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Abstract
In this report we study a fractional analogue of Sturm–Liouville equation. A class of
self-adjoint fractional Sturm–Liouville operators is described. We give a biological
interpretation of the fractional order equation and nonlocal boundary conditions that
arise in describing the systems separated by a membrane. In particular, the connection
with so called “fractional kinetic” equations is observed. Also, some spectral proper-
ties of the fractional kinetic equations are derived. An application to the anomalous
diffusion of particles in a heterogeneous system of the fractional Sturm–Liouville
equations is discussed.
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1 Introduction

Many processes can be described by systems separated by a membrane, especially, in
biology and engineering [1,4]. In [7] authors studied anomalous diffusion of particles
in a heterogeneous system separated by a semipermeablemembrane,where the particle
dynamics was governed by fractional diffusion equations in the bulk and by kinetic
equations on the membrane, which characterizes an interface between two different
media. For 0 < β < 1 the mathematical model that was offered in [7] is

Dβ
0+,t u(t, x) + k

∂2

∂x2
u(t, x) = 0, (1.1)

where k is a diffusion coefficient and, u represents the density function of particles.
The fractional time derivative given in the Eq. (1.1) is the Riemann–Liouville type
integro-differential operator.

One observes a new mathematical model to describe behaviours of the particle
distribution at the interface and in the bulk canbe stated, that is, the anomalous diffusion
governed by a fractional kinetic equation

Dβ
0+,t u(t, x) + F2α

x u(t, x) = f (t, x), (1.2)

for some α > 0, with the initial condition

u(0, x) = ϕ(x), x ∈ [0, 1]. (1.3)

Here f and ϕ are to defined later. In this note we introduce a fractional type kinetic
equation F2α

x . By other words, to have “good” properties, we need F2α
x to be a well-

posed operatorwith,maybe, discrete spectrum and corresponding eigenfunctions form
a basis in a Hilbert space. In this case, it is easy to show that the anomalous diffusion
(1.2) with the initial condition (1.3) is well-posed with natural requirements on f and
ϕ.

To have things that are mentioned, we are interested in studying symmetric frac-
tional order kinetic type operators. In general, fractional order operators are not
symmetric, and in all researches related to investigations of spectral properties only
non self-adjoint problems are considered. In the recent manuscript [6] one symmet-
ric fractional order differential operator is described by Klimek and Agrawal in the
weighted class of continuous functions. Here, we show self-adjointness of a fractional
kinetic operator of Caputo–Riemann–Liouville type, and continue researches started
in [12], where the authors began to describe self-adjoint fractional order differential
operators.

One of our main goals in this report is to establish, by using techniques offered
in the recent papers of Ruzhansky et al. [3,9,10], an analogue of the Green’s formula
for fractional kinetic equations with further applications in describing a class of self-
adjoint operators, and by the duality, it let us define fractional kinetic operators on the
space of distributions.



Fractional Sturm–Liouville Equations… 2261

Here, fractional kinetic equations of the Caputo and Riemann–Liouville type are
objects of our investigations. At the end, we describe a class of self-adjoint problems
related to this fractional kinetic equation in L2(0, 1), and formulate several statements
on the spectral properties. In some point, we can say that it is found a symmetric
Caputo–Riemann–Liouville operator of the order 2α (with 1

2 < α < 1). In appreci-
ate sense, it can be also interpreted as an analogue of the classical Sturm–Liouville
operator.

2 Preliminaries

Here, we recall definitions and properties of fractional integration and differentiation
operators [5,8,11].

Definition 2.1 Let f be a function defined on the interval [0, 1]. Assume that the
following integrals exist

I α
0 [ f ] (t) = 1

� (α)

t∫

0

(t − s)α−1 f (s)ds, t ∈ (0, 1],

and

I α
1 [ f ] (t) = 1

� (α)

1∫

t

(s − t)α−1 f (s)ds, t ∈ [0, 1).

Thenwecall them the left-side, and the right-side,Riemann–Liouville integral operator
of the fractional order α > 0, respectively.

Definition 2.2 Define left-side and right-side Riemann–Liouville differential opera-
tors of the fractional order α (0 < α < 1) by

Dα
0 [ f ] (t) = d

dt
I 1−α
0 [ f ] (t) and Dα

1 [ f ] (t) = − d

dt
I 1−α
1 [ f ] (t),

respectively.

Definition 2.3 For 0 < α < 1 we say that the actions

Dα
0 [ f ] (t) = Dα

0 [ f (t) − f (0)] and Dα
1 [ f ] (t) = Dα

1 [ f (t) − f (1)] ,

are left-side and right-side differential operators of the fractional order α (0 < α < 1)
in the Caputo sense, respectively.

Note that inmonographs [5,8,11], authors studied different types of fractional differ-
entiations and their properties. In what follows we formulate statements of necessary
properties of integral and integro-differential operators of the Riemann–Liouville type
and fractional Caputo operators.
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Property 2.4 [8, p. 34] Let u, v ∈ L2(0, 1) and 0 < α < 1. Then we have the formula
of integration by parts

(
I β
1 u, v

)
=

(
u, I β

0 v
)

.

Here, by (·, ·) we denote the inner product of the Hilbert space L2(0, 1).

Let us formulate Theorem 3.2 of the book [11]:

Theorem 2.5 Assume that ϕ ∈ Hγ ([0, 1]), γ ≥ 0. Then the fractional integral Iα
0 ϕ,

α > 0 has the form

I α
0 ϕ =

m∑
k=0

ϕ(k)(0)

�(α + k + 1)
xα+k + ψ(x),

where m is the greatest integer such that m < γ ; and ψ ∈ Hγ+α([0, 1]), if γ + α is
not integer, or if γ, α ∈ Z.

3 Main Results

In what follows, we assume that 1
2 < α < 1. Now, let us consider

Lu(x) := Dα
1

[
Dα
0 [u]

]
(x) , 0 < x < 1. (3.1)

Here, our aim is to investigate spectral properties of operators generated by the frac-
tional kinetic equation (3.1) in L2(0, 1). To start, we define an operator in the Hölder
classes. Consider the spectral problem

Lu(x) = λu(x), 0 < x < 1, (3.2)

in the space H2α+o
0 ([0, 1]) := {ϕ ∈ H2α+o([0, 1]) : ϕ(0) = 0, . . . , ϕ(m)(0) = 0},

wherem = [2α+o], and H2α+o([0, 1]) is the Hölder space with the parameter 2α+o.
Here o is a sufficiently small positive number such that o < 1 − α. By other words,
we deal with the following spaces

H2α+o
0 ([0, 1]) := {ϕ ∈ H2α+o([0, 1]) : ϕ(0) = 0, ϕ′(0) = 0},
Hα+o
0 ([0, 1]) := {ϕ ∈ Hα+o([0, 1]) : ϕ(0) = 0},
Ho
0 ([0, 1]) := {ϕ ∈ Ho([0, 1]) : ϕ(0) = 0}.

From the book of Samko et al. [11, Chapter 1, Theorem 3.2] it follows that the
integro-differential operator L is well-defined on H2α+o

0 ([0, 1]).
Hence, the functionals

ξ−
1 (u) : = I 1−α

0 [u] (0) , ξ−
2 (u) := I 1−α

0 [u] (1) ,

ξ+
1 (u) : = Dα

0 [u] (0) and ξ+
2 (u) := Dα

0 [u] (1) ,
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are well-defined for all u ∈ H2α+o
0 ([0, 1]) and, it is easy to see that

ξ−
1 (u) := I 1−α

0 [u] (0) = lim
ε→0+

1

� (1 − α)

ε∫

0

(ε − s)−α u (s)ds,

ξ−
2 (u) := I 1−α

0 [u] (1) = 1

� (1 − α)

1∫

0

(1 − s)−α u (s)ds,

ξ+
1 (u) := Dα

0 [u] (0) = lim
ε→0+

1

� (1 − α)

ε∫

0

(ε − s)−α u′ (s)ds,

and

ξ+
2 (u) := Dα

0 [u] (1) = 1

� (1 − α)

1∫

0

(1 − s)−α u′ (s)ds.

Indeed, ξ−
1 and ξ+

1 are functionals of taking trace of the density function u and its
velocity u′ at zero. Functional ξ−

2 and ξ+
2 play role of conservation laws. Anticipat-

ing results, “boundary” conditions arise later will express relationships between the
conservation laws and information at the origin of the the density function and its
changing velocity function.

Denote by L0 an operator generated by the fractional differential expression (3.1)
with “boundary” conditions

ξ−
2 (u) = 0 and ξ+

1 (u) = 0. (3.3)

Then due to the definitions and properties given by Sect. 2 (see, [11, Chapter 1]) for

f ∈ H̃o
0 ([0, 1]) := {v ∈ Ho

0 ([0, 1]) :
∫ 1

0
v(s)s2αds = 0 and

∫ 1

0
v(s)s2α−1ds = 0}

an inverse operator to L0 has the form

L−1
0 f (x) = I α

0 I
α
1 f (x) :=

∫ 1

0
K (x, s) f (s)ds, 0 < x < 1,

as L−1
0 : H̃o

0 → H2α+o
0 , with the symmetric kernel K (·, ·) from L2(0, 1) ⊗ L2(0, 1).

Since, S := span{xk, k ∈ N} ⊂ Ho
0 ([0, 1]), and powers of the sets S and S̃ :=

{v ∈ S : ∫ 1
0 v(s)s2αds = 0 and

∫ 1
0 v(s)s2α−1ds = 0} are equal then we conclude

that a closure of the space H̃o
0 ([0, 1]) by the L2-norm is L2(0, 1). Hence, L−1

0 has a
continuous continuation to a compact operator in L2(0, 1). Compactness implies the
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fact that there exists non empty discrete spectrum with the eigenfunctions form an
orthogonal basis in the space L2(0, 1).

Denote by λk , k ∈ N eigenvalues of the spectral problem (3.2)–(3.3) in the ascend-
ing order and by uk , k ∈ N corresponding eigenfunctions, i.e.

Dα
1

[
Dα
0 [uk]

]
(x) = λkuk(x), 0 < x < 1,

ξ−
2 (uk) = 0, ξ+

1 (uk) = 0

for all k ∈ N. Thus, the domain of the operator L0

Dom(L0) := {u ∈ H2α+o
0 ([0, 1]) : ξ−

2 (u) = 0, ξ+
1 (u) = 0}

is not empty.
Now, we introduce the space of test functions C∞

L0
([0, 1]) (for more details, see

[3,9,10]) as follows:

C∞
L0

([0, 1]) :=
∞⋂
k=1

Dom(Lk
0),

where Dom(Lk
0) is a domain of Lk

0. Here Lk
0 stands for the k times iterated L0 with

the domain

Dom(Lk
0) := {Lk− j−1

0 u ∈ Dom(L0), j = 0, 1, . . . , k − 1}

for k ≥ 2. Since the linear combination of all eigenfunctions is inC∞
L0

([0, 1]) the space
of test functions is not empty as a set. For further properties of the space C∞

L0
([0, 1])

we refer to the papers [9,10], where the properties of the test functions based on a
basis are studied. The dual space to C∞

L0
([0, 1]) we denote byD′

L0
(0, 1) (the space of

continuous functionals on C∞
L0

([0, 1])).
Now, we are in a way to define a fractional derivation of generalized functions. To

begin, note that for all u, v ∈ C∞
L0

([0, 1]) we get
(
Dα

1

[
Dα
0 u

]
, v

)
=

(
u,Dα

1

[
Dα
0 v

] )
. (3.4)

Here, both sides exist in the classical sense.
As the result, one takes the Green’s formula:

Lemma 3.1 Let u, v ∈ H2α+o
0 ([0, 1]). Then the following Green’s formula makes a

sense

(Dα
1

[
Dα
0 u

]
, v) − (

u,Dα
1

[
Dα
0

]
v
) =

2∑
i=1

[ξ−
i (u)ξ+

i (v) − ξ−
i (v)ξ+

i (u)]. (3.5)
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Since u, v ∈ C∞
L0

([0, 1]) the identity (3.5) implies (3.4).
Define an action of the operator L on a generalized function u ∈ D′

L0
(0, 1). Put

(Lu, v) := (u,Dα
1

[
Dα
0 v

]
) (3.6)

for all v ∈ C∞
L0

([0, 1]). The term (u,Dα
1

[
Dα
0 v

]
) exists due to the fact that v ∈

C∞
L0

([0, 1]) also involves Dα
1

[
Dα
0 v

] ∈ C∞
L0

([0, 1]). Thus, the action of L introduced
by the Formula (3.6) is well defined on the space of generalized functions D′

L0
(0, 1).

Now, we consider the following expression

Lu(x) := Dα
1

[
Dα
0 [u]

]
(x) , 0 < x < 1, (3.7)

in the space L2(0, 1). To define correctly L in L2(0, 1), we introduce the space
W 2α

2 (0, 1) as a closure of H2α+o
0 ([0, 1]) by the norm

‖u‖W 2α
2 (0,1) := ‖u‖L2(0,1) + ‖Dα

1 D
α
0 u‖L2(0,1).

Indeed, the space W 2α
2 (0, 1) with the introduced norm is a Banach one. Moreover, it

is the Hilbert space with the scalar product

(u, v)W 2α
2 (0,1) := (u, v) + (Dα

1 D
α
0 u,Dα

1 D
α
0 v).

We define Lm as an operator acting from L2(0, 1) to L2(0, 1) by the Formula (3.7)
with the domain

Dom(Lm) =
{
u ∈ W 2α

2 (0, 1) : ξ−
1 (u) = ξ−

2 (u) = ξ+
1 (u) = ξ+

2 (u) = 0
}

.

Also, introduce an operator LM : L2(0, 1) → L2(0, 1) generated by the Expression
(3.7) with the domain Dom(LM ) := {

u ∈ W 2α
2 (0, 1)

}
.

Let us introduce a class of matrices 2 × 4. This, to define boundary forms for
Dα

1

[
Dα
0 [u]

]
.

Definition 3.2 We call

ω :=
(

ω11 ω12 ω13 ω14
ω21 ω22 ω23 ω24

)

S-matrix, if it can be represented in one of the following forms:

(
1 0 r c
0 1 − c d

)
,

(
d 1 0 r
c 0 1 d

)
,

(
1 d r 0
0 c − d 1

)
,

(
r c 1 0

−c d 0 1

)
,
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where r , c, d ∈ R. Here, the matrices

(
ω11 ω12 ω13 ω14
ω21 ω22 ω23 ω24

)
,

(
ω11 ω12 ω13 ω14

γω21 γω22 γω23 γω24

)
(γ 
= 0),

(
ω11 ± ω21 ω12 ± ω22 ω13 ± ω23 ω14 ± ω24
ω21 ω22 ω23 ω24

) (
ω21 ω22 ω23 ω24
ω11 ω12 ω13 ω14

)

are the same.

Then, by using the extension theory, we prove:

Theorem 3.3 Let ω be an S-matrix. Then an operator Lω generated by

Dα
1 D

α
0 u(x) = f (x), 0 < x < 1,

for u ∈ W 2α
2 (0, 1) with “boundary” conditions

ω11ξ
−
1 (u) + ω12ξ

−
2 (u) + ω13ξ

+
1 (u) + ω14ξ

+
2 (u) = 0,

ω21ξ
−
1 (u) + ω22ξ

−
2 (u) + ω23ξ

+
1 (u) + ω24ξ

+
2 (u) = 0,

is a self-adjoint extension of Lm in W 2α
2 (0, 1).

Remark 3.4 In general, for α < 1/2 Theorem 3.3 does not hold.

The following result gives a class of positive operators:

Lemma 3.5 Let ω be one of the following:

(
1 0 0 0
0 1 0 0

)
,

(
1 0 0 0
0 0 0 1

)
,

(
ρ 1 0 0
0 0 1 ρ

)
,

(
0 0 1 0
0 0 0 1

)
. (3.8)

Then for all ρ ∈ R the operator Lω is positive in L2(0, 1).

Finally, from Delgado and Ruzhansky’s paper [2] follows:

Corollary 3.6 Assume that ω is from (3.8). Then the inverse operator L−1
ω acting on

L2(0, 1) is from the Schatten classes Sp
(
L2(0, 1)

)
for all p > 2

1+4α .

As an conclusion, wemention that it is introduced the conservation laws or so called
mathematical “boundary conditions”. This is a subject to consider them in combination
with the Cauchy problem for the Eq. (1.2). One says the conservation laws naturally
come from applications and they will stand for non-local type boundary operators. It
is natural due to the observations made in [7].
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