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Abstract
This study aims at rational approximation of a class of weighted Hardy spaces, includ-
ing the classical Bergman space, the weighted Bergman spaces, the Hardy space, the
Dirichlet space and the Hardy–Sobolev spaces. We will mainly concentrate in the
Bergman cases in the unit disc context. The methodology of the approximation is a
pre-orthogonal method, called Pre-Adaptive Fourier Decomposition. The new idea is
that a function is not expanded into a basis but an orthonormal system adapted to the
given function. In such way by using a unified method we obtain efficient approxima-
tions in our sequence of spaces while avoiding discussions on basis and uniqueness
sets, etc. The type of function decompositions is related to direct sum decompositions
of the underlying spaces into the closure of the span of a sequence of repeating repro-
ducing kernels and the corresponding zero-based invariant subspaces that arises deep
studies.

Keywords Bergman space · Weighted Bergman spaces · Weighted Hardy spaces ·
Rational orthogonal system · Adaptive Fourier decomposition · Reproducing kernel
Hilbert space

1 Introducrion

Approximation to holomorphic functions as a general topic has been studied by many
authors with a long history [1–6]. Some recent studies in relation to approximation
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in some holomorphic function spaces can be found in [7,8]. Apart from the classical
Hardy space, the existing studies in general weighted Hardy spaces do not address the
effectiveness issue, nor adaptive construction, of the approximation. The main techni-
cal effort of this paper is to construct explicitly the rational orthonormal systems with
fast convergence effect in a class of weighted Hardy spaces. The closest study to this
paper includes [9,10]. The theory developed in this study ensures rapid convergence
by allowing repeating selection of the kernel parameters. The study spells out in view
of the maximal selection principle why repeating selections of the parameters is nec-
essary and why this procedure involves consecutively one and higher order directional
derivatives. The idea of Pre-Adaptive Fourier Decomposition (POAFD)method on the
weighted Hardy spaces stems from and further develop [9,10]. POAFD is reduced to
adaptive Fourier decomposition (AFD) in the classical Hardy space context, the latter
being motivated by positive and non-linear instantaneous frequency representation of
signals, and merging into, and standing as a new type and one of the most effective
sparse representation programs with ample applications in industrial and biomedical
signal analysis [11,12], image analysis [13], as well as in system identification [14,15].
The usual greedy algorithms do not allow repeating selection of parameters and thus
cannot reach the best approximation. The AFD theory is briefly introduced as follows.

It is known that a function f ∈ L
2(∂D) with Fourier expansion f (eit ) =∑∞

n=−∞ cneint has its Hardy space decomposition f = f + + f −, where f +(eit ) =
∑∞

n=0 cne
int ∈ H

2+(∂D), and f −(eit ) = ∑−1
n=−∞ cneint ∈ H

2−(∂D). This decompo-
sition corresponds to the space direct sum decomposition

L
2(∂D) = H

2+(∂D) ⊕ H
2−(∂D), (1.1)

where H2±(∂D) are, correspondingly, the non-tangential boundary limits of the func-
tions in the Hardy spaces inside and outside the unit disc, respectively, denoted
H

2±(D). The projection operators from f to H
2±(∂D) are respectively denoted as

P±( f ) = (1/2)( f ± i H f ± c0). The projections can also be obtained through bound-
ary limits of the corresponding Cauchy integrals of the boundary data f . If f is
real-valued, due to the property c−n = cn, one has f = 2Re f + − c0. This suggests
that analysis of the L2 functions may be reduced to analysis of the functions in the
corresponding Hardy spaces [16]. Let {Tk} denote the rational orthogonal system, cor-
responding to a sequence of numbers a = (a1, . . . , an, . . .), allowing repetition, in
the unit disc, of the form

Tk(z) =
√
1 − |ak |2
1 − akz

k−1∏

l=1

z − al
1 − al z

.

{Tk}∞k=1 is an orthonormal system, also called Takenaka-Mulmquist or TM system,
in H

2+(D). The system may or may not be a basis of H2+(D) depending on whether∑∞
k=1(1−|ak |) = ∞ or not, respectively. In rational approximation of theHardy space

the above defined rational orthonormal systems are essential. For a given Hardy space
function f +, by selecting parameters ak’s under the maximal selection principle,
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ak = arg sup{|〈 f , T b
k 〉| : b ∈ D, b �= al , l = 1, . . . , k − 1},

where T b
k is the Tn with an being replaced by the undetermined b, regardless whether

the corresponding TM system is a basis or not, the resulted expansion, called AFD
expansion,

∞∑

k=1

〈 f , Tk〉Tk(z)

converges at fast pace [9] to f +(z). One extra property of the decomposition, but
important in signal analysis [14–16], and as the original motivation, is that under the
selection a1 = 0 all Tk’s are of positive frequency (boundary phase derivative). AFD
thus gives rise to intrinsic positive frequency decomposition of f + and thus that of
f as well. Other related work can be found in [17,18]. In the analytic adaptive and
positive-frequency approximation aspects the studies of Coifman et al. and Qian et al.
merged together [19,20]. Related to TM systems is the Beurling–Lax type direct sum
decomposition

H
2(D) = span{Tk}∞k=1 ⊕ φH2(D), (1.2)

where φ is the Blaschke product defined by the parameters a1, . . . , ak, . . .. The rele-
vance of the direct sum decomposition rests on the condition

∑∞
k=1(1 − |ak |) < ∞

under which φ is well defined and the TM system is not a basis.

The aim of this study is to generalize the AFD rational approximation theory of
the classical Hardy space to a unified class named as square-integrable β-weighted
Hardy spaces, including the Bergman space and weighted Bergman spaces, as well as
the Hardy–Sobolev spaces, namely, the spaces

H
2
β(D) =

{

f : D → C : f (z) =
∞∑

k=0

ckz
k, z ∈ D,

‖ f ‖2
H
2
β

=
∞∑

k=0

(k + 1)β |ck |2 < ∞
}

, (1.3)

where −∞ < β < ∞. H2
β is a particular case of H2

W . We note that the inequality
condition in the last definition guarantees that f is awell defined function holomorphic
in the open unit discD.The conventionalHardy–Sobolev spacesW2

β , β > 0, is defined
as

W
2
β =

{

f : D → C : f (z) =
∞∑

k=0

ckz
k,

∞∑

k=0

(1 + k)2β |ck |2 < ∞
}

.

Therefore, H2
β = W

2
β/2.
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The general weighted Hardy spaces defined as

H
2
W (D) =

{

f : D → C : f (z) =
∞∑

k=0

ckz
k, z ∈ D,

‖ f ‖2
H
2
W

=
∞∑

k=0

W (k)|ck |2 < ∞
}

, (1.4)

where the weight sequence W (k) ≥ 0, limk→∞ W (k)
1
k ≥ 1 [21]. Except for the

occasional cases, such as in Sect. 4 when we discuss the Bergman space in the upper-
half plane, we often suppress, in the notation for the function space, the part to indicate
the domain of the functions. That is, we simplify the notation H

2
β(D) to be H2

β.

The particular casesH2
0,H

2−1,H
2
1 andH

2
2 respectively correspond to the Hardy, the

classical Bergman, the Dirichlet, and the Hardy–Sobolev W
2
1 spaces. In general, H2

β

with β < 0 correspond to the weighted Bergman space A2
α, with β = −(1+ α), α >

−1 (see Sect. 5). The meaning of the space correspondence is that as function sets they
are equal, while the norms are not necessarily equal but at least equivalent [22]. Due
to the correspondence with the specially named spaces the approximation behaviors
are just the same. In below we concentrate in studying the β-weighted Hardy spaces
H

2
β.

It is a known fact that all theweightedBergman spaces corresponding toH2
β, β < 0,

are reproducing kernel Hilbert spaces (RKHSs) (see Sect. 5). For β > 0, by invoking
the fact that a Hilbert space is a reproducing kernel Hilbert space if and only if the
point-evaluating linear functional is a bounded functional, we can conclude that H2

β

for β > 0 are also RKHSs. In fact, due to the set inclusion relation H
2
β ⊂ H

2 = H
2
0

there follows

| f (z)| ≤ Cz‖ f ‖2 ≤ Cz‖ f ‖
H
2
β
. (1.5)

This implies that H2
β, β > 0, are RKHSs.

POAFDproposed in [10] is not valid for general RKHS. It is available only for those
that possess the so called boundary vanishing property (BVP). BVP corresponds, in
fact, the validity of the Riemann–Lebesgue Lemma in each RKHS context. It does
not always hold. We will show that for β > 1 BVP does not hold in H

2
β. As a result

POAFD cannot be performed, and approximation in the latter spaces can be obtained
through the inversed operators in H

2
β ′ , β = [β] + β ′, β ′ ∈ [0, 1), or be alternatively

obtained through a weak-POAFD method (see Sect. 6).
The formulation of approximation in non-Hardy reproducing kernel Hilbert spaces

is difficult due to the fact that there is no useful inner function theory, and the multi-
ple operators by inner functions are not norm-equivalent, nor contracting. Naturally
related to our approximation approach is characterization of zero-based shift-invariant
subspaces. In the Hardy space cases with the classical settings there exists the
Beurling–Lax Theorem. The remarkable difference between the Hardy space and
the non-Hardy reproducing kernel Hilbert spaces is characterization of the zero-based
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invariant subspaces. The characterization problem is an open problem for each of
the non-Hardy space case H2

β, β �= 0. For instance, for the standard Bergman space

A
2 = A

2
0,

A
2(D) �= span{Bk}∞k=1 ⊕ HaA

2(D),

where {Bk}∞k=1 is the Gram-Schmidt orthonormalization of a sequence of generalized
reproducing kernels (see Sect. 2) corresponding to the infinite sequence a inducing
a Horowitz product Ha ([23], also see Sect. 5). On the other hand, we show that in
all cases the direct sum decomposition holds with the Beurling type shift invariant
subspace being replaced by the zero-based invariant subspace, that is

H
2
β = span{Bk}∞k=1 ⊕ Ia.

The study on characterizing the zero-based shift-invariant subspaces has attracted
many famous work [24–28].

The paper provides in detail the POAFD procedure for the standard Bergman space
case. For the other cases, we indicate the differences and the necessary changes.
The special case with the upper-half space is presented in great detail. Related error
estimations are provided. A proof of the expansion convergence that does not depend
on inner function properties is given.

The paper is organized as follows. In Sect. 2 we introduce basic knowledge of the
Bergman spaces. Section 3 constructs the rational orthonormal system in the Bergman
space that will be recalled when developing POAFD as an optimal approximation
method in the Bergman space. Convergence rate and the related zero based invariant
spaces are studied. In Sects. 4 and 5 we extend the theory established in the standard
Bergman space to the Bergman space in the upper-half complex plane, and to the
weighted Bergman spaces, respectively. In Sect. 6 we deal with the Hardy–Sobolev
spaces corresponding to β > 0. Apart from the theory aspect given in this paper we
also achieved the related algorithm codes and experiments, and the application aspects,
that will be left to the forthcoming complimentary paper.

2 Preliminaries

Denote by D the open unit disc in the complex plane C. We will first deal with the
square integrable Bergman space of the open unit disc, A2(D), namely,

A
2(D) =

{

f : D → C | f is holomorphic in D, and ‖ f ‖2
A2(D)

=
∫

D
| f (z)|2d A < ∞

}

,
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where d A is the normalized areameasure on the unit disc: d A = dxdy
π

, z = x+iy.The
space A2(D) under the norm ‖ · ‖A2(D) forms a Hilbert space with the inner product

〈 f , g〉A2(D) =
∫

D
f (z)g(z)d A.

In the sequel we often suppress the subscripts A2(D) in the notations ‖ · ‖A2(D) and
〈·, ·〉A2(D), and write them simply as ‖ · ‖ and 〈·, ·〉.

It is known that A2 is a reproducing kernel Hilbert space with the reproducing
kernel

ka(z) = 1

(1 − az)2
.

From the reproducing kernel property we have

‖ka‖2 = ka(a) = 1

(1 − |a|2)2 .

Thus, the normalized reproducing kernel, denoted as ea(z), is

ea(z) = ka(z)√
ka(a)

= 1 − |a|2
(1 − az)2

.

We hence have, for any f ∈ A
2,

〈 f , ea〉 = (1 − |a|2) f (a).

Let a = (a1, . . . , an, . . .) be an infinite sequence in D. Here, and in the sequel,
an’s are allowed to repeat. Denote by l(an) the number of repeating times of an in the
n-tuple an = (a1, . . . , an). Denote by

k̃an (z) =
(

d

dw

)l(an)−1

(kw(z)) |w=an . (2.1)

We will call the sequence {k̃an } the generalized reproducing kernels corresponding to
(a1, . . . , an, . . .).

There follows, for f ∈ A
2,

〈 f , k̃an 〉 = f (l(an)−1)(an). (2.2)

To show (2.2), taking the (l − 1)-th derivative to the both sides of the identity

f (w) =
∫

D

f (z)

(1 − wz)2
d A,
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we have

f (l−1)(w) = l!
∫

D

zl−1 f (z)

(1 − wz)l+1 d A.

The exchange of the orders of differentiation and integration is justified by the
Lebesgue Dominated Convergence Theorem. We thus obtain (2.2). In the classical
Hardy space case, this relation was noted by [10]. As explained in the following sec-
tions, the consecutive derivatives of the kernel function correspond to repeating use of
the parameters an .A number of literature at this point do not bother to discuss the case
of repeating use of the parameters (see, for instance, [6]). The present study shows that
in order to obtain the best possible approximation at each step repeating selections of
parameters are necessary, and shows how the adaptive selection procedure possibly
involves higher and higher orders of derivatives.

Let M be a closed subspace of A2. If further zM ⊂ M, then we say that M is
an shift-invariant subspace or simply invariant subspace. Let a be a finite or infinite
sequence of points in the unit disc. We will be interested in the zero-based invariant
subspaces Ia consisting of the functions that vanishes on the points of a together with
the multiples:

Ia = { f ∈ A
2 : f has all points in a together with their multiples as its zeros}.

It is conventional that a is a zero with multiple l of an analytic function f if and only
if f (z) = (z − a)l g(z), where g is also analytic at a. The last fact is equivalent with
f (a) = f ′(a) = · · · = f (l−1)(a) = 0. Denote φa(z) = z − a. In the case I = Ia1 =
I{a1},wecan easily show that I{a1} = φa1A

2. Inductively,wehave Ian = φa1 · · · φanA
2,

where an = (a1, . . . , an). This relation, however, is not extendable to an infinite
sequence a. The zero-based invariant spaces are closed subspaces, they themselves are
reproducing kernelHilbert spaces.Characterizations of zero-based invariant subspaces
are of central importance and attract great interest of many researchers. In the Hardy
spaces case there exist the Beurling and Beurling–Lax Theorems in relation to the
inner functions in the contexts. Necessary and sufficient conditions for a being the
zero set of some Bergman space function has ever since several decades ago been an
open problem [29–31]. The existing partial results along this direction contribute to
our understanding on when a maximally selected parameter sequence gives rise to a
basis (see Sect. 3).

3 Pre-orthogonal Adaptive Fourier Decomposition in the Bergman
Space

In this section we first construct for a given infinite sequence a the corresponding
rational orthogonal system of the Bergman space, called the Bergman space rational
orthogonal (BRO) system. Secondly, we show the validity of the so called boundary
vanishing condition, and subsequently the validity of the maximal selection princi-
ple. Under the maximal selections of the parameters the convergence theorem in the
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Bergman space is proved. The direct sum decomposition holds as a consequence. To
the end of the section we study the convergence rate of the pre-orthogonal adaptive
Fourier decomposition.

3.1 Rational Orthogonal System ofA2

For any given infinite sequence a = (a1, . . . , an, . . .) in the unit disc D we have

Theorem 3.1 Let (a1, . . . , an, . . .) be an infinite sequence in D, where each an in the
sequence is allowed to repeat. Denote An = (a1, . . . , an). Let the orthonormaliza-
tion of (k̃a1, . . . , k̃an ) be denoted by (B1, . . . , Bn). Let w ∈ D be different from any
a1, . . . , an . Then for any positive integer n, (i) the reproducing kernel of the zero-based
invariant subspace IAn is

KAn (z, w) =
√
√
√
√‖kw‖2 −

n∑

k=1

|〈kw, Bk〉|2Bw
n+1, KA0(z, w) = K (z, w),

where (B1, . . . , Bn, Bw
n+1) is the orthonormalization of (k̃a1, . . . , k̃an , kw); (ii) if an+1

coincides with some ak , k = 1, . . . , n, that is, l(an+1) > 1, then Ban+1
n+1 defined through

limw→an+1 B
w
n+1 will satisfy

lim
w→an+1

Bw
n+1 = k̃an+1(z) − ∑n

k=1〈k̃an+1 , Bk〉Bk(z)
√

‖k̃an+1‖2 − ∑n
k=1 |〈k̃an+1 , Bk〉|2

.

That is, Ban+1
n+1 = Bn+1.

Proof (i) Let w be none of a1, . . . , an . Under the Gram–Schmidt (G–S) orthonormal-
ization process, Bw

n+1 is given by

Bw
n+1(z) = kw(z) − ∑n

k=1〈kw, Bk〉Bk(z)
√

‖kw‖2 − ∑n
k=1 |〈kw, Bk〉|2

. (3.1)

We are to show that

KAn (·, w) =
√
√
√
√‖kw‖2 −

n∑

k=1

|〈kw, Bk〉|2Bw
n+1(z)

= kw −
n∑

k=1

〈kw, Bk〉Bk(z)

is the reproducing kernel of IAn . To this end we will show (1) KAn (·, w) itself belongs
to the space IAn ; and (2) For f = φa1 · · · φan g, g ∈ A

2, there holds 〈 f , KAn (·, w)〉 =
f (w).
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Nowwe show (1). From the construction of KAn (·, w)we know that it is orthogonal
with all B1, . . . Bn, and hence orthogonal with all k̃a1, . . . , k̃an . Let a be a complex
number appearing in the sequence (a1, . . . , an) with the repetition number l. Then

ka,
∂

∂w
ka, . . . ,

(
∂

∂w

)l−1
ka will appear in k̃a1, . . . , k̃an . By invoking (2.2), the function

KAn (·, w) being orthogonal with ka, ∂
∂w

ka, . . . ,
(

∂
∂w

)l−1
ka means that KAn (a, w) =

∂
∂z KAn (a, w) = · · · =

(
∂
∂z

)l−1
KAn (a, w) = 0. The latter implies that KAn (z, w)

has the multiplicative factor (z − a)l . By applying this argument for all a appearing
in the sequence (a1, . . . , an) we obtain that for each w, KAn (·, w) is in IAn .

Next we show (2), that is, for f = φa1 · · · φan g, g ∈ A
2, there holds

〈 f , KAn (·, w)〉 = f (w). We first claim that

〈φa1 · · · φan g, k̃ak 〉 = 0, k = 1, 2, . . . , n. (3.2)

Let ak repeat l times in (a1, . . . , an) and l(ak) times in (a1, . . . , ak). We always
have l ≥ l(ak). In such notation (φak )

l is a factor of φa1 · · · φan , and for some h ∈
A
2, φl

ak h = φa1 · · · φan g. By (2.2), we have

〈φa1 · · · φan g, k̃ak 〉 = 〈φl
ak h,

(
∂

∂w

)l(ak )−1

(kw)|w=ak 〉
= (φl

ak h)(l(ak)−1)(ak)

= 0.

Since each Bk is a linear combination of (k̃a1, . . . , k̃ak ), we have, owing to (3.2),

〈φa1 · · · φan g, Kn(·, w)〉 = 〈φa1 · · · φan g, kw −
n∑

k=1

〈kw, Bk〉Bk(z)〉

= 〈φa1 · · · φan g, kw〉 +
n∑

k=1

ck
〈
φa1 · · · φan g, k̃ak

〉

= φa1(w) · · ·φan (w)g(w)

= f (w).

Therefore, Kn(z, w) is the reproducing kernel of IAn . The proof of (2) is complete.
Now we prove (ii) that treats l = l(an+1) > 1. This means that the l − 1 terms

kan+1 ,
∂

∂w
kan+1 , . . . ,

(
∂

∂w

)(l−2)
kan+1 , as functions of the z variable, have appeared in

the sequence (k̃a1, . . . , k̃an ). Therefore, the function

kan+1 +
∂

∂w
kan+1

1! (w − an+1) + · · · +
(

∂
∂w

)l−2
kan+1

(l − 2)! (w − an+1)
l−2,

as the order-(l − 2) Taylor expansion of the function kw(z) at w = an+1 is already
in the linear span of B1, . . . , Bn . Denoting it by Tl−2(kw, an+1), the last mentioned
assertion amounts to the relation



1836 W. Qu , P. Dang

Tl−2(kw, an+1) −
n∑

k=1

〈Tl−2(kw, an+1), Bk〉Bk = 0. (3.3)

For w being different from all ak, k = 1, . . . , n, we have, owing to (3.1),

kw(z) − ∑n
k=1〈kw, Bk〉Bk(z)

‖kw − ∑n
k=1〈kw, Bk〉Bk‖ = Bw

n+1(z), (3.4)

Inserting (3.3) into (3.4), and dividing by (w − an+1)
l−1 and |w − an+1|l−1 to the

numerator and the denominator, respectively, we have

kw(z)−Tl−2(kw,an+1)(z)
(w−an+1)l−1

−∑n
k=1〈 kw−Tl−2(kw,an+1)(z)

(w−an+1)l−1 , Bk〉Bk(z)

‖ kw(z)−Tl−2(kw,an+1)(z)
(w−an+1)l−1 −∑n

k=1〈 kw(z)−Tl−2(kw,an+1)(z)
(w−an+1)l−1 , Bk〉Bk‖

= −e(l−1)θ Bw
n+1(z),

(3.5)

where w − an+1 = |w − an+1|eiθ . Letting w → an+1, keeping the direction eiθ , and
using the Lagrange type remainder, we obtain

e(l−1)θ k̃an+1(z) − ∑n
k=1〈k̃an+1 , Bk〉Bk(z)

‖k̃an+1 − ∑n
k=1〈k̃an+1 , Bk〉Bk‖

= Bn+1(z).

This shows that the G–S orthonormalization of (k̃a1, . . . , k̃an+1) is (B1, . . . , Bn+1).

The proof of (ii) is complete. ��
In [6] the author obtains analogous results with the assumption that all a1, . . . , an

are distinct.
Recalling that

Ia = { f ∈ A
2 : f (a) = 0},

we have

Theorem 3.2 Let a be any sequence in D and h the infinite error function

h = f −
∞∑

k=1

〈 f , Bk〉Bk . (3.6)

Then there holds h ∈ Ia. Moreover,

A
2 = span{Bk}∞k=1 ⊕ Ia. (3.7)

Proof First, the Riesz–Fisher Theorem gives

h = f −
∞∑

k=1

〈 f , Bk〉Bk ∈ A
2.
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Next, the fact h ⊥ Bk for all k implies h ⊥ k̃ak for all k that further implies that h has
a as its zeros including the multiples. So, the LHS of (3.7) is a subset of the RHD. The
inverse inclusion is obvious. The proof is complete. ��

The last theorem does not exclude the case Ia = {0}. For such case we have

Corollary 3.3 {Bk}∞k=1 is a basis if and only if Ia = {0}.
It is an interesting question that for what a there holds Ia �= {0}, and thus {Bk}∞k=1

is not a basis. This, however, has been an open question till now. Studies show that
no condition only on the magnitudes of ak’s can guarantee a to be the zero sequence
of some non-trivial f ∈ A

2. The following remark is based on the existing literature
[23,30,32].

Remark 3.4 Let � = ∏∞
j=1[0, 2π). Let μ j be the normalized Lebesgue measure on

the j-th factor of �. Then let μ be the probability measure on � such that μ =∏∞
k=1 μ j [30,32]. Consider the map of � into the holomorphic function set H(D)

defined by ω → Ha such that a j = r j eiω j and ω = {ω j }∞j=1. Then under the
condition

lim sup
ε→0+

∑∞
j=1(1 − r j )1+ε

log 1
ε

< 1/4, (3.8)

there holds that Ha ∈ A
2 for μ-a.e. ω [30].

Based on the above result, as well as Corollary 3.3, we conclude

Theorem 3.5 Under the condition (3.8), {Bj }∞j=1 is almost surely not a basis.

3.2 Formulation of Pre-orthogonal Adaptive Fourier Decomposition in the
Bergman SpaceA2

The purpose of this section is to introduce a machinery that gives rise to fast rational
approximation to functions in the Bergman space. The machinery is an adaptation of a
general method called pre-orthogonal adaptive Fourier decomposition or POAFD for
the reproducing kernel Hilbert spaces possessing the boundary vanish property (BVP)
[10,18]. It is the pre-orthogonal process that arises repeating selection of parameters,
when necessary, and therefore the necessity of successive derivatives of the reproduc-
ing kernel.

Let f ∈ A
2. Denote f = f1. For the normalized reproducing kernel ea1 and any

a1 ∈ D, we have the identity

f (z) = 〈 f1, ea1〉ea1(z) + f2(z),

where the standard remainder f2 = f1 −〈 f1, ea1〉ea1 is orthogonal with ea1 . We thus
have

‖ f ‖2 = |〈 f1, ea1〉|2 + ‖ f2‖2.
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The strategy is to maximize the value of |〈 f1, ea1〉|2 through selections of a1, and thus
to minimize the energy of f2. Despite of the fact that D is an open set, we have

Lemma 3.6 For any f ∈ A
2 there holds

lim|b|→1
|〈 f , eb〉| = 0.

As a consequence, there exists a ∈ D such that

|〈 f , ea〉|2 = max{|〈 f , eb〉|2 : b ∈ D}.

Proof The Cauchy-Schwarz inequality gives

|〈 f , eb〉| ≤ ‖ f ‖.

Therefore |〈 f , eb〉| has a finite upper bound.
For ε > 0, due to density of polynomials in the Bergman space, there exists a

polynomial g such that

‖ f − g‖ ≤ ε.

The Cauchy-Schwarz inequality gives

|〈 f , eb〉| ≤ |〈g, eb〉| + ε = (1 − |b|2)|g(b)| + ε.

The last quantity tends to zero as |b| → 1. A Bolzano–Weierstrass type compact then
concludes that |〈 f , eb〉| attains the maximum value at an interior point. ��

For f1 ∈ A
2 choose a1 such that

|〈 f1, ea1〉|2 = max
{
|〈 f1, eb〉|2 : b ∈ D

}
.

Fixing such a1 and letting fn+1(z) = fn − 〈 fn, Bb
n 〉Bb

n (z), we have the identity

f (z) = 〈 f1, B1〉B1(z) + · · · + 〈 fn−1, Bn−1〉Bn−1(z)

+
〈
fn, B

b
n

〉
Bb
n (z) + fn+1, (3.9)

where B1 = ea1 , and a1, . . . , an−1, are preciously selected, {B1, . . . Bn−1} is the G–S
orthonormalization of {k̃a1, . . . , k̃an−1}, and {B1, . . . , Bn−1, Bb

n } is the G–S orthonor-
malization of {B1, . . . , Bn−1, k̃b}. For the time being we assume b is not among
a1, . . . , an−1, that is l(b) = 1 and k̃b = kb. Expressing Bb

n by (3.1), due to the
orthogonality between fn and Bk, k = 1, . . . , n − 1, we have

〈 fn, Bb
n 〉 =

〈

fn,
eb

√
1 − ∑n−1

k=1 |〈eb, Bk〉|2

〉

.
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Using the Cauchy-Schwarz inequality to |〈 fn, Bb
n 〉|,we have that the complex module

of the above inner product, first, has a finite upper bound independent of b ∈ D. We
will show that the module of the complex number, depending on b, reaches its global
maximum at an interior point b = an ∈ D. To this end it suffices to show that the
module tends to zero as |b| → 1. The quantity can be decomposed into two parts, as

〈

fn,
eb

√
1 − ∑n−1

k=1 |〈eb, Bk〉|2

〉

=
〈

fn,
eb

√
1 − ∑n−1

k=1 |〈eb, Bk〉|2
− eb

〉

+ 〈 fn, eb〉

= I1(b) + I2(b).

We have

|I1(b)|≤
∫

D
| fn||eb|

⎛

⎝ 1
√
1 − ∑n−1

k=1 |〈eb, Bk〉|2
−1

⎞

⎠ d A. (3.10)

Using Lemma 3.6 to each term |〈eb, Bk〉| of the summation, we obtain that, if |b| is
close to 1, the difference in the round brackets is dominated by any previously set
ε > 0.By taking this ε-domination out from (3.10) and applying the Cauchy-Schwarz
inequality to the rest integration on | fn||eb|, we conclude

lim|b|→1− I1(b) = 0.

The maximal selection Lemma 3.6 implies lim|b|→1− I2(b) = 0. To summarize, we
have

lim|b|→1− |〈 fn, Bb
n 〉| = 0. (3.11)

The process to reach and attain the maximal value of |〈 fn, Bb
n 〉| can always be

made from a sequence {bk}∞k=1 in D, where for each k, bk �= al , l = 1, . . . , n,

and limk→∞ bk = an . If an �= a1, . . . , an−1, i.e., l(an) = 1, then one simply
has (B1, . . . , Bn) = (B1, . . . , B

an
n ), the latter being the G–S orthonormaliza-

tion of (k̃a1, . . . , k̃an−1 , kan ). If, l(an) > 1, then according to Theorem 3.1, one
also has (B1, . . . , Bn) = (B1, . . . , B

an
n ), but the latter is the G–S orthonormal-

ization of (k̃a1, . . . , k̃an ). Fixing such a maximal selection an we have that fn+1
defined by (3.9) is in the orthogonal complement of the span of B1, . . . , Bn, and
〈 f1, B1〉B1 + · · · + 〈 fn, Bn〉Bn is the orthogonal projection of f into the span of
(B1, . . . , Bn). We therefore have

‖ f ‖2 =
n∑

k=1

|〈 f , Bk〉|2 + ‖ fn+1‖2.

We note that fn+1 ∈ I{a1,...,an}.
The above argument is summarized as the maximal selection principle stated as
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Theorem 3.7 For any f ∈ A
2 and any positive integer n there exists an ∈ D such that

∣
∣
〈
f , Ban

n

〉∣
∣2 = sup

{∣
∣
∣
〈
f , Bb

n

〉∣
∣
∣
2 : b ∈ D

}

, (3.12)

where for any b ∈ D, (B1, . . . , Bn−1, Bb
n ) is the G–S orthogonalization of

(k̃a1, . . . , k̃an−1 , k̃b) corresponding to the n-tuple (a1, . . . , an−1, b).

We next prove

Theorem 3.8 Let f be any function inA2.Under the maximal selections of the param-
eters (a1, . . . , an, · · · ) there holds

f =
∞∑

k=1

〈 f , Bk〉Bk .

Proof We prove the desired convergence by contradiction. Assume that through a
sequence of maximally selected parameters a = (a1, . . . , an, · · · ) we have

f =
∞∑

k=1

〈 f , Bk〉Bk + h, h �= 0. (3.13)

By the Bessel inequality and the Riesz–Fisher Theorem
∑∞

k=1〈 f , Bk〉Bk ∈ A
2, and

hence h ∈ A
2. We separate the series into two parts

f =
M∑

k=1

+
∞∑

k=M+1

〈 f , Bk〉Bk + h,

where by our notation,

fM+1 =
∞∑

k=M+1

〈 f , Bk〉Bk + h = gM+1 + h.

In the last equality, due to the orthogonality, we may replace f with fk and have

fM+1 =
∞∑

k=M+1

〈 fk, Bk〉Bk + h.

Since the set of the reproducing kernels of A2 is dense, there exists a ∈ D such that
δ � |〈h, ea〉| > 0. We can, in particular, choose a to be different from all the ak’s in
the sequence a. The contradiction that we are going to introduce will be in relation
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to the maximal selections of aM+1 when M is large. Now, on one hand, the Bessel
inequality implies

lim
k→∞ |〈 fk, Bk〉| = 0,

and thus the maximal selection of aM+1 implies

∣
∣
〈
fM+1, B

a
M+1

〉∣
∣ ≤ |〈 fM+1, BM+1〉| → 0, as M → ∞. (3.14)

On the other hand, as we will show, for large M ,

∣
∣
〈
fM+1, B

a
M+1

〉∣
∣ >

δ

2
. (3.15)

This is then clearly a contradiction.
The rest part of the proof is devoted to showing (3.15). Due to the quantity relations

∣
∣
〈
fM+1, B

a
M+1

〉∣
∣ ≥ ∣

∣
〈
h, Ba

M+1

〉∣
∣ − ∣

∣
〈
gM+1, B

a
M+1

〉∣
∣ (3.16)

and

∣
∣
〈
gM+1, B

a
M+1

〉∣
∣ ≤ ‖gM+1‖ → 0, as M → ∞, (3.17)

we see that if M grows large, the lower bounds of |〈 fM+1, Ba
M+1〉| depend on those of|〈h, Ba

M+1〉|. To analyze the lower bounds of |〈h, Ba
M+1〉|, for any positive integer M,

denote by Xa
M+1 the (M + 1)-dimensional space spanned by {ea, k̃a1 , . . . , k̃aM }. We

have twomethods to compute the energy of the projection of h into Xa
M+1, denoted by

‖h/Xa
M+1‖2. One method is based on the orthonormalization (B1, . . . , BM , Ba

M+1).

In such way, due to the orthogonality of h with B1, . . . , BM , we have

∥
∥h/Xa

M+1

∥
∥2 = ∣

∣
〈
h, Ba

M+1

〉∣
∣2 .

The second way is based on the orthonormalization in the order (ea, k̃a1 , . . . , k̃aM ).

Then we have

∥
∥h/Xa

M+1

∥
∥2 ≥ |〈h, ea〉|2 = δ2.

Hence we have, for M , |〈h, Ba
M+1〉| ≥ δ. In view of this last estimation and (3.17),

(3.16), we arrive at the contradiction spelt by (3.15), (3.14). The proof is thus complete.
��

We note that in [6] the author studies expansions of functions in the orthogonal
complement of a zeros based invariant subspace where the distinguished zeros are
assumed to be an interpolation sequence. In our setting the zero sequence, allowing
multiples, is not preassumed to form an interpolating sequence and gives rise to fast-
convergence-representation of the function to be expanded.
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3.3 Convergence Rate of Pre-orthogonal Adaptive Fourier Decomposition

The POAFD approach is not classified into any existing category of the greedy algo-
rithms. The differences between the methods in the AFD category, including POAFD,
and the greedy algorithms include (i) In the AFD methods the parameters can be
repeatedly selected; and (ii) At each of the iterative steps the maximal projection can
be attained. Those, therefore, in general, offer approximation better than what are
called greedy algorithms [10]. Below we prove the corresponding convergence rate.

Before we prove the convergence rate estimation we recall the following lemma
whose proof can be found in the greedy algorithm literature [10].

Lemma 3.9 Assume that a sequence of positive numbers satisfies the conditions

d1 ≤ A, dk+1 ≤ dk

(

1 − dk
r2k A

)

, k = 1, 2, . . .

Then there holds

dk ≤ A

1 + ∑k
l=1

1
r2l

, k = 1, 2, . . .

For M > 0 we will be working with the subclass A2
M of A2 defined as

A
2
M={ f ∈A

2 : there exists {b1,. . ., bn,. . .}, f =
∞∑

l=1

clebl ,
∞∑

l=1

|cl |≤M}.

Theorem 3.10 Let f = ∑∞
l=1 clebl ∈ A

2
M , and fn be the orthogonal standard

remainder corresponding to the maximal selections of the ak’s, then there exists esti-
mation

‖ fk‖ ≤ M

(

1 +
k∑

l=1

(
1

rl

)2
)− 1

2

,

where rk = sup{rk(bl) : l = 1, 2, . . .}, and rk(bl) =
√
1 − ∑k−1

t=1 |〈ebl , Bt 〉|2 =
‖ebl − ∑k−1

t=1 〈ebl , Bt 〉Bt‖.
Proof We start from the inequality chain

|〈 fk, Bk〉| ≥ sup
{∣
∣
〈
fk, B

a
k

〉∣
∣ : a ∈ D

}

≥ sup
{∣
∣
∣
〈
fk, B

bl
k

〉∣
∣
∣ : l = 1, 2, . . .

}

= sup

{ |〈 fk, ebl 〉|
rk(bl)

: l = 1, 2, . . .

}
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≥ 1

rk
sup

{|〈 fk, ebl 〉| : l = 1, 2, . . .
}

≥ 1

rkM

∣
∣
∣
∣
∣

〈

fk,
∞∑

l=1

clebl

〉∣
∣
∣
∣
∣

= 1

rkM
|〈 fk, f 〉|

= 1

rkM
|〈 fk, fk〉| (since fk ⊥ ( f − fk))

= ‖ fk‖2
rkM

.

Substituting this inequality into the relation

‖ fk+1‖2 = ‖ fk‖2 − |〈 fk, Bk〉|2,

we have

‖ fk+1‖2 ≤ ‖ fk‖2
(

1 − 1

(rkM)2
‖ fk‖2

)

.

By invoking Lemma 3.9, we have the desired estimation

‖ fk‖ ≤ M2

√

1 + ∑k
l=1

1
r2l

.

The proof is complete. ��

Remark 3.11 Since 0 < rk ≤ 1, we have, at least

‖ fk‖ ≤ M2

√
k
.

Coincidentally this is the same bound as for the Shannon expansion. Shannon expan-
sion, however, treats bandlimited entire functions with great smoothness that is what
is usually needed for good convergence rates. On the other hand, the Bergman space
contains functions that blow up at the boundary.

Remark 3.12 With regards to the direct sum decomposition (3.7) what we can say in
relation to Theorem 3.8 is that f ∈ span{Bk}∞k=1 with fast convergence, while the
maximally selected sequence a may or may not give rise to a basis.
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4 The Bergman Space on the Upper Half Complex Plane

The theory on the upper half complex planeC+ is a close analogy with the one for the
unit disc. Denote by A

2(C+) the square integrable Bergman space of the upper half
complex plane C+. That is,

A
2(C+) =

{

f : C+ → C | f is holomorphic in C+, and

‖ f ‖2
A2(C+)

=
∫

C+
| f (z)|2d A < ∞

}

.

The reproducing kernel k+
a ofA2(C+) at the point a ∈ C+ is given by k+

a (z) = −1
(z−a)2

[33,34]. Moreover, ‖k+
a ‖2 = k+

a (a) = 1
(2Im{a})2 and the normalized kernel e+

a =
k+
a (a)

‖k+
a ‖ = −2Im{a}

(z−a)2
, where Im{a} denotes the imaginary part of a. In the later part of this

section we will write, for simplicity but with abuse of notation, k+
a , e+

a , as ka, ea, etc.

Lemma 4.1 span{ 1
(z−a)2

| a ∈ C+} is dense in A2(C+).

Proof Let A = span{ 1
(z−a)2

| a ∈ C+}, we claim that A = A
2(C+). If this does not

hold, then

A
2(C+) = A ⊕ A⊥ and A⊥ �= {0}.

Thus, there exists f ∈ A⊥ and f �= 0. In such case due to the reproducing kernel
property we have 〈 f , 1

(z−a)2
〉 = f (a) = 0 for every a ∈ C+. It follows that f = 0, a

contradiction. ��
Lemma 4.2 For any f ∈ A

2(C+) there holds

lim
b→∂C+

|〈 f , eb〉| = 0,

and there exists a ∈ C+ such that

|〈 f , ea〉|2 = max{|〈 f , eb〉|2 : b ∈ C+}.

Proof The Cauchy-Schwarz inequality gives

|〈 f , eb〉| ≤ ‖ f ‖.

Therefore |〈 f , eb〉| has a finite upper bound. There exists a sequence {bk}∞k=1 such
that

lim
k→∞ |〈 f , ebk 〉| = sup{|〈 f , eb〉| | b ∈ C+}. (4.1)
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We will prove there exists a subsequence {bkl }∞l=1 converging to b̃ ∈ C+. Then we
have |〈 f , eb̃〉| = liml→∞ |〈 f , ebkl 〉| = sup{|〈 f , eb〉| | b ∈ C+}, as desired. It suffices
to show that for any ε > 0 there exists an open neighborhood B(δ, R) of the boundary
of C+, where B(δ, R) = {b ∈ C+ | Im{b} < δ} ∪ {b ∈ C+ | |b| > R}, such that
|〈 f , eb〉| < ε whenever b ∈ B(δ, R). As a consequence of this, as well as of the
relation (4.1), when k grows large those bk must stay in a compact subset of C+, and
thus one can choose a subsequence of {bkl }, according to the Bolzano–Weierstrass
Theorem, converging to a point b̃ in C+.

For ε > 0, since span{ 1
(z−a)2

| a ∈ C+} is dense in A2(C+), there exists a function
g of the form

g =
m∑

k=1

ck
(z − ak)2

, ak ∈ C+, k = 1, . . . ,m,

such that

‖ f − g‖ ≤ ε/2.

As for the unit disc case, the triangle inequality and the Cauchy-Schwarz inequality
give

|〈 f , eb〉| ≤ |〈g, eb〉| + ε/2.

On one hand, there exists δ > 0 such that Im{b} < δ implies |〈g, eb〉| < ε/2. To
show this, denote min{Im{ak}}mk=1 = δ1 > 0, we have

|〈g, eb〉| = 2Im{b} |
m∑

k=1

ck
(b − ak)2

|

≤ 2Im{b}
m∑

k=1

|ck |
|b − ak |2

≤ 2δ
m∑

k=1

|ck |
( δ1
2 )2

< ε/2,

if δ is small enough.
On the other hand, let max{|ak |}mk=1 = R1 > 0, we will show there exists R such

that |b| > R implies |〈g, eb〉| < ε/2.
Let |b| > 4R1. There holds |b − ak | ≥ |b|/2. Hence

|〈g, eb〉|≤2Im{b}
m∑

k=1

|ck |
|b − ak |2 ≤2|b|

m∑

k=1

4|ck |
|b|2 = 8

|b|
m∑

k=1

|ck |.



1846 W. Qu , P. Dang

So, if |b| > R, and R is large enough and, in particular, larger than 4R1, then the last
quantity is dominated by ε/2. ��

Note that ∂C+ is defined to be R ∪ ∞, and open neighborhoods of ∂C+ are
B(δ, R) = {z ∈ C+ | Imz < δ, or |z| > R}, δ > 0, R > 0. By b being further close
to ∂C+ we mean that b is in B(δ′, R′) with δ′ < δ, R′ > R. The above proved is
regarded as boundary vanishing property of 〈 f , eb〉, and denoted

lim
b→∂C+

|〈 f , eb〉| = 0.

As in the unit disc Bergman space case we have the maximal selection principle on
C+:

Theorem 4.3 For any f ∈ A
2(C+) and positive integer k there exists ak ∈ C+ such

that

|〈 f , Bak
k 〉|2 = sup{|〈 f , Bb

k 〉|2 : b ∈ C+},

where for any b ∈ C+, (B1, . . . , Bk−1, Bb
k ) is the G–S orthogonalization of

(B1, . . . , Bk−1, k̃b) corresponding to the k-tuple (a1, . . . , ak−1, b),where k̃b is defined
similarly with (2.1).

Thenwe can develop the POAFD algorithm alongwith the adaptive rational orthog-
onal systemof theBergman space in the upper-half complex plane.With a proof similar
with that of Theorem 3.8 we have

Theorem 4.4 Let f be any function in A
2(C+). Under maximal selections of the

parameters (a1, . . . , an, . . .) there holds

f =
∞∑

k=1

〈 f , Bk〉Bk .

5 Weighted Bergman SpacesA2
˛ with−1 < ˛ < ∞

In this section we study general weighted Bergman spaces A2
α , −1 < α < ∞. We

adopt the notation

A
2
α(D) =

{

f : D → C | f is holomorphic in D, and

‖ f ‖2
A2

α(D)
=

∫

D
| f (z)|2d Aα < ∞

}

,

where d Aα(z) = (1+α)(1−|z|2)αd A(z). With the norm ‖ · ‖2
A2

α(D)
the space A2

α is a

reproducing kernel Hilbert space [22]. The reproducing kernel and its norm are given,
respectively, by
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kα
a (z) = 1

(1 − az)2+α
and ‖ka‖2 = ka(a) = 1

(1 − |a|2)2+ . (5.1)

In this section we again denote by (B1, . . . , Bk) the G–S orthonormalization of
(k̃α

a1, . . . , k̃
α
ak ), where k̃α

a j
is defined as in (2.1) depending on the multiple of a j in

(a1, . . . , a j ), denoted l(a j ), 1 ≤ j ≤ k.
If f (z) = ∑∞

k=0 akz
k ∈ A

2
α, then a simple computation gives

‖ f ‖2
A2

α
=

∞∑

k=0

k!�(α + 2)

�(k + α + 2)
|ak |2 =

∞∑

k=0

k!
(α + 1 + k)(α + k) · · · (α + 2)

|ak |2 (5.2)

(Also see [22]).Whenα is an integer, it is identicalwith
∑∞

k=0
�(α+2)

(k+α+1)···(k+1) |ak |2 and,
when α = 0, it reduces to

∑∞
k=0

1
k+1 |ak |2, corresponding to the classical Bergman

space. As in the proof of Lemma 3.6, the property lima→∂D ‖kα
a ‖ → ∞ implies the

BVP of A2
α. With a proof similar to the classical case we can prove the maximal

selection principle for A2
α:

Theorem 5.1 For any f ∈ A
2
α and positive integer k there exists ak ∈ D such that

|〈 f , Bak
k 〉|2 = sup{|〈 f , Bb

k 〉|2 : b ∈ D},

where for any b ∈ D, (B1, . . . , Bk−1, Bb
k ) is the G–S orthonormalization of

(B1, . . . , Bk−1, k̃α
b ) corresponding to the k-tuple (a1, . . . , ak−1, b).

The proof of Theorem 3.8 can be adapted to the weighted Bergman space cases.
There thus holds

Theorem 5.2 Let f be any function inA2
α.Under the maximal selections of the param-

eters (a1, . . . , an, . . .) there holds

f =
∞∑

k=1

〈 f , Bk〉Bk .

6 Weighted Hardy SpacesH2
ˇ withˇ > 0

In the last section, we have discussed the weighted Bergman spaces, which correspond
to the weighted Hardy space H2

β with β < 0. Now we consider the weighted Hardy

spaces H2
β with β > 0. Let f = ∑∞

k=0 ckz
k . Recall that the weighted Hardy spaces

H
2
β, β > 0, are defined as
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H
2
β(D) =

{

f : D → C | f is holomorphic in D, and

‖ f ‖2
H
2
β(D)

=
∞∑

k=0

(k + 1)β |ck |2 < ∞
}

,

and the reproducing kernels are

kβ(a, z) =
∞∑

k=0

1

(k + 1)β
(az)k .

Moreover, ‖kβ(a, z)‖2 = kβ(a, a) = ∑∞
k=0

1
(k+1)β

|a|2k . As the former cases, denote

by eβ
a the normalized reproducing kernel, that is eβ

a (z) = kβ(a, z)/‖kβ(a, z)‖. We
note that for β > 0 the imbedding H

2
β ⊂ H

2 is continuous.

We will show that for 0 < β ≤ 1 the spaces H2
β enjoy the BVP, and as a conse-

quence, have maximal selection principle; whereas for β > 1 they do not.

Lemma 6.1 Assume β ∈ (0, 1]. For any f ∈ H
2
β there exists a ∈ D such that

|〈 f , ea〉|2 = max{|〈 f , eb〉|2 : b ∈ D}.

Proof The Cauchy-Schwarz inequality gives

|〈 f , eb〉| ≤ ‖ f ‖.

Therefore |〈 f , eb〉| has a finite upper bound.
For ε > 0, since polynomials are dense in H

2
β , there exists a polynomial g such

that

‖ f − g‖ ≤ ε.

It follows

|〈 f , eb〉| ≤ |〈g, eb〉| + ε = 1
√∑∞

k=0
|b|2k

(k+1)β

|g(b)| + ε.

Since 0 < β � 1, the infinite series
∑∞

k=0
|b|2k

(k+1)β
is unbounded as |b| → 1. Hence,

the right hand side of the last inequality tends to ε as |b| → 1. As a consequence,
|〈 f , eb〉| attains the maximum value at an interior point. ��

The following result shows that for β > 1 the space H2
β does not possess the BVP

property.
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Lemma 6.2 Assume β > 1. Then for any non-trivial f ∈ H
2
β there exists C f > 0 and

{an}∞n=1 ⊂ D such that lim
n→∞ |an| → 1 and

lim
n→∞|〈 f , ean 〉| ≥ C f .

Proof For a ∈ D, set

Aβ(a) =
√
√
√
√

∞∑

k=0

|a|2k
(k + 1)β

, Aβ =
√
√
√
√

∞∑

k=0

1

(k + 1)β
, α0 = ‖ f ‖H2 ,

and

0 < ε <
α0

2(1 + Aβ)
. (6.1)

Since β > 1, the above quantities are well defined.
For such an ε one can find a polynomial gε such that ‖ f − gε‖H2

β
< ε, and then

for any a ∈ D,

|〈 f , ea〉| ≥ |〈gε, ea〉H2
β
| − ε

=
∣
∣
∣
∣
gε(a)

Aβ(a)

∣
∣
∣
∣ − ε. (6.2)

Since the imbedding H
2
β ⊂ H

2 is continuous,

‖ f ‖H2 − ‖gε‖H2 ≤ ‖ f − gε‖H2 ≤ ‖ f − gε‖H2
β

≤ ε.

There then follows

(
1

2π

∫ 2π

0
|gε(e

it )|2dt
)1/2

= ‖gε‖H2 ≥ ‖ f ‖H2 − ε,

where gε(eit ) denotes the non-tangential boundary limit function of the Hardy space
function gε ∈ H

2 on ∂D. Among the points on the boundary on which the non-
tangential boundary limit exists, there in particular exists a point eit0 such that

|gε(e
it0)| ≥ ‖ f ‖H2 − ε,

and a sequence of points an ∈ D that non-tangentially tends to eit0 and

lim
n→∞ gε(an) = gε(e

it0).
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From (6.2) we obtain, for each n,

|〈 f , ean 〉| ≥
∣
∣
∣
∣
gε(an)

Aβ(an)

∣
∣
∣
∣ − ε.

Taking limit n → ∞ on the above sequence of inequalities, we have

limn→∞|〈 f , ean 〉| ≥ ‖ f ‖H2 − ε

Aβ

− ε = α0 − ε

Aβ

− ε ≥ α0

2Aβ

,

if ε < α0
2(1+Aβ)

, being validated by (6.1). The proof of the lemma is now complete

with C f = α0
2Aβ

. ��

Based on Lemma 6.1 one can perform POAFD toH2
β for β ≤ 1 and obtain an adap-

tive Fourier decomposition that converges at fast pace to the given function. In the
Direchlet space case, for instance, corresponding to β = 1/2, one can obtain POAFD
type fast decomposition as linear combinations of the parameterized reproducing ker-
nels as well as their one and higher order derivatives in general. For studies on the
related zero-based invariant subspaces of the Dirichlet space the reader is referred to
[24,25].

For β > 1, due to unavailability of BVP, proved in Lemma 6.2, one cannot directly
perform POAFD. At this situation we can proceed with two strategies.

The first strategy makes use of the operator D = d
dz ◦ S, where S is the forward

shift operator S f (z) = z f (z). The operatorD reduces the approximation of H2
β, β =

[β]+β ′,where [β] denotes themaximal integer not exceeding β, to the approximation
in H

2
β ′ or in H

2
β ′−1, depending on [β] is an even or an odd integer, respectively. As a

matter of fact, there holds, when [β] is even, f ∈ H
2
β if and only if D[β]/2 f ∈ H

2
β ′ ;

and when [β] is odd, f ∈ H
2
β if and only if D([β]+1)/2 f ∈ H

2
β ′−1, the latter being a

Bergman space. In each of the two cases, respectively in H
2
β ′ or H2

β ′−1, the POAFD
approximation is available. As a consequence, there exists a partial sum sequence Qn,

being linear combinations of a sequence of generalized reproducing kernels in the
respective space, adaptively at a fast pace converges to (D)[β]/2 f or to (D)([β]+1)/2 f .
As a result, D−[β]/2Qn or D−([β]+1)/2Qn converges to f . The final convergence
is also adaptive in the energy sense and efficient. The operator D and D−1 can be
computationally realized by either using the pair of Fourier multipliers {(k + 1)}∞k=0
and {(k + 1)−1}∞k=0 or alternatively using the classical differentiation and integration.

As the second strategy, one can performWeak-POAFD [10]. The latter, although not
as efficient as POAFD at each step, also gives rise to highly efficient approximations.
The difference is, in contrast with (3.12), for a given 0 < ρ < 1, to find an ∈ D, not
coinciding with any of the previously selected a1, . . . , an−1, such that

|〈 f , Ban
n 〉| ≥ ρ sup{|〈 f , Bb

n 〉| : b ∈ D},

and we set (B1, . . . , Bn−1, Bn) to be the Gram–Schmidt orthogonalization of
(B1, . . . , Bn−1, ean ). Weak-POAFD has more available selections of the parameters.
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