can establish the multivariable inequality
Theorem 1.5.

We will frequently use the component-wise partial order on Rn : x ≥ y if and only
if for all j = 1, . . . , n, x j ≥ y j .

Proof (Proof of Theorem 1.5) For z = x + iy ∈ C
n+ we have

|p(x1 + iy1, . . . , xn + iyn)| ≥ |p(x1 ± iy1, . . . , xn ± iyn)|

for all independent choices of ± by Lemma 7.1 below (more precisely, we can hold
fixed any variables with a “+” and apply Lemma 7.1 to the remaining variables). So,
it is enough to prove Theorem 1.5 for z ∈ C

n+.
By Lemma 7.2 below, if 0 ≤ y ≤ ỹ then

|p(x + iy)| ≤ |p(x + i ỹ)|.

Define ỹ as the vector with j-th component

ỹ j = max(|x j |, y j ).

Then, ỹ ≥ ±x and ỹ ≥ y.
Define

q(w1, w2) = p(w1(ỹ + x) + w2(ỹ − x))

which has no zeros in C2+ and q(0) = 1. We will now apply Theorem 1.4 using all of
the following computations.

q

(
i + 1

2
,
i − 1

2

)

= p(x + i ỹ)

q1(w) =
∑

j

p j (w1(ỹ + x) + w2(ỹ − x))(ỹ j + x j )

q2(w) =
∑

j

p j (w1(ỹ + x) + w2(ỹ − x))(ỹ j − x j )

q11(0) =
∑

j,k

p jk(0)(ỹ j + x j )(ỹk + xk)

q12(0) =
∑

j,k

p jk(0)(ỹ j + x j )(ỹk − xk)
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q22(0) =
∑

j,k

p jk(0)(ỹ j − x j )(ỹk − xk)

q1(0)(i + 1)/2 + q2(0)(i − 1)/2 = ∇ p(0) · (x + i ỹ)

q1(0) + q2(0) = 2∇ p(0) · ỹ
q11(0) + 2q12(0) + q22(0) = 4

∑

j,k

p jk(0)ỹ j ỹk .

Thus, by Theorem 1.4

log

∣
∣
∣
∣q

(
i + 1

2
,
i − 1

2

)∣
∣
∣
∣ ≤ Re(∇ p(0) · (x + i ỹ))

+1

4
(|2∇ p(0) · ỹ|2 − 4Re

⎛

⎝
∑

j,k

p jk(0)ỹ j ỹk)

⎞

⎠

≤ √
2|∇ p(0)||z| + (|∇ p(0)|2 + ‖ReHp(0)‖)|z|2 (7.1)

where we have used |x + i ỹ| ≤ √
2|z| and |ỹ| ≤ |z|. ��

Since Theorem 1.2 is an estimate on polydisks it is worth pointing out that (7.1)
yields

log |p(z)| ≤ ‖z‖∞
√
2

∑

j

|p j (0)| + ‖z‖2∞

⎛

⎜
⎝

⎛

⎝
∑

j

|p j (0)|
⎞

⎠

2

+
∑

|Re[p jk(0)]|
⎞

⎟
⎠

≤ ‖z‖∞
√
2

∑

j

|a(e j )| + ‖z‖2∞

⎛

⎜
⎝

⎛

⎝
∑

j

|a(e j )|
⎞

⎠

2

+ 2
∑

|Re[a(e j + ek)]|
⎞

⎟
⎠

≤ 1

2
+ ‖z‖2∞

⎛

⎜
⎝2

⎛

⎝
∑

j

|a(e j )|
⎞

⎠

2

+ 2
∑

|Re[a(e j + ek)]|
⎞

⎟
⎠

where p = ∑
a(β)zβ and in the last line we used the inequality a ≤ (1+a2)/2. This

gives

|p(z)| ≤ √
e · exp(C‖z‖2∞)

C = 2

⎛

⎝
∑

j

|a(e j )|
⎞

⎠

2

+ 2
∑

|Re[a(e j + ek)]|.

The following is a standard result. See Lemma 2.8 of [1] for instance.
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Lemma 7.1 If p ∈ C[z1, . . . , zn] has no zeros in Cn+ then for z = x + iy ∈ C
n+

|p(x + iy)| ≥ |p(x − iy)|.

Proof The one variable polynomial q(ζ ) = p(x + ζ y) has no zeros in C+. Then, q
can be factored as a product of terms of the form (1 + αζ) where Imα ≤ 0. We can
then check directly that

|1 + iα| ≥ |1 − iα|

which implies |q(i)| ≥ |q(−i)|. ��
Lemma 7.2 If p ∈ C[z1, . . . , zn] has no zeros in C

n+ and if 0 ≤ y ≤ ỹ then for any
x ∈ R

n

|p(x + iy)| ≤ |p(x + i ỹ)|.

Proof The one variable polynomial q(ζ ) = p(x + iy + ζ(ỹ − y)) has no zeros in C+.
Factors of q are of the form (1 + αζ) with Imα ≤ 0. Since |1 + iα| ≥ 1 we have
|q(0)| ≤ |q(i)|. ��

We can get a slightly better bound on R
n by modifying the argument of Theorem

1.5.

Theorem 7.1 Suppose p ∈ C[z1, . . . , zn] is stable. If p(0) = 1 then for x ∈ R
n

log |p(x)| ≤ Re(∇ p(0) · x) + 1

2
(|∇ p(0)|2 + ‖Re(Hp)(0)‖)|x |2

where Hp is the Hessian matrix of p.

Proof We can write x ∈ R
n as x = x+ − x− where (x+) j =

{
x j if x j ≥ 0

0 if x j < 0
. Define

P(z1, z2) = p(z1x+ + z2x−)

which has no zeros in C2+ and P(0) = 1. Set S+ = { j : x j ≥ 0}, S− = { j : x j < 0}.
Note that

P1(z) =
∑

j∈S+
p j (z1x+ + z2x−)|x j | P2(z) =

∑

j∈S−
p j (z1x+ + z2x−)|x j |

P11(0) =
∑

j,k∈S+
p jk(0)|x j ||xk |, P12(0) =

∑

j∈S+,k∈S−
p jk(0)|x j ||xk |,

P22(0) =
∑

j,k∈S−
p jk(0)|x j ||xk |.
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Now, since P(1,−1) = p(x) we have

log |p(x)| ≤ Re(∇ p(0) · x) + (1/2)(|∇ p(0)|2|x |2 − Re(
∑

jk

p jk(0)|x j ||xk |))

by Theorem 1.4. ��

8 Multivariable Inequalities When p(0) = 0

In this section we prove Theorem 1.8. Write the homogeneous expansion of p

p(z) =
d∑

j=r

Pj (z).

Notice that Pr (z) is stable itself by Hurwitz’s theorem because

Pr (z) = lim
t↘0

t−r p(t z)

exhibits Pr as a limit of polynomials with no zeros in Cn+.
We can make some of the reductions as in the previous section. We may assume

z = x+ iy ∈ C
n+ by Lemma 7.1. Definem = max{|x j |, y j : 1 ≤ j ≤ n} and ỹ = m�1.

Then, ỹ ≥ ±x , ỹ ≥ y and |p(z)| ≤ |p(x + i ỹ)|. Define

q(w1, w2) = p(w1(ỹ + x) + w2(ỹ − x))

which is stable and has homogeneous expansion

d∑

j=r

Q j (w) =
d∑

j=r

Pj (w1(ỹ + x) + w2(ỹ − x)).

All of the terms above are homogeneous of the correct degree but it is conceivable
that the first term vanishes. Setting w1 = w2 = 1 we see the first term evaluates to
Pr (2 ỹ) = (2m)r Pr (�1) which is non-zero.

The data we need for Theorem 1.7 is:

Q j (�1) = (2m) j Pj (�1)
∂Q j

∂w1
(�1) = (2m) j−1

n∑

k=1

∂Pj

∂zk
(�1)(m + xk)

∂Q j

∂w2
(�1) = (2m) j−1

n∑

k=1

∂Pj

∂zk
(�1)(m − xk)



1914 G. Knese

and so (omitting some details)

∣
∣
∣
∣q

(
i + 1

2
,
i − 1

2

)∣
∣
∣
∣ ≤ (2m)r |Pr (�1)|e−r/2 exp(Re(A) + 1

2
B)

where

A = 1

Pr (�1)

(

∇Pr (�1) · (x + i ỹ)

(
1

2m
− Pr+1(�1)

Pr (�1)

)

+ ∇Pr+1(�1) · (x + i ỹ)

)

B = 1

2

⎛

⎝(2m)2

∣
∣
∣
∣
∣

Pr+1(�1)
Pr (�1)

∣
∣
∣
∣
∣

2

− 2(2m)2Re

(
Pr+2(�1)
Pr (�1)

)

+ r

⎞

⎠ .

Note m ≤ ‖z‖∞ and ‖x + i ỹ‖∞ ≤ √
2m. We can crudely estimate A:

|A| ≤ 1
|Pr (�1)|

(
‖∇Pr (�1)‖1(

√
2m)

(
1
2m +

∣
∣
∣
Pr+1(�1)
Pr (�1)

∣
∣
∣
)

+ ‖∇Pr+1(�1)‖1
√
2m

)

≤ ‖∇Pr (�1)‖1√
2|Pr (�1)| +

√
2

|Pr (�1)|
(
‖∇Pr (�1)‖1

∣
∣
∣
Pr+1(�1)
Pr (�1)

∣
∣
∣ + ‖∇Pr+1(�1)‖1

)
‖z‖∞

and

|B| ≤ 2‖z‖2∞
⎛

⎝

∣
∣
∣
∣
∣

Pr+1(�1)
Pr (�1)

∣
∣
∣
∣
∣

2

− 2Re

(
Pr+2(�1)
Pr (�1)

)⎞

⎠ + r/2.

Here we use ‖ · ‖1 for 	1 norm of a vector. Putting everything together

|p(z)| ≤ ‖z‖r∞|Pr (�1)| exp(C0 + C1‖z‖∞ + C2‖z‖2∞)

where

C0 = r(log(2) − 1/4) + ‖∇Pr (�1)‖1√
2|Pr (�1)|

C1 =
√
2

|Pr (�1)|

(

‖∇Pr (�1)‖1
∣
∣
∣
∣
∣

Pr+1(�1)
Pr (�1)

∣
∣
∣
∣
∣
+ ‖∇Pr+1(�1)‖1

)

C2 =
⎛

⎝

∣
∣
∣
∣
∣

Pr+1(�1)
Pr (�1)

∣
∣
∣
∣
∣

2

− 2Re

(
Pr+2(�1)
Pr (�1)

)⎞

⎠ .
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