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Abstract
In this paper we discuss applications of the geometric theory of composition opera-
tors on Sobolev spaces to the spectral theory of non-linear elliptic operators. Lower
estimates of the first non-trivial Neumann eigenvalues of the p-Laplace operator in
cusp domains � ⊂ R

n , n ≥ 2, are given.
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1 Introduction

In this article we discuss a general method of applications of the geometric theory
of composition operators on Sobolev spaces to spectral estimates of the non-linear
Neumann-Laplace operators. It is a modification of methods proposed in our recent
works [14,15].

Suppose that in a bounded domain � ⊂ R
n the following Sobolev–Poincaré

inequality

inf
c∈R ‖ f − c | L p(�)‖ ≤ Bp,p(�)‖∇ f | L p(�)‖, f ∈ W 1

p(�),

holds with the Poincaré constant Bp,p(�). Then the first nontrivial Neumann eigen-
value μp(�) of the p-Laplace operator
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− �pu = − div
(
|∇u|p−2∇u

)
, p > 1, (1.1)

can be characterized as μp(�) = B−p
p,p(�) (see, for example, [5]).

Exact calculations of Neumann eigenvalues are known in very limited number of
domains and so estimates ofμp(�) represent an important part of the modern spectral
theory (see, for example, [1,5,10,23,26,32]). We suggest spectral estimates of the
first nontrivial Neumann eigenvalue μp(�) of the p-Laplace operator in terms of the
(weak) quasiconformal geometry of domains.

The classical upper estimate for the first nontrivial Neumann eigenvalue of the
Laplace operator

μ2(�) ≤ μ2(�
∗) = p2n/2

R2∗
was proved by Szegö [43] for simply connected planar domains via a conformal
mappings technique (“the method of conformal normalization”) and by Weinberger
[55] for domains in R

n . In this inequality pn/2 denotes the first positive zero of the
function (t1−n/2 Jn/2(t))′, and �∗ is an n-ball of the same n-volume as � with R∗ as
its radius. In particular, if n = 2, we have p1 = j ′1,1 ≈ 1.84118 where j ′1,1 denotes
the first positive zero of the derivative of the Bessel function J1.

In convex domains � ⊂ R
n , n ≥ 2, the classical lower estimates of the linear

Neumann-Laplace operator (p=2) [39] states that

μ2(�) ≥ π2

d(�)2
,

where d(�) is a diameter of a convex domain �. Similar estimates for p �= 2 were
obtained much later [26]:

μp(�) ≥
(

πp

d(�)

)p

,

where

πp = 2

(p−1)
1
p∫

0

dt

(1 − t p/(p − 1))
1
p

= 2π
(p − 1)

1
p

p sin(π/p)
.

Unfortunately in non-convex domains μp(�) can not be characterized in the terms
of its Euclidean diameters. It can be seen by considering a domain consisting of two
identical squares connected by a thin corridor [2]. In our previous works [20,21] we
returned to a conformal mappings techniques (that was used in [43]) in a framework
of composition operators on Sobolev spaces. It permitted us to obtain lower estimates
of the first nontrivial Neumann eigenvalue in the terms of the hyperbolic (conformal)
radius of � for a large class of non convex domains � ⊂ R

2.
In the case of space domains conformal mappings does not allow to obtain spectral

estimates of theNeumann-Laplace operator andwe used a generalization of conformal
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mappings such as weak p-quasiconformal mappings [22]. The aim of the present work
is to obtain lower estimates of the Neumann eigenvalues of the p-Laplace operator in
the terms of a general weak (p, q)-quasiconformal geometry of domains. We use one
more time the geometric theory of composition operators on Sobolev spaces [13,44]
with applications to the (weighted) Poincaré–Sobolev inequalities [12,18].

The paper is organized as follows: The capacitary description of Sobolev spaces and
a short survey of the geometric theory of composition operators on Sobolev spaces
are presented in Sect. 2. In Sect. 3 we present a general method of applications of
composition operators to the Sobolev–Poincaré inequalities and apply this method to
lower estimates of the first nontrivial Neumann eigenvalue for the p-Laplace operator.

2 Composition Operators on Sobolev Spaces

2.1 Sobolev Spaces

Let E be a measurable subset ofRn , n ≥ 2. The Lebesgue space L p(E), 1 ≤ p ≤ ∞,
is defined as a Banach space of p-summable functions f : E → R equipped with the
following norm:

‖ f | L p(E)‖ =
( ∫

E

| f (x)|p dx
) 1

p

, 1 ≤ p < ∞,

and

‖ f | L∞(E)‖ = ess sup
x∈E

| f (x)|, p = ∞.

If � is an open subset of Rn , the Sobolev space W 1
p(�), 1 ≤ p ≤ ∞, is defined

as a Banach space of locally integrable weakly differentiable functions f : � → R

equipped with the following norm:

‖ f | W 1
p(�)‖ = ‖ f | L p(�)‖ + ‖∇ f | L p(�)‖,

where ∇ f is the weak gradient of the function f , i. e. ∇ f = (
∂ f
∂x1

, . . . ,
∂ f
∂xn

),

∫

�

f
∂g

∂xi
dx = −

∫

�

∂ f

∂xi
g dx, ∀g ∈ C∞

0 (�), i = 1, . . . , n.

As usual, C∞
0 (�) is the space of infinitely smooth functions with a compact support.

The homogeneous seminormed Sobolev space L1
p(�), 1 ≤ p ≤ ∞, is defined as a

space of locally integrable weakly differentiable functions f : � → R equipped with
the following seminorm:

‖ f | L1
p(�)‖ = ‖∇ f | L p(�)‖.
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Sobolev spaces are Banach spaces of equivalence classes [36]. To clarify the notion
of equivalence classes we use a corresponding type of capacity.

Recall the notion of a p-capacity of a set E ⊂ � [36]. Let � be a domain in R
n

and a compact F ⊂ �. The p-capacity of the compact F is defined by

capp(F;�) = inf
{
‖ f |L1

p(�)|p, f ≥ 1 on F, f ∈ C0(�) ∩ L1
p(�)

}
,

where C0(�) is the space of continuous functions with a compact support.
By the similar way we can define the p-capacity of open sets.
For arbitrary set E ⊂ � we define an inner p-capacity as

cap
p
(E;�) = sup{capp(e;�), e ⊂ E ⊂ �, e is a compact},

and an outer p-capacity as

capp(E;�) = inf{capp(U ;�), E ⊂ U ⊂ �, U is an open set}.

A set E ⊂ � is called p-capacity measurable, if cap
p
(E;�) = capp(E;�). The

value

capp(E;�) = cap
p
(E;�) = capp(E;�)

is called the p-capacity of the set E ⊂ �.
The notion of p-capacity permits us to refine the notion of Sobolev functions. Let

a function f ∈ L1
p(�). Then refined function

f̃ (x) = lim
r→0

1

|B(x, r)|
∫

B(x,r)

f (y) dy

is defined quasieverywhere i. e. up to a set of p-capacity zero and it is absolutely
continuous on almost all lines [36] (7.2.4, pp. 358–359). This refined function f̃ ∈
L1
p(�) is called a unique quasicontinuous representation (a canonical representation)

of function f ∈ L1
p(�). Recall that a function f̃ is termed quasicontinuous if for any

ε > 0 there is an open set Uε such that the p-capacity of Uε is less than ε and on the
set �\Uε the function f̃ is continuous (see, for example [24,36]). In what follows we
will use the quasicontinuous (refined) functions only.

Note that the first weak derivatives of the function f coincide almost everywhere
with the usual partial derivatives (see, e.g., [36]).

2.2 Composition Operators

Let � and �̃ be domains in R
n , n ≥ 2. We say that a homeomorphism ϕ : � → �̃

induces a bounded composition operator
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ϕ∗ : L1
p(�̃) → L1

q(�), 1 ≤ q ≤ p ≤ ∞,

by the composition rule ϕ∗( f ) = f ◦ ϕ, if for any function f ∈ L1
p(�̃), the compo-

sition ϕ∗( f ) ∈ L1
q(�) is defined quasi-everywhere in � and there exists a constant

Kp,q(�) < ∞ such that

‖ϕ∗( f ) | L1
q(�)‖ ≤ Kp,q(�)‖ f | L1

p(�̃)‖.

Composition operators on Sobolev spaces arise in [35] as operators generated by
the class of sub-areal mappings. In [50] in the frameworks of Reshetnyak’s problem
(1968) was proved that a homeomorphism ϕ : � → �̃ generates an isomorphism
of Sobolev spaces L1

n(�) and L1
n(�̃) if and only if ϕ is a quasiconformal mapping.

These works motivated the study of geometric properties of mappings which generate
isomorphisms (bounded operators) of Sobolev type spaces. In [51] it was proved that
a homeomorphism ϕ : � → �̃ generates an isomorphism of Sobolev spaces L1

p(�)

and L1
p(�̃), p > n, if and only if ϕ is a bi-Lipschitz mapping. This result was extended

to the cases n − 1 < p < n in [17] and the case 1 ≤ p < n in [33].

Remark 2.1 Recall that a homeomorphism ϕ is called a bi-Lipschitz homeomorphism
if ϕ and ϕ−1 are locally Lipschitz mappings with uniformly bounded local Lipschitz
constants.

Mappings that generate isomorphisms of Besov spaces were considered in [47],
Nikolskii–Besov spaces and Lizorkin–Triebel spaces were considered in [48]. In [37]
the theory of multipliers was applied to the change of variable problem in Sobolev
spaces.

The composition operators are not necessary isomorphisms even if they are induced
by diffeomorphisms or homeomorphisms of Euclidean domains. It means that the
composition problem can be reformulated by a more flexible way: describe classes of
homeomorphisms that induce bounded composition operators on Sobolev spaces. In
the case of Sobolev spaces with the first weak derivatives it can be formulated as a
characterization of homeomorphism ϕ : � → �̃ that generate composition operators

ϕ∗ : L1
p(�̃) → L1

q(�), 1 ≤ q ≤ p ≤ ∞, (2.1)

by the standard composition rule ϕ∗( f ) = f ◦ ϕ.
Analytical characteristics of mappings that generate bounded compositions opera-

tors on Sobolev spaces are given in terms of weak derivatives of the mappings. Let a
mapping ϕ : � → R

n be weakly differentiable in �. Then the formal Jacobi matrix
Dϕ(x) and its determinant (Jacobian) J (x, ϕ) are well defined at almost all points
x ∈ �. The norm |Dϕ(x)| of the matrix Dϕ(x) is the norm of the corresponding
linear operator. We will use the same notation for this matrix and the corresponding
linear operator.

Recall that a mapping ϕ : � → R
n possesses the Luzin N -property if an image

of any set of measure zero has measure zero. Lipschitz mapping possess the Luzin
N -property.
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In the case p = q �= n an analytic description was obtained in [46] using a
notion of mappings of finite distortion introduced in [52]: a weakly differentiable
mapping is called a mapping of finite distortion if |Dϕ(x)| = 0 a. e. on the set
Z = {x ∈ � : J (x, ϕ) = 0}. This property becomes useful especially for the case
p �= q.

In [13] it was obtained the geometric description of composition operators for n −
1 < p = q < ∞without using the finite distortion property. In the case 1 < p < n−1
the geometric description requires additional apriori properties of homeomorphisms
[13].

Let us reformulate the main result of [13].

Theorem 2.2 [13] A homeomorphism ϕ : � → �̃ between two domains � and �̃

induces a bounded composition operator

ϕ∗ : L1
p(�̃) → L1

p(�), n − 1 < p < ∞,

if and only if

M (λ)
p (ϕ;�) = sup

x∈�

lim sup
r→0

L p
ϕ(x, r)rn−p

|ϕ(B(x, λr))| < ∞, (2.2)

for some λ > 1 if n − 1 < p < n and λ = 1 if n ≤ p < ∞, where Lϕ(x, r) =
max|x−y|=r

|ϕ(x) − ϕ(y)|.

On the base of this result the notion of p-quasiconformal mappings was introduced
for n−1 < p < ∞. In the case 1 < p < n−1 this result is correct under an additional
apriori property of weak differentiability of ϕ [13].

Recall that a weakly differentiable homeomorphism ϕ : � → �̃ is called a weak
p-quasiconformal mapping [13] if there exists a constant Kp < ∞ such that

|Dϕ(x)|p ≤ K p
p |J (x, ϕ| for almost all x ∈ �.

The class of weak p-quasiconformal mappings is a natural generalization of qua-
siconformal mappings and for p = n these classes coincide.

Note that planar conformal mapping preserve the Dirichlet energy integral

∫

�

|∇ f (x)|2 dx

because |Dϕ(x)|2 = |J (x, ϕ)| in �.
In the space R

3 conformal mappings are not connected to the Dirichlet energy
integral, but the class of weak 2-conformal mappings (co-conformal mappings [22])
generates bounded composition operators on the Dirichlet spaces. It is a reason for
detailed study of weak 2-quasiconformal mappings that looks as an appropriate class
for possible applications to elliptic equations as was mentioned in [22].

The case p �= q is more complicated and in this case the composition operators
theory is based on the countable-additive set functions, connected with norms of
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composition operators [44] (see also [54]). The main result of [44] gives an analytic
description of composition operators on Sobolev spaces (see, also [54]) and asserts
that

Theorem 2.3 [44] A homeomorphism ϕ : � → �̃ between two domains � and �̃

induces a bounded composition operator

ϕ∗ : L1
p(�̃) → L1

q(�), 1 ≤ q < p < ∞,

if and only if ϕ ∈ W 1
1,loc(�), has finite distortion, and

K p,q(ϕ;�) =
(∫

�

( |Dϕ(x)|p
|J (x, ϕ)|

) q
p−q

dx

) p−q
pq

< ∞.

Let us remark onemore time that in the framework of two previous theorems function
of spaces L1

p(�̃) are quasicontinuous.
By an analogy with a notion of weak p-quasiconformal case homeomorphisms

which satisfy conditions of Theorem 2.3 are called (weak) (p, q)-quasiconformal
mappings [53] ormappings of bounded (p, q)-distortion [45]. A geometric description
(similar to (2.2)) of weak (p, q)-quasiconformal mappings in the case q > n − 1 was
obtained in [53].

The concept of quasicontinuity wasn’t used in [27], where by an analogy with
Lebesgue spaces, Sobolev functions were defined up to set a measure zero (not up
to sets of p-capacity zero). In [27] it was stated that (p, q)-quasiconformal map-
pings generates a bounded composition operators on Sobolev spaces under additional
assumptions continuity of Sobolev functions of L1

p(�̃), p > n. Let us recall that by
the classical Sobolev embedding theorems (see, for example, [36,42]) any function
f ∈ W 1

p(�̃), p > n, has an unique continuous representation [36].
Composition operators on Sobolev spaces have applications to spectral problems

of elliptic equations. These applications are based on the Sobolev type embedding
theorems [12,18]. The following diagram illustrate themain idea of these applications:

W 1
p(�̃)

ϕ∗
−→ W 1

q (�)

↓ ↓
Ls(�̃)

(ϕ−1)∗←− Lr (�)

Here the operator ϕ∗ defined by the composition rule ϕ∗( f ) = f ◦ ϕ is a bounded
composition operator on Sobolev spaces induced by a homeomorphism ϕ of a “good”
domain � (for example the unit ball) to a “bad” domain �̃ and the operator (ϕ−1)∗
defined by the composition rule (ϕ−1)∗( f ) = f ◦ ϕ−1 is a bounded composition
operator on Lebesgue spaces induced by the inverse homeomorphism.

This approach allows us to obtain stability estimates of constants in Sobolev–
Poincaré inequalities, that in its turn give us an opportunity to estimate stability of
Neumann eigenvalues of the p-Laplace operators.
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In our recent works [6,7,14,15,20,21] the spectral stability problem and the lower
estimates of Neumann eigenvalues in planar domains were studied. In space domains
our results are more modest. Some spectral estimates in space non convex domains
were obtained [11,22] with the help of weak p-quasiconformal mappings theory.

The geometric theory of composition operators on Sobolev spaces is closely con-
nected with the Ap,q -Ball’s classes [3,4] and has applications in non-linear elasticity
(see, for example, [9,19,49]).

In the last decade the composition operators theory on some generalizations of
Sobolev spaces, like Besov spaces and Triebel–Lizorkin spaces, [25,28–30,38] was
under consideration. These types of composition operators have applications to the
Calderón inverse conductivity problem [8].

2.3 Composition Operators and Capacitary Inequalities

Composition operators on Sobolev spaces allow an alternative capacitory description.
Recall the notion of a variational p-capacity [16].

A condenser in the domain � ⊂ R
n is the pair (F0, F1) of connected closed

relatively to � sets F0, F1 ⊂ �. A continuous function f ∈ L1
p(�) is called an

admissible function for the condenser (F0, F1), if the set Fi ∩ � is contained in some
connected component of the set Int{x |u(x) = i}, i = 0, 1. We call as the p-capacity
of the condenser (F0, F1) (relatively to the domain) � the following quantity:

capp(F0, F1;�) = inf
∥∥∥ f |L1

p(�)

∥∥∥
p
.

Here the greatest lower bound is taken over all functions admissible for the condenser
(F0, F1) ⊂ �. If the condenser has no admissible functions we put the capacity equal
to infinity.

The following theorems give a capacitary description of the composition operators
on Sobolev spaces.

Theorem 2.4 [13] Let 1 < p < ∞. A homeomorphism ϕ : � → �̃ generates a
bounded composition operator

ϕ∗ : L1
p(�̃) → L1

p(�)

if and only if for every condenser (F0, F1) ⊂ �̃ the inequality

cap1/pp (ϕ−1(F0), ϕ
−1(F1);�) ≤ K cap1/pp (F0, F1; �̃)

holds.

Theorem 2.5 [44,53] Let 1 < q < p < ∞. A homeomorphism ϕ : � → �̃ generates
a bounded composition operator

ϕ∗ : L1
p(�̃) → L1

q(�)
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if andonly if there exists a boundedmonotone countable-additive set function	defined
on open subsets of �̃ such that for every condenser (F0, F1) ⊂ �̃ the inequality

cap1/qq (ϕ−1(F0), ϕ
−1(F1);�) ≤ 	(�̃\(F0 ∪ F1))

p−q
pq cap1/pp (F0, F1; �̃)

holds.

These capacitary inequalities demonstrate a close connection of mappings that
generate bounded composition operators on Sobolev spaces and so-called Q-home-
omorphisms [34]. Descriptions of Q-homeomorphisms are based on the capacitary
(moduli) distortion property are these classes were intensively studied at last decades
(see, for example, [31,40,41]).

3 Spectral Estimates of the p-Laplace Operator

In this section we give spectral estimates of the p-Laplace operator on the base
Sobolev–Poincaré inequalities.

3.1 The General Case

Recall that a bounded domain � ⊂ R
n is called an (r , q)-Sobolev–Poincaré domain,

1 ≤ r , q ≤ ∞, if for any function f ∈ L1
q(�), the (r , q)-Sobolev–Poincaré inequality

inf
c∈R ‖ f − c | Lr (�)‖ ≤ Br ,q(�)‖∇ f | Lq(�)‖

holds.
Weak (p, q)-quasiconformal mappings permits us to “transfer” this embedding

property from one domain to another.

Theorem 3.1 Let a bounded domain � ⊂ R
n be a (r , q)-Sobolev–Poincaré domain,

1 < q ≤ r < ∞, and there exists a weak (p, q)-quasiconformal mapping ϕ : � → �̃

of a domain � onto a bounded domain �̃, possesses the Luzin N-property and such
that

Mr (�) = ess sup
x∈�

|J (x, ϕ)| 1r < ∞.

Then in the domain �̃ the (r , p)-Sobolev–Poincaré inequality

inf
c∈R

(∫

�̃

| f (x) − c|r dx
) 1

r ≤ Br ,p(�̃)

(∫

�̃

|∇ f (x)|p dx
) 1

p

, f ∈ W 1
p(�̃), (3.1)

holds and

Br ,p(�̃) ≤ Kp,q(�)Mr (�)Br ,q(�).
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Here Br ,q(�) is the best constant in the (r , q)-Sobolev–Poincaré inequality in the
domain �.

Proof Let f ∈ L1
p(�̃). By the conditions of the theorem there exists a weak (p, q)-

quasiconformal homeomorphism ϕ : � → �̃. Hence, the composition operator

ϕ∗ : L1
p(�̃) → L1

q(�)

is bounded. Because � is a bounded (r , q)-Sobolev–Poincaré domain g = ϕ∗( f ) ∈
W 1

q (�).
Using the change of variable formula we obtain:

inf
c∈R

(∫

�̃

| f (y) − c|r dy
) 1

r = inf
c∈R

(∫

�

| f (ϕ(x)) − c|r |J (x, ϕ)| dx
) 1

r

≤ ess sup
x∈�

|J (x, ϕ)| 1r inf
c∈R

(∫

�

| f (ϕ(x)) − c|r dx
) 1

r

= Mr (�) inf
c∈R

(∫

�

|g(x) − c|r dx
) 1

r

.

Because the domain � is a (r , q)-Sobolev–Poincaré domain we have

inf
c∈R

(∫

�

|g(x) − c|r dx
) 1

r ≤ Br ,q(�)

(∫

�

|∇g(x)|q dx

) 1
q

.

Hence

inf
c∈R

(∫

�̃

| f (y) − c|r dy
) 1

r ≤ Mr (�)Br ,q(�)‖g | L1
q(�)‖.

By Theorem 2.3

‖g | L1
q(�)‖ ≤ Kp,q(�)‖ f | L1

p(�̃)‖.

Therefore

inf
c∈R

(∫

�̃

| f (y) − c|r dy
) 1

r ≤ Kp,q(�)Mr (�)Br ,q(�)

(∫

�̃

|∇ f (x)|p dx
) 1

p

.

��
The Theorem 3.1 immediately implies the following lower estimate for μp(�̃):
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Theorem 3.2 Suppose that there exists a weak (p, q)-quasiconformal homeomor-
phism ϕ : � → �̃, of a (r , q)-Sobolev–Poincaré domain � ⊂ R

n onto �̃, possesses
the Luzin N-property and such that

Mp(�) = ess sup
x∈�

|J (x, ϕ)| 1p < ∞.

Then

μp(�̃) ≥ (
K p

p,q(�)Mp
p (�)B p

p,q(�)
)−1

.

Boundedness of a Jacobian of a weak (p, q)-quasiconformal mapping is a sufficient
but restrictive assumption. If ϕ is a Lipschitz mapping, this condition holds but an
image of a Lipschitz domain can not be a domain with external singularities.

We shall use a more flexible class of weak (p, q)-quasiconformal mappings with
an integrable Jacobian, which allows us to map Lipschitz domains onto cusp domains.

Theorem 3.3 Let a bounded domain � ⊂ R
n be a (r , q)-Sobolev–Poincaré domain,

1 < q ≤ r < ∞, and there exists a weak (p, q)-quasiconformal homeomorphism
ϕ : � → �̃ of a domain� onto a bounded domain �̃, possesses the Luzin N-property
and such that

Mr ,s(�) =
(∫

�

|J (x, ϕ)| r
r−s dx

) r−s
rs

< ∞

for some 1 ≤ s < r . Then in the domain �̃ the (s, p)-Sobolev–Poincaré inequality

(∫

�̃

| f (x) − f�̃|s dx
) 1

s ≤ Bs,p(�̃)

(∫

�̃

|∇ f (x)|p dx
) 1

p

, f ∈ W 1
p(�̃), (3.2)

holds and

Bs,p(�̃) ≤ Kp,q(�)Mr ,s(�)Br ,q(�).

Here Br ,q(�) is the best constant in the (r , q)-Sobolev–Poincaré inequality in the
domain �.

Proof Let f ∈ L1
p(�̃). By the conditions of the theorem there exists a (p, q)-

quasiconformal homeomorphism ϕ : � → �̃. By Theorem 2.3 the composition
operator

ϕ∗ : L1
p(�̃) → L1

q(�)

is bounded. Because the bounded domain� is a (r , q)-Sobolev–Poincaré domain then
g = ϕ∗( f ) ∈ W 1

q (�).
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Using the change of variable formula and the Hölder inequality we obtain:

inf
c∈R

(∫

�̃

| f (y) − c|s dy
) 1

s = inf
c∈R

(∫

�

| f (ϕ(x)) − c|s |J (x, ϕ)| dx
) 1

s

≤
(∫

�

|J (x, ϕ)| r
r−s dx

) r−s
rs

inf
c∈R

(∫

�

| f (ϕ(x)) − c|r dx
) 1

r

= Mr ,s(�) inf
c∈R

(∫

�

|g(x) − c|r dx
) 1

r

.

Because the domain� is a (r , q)-Sobolev–Poincaré domain the following inequal-
ity holds:

inf
c∈R

(∫

�

|g(x) − c|r dx
) 1

r ≤ Br ,q(�)

(∫

�

|∇g(x)|q dx

) 1
q

.

Combining two previous inequalities we have

inf
c∈R

(∫

�̃

| f (y) − c|s dy
) 1

s ≤ Mr ,s(�)Br ,q(�)‖g | L1
q(�)‖.

By Theorem 2.3

‖g | L1
q(�)‖ ≤ Kp,q(�)‖ f | L1

p(�̃)‖.

Finally we obtain

inf
c∈R

(∫

�̃

| f (y) − c|s dy
) 1

s ≤ Kp,q(�)Mr ,s(�)Br ,q(�)

(∫

�̃

|∇ f |p dy
) 1

p

.

It means that

Bs,p(�̃) ≤ Kp,q(�)Mr ,s(�)Br ,q(�).

��
We are ready to establish the main lower estimate:

Theorem 3.4 Let a domain � ⊂ R
n be a (r , q)-Sobolev–Poincaré domain, 1 < q <

p < r , and there exists a weak (p, q)-quasiconformal homeomorphism ϕ : � → �̃
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of a domain � onto a bounded domain �̃, possesses the Luzin N-property and such
that

Mr ,p(�) =
(∫

�

|J (x, ϕ)| r
r−p dx

) r−p
rp

< ∞.

Then

μp(�̃) ≥ (
K p

p,q(�)Mp
r ,p(�)B p

r ,q(�)
)−1

.

This theorem follows from Theorem 3.3 and gives the lower estimate of the first
non-trivial Neumann eigenvalue of the p-Laplace operator in the terms of (p, q)-
quasiconformal geometry of domains.

3.2 The Anisotropic Hölder Singularities

Define domains Hg with anisotropic Hölder γ -singularities (introduced in [12]):

Hg = {x ∈ R
n : 0 < xn < 1, 0 < xi < gi (xn), i = 1, 2, . . . , n − 1}.

Here gi (τ ) = τγi , γi ≥ 1, 0 ≤ τ ≤ 1 are Hölder functions and for the function
G = ∏n−1

i=1 gi denote by

γ = logG(τ )

log τ
+ 1.

It is evident that γ ≥ n. In the case g1 = g2 = · · · = gn−1 we will say that domain Hg

is a domain with σ -Hölder singularity, σ = (γ − 1)/(n − 1). For g1(τ ) = g2(τ ) =
· · · = gn−1(τ ) = τ we will use notation H1 instead of Hg .

Define the mapping ϕa : H1 → Hg , a > 0, by

ϕa(x) =
(
x1
xn

ga1 (xn), . . . ,
xn−1

xn
gan−1(xn), x

a
n

)
.

Theorem 3.5 Let (n − p)/(γ − p) < a < p(n − q)/q(γ − p). Then the mapping
ϕa : H1 → Hg, be a weak (p, q)-quasiconformal mapping, 1 < q < p < γ , from
the Lipschitz convex domain H1 onto the “cusp”’ domain Hg with

K p,q(H1) ≤ a− 1
p

√√√√a2(γ 2
1 + · · · + γ 2

n−1 + 1) − 2a
n−1∑
i=1

γi .

Proof By simple calculations

∂(ϕa)i

∂xi
= gai (xn)

xn
,

∂(ϕa)i

∂xn
= −xi g

a
i (xn)

x2n
+ axi g

a−1
i (xn)

xn
g′
i (xn) and

∂(ϕa)n

∂xn
= axa−1

n
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for any i = 1, . . . , n − 1. Hence J (x, ϕa) = axa−n
n Ga(xn) = axaγ−n

n , J (x, ϕa) ≤ a
for a > 1 and

Dϕa(x) =

⎛
⎜⎜⎝
xaγ1−1
n 0 . . . (aγ1 − 1)x1x

aγ1−2
n

0 xaγ2−1
n . . . (aγ2 − 1)x2x

aγ2−2
n

. . . . . . . . . . . .

0 0 . . . axa−1
n

⎞
⎟⎟⎠

= xa−1
n

⎛
⎜⎜⎜⎝

xaγ1−a
n 0 . . . (aγ1 − 1) x1xn x

a(γ1−1)
n

0 xaγ2−a
n . . . (aγ2 − 1) x2xn x

a(γ2−1)
n

. . . . . . . . . . . .

0 0 . . . a

⎞
⎟⎟⎟⎠ . (3.3)

Because 0 < xn < 1 and x1/xn < 1 we have the following estimate

|Dϕa(x)| ≤ xa−1
n

√√√√n−1∑
i=1

(aγi − 1)2 + n − 1 + a2

= xa−1
n

√√√√a2(γ 2
1 + · · · + γ 2

n−1 + 1) − 2a
n−1∑
i=1

γi .

Then

Kp,q(H1) =
⎛
⎜⎝

∫

H1

( |Dϕa(x)|p
J (x, ϕa)

) q
p−q

dx

⎞
⎟⎠

p−q
pq

≤
√
a2(γ 2

1 + · · · + γ 2
n−1 + 1) − 2a

∑n−1
i=1 γi

p
√
a

⎛
⎜⎝

∫

H1

x
(p(a−1)−(aγ−n))q

p−q
n dx

⎞
⎟⎠

p−q
pq

=
√
a2(γ 2

1 + · · · + γ 2
n−1 + 1) − 2a

∑n−1
i=1 γi

p
√
a

⎛
⎝

1∫

0

xn∫

0

. . .

xn∫

0

x
(p(a−1)−(aγ−n))q

p−q
n dx1 . . . dxn

⎞
⎠

p−q
pq

=
√
a2(γ 2

1 + · · · + γ 2
n−1 + 1) − 2a

∑n−1
i=1 γi

p
√
a

×
⎛
⎝

1∫

0

x
(p(a−1)−(aγ−n))q

p−q +n−1
n dxn

⎞
⎠

p−q
pq
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≤
√
a2(γ 2

1 + · · · + γ 2
n−1 + 1) − 2a

∑n−1
i=1 γi

p
√
a

,

if (p + aγ − pa)q < np or that equivalent a < p(n − q)/q(γ − p).
Now we check that 1 < q < np/(p + aγ − pa) < p. The inequality 1 <

np/(p + aγ − pa) implies a < (np − p)/γ − p, but

np − p

γ − p
<

p(n − q)

q(γ − p)
, if q > 1.

The inequality np/(p + aγ − pa) < p implies a > (n − p)/(γ − p). So, we have
that a ∈ ((n − p)/(γ − p), p(n − q)/q(γ − p)). ��

We are ready to prove spectral estimates in cusp domains.

Theorem 3.6 Let

Hg := {x ∈ R
n : n ≥ 3, 0 < xn < 1, 0 < xi < xγi

n , i = 1, 2, . . . , n − 1}

γi ≥ 1, γ := 1 + ∑n−1
i=1 γi , g := (γ1, . . . , γn−1) be domains with anisotropic Hölder

γ -singularities.
Then for 1 < p < γ

1

μp(Hg)
≤ inf

a∈Ia

(
a2(γ 2

1 + · · · + γ 2
n−1 + 1) − 2a

n−1∑
i=1

γi

) p
2

B p
r ,q(H1),

where Ia = (max{(n − p)/(γ − p), p(n − q)/γ q}, p(n − q)/q(γ − p)) and
Br ,q(H1) is the best constant in the (r , q)-Sobolev–Poincaré inequality in the domain
H1, q ≤ r <

nq
n−q .

Proof By Theorem 3.5 the mapping ϕa : H1 → Hg , (n − p)/(γ − p) < a <

p(n − q)/q(γ − p),

ϕa(x) =
(
x1
xn

ga1 (xn), . . . ,
xn−1

xn
gan−1(xn), x

a
n

)
.

maps the convex Lipschitz domain H1 onto the cusp domain Hg and it is a weak
(p, q)-quasiconformal mapping, 1 < q < p < γ .

Let us check conditions of Theorem3.4. Becauseϕ is aweak (p, q)-quasiconformal
mapping then Kp,q(H1) is finite. The basic domain H1 is a Lipschitz domains and so
is a (r , q)-Sobolev–Poincaré domain, i. e. Br ,q(H1) < ∞.

Now we estimate the constant Mr ,p(H1):

Mr ,p(H1) =
⎛
⎜⎝

∫

H1

|J (x, ϕa)|
r

r−p dx

⎞
⎟⎠

r−p
rp

= a
1
p

⎛
⎜⎝

∫

H1

(
xaγ−n
n

) r
r−p

dx

⎞
⎟⎠

r−p
rp
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= a
1
p

⎛
⎝

1∫

0

(
xaγ−n
n

) r
r−p

⎛
⎝

xn∫

0

dx1 . . .

xn∫

0

dxn−1

⎞
⎠ dxn

⎞
⎠

r−p
rp

= a
1
p

⎛
⎝

1∫

0

(
xaγ−n
n

) r
r−p · xn−1

n dxn

⎞
⎠

r−p
rp

< ∞,

if

(aγ − n)r

r − p
+ n − 1 > −1, i. e. a >

np

γ r
.

Because 0 < xn < 1, we have Mr ,p(H1) ≤ a
1
p if a > np/γ r . If we take r <

nq/(n − q) we obtain that

M nq
n−q ,p(H1) ≤ a

1
p , if a >

p(n − q)

γ q
.

The conditions of Theorem 3.4 is fulfilled. Therefore

1

μp(Hg)
≤ K p

p,q(H1)M
p
nq
n−q ,p

(H1)B
p
nq
n−q ,q

(H1)

≤
(
a2(γ 2

1 + · · · + γ 2
n−1 + 1) − 2a

n−1∑
i=1

γi

) p
2

B p
r ,q(H1),

where max{(n− p)/(γ − p), p(n − q)/γ q} < a < p(n−q)/q(γ − p) and Br ,q(H1)

is the best constant in the (r , q)-Sobolev–Poincaré inequality in the domain H1 for
some q ∈ [r , nq

n−q ). ��

Note that in [22] we proved the estimate of the Poincaré constant in the (r , q)-
Sobolev–Poincaré inequality in the domain H1:

Br ,q(H1) ≤ n

(
1 − δ

1/n − δ

)1−δ

ω
1− 1

n
n

(
1

(n + 1)!
) 1

n −δ

, δ = 1

q
− 1

r
≥ 0. (3.4)

The problem of exact values of constants in the (r , q)-Sobolev–Poincaré inequali-
ties in the case p �= r is a complicated open problem even in the case of the unit disc
D ⊂ R

2.
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