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Abstract
We generalize a number of finite dimensional results on Bloch functions to infinite
dimensional bounded symmetric domains. In particular, we characterize the Bloch
space as well as the little Bloch space of a Hilbert ball, and give one sufficient and
several necessary conditions for a composition operator on a Bloch space to be an
isometry. We also answer some open questions of Allen and Colonna concerning
Bloch functions and composition operators.

Keywords Bloch space · Bounded symmetric domain · Composition operator ·
JB∗-triple
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1 Introduction

Recently, we introduced the concept of a Bloch function on a bounded symmetric
domain which can be infinite dimensional and derived some basic properties of Bloch
spaces and composition operators in this setting, generalising several finite dimen-
sional results [5,9]. In this paper, we refine and develop some results in [5] thereby
extending a number of finite dimensional results on Bloch spaces and composition
operators, as well as answering two open questions in [1].

For finite dimensional bounded homogeneous domains, the Bloch functions are
usually defined in terms of the Bergman metric (cf. [21]), which is not available in
infinite dimension. Instead, albeit equivalent, we define in [5] the Bloch functions on a
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bounded symmetric domain by the Kobayashi metric. We begin by showing in Propo-
sition 2.6 the relationship between the Bloch seminorm and the Kobayashi distance,
which gives a definitive answer to the open question (1) in [1, p. 687]. Characteriza-
tions of Bloch functions and the little Bloch space on a bounded symmetric domain
have been given in [5]. In the course of studying Hankel operators, Holland andWalsh
[15, Theorem3] found an alternative characterization of Bloch functions on the open
unit disc in C. Stroethoff [20] gave a simpler proof of this result by exploiting the
Möbius invariance, which also enabled him to give an analogous characterization of
the little Bloch space of the unit disc. We extend both results to Hilbert balls in Propo-
sition 2.8 and Theorem 2.11. A similar result for Bloch spaces of Euclidean balls has
also been obtained in [19]. However, these characterizations of Bloch functions are
special for Hilbert balls and we give an example to show that they are not valid even
for the bidisc. It should be noted that, after this paper has been written, we learned
that Deng and Ouyang [6] had defined Bloch spaces on bounded symmetric domains
using the Carathéodory differential metric, and Krantz and Ma [17] had also intro-
duced the concept of Bloch functions on finite dimensional strongly pseudoconvex
domains using the Kobayashi metric. Nevertheless, our results do not overlap with
those in [6,17].

Given a holomorphic mapping ϕ : BX → BY between bounded symmetric
domains, we show in [5] that the composition operator Cϕ between their Bloch spaces
is bounded. For a self-map ϕ on BX , we give upper and lower bounds for the norm
‖Cϕ‖, which generalizes the results obtained by Xiong [24] for the unit disc and by
Allen andColonna [1] for finite dimensional homogeneous domains. Finally, we prove
one sufficient and several necessary conditions for Cϕ to be an isometry, extending
the results in [1]. We also give a positive answer to the question in [1, Remark6.1].

In the following, all Banach spaces are over the complex field and we will adopt
the following notation. Given a Banach space X with open unit ball BX and a domain
� in a Banach space Y , we will denote by H(BX ,�) the space of holomorphic
mappings fromBX into�. The space H(BX ,BX ) of self-mappingswill be abbreviated
to H(BX ). For a mapping f ∈ H(BX ,Y ), let Df (z) denote the Fréchet derivative of
f at z ∈ BX . A mapping f ∈ H(BX ,Y ) is said to be biholomorphic if f (BX ) is a
domain in Y and the holomorphic inverse f −1 exists on f (BX ). Let L(X ,Y ) be the
Banach space of continuous linear operators from X into Y , and let IX be the identity
in L(X) = L(X , X).

Our approach to infinite dimensional bounded symmetric domains relies on Kaup’s
seminal result asserting that a bounded domain in a complex Banach space is a sym-
metric domain if and only if it is biholomorphic to the open unit ball of a JB*-triple
(see [16]). A JB*-triple is a complex Banach space equipped with a Hermitian Jordan
structure. By identifying a bounded symmetric domain with the open unit ball of a
JB*-triple, one canmake use of the Jordan algebraic structures to study function theory
of these domains.

Unless stated otherwise, we will denote throughout by BX a bounded symmetric
domain realized as the open unit ball of a JB*-triple X . The latter means that X is a
complex Banach space equipped with a continuous Jordan triple product

(x, y, z) ∈ X × X × X �→ {x, y, z} ∈ X
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which is symmetric bilinear in the outer variables, conjugate linear in the middle
variable, and satisfies

(i) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}},
(ii) the linear operator a a : x ∈ X �→ {a, a, x} ∈ X is Hermitian with non-negative

spectrum,
(iii) ‖{x, x, x}‖ = ‖x‖3
for all a, b, x, y, z ∈ X , where the identity (i) is called the Jordan triple identity and
the operator a b : x ∈ X �→ {a, b, x} is called a box operator.

JB*-triples include Hilbert spaces and C*-algebras. The Jordan triple product in a
Hilbert space H with inner product 〈·, ·〉 is given by

{x, y, z} = 1

2
(〈x, y〉z + 〈z, y〉x) (x, y, z ∈ H).

The open unit ballBH of H is a symmetric domain, which will be called aHilbert ball.
For a C*-algebraA, the Jordan triple product is given by {a, b, c} = (ab∗c+ cb∗a)/2
for a, b, c ∈ A.

To study Bloch functions on a bounded symmetric domain BX realized as the open
unit ball of a JB*-triple X , we often make use of the Bergman operator B(x, y) : X →
X and the Möbius transformation ga : BX → BX . They are defined as follows. Given
x, y ∈ X , we define

B(x, y)z = z − 2(x y)(z) + {x, {y, z, y}, x} (z ∈ X).

For ‖x‖ < 1, the operator B(x, x) has non-negative spectrum [3, Lemma2.5.21] and
hence the square roots B(x, x)±1/2 exist. For each a ∈ BX , theMöbius transformation
ga , induced by a, is a biholomorphic mapping given by

ga(x) = a + B(a, a)1/2(IX + x a)−1(x).

The inverse of ga is g−a . If BX is the open unit disc D = {z ∈ C : |z| < 1}, then
we have the familiar form ga(z) = a + z

1 + az
. We refer to [3,18] for further details of

JB∗-triples and references.

2 Bloch Functions

In this section, we generalize some finite dimensional characterizations of Bloch func-
tions to infinite dimension. Bloch functions on bounded homogeneous domains in Cn

have been defined and studied in [8,21]. For a Hilbert ball, they have also been defined
in [2]. Unifying these definitions, we introduced in [5] the concept of a Bloch function
on a bounded symmetric domain, defined in terms of the Kobayashi metric instead
of the Bergman metric for the finite dimensional case since the latter is not available
in infinite dimension. Nevertheless, our definition is equivalent to the other ones just
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mentioned. Because of this difference, it would be desirable to clarify the relation-
ship between the Bloch seminorm and the Kobayashi metric. This will be shown in
Proposition 2.6 below. Let us first recall our definition of a Bloch function.

Definition 2.1 Let BX be a bounded symmetric domain and let κ(z, x) denote the
infinitesimal Kobayashi metric for BX . A complex function f ∈ H(BX ,C) is called
a Bloch function if it has finite Bloch seminorm

‖ f ‖B(BX ),s := sup{Q f (z) : z ∈ BX } < ∞,

where

Q f (z) = sup

{ |Df (z)x |
κ(z, x)

: x ∈ X \ {0}
}

and

κ(z, x) = ‖B(z, z)−1/2x‖.

For finite dimensional domains BX , Bloch functions are also defined in terms of the
Bergman metric Hz(x, x) (cf. [21, Definition3.3]), namely, a holomorphic function
f on BX is a Bloch function if

β f := sup{Qh
f (z) : z ∈ BX } < ∞,

where

Qh
f (z) = sup

{ |Df (z)x |
Hz(x, x)1/2

: x ∈ X \ {0}
}

.

These two definitions are equivalent in view of the inequality

κ(z, x) ≤ Hz(x, x)
1/2 ≤ √

2c(BX )1/2κ(z, x) (z ∈ BX , x ∈ X)

where

c(BX ) = 1

2
sup
x∈BX

H0(x, x)

and we have

‖ f ‖B(BX ),s ≥ β f ≥ 1√
2c(BX )

‖ f ‖B(BX ),s . (2.1)

The constant c(BX )was defined in [11] and plays an important role in the formulation
of various distortion theorems and the Bloch constant (cf. [4,10–14]).

Let Aut(BX ) be the automorphism group of BX , consisting of biholomorphic map-
pings of BX . For f ∈ H(BX ,C), it has been shown in [5] that the Bloch seminorm
satisfies

‖ f ‖B(BX ),s = sup {‖D( f ◦ g)(0)‖ : g ∈ Aut(BX )} . (2.2)
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The class of all Bloch functions on BX forms a complex Banach space in the Bloch
norm

‖ f ‖B = | f (0)| + ‖ f ‖B(BX ),s

which is denoted byB(BX ) and called the Bloch space onBX (cf. [5]). If dim X < ∞,
we will denote by (B(BX ), β) the Banach space of Bloch functions f on BX with
respect to the norm | f (0)|+β f . In this setting, the two spaces B(BX ) and (B(BX ), β)

are linearly isomorphic.
We will denote by ρ the Kobayashi distance on BX , which is the integral form of

the Kobayashi metric κ . For a, b ∈ BX , we have ρ(a, b) = tanh−1 ‖g−a(b)‖, where
g−a is the Möbius transformation induced by −a. The Bergman distance on BX will
be denoted by h. For the Euclidean unit ball Bn in Cn , we have

h(a, b) = √
n + 1 tanh−1 ‖g−a(b)‖.

We have given several characterizations of a Bloch function in [5, Theorem3.8].
An examination of the proof of this theorem reveals that a holomorphic function f on
BX is a Bloch function if and only if it is a Lipschitz mapping as a function from BX ,
equipped with the Kobayashi distance, to C in the Euclidean distance.

Lemma 2.2 Let f ∈ H(BX ,C). Then f is a Bloch function if and only if the following
inequality holds:

| f (z) − f (w)| ≤ ‖ f ‖B(BX ),sρ(z, w), ∀z, w ∈ BX .

Actually, the Lipschitz constant in this case is given by the Bloch seminorm of f ,
as shown in the following generalization of [1, Theorem3.1], where it has been shown
that

β f = sup
z �=w

| f (z) − f (w)|
h(z, w)

for f ∈ (B(BX ), β) when X is finite dimensional.

Proposition 2.3 Let f be a Bloch function on a bounded symmetric domain BX . Then
we have

‖ f ‖B(BX ),s = sup
z �=w

| f (z) − f (w)|
ρ(z, w)

.

Proof Write

lip( f ) = sup
z �=w

| f (z) − f (w)|
ρ(z, w)

.
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By Lemma 2.2, we have lip( f ) ≤ ‖ f ‖B(BX ),s . On the other hand, for g ∈ Aut(BX ),
any t ∈ (0, 1) and w ∈ BX , we have

| f (g(tw)) − f (g(0))| ≤ lip( f )ρ(g(tw), g(0))

= lip( f )ρ(tw, 0)

= lip( f ) tanh−1(t‖w‖).

It follows that

|D( f ◦ g)(0)w| ≤ lip( f )‖w‖

and hence ‖ f ‖B(BX ),s ≤ lip( f ) by (2.2). This completes the proof. ��
Using Proposition 2.3, we obtain the following generalization of [1, Theorem3.3]

to infinite dimensional bounded symmetric domains, by similar arguments. We omit
the proof, but recall that a sequence { fn} of functions on a domain D ⊂ X converges
locally uniformly to a function f if and only if it converges uniformly on every closed
ball strictly contained in D (cf. [7]).

Proposition 2.4 Let { fn} be a sequence of Bloch functions on a bounded symmetric
domain BX converging locally uniformly to some f ∈ H(BX ,C). If the sequence
{‖ fn‖B(BX ),s} is bounded, then f is a Bloch function and

‖ f ‖B(BX ),s ≤ lim inf
n→∞ ‖ fn‖B(BX ),s .

In other words, the Bloch seminorm ‖ · ‖B(BX ),s on B(BX ) is lower semi-continuous
in the locally uniform topology.

For x ∈ X \ {0}, the set

T (x) = {�x ∈ X∗ : �x (x) = ‖x‖, ‖�x‖ = 1}

of support functionals of x is nonempty by the Hahn-Banach theorem. We give an
example of Bloch functions which will be useful later.

Example 2.5 Let BX be the open unit ball of a JB*-triple X . For any a ∈ BX \ {0}with
support functional �a , let fa(z) = ψ(la(z)) for z ∈ BX , where

ψ(ζ ) := tanh−1 ζ = 1

2
log

1 + ζ

1 − ζ
(ζ ∈ D).

Then fa ∈ B(BX ) and ‖ fa‖B(BX ),s ≤ ‖ψ‖B(D),s = 1 by [5, Proposition3.15]. Since
Q fa (0) = 1, we have ‖ fa‖B(BX ) = ‖ψ‖B(D),s = 1.

For a finite dimensional domain BX , it has been observed in [1] that

h(z, w) ≥ sup{| f (z) − f (w)| : f ∈ (B(BX ), β), β f ≤ 1}
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for z, w ∈ BX . In view of the fact that this inequality becomes an equality for the one-
dimensional open unit discBX = D (cf. [25, Theorem5.1.7] and [26, Theorem3.9]), a
natural question has been posed in [1, Openquestion (1), p. 687] asking if the equality
also holds in higher dimensions. We show below that the equality actually holds for
all dimensions as soon as the Bergman distance is replaced by the Kobayashi distance.

Proposition 2.6 Let BX be a bounded symmetric domain. Then for any z, w ∈ BX ,
we have

ρ(z, w) = sup{| f (z) − f (w)| : f ∈ B(BX ), ‖ f ‖B(BX ),s ≤ 1}. (2.3)

Proof By Proposition 2.3, we have

sup{| f (z) − f (w)| : f ∈ B(BX ), ‖ f ‖B(BX ),s ≤ 1} ≤ ρ(z, w).

To prove the reverse inequality, fix any a ∈ BX \ {0} and let fa ∈ B(BX ) be the
function defined in Example 2.5. Then

ρ(a, 0) = tanh−1 ‖a‖ = | fa(a) − fa(0)|
≤ sup{| f (a) − f (0)| : f ∈ B(BX ), ‖ f ‖B(BX ),s ≤ 1}.

By composing with a Möbius transformation of BX , we have

ρ(z, w) = ρ(g−w(z), g−w(w))

≤ sup{| f (g−w(z)) − f (g−w(w))| : f ∈ B(BX ), ‖ f ‖B(BX ),s ≤ 1}
= sup{| f (z) − f (w)| : f ∈ B(BX ), ‖ f ‖B(BX ),s ≤ 1}

for any z, w ∈ BX , since g−w(w) = 0 and also ‖ f ◦ g−w‖B(BX ),s ≤ 1 for any
f ∈ B(BX ) with ‖ f ‖B(BX ),s ≤ 1 and for any w ∈ BX . This completes the proof. ��
We now turn to the Bloch space and the little Bloch space of a Hilbert ball. We

prove a lemma first. Let B be the open unit ball of a complex Banach space. For
f ∈ H(B,C), we define

S( f ) = sup
z,w∈B,z �=w

(1 − ‖z‖2)1/2(1 − ‖w‖2)1/2 | f (z) − f (w)|
‖z − w‖ .

Lemma 2.7 Let B be the unit ball of a complex Banach space X and let f ∈ H(B,C).
Then S( f ) < ∞ if and only if supz∈B(1 − ‖z‖2)‖Df (z)‖ < ∞.

Proof Let M = supz∈B(1 − ‖z‖2)‖Df (z)‖. If M < ∞, then similar arguments to
those in the proof of [19, Theorem3.2] yields S( f ) ≤ 2πM < ∞.

Assume, on the other hand, S( f ) < ∞. Let w ∈ X with ‖w‖ = 1 and z + tw ∈ B

for small t > 0. Then for each z ∈ B, we have

(1 − ‖z‖2)1/2(1 − ‖z + tw‖2)1/2 | f (z) − f (z + tw)|
t

≤ S( f ).
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Letting t → 0+, we have (1 − ‖z‖2)|Df (z)w| ≤ S( f ). Since z ∈ B and w ∈ X
with ‖w‖ = 1 are arbitrary, we have supz∈B(1 − ‖z‖2)‖Df (z)‖ ≤ S( f ) < ∞. This
completes the proof. ��

By [2], a holomorphic function f on a Hilbert ball BH is a Bloch function if
and only if supz∈BH

(1 − ‖z‖2)‖Df (z)‖ < ∞. The above lemma gives immediately
the following generalization of Holland-Walsh’s characterization [15, Theorem3] of
Bloch functions on the open unit disc in C, which has also been extended to the
Euclidean balls in [19].

Proposition 2.8 Let BH be a Hilbert ball and let f ∈ H(BH ,C). Then f is a Bloch
function if and only if S( f ) < ∞.

Given a bounded symmetric domainBX , we have shown in [5] that a Bloch function
f on BX satisfies supz∈BX

(1 − ‖z‖2)‖Df (z)‖ < ∞. This gives the following result.

Proposition 2.9 Let f be a Bloch function on a bounded symmetric domain BX . Then
we have S( f ) < ∞.

The question of the converse of the previous result is a delicate issue. The fol-
lowing counter example for the bidisc suggests that the criterion of Bloch functions
in Proposition 2.8 for Hilbert balls is atypical for bounded symmetric domains. We
recall that the negative square root B(z, z)−1/2 of the Bergman operator for the bidisc
D × D ⊂ C

2 is given by

B(z, z)−1/2(x) =
(

x1
1 − |z1|2 ,

x2
1 − |z2|2

)

for z = (z1, z2) ∈ D × D and x = (x1, x2) ∈ C
2.

Example 2.10 Let D = D × D be the bidisc and let f : D → C be defined by

f (z1, z2) = (1 − z2) log
1

1 − z1

for (z1, z2) ∈ D. Then we have S( f ) < ∞, but f is not a Bloch function. We first
show that supz∈D(1 − ‖z‖2)‖Df (z)‖ < ∞ which is equivalent to S( f ) < ∞ by
Lemma 2.7. Indeed, we have, for (x1, x2) ∈ C

2,

Df (z1, z2)(x1, x2) = (1 − z2)x1
1 − z1

− x2 log
1

1 − z1
.

Observe that

‖Df (z1, z2)‖ ≤
∣∣∣∣1 − z2
1 − z1

∣∣∣∣ +
∣∣∣∣log 1

1 − z1

∣∣∣∣
≤ |1 − z2|

|1 − z1| + 2

|1 − z1| + log 2 + π
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where 1/|1−z1| ≥ 1/2 implies 2/|1−z1| ≥ log(2/|1−z1|) ≥ | log(1/|1−z1|)|−log 2.
Pick z = (z1, z2) ∈ D. In the case of |z1| > |z2|, we have

(1 − ‖z‖2)‖Df (z)‖ ≤ (1 − |z1|2)
( |1 − z2|

|1 − z1| + 2

|1 − z1| + log 2 + π

)

≤ (1 + |z1|)(|1 − z2| + 2 + (log 2 + π)(1 − |z1|)).

In the case of |z1| ≤ |z2|, we have |1 − z1| ≥ 1 − |z1| ≥ 1 − |z2| and hence

(1 − ‖z‖2)‖Df (z)‖ = (1 − |z2|2)‖Df (z)‖
≤ (1 + |z2|)(|1 − z2| + 2 + (log 2 + π)(1 − |z2|)).

We deduce from these inequalities that

sup
z∈D

(1 − ‖z‖2)‖Df (z)‖ < ∞.

On the other hand, for z = (z1, 0) ∈ D, we have

∣∣∣∣Df (z1, 0)

(
1 − |z1|2

2
, 1

)∣∣∣∣ =
∣∣∣∣ 1 − |z1|2
2(1 − z1)

− log
1

1 − z1

∣∣∣∣
and

κ(z, ((1 − |z1|2)/2, 1)) = ‖B(z, z)−1/2((1 − |z1|2)/2, 1)‖ = ‖(1/2, 1)‖ = 1.

Hence

Q f (z1, 0) ≥
∣∣∣∣ 1 − |z1|2
2(1 − z1)

− log
1

1 − z1

∣∣∣∣
≥

∣∣∣∣log 1

1 − z1

∣∣∣∣ − 1 − |z1|2
2|1 − z1|

≥
∣∣∣∣log 1

1 − z1

∣∣∣∣ − 1 + |z1|
2

≥
∣∣∣∣log 1

1 − z1

∣∣∣∣ − 1

from which we conclude that f is not a Bloch function.

We now prove the following generalization of Stroethoff’s characterization of the
little Bloch space on the unit disc [20]. The case of the Euclidean unit balls has been
shown in [19]. We denote by B(BH )0 the little Bloch space, which is defined to be the
closure in B(BH ) of the polynomial functions on the Hilbert ball BH (cf. [23]).

Theorem 2.11 Let BH be a Hilbert ball and let f ∈ H(BH ,C). Then f ∈ B(BH )0 if
and only if

lim‖z‖→1
sup

w∈B,w �=z
(1 − ‖z‖2)1/2(1 − ‖w‖2)1/2 | f (z) − f (w)|

‖z − w‖ = 0. (2.4)
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Proof Let f ∈ B(BH )0 and let ft (z) = f (t z) for t ∈ (0, 1). Then as in the proof of
[19, Theorem3.2], we have

sup
w∈B,w �=z

(1 − ‖z‖2)1/2(1 − ‖w‖2)1/2 | f (z) − f (w)|
‖z − w‖

≤ C
t

1 − t2
(1 − ‖z‖2)1/2‖ f ‖B + 2π‖ f − ft‖B.

For any given ε > 0, there exists t0 ∈ (0, 1) such that ‖ f − ft0‖B < ε/4π as in the
proof of [22, Proposition3.2]. Then there exists δ ∈ (0, 1) such that

C
t0

1 − t20
(1 − ‖z‖2)1/2‖ f ‖B < ε/2

for z with δ < ‖z‖ < 1. Therefore, (2.4) holds.
Conversely, assume that (2.4) holds. For any given ε > 0, there exists δ ∈ (0, 1)

such that

sup
w∈B,w �=z

(1 − ‖z‖2)1/2(1 − ‖w‖2)1/2 | f (z) − f (w)|
‖z − w‖ < ε

for z with δ < ‖z‖ < 1. Analogous to the proof of Lemma 2.7, we have (1 −
‖z‖2)‖Df (z)‖ ≤ ε for z with δ < ‖z‖ < 1. Therefore, f ∈ B(BH )0. This completes
the proof. ��

3 Composition Operators

In this section, we consider composition operators on the Bloch space of a bounded
symmetric domain. Our main task is to estimate the norm of a composition operator
and determinewhen it is an isometry. LetBX be a bounded symmetric domain. Given a
holomorphic self-mapping ϕ on BX , we denote the composition operator with symbol
ϕ by

Cϕ : f ∈ B(BX ) �→ f ◦ ϕ ∈ B(BX )

and define the Kobayashi constant of ϕ by

Kϕ := sup
z∈BX

sup
x∈X\{0}

κ(ϕ(z), Dϕ(z)x)

κ(z, x)
.

In contrast to the Bergman constant Bϕ defined in [1] (cf. [1, Open question (3),
p.687]), we always have Kϕ ≤ 1 by the contractive property of the Kobayashi metric.

Since the operator norm of Cϕ depends on the norm of the underlying Banach
space, it should be pointed out that in the literature for finite dimensional domains
BX , the operator Cϕ is considered on the space (B(BX ), β) defined by the Bergman
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metric, whereas we consider Cϕ on the Bloch space (B(BX ), ‖ · ‖B) defined by the
Kobayashi metric.

Observing that the Kobayashi metric is invariant under the automorphisms of BX ,
the following result can be verified readily. It is analogous to the result in [1, Corol-
lary5.1] for the Bergman constant Bϕ .

Proposition 3.1 Let BX be a bounded symmetric domain and let ϕ ∈ H(BX ). Then
for all S ∈ Aut(BX ), Kϕ◦S = Kϕ = KS◦ϕ .

The following theorem is a generalization of [1, Theorem3.2andCorollary3.1] and
[24, Theorem2andCorollary1] to bounded symmetric domains. The lower bound is
an improvement if BX is not the Euclidean unit ball of Cn .

Theorem 3.2 Let BX be a bounded symmetric domain and let ϕ ∈ H(BX ). Then Cϕ

is a bounded operator on B(BX ) and we have

max {1, ρ(ϕ(0), 0)} ≤ ‖Cϕ‖ ≤ max
{
1, ρ(ϕ(0), 0) + Kϕ

}
.

In particular, ‖Cϕ‖ = 1 if ϕ(0) = 0.

Proof The boundedness of Cϕ has been proved in [5, Theorem5.1]. As in the proof
of [1, Theorem3.2], we have

‖Cϕ‖ ≤ max
{
1, ρ(ϕ(0), 0) + Kϕ

}
.

Next, we prove the lower estimate of ‖Cϕ‖. Let f1 be the constant function 1 on BX .
Then 1 = ‖Cϕ( f1)‖B(BX ) = ‖ f1‖B(BX ). This implies that ‖Cϕ‖ ≥ 1. Therefore, if
ϕ(0) = 0, then we have 1 ≤ ‖Cϕ‖ ≤ max{1, Kϕ} = 1 and thus, ‖Cϕ‖ = 1. We will
consider the case ϕ(0) �= 0. Let f2(z) = ψ(lϕ(0)(z)) for z ∈ BX , where

ψ(ζ ) = tanh−1 ζ (ζ ∈ D).

Then ‖ f2‖B(BX ) = 1 by Example 2.5. Therefore, we have

‖Cϕ‖ ≥ ‖ f2 ◦ ϕ‖B(BX ) ≥ | f2(ϕ(0))| = tanh−1 ‖ϕ(0)‖ = ρ(ϕ(0), 0).

This completes the proof. ��
A similar argument as in the proof of [1, Theorem5.1] yields the following more

general result for bounded symmetric domains.

Proposition 3.3 Let BX be a bounded symmetric domain and let ϕ ∈ H(BX ) with
ϕ(0) = 0. If there is a sequence {S j } in Aut(BX ) such that {ϕ ◦ S j } converges locally
uniformly to the identity mapping on BX , then Cϕ is an isometry on B(BX ).

Finally, we deduce in the next theorem some necessary conditions for Cϕ to be
an isometry, which generalizes [1, Theorem6.1 (a), (b), Proposition7.1] to bounded
symmetric domains. Condition (a) below gives a positive answer to [1, Remark6.1].
Let σ(Cϕ) be the spectrum of Cϕ .
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Theorem 3.4 Let BX be a bounded symmetric domain and let Cϕ be an isometry on
B(BX ) for some ϕ ∈ H(BX ). Then we have

(a) ϕ(0) = 0.
(b) ‖la ◦ ϕ‖B(BX ),s = 1 for each a ∈ X \ {0} and support functional la ∈ T (a).
(c) Kϕ = 1.
(d) If ϕ is not injective, then σ(Cϕ) = D.
(e) If dim X = n and ϕ = (ϕ1, . . . , ϕn), then the components ϕ1, . . . , ϕn are linearly

independent.

Proof (a) For any l ∈ X∗ \ {0}, let f = l ◦ g−a ∈ H(BX ,C), where a = ϕ(0) and
g−a is the Möbius transformation induced by −a. Then we have

|l(−a)| + ‖l ◦ g−a‖B(BX ),s = ‖ f ‖B(BX )

= ‖Cϕ( f )‖B(BX )

= ‖l ◦ g−a ◦ ϕ‖B(BX ),s

≤ ‖l ◦ g−a‖B(BX ),s .

Therefore,we have l(−a) = 0 for any l ∈ X∗\{0}. This implies thatϕ(0) = a = 0.
(b) Since ϕ(0) = 0 and Cϕ is an isometry, we have

‖la ◦ ϕ‖B(BX ),s = ‖la ◦ ϕ‖B(BX ) = ‖la‖B(BX ) = 1.

(c) Since

Q f ◦ϕ(z) ≤ KϕQ f (ϕ(z)), f ∈ B(BX ), z ∈ BX

holds, we have

‖Cϕ( f )‖B(BX ),s ≤ Kϕ‖ f ‖B(BX ),s, f ∈ B(BX ).

Thus, if Cϕ is an isometry, then ϕ(0) = 0 and Kϕ = 1.
(d) We use an argument similar to that in the proof of [1, Proposition7.1]. By [1,

Lemma7.1], it suffices to show that Cϕ is not invertible. Since Cϕ is an isometry,
it is injective. We show that Cϕ is not surjective. Suppose, for contradiction, that
Cϕ is surjective. As ϕ is not injective, there are distinct ζ, η ∈ BX such that
ϕ(ζ ) = ϕ(η). Let a = ζ − η ∈ X\{0} and let �a ∈ T (a). Let

g(z) = �a(z) − �a(η), z ∈ BX .

Then g ∈ B(BX ) and g(ζ ) = �a(a) = ‖a‖ �= 0. By the surjectivity assumption
of Cϕ , there exists f ∈ B(BX ) such that Cϕ( f ) = g. This gives f (ϕ(ζ )) =
Cϕ( f )(ζ ) = g(ζ ) �= 0 and f (ϕ(η)) = Cϕ( f )(η) = g(η) = 0. This contradicts
ϕ(ζ ) = ϕ(η) and therefore Cϕ is surjective.

(e) The proof is same as in the proof of [1, Theorem6.1 (a)].
��
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Example 3.5 We now give an example for ϕ ∈ H(BX ) such that Kϕ = 1 and Cϕ is not
an isometry on B(BX ). Let X = X1 ⊕ X2 and ϕ(z1, z2) = (z1, 0) for (z1, z2) ∈ X .
Then Kϕ = 1. Let f (·) = l(0,a2)(·), where a2 ∈ BX2 . Then f ∈ B(BX ), ‖ f ◦
ϕ‖B(BX ) = 0 and

‖ f ‖B(BX ) ≥ Q f (0) = 1.

Thus Cϕ is not an isometry on B(BX ).
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