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Abstract In this paper, a generalized matrix product is introduced and related prop-
erties are studied as well. Afterwards, we show how our approach can be applied
to the so-called Sylvester and Lyaponov matrix equations for obtaining their related
solutions in terms of the generalized matrix product. Numerical examples illustrating
the theoretical study are also discussed.
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1 Introduction and Basic Notions

Let n ≥ 2 be an integer. We denote by Mn the space of n × n matrices with real
entries, equipped with the classical norm

∀A ∈ Mn ‖A‖ = sup
‖u‖=1

‖Au‖,
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where ‖u‖ denotes the euclidian norm of u ∈ R
n .

By Sn we denote the subspace of n × n symmetric matrices. The set of n × n
symmetric positive semi-definite matrices, denoted by S+

n , is a closed convex cone of
Sn and thus positive semi-definiteness induces a partial ordering on Sn , namely the
Löwner order, defined by: A ≤ B if and only if A, B ∈ Sn and B − A ∈ S+

n . It is
well-known that

∀A ∈ S+
n ‖A‖ = sup

‖u‖=1
〈Au, u〉,

where 〈., .〉 denotes the classical inner product ofRn . We then infer that, if A, B ∈ S+
n

are such that A ≤ B then ‖A‖ ≤ ‖B‖.
By S+∗

n we denote the open convex cone of n × n symmetric positive definite
matrices. Since the space Mn is with finite dimension then A ∈ S+∗

n if and only if
A ∈ S+

n and A is invertible. In another way, S+∗
n is the topological interior of S+

n .
Let � : C ⊂ Sn −→ Sn be a matrix-map. We say that � is monotone increasing

if A ≤ B implies �(A) ≤ �(B), where �(A) and �(B) are defined via functional
calculus as usual. If moreover C is convex, we say that � is convex if for all A, B ∈ C
and all real number t ∈ [0, 1] we have

�
(
(1 − t)A + t B

)
≤ (1 − t)�(A) + t�(B).

The matrix-map � is said to be monotone decreasing (resp. concave) if −� is mono-
tone increasing (resp. convex).As standard examples of suchmatrix-maps,wemention
the following, see [3] and the related references cited therein.

Example 1.1 (i) Let �(X) = X p for all X ∈ S+∗
n , where p is a real number. It is

well-known that the matrix-map � is monotone increasing and concave for all
p ∈ (0, 1), monotone decreasing and convex for each p ∈ (−1, 0), convex not
monotone for every p ∈ (1, 2].

(ii) The matrix-map X �−→ Log X is monotone increasing and concave on S+∗
n

while X �−→ exp X is neither monotone nor convex.

Otherwise, let A, B ∈ S+∗
n . The geometric mean G(A, B) ∈ S+∗

n of A and B is
defined as the unique positive definitematrix solution of the algebraicRiccati equation:
find Z ∈ S+∗

n such that Z A−1Z = B. It is well-known that G(A, B) is explicitly given
by

G(A, B) = A1/2
(

A−1/2B A−1/2
)1/2

A1/2

= B1/2
(

B−1/2AB−1/2
)1/2

B1/2 = G(B, A). (1.1)

Obviously, G(I, A) = G(A, I ) = A1/2, where I denotes the n ×n matrix identity.
We recall that for fixed A ∈ S+∗

n , the matrix map X �−→ G(A, X) is monotone
increasing concave and continuously differentiable on S+∗

n .
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As usual, G(A, B) is extended for A, B ∈ S+
n by setting

G(A, B) := lim
ε↓0 G

(
A + ε I, B + ε I

)
.

The following lemma, which will be needed in the sequel, asserts that G(A, B)

can be explicitly computed whenever A and B are 2 × 2 symmetric positive definite
matrices.

Lemma 1.1 [1] Let A, B ∈ S+∗
2 and set a = √

det A, b = √
det B. Then we have

G(A, B) =
√

ab√
det

(
bA + aB

)
(
bA + aB

)
.

In particular,

A1/2 =
√

a√
det (A + aI )

(
A + aI

)
. (1.2)

For more details about properties, applications, some extensions and numerical
computations of G(A, B), we refer the interested reader to [1,2,10,11] and the related
references cited therein.

2 Generalized Matrix Product

We preserve the same notations as previous. Let C be a nonempty subset of Sn . We
say that C satisfies:
• The property (P) if for all A, B ∈ C and t > 0, we have A + t B ∈ C.
•The property (P0) if for all A ∈ C, B ∈ Sn and |t | enough small, we have A+t B ∈ C.

The following examples explain the previous terminologies.

Example 2.1 (i) If C is a convex cone (in particular a subspace) of Sn then C satisfies
the property (P). In particular, if C = Sn, C = S+

n or C = S+∗
n then C satisfies

(P).
(ii) If C is open then it satisfies (P0). For instance, C = S+∗

n satisfies (P0) but C = S+
n

does not.

Example 2.2 Let C be defined as follows

C = {X ∈ Sn, X ≥ I }.

It is easy to see that C satisfies (P), although C is not a cone.

Now, the following definition may be stated.

Definition 2.1 Let C be a nonempty subset of Sn satisfying (P0) and � : C −→ Sn

be a given map. For A ∈ C and B ∈ Sn , we set

[
A, B

]
�

= lim
t↓0

�(A + t B) − �(A)

t
,
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provided this limit exists. In this case, [A, B]� is called the (generalized) �-matrix
product of A and B.

The previous terminology “generalized matrix product” can be justified by the fact
that [A, B]� extends the commutative product of A and B, since [A, B]� = AB+ B A
for �(X) = X2.

Clearly, [A, B]� is the directional derivative of � in the direction B at A. If � is
differentiable at A, with gradient ∇�(A), then [A, B]� exists for every B ∈ Sn , and
we have

[
A, B

]
�

= ∇�(A)(B).

On another hand, if the operator map t �−→ �(A + t B) is differentiable on a neigh-
borhood of 0 then, by Hopital rule, we have

[
A, B

]
�

= d

dt
�(A + t B)

∣∣∣
t=0

.

It is also worth mentioning that if B ∈ S+
n and � is monotone increasing then

[A, B]� ∈ S+
n , since for t > 0 (enough small) we have

B ≥ 0 �⇒ A + t B ≥ A �⇒ �(A + t B) ≥ �(A) �⇒ [
A, B

]
�

≥ 0.

An interesting other situation is that where� : C −→ Sn is convex (resp. concave).
The next result explains this latter situation.

Theorem 2.1 Let C be a nonempty convex subset of Sn satisfying (P) and � : C −→
Sn be a convex map. Then, for all A, B ∈ C, the matrix-function

(0,∞) � t �−→ �(A + t B) − �(A)

t
(2.1)

is monotone increasing. That is,

t1 ≥ t2 > 0 �⇒ �(A + t2B) − �(A)

t2
≤ �(A + t1B) − �(A)

t1
.

Proof If t1 ≥ t2 > 0 then we can write

�(A + t2B) − �(A) = �
( t2

t1

(
A + t1B

) +
(
1 − t2

t1

)
A
)

− �(A).

This, with the fact that � is convex and 0 < t2/t1 ≤ 1, yields

�(A + t2B) − �(A) ≤ t2
t1

�
(

A + t1B
) +

(
1 − t2

t1

)
�(A) − �(A).
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We then deduce, after simple manipulation,

�(A + t2B) − �(A)

t2
≤ �(A + t1B) − �(A)

t1
,

which is the desired result. ��
The above theorem, with the definition of [A, B]�, immediately implies the fol-

lowing corollary.

Corollary 2.2 Let C and � be as in the above theorem and let A, B ∈ C. If [A, B]�
exists then [

A, B
]
�

= inf
t>0

�(A + t B) − �(A)

t
, (2.2)

where the “inf” is taken for the Löwner order.

Corollary 2.3 LetC and � be as in Theorem 2.1. Let A, B ∈ C be such that A−B ∈ C.
Then [A, B]� exists and satisfies

�(A) − �(A − B) ≤ [A, B]� ≤ �(A + B) − �(A). (2.3)

Proof We first show the left side of (2.3). The following identity

A = 1

1 + t
(A + t B) + t

1 + t
(A − B)

is obviously satisfied for all t > 0 and all A, B. If moreover A − B ∈ C and � is
convex then we have

�(A) ≤ 1

1 + t
�(A + t B) + t

1 + t
�(A − B).

It follows that

�(A) + t�(A) ≤ �(A + t B) + t�(A − B),

or equivalently

t�(A) − t�(A − B) ≤ �(A + t B) − �(A),

or again

�(A) − �(A − B) ≤ �(A + t B) − �(A)

t
.

We then deduce that [A, B]� exists and the desiredmatrix-inequality follows by letting
t ↓ 0, or by using (2.2). This, with (2.2), yields the right matrix-inequality of (2.3).
The proof is so complete. ��
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The next corollary is immediate from the above one.

Corollary 2.4 Let C be a subspace of Sn and � : C −→ Sn be a convex map. Then,
for all A, B ∈ C, [A, B]� exists and (2.3) holds true.

Remark 2.1 (i) It is easy to see that if C is a convex cone then X �−→ [
A, X

]
�
, for

fixed A ∈ C, is positively homogeneous and so it is sub-additive.
(ii) If the map � : C −→ Sn is concave then the matrix-function (2.1) is monotone

decreasing. So, analog of (2.2) holds, with “sup” instead of “inf”, and (2.3) is
reversed. For fixed A ∈ C, the map X �−→ [

A, X
]
�
is concave.

Now, we present the following example illustrating the above.

Example 2.3 (i) Let � : Sn −→ Sn be defined by �(X) = X P X , where P ∈ S+
n

is a fixedmatrix. Themap� is convex and it is simple to see that, for all A, B ∈ Sn ,
we have

[A, B]� = AP B + B P A = (AP)B + B(AP)T .

In particular, if �(X) = X2 then one has [A, B]� = AB + B A.
(ii) Let � : S+∗

n −→ S+∗
n with �(X) = X−1. The map � is convex and it is not

hard to see that

[A, B]� = −A−1B A−1.

(iii) Let � : S+
n −→ S+

n be such that �(X) = X1/2. Here, � is concave. We can
easily see that Z := [A2, B]� satisfies the algebraic Lyapunov equation AZ +
Z A = B.

3 Computation of [A, B]� for �(X) = X p and �(X) = log X

This section will be devoted to the computation of [A, B]� for some special maps �.
In particular, the case �(X) = X p, with p real number, will be discussed. For this
case, we write [A, B]p instead of [A, B]�. With this, Example 2.3 gives

[
A, B

]
2 = AB + B A,

[
A, B

]
−1 = −A−1B A−1, A

[
A, B

]
1/2 + [

A, B
]
1/2A = B.

Otherwise, we set As = A+s I for all s ≥ 0. In particular A0 = A and A1 = A+ I .
We first state the next auxiliary lemma.

Lemma 3.1 Let A, B ∈ Mn and p ≥ 1 be an integer. Then we have

(A + t B)p = Ap + t
p∑

i=1

Ap−i B Ai−1 + t εt (A, B), (3.1)
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where εt (A, B) → 0 as t → 0. If moreover A is invertible then

(A + t B)−p = A−p − t
p∑

i=1

Ai−p−1B A−i + t ηt (A, B), (3.2)

with ηt (A, B) → 0 as t → 0.

Proof Expansion (3.1) follows from a simplemathematical induction on p ≥ 1. Detail
is simple and therefore omitted here. See also ([7], Lemma 2.3, page 951).

To prove (3.2) we first write

(A + t B)−p =
(
(A + t B)−1

)p =
(

A−1 − t A−1B A−1 + tεt (A, B)
)p

.

The desired expansion follows by applying (3.1) to this latter form, so completes the
proof. ��

Before stating another auxiliary lemma, we need some notation. For A, B ∈
S+∗

n , s ∈ [0, 1] and t ≥ 0 we set

FA,B(s, t) =
(

f A(s) + g(s, t)B
)−1

,

where s �−→ f A(s) ∈ S+∗
n is a continuous operator function with respect to s ∈ [0, 1]

and g : [0, 1] × [0,∞) −→ [0,∞) is a (positive) continuous function such that
g(s, 0) = 0.

Lemma 3.2 With the above, the following equality holds

lim
t↓0 sup

s∈[0,1]
‖FA,B(s, t) − FA,B(s, 0)‖ = 0.

Proof Using the obvious identity X−1 − Y −1 = X−1(Y − X)Y −1, valid for all
invertible matrices X and Y , we easily check that

FA,B(s, t) − FA,B(s, 0) = −g(s, t)FA,B(s, t)B FA,B(s, 0). (3.3)

Otherwise, it is clear that f A(s) + g(s, t)B ≥ f A(s) and therefore

FA,B(s, t) ≤ FA,B(s, 0).

This, with the fact that FA,B(s, t) ∈ S+
n and FA,B(s, t) ∈ S+

n , implies that

‖FA,B(s, t)‖ ≤ ‖FA,B(s, 0)‖.
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This, with (3.3), yields

‖FA,B(s, t) − FA,B(s, 0)‖ = g(s, t)‖FA,B(s, t)B FA,B(s, 0)‖
≤ g(s, t)‖FA,B(s, t)‖‖B‖‖FA,B(s, 0)‖
≤ g(s, t)‖B‖‖FA,B(s, 0)‖2.

The real-function s �−→ ‖FA,B(s, 0)‖2 is continuous on the compact [0, 1] and so

0 ≤ sup
s∈[0,1]

‖FA,B(s, 0)‖2 < ∞.

We can therefore write

0 ≤ lim
t↓0 sup

s∈[0,1]
‖FA,B(s, t) − FA,B(s, 0)‖

≤ lim
t↓0 g(s, t)‖B‖

(
sups∈[0,1]‖FA,B(s, 0)‖2

)
= 0,

since g is a continuous function with g(s, 0) = 0. The desired result follows, so
completes the proof of the lemma. ��

Now, we are in position to state our desired claim recited as follows.

Theorem 3.3 Let A, B ∈ S+∗
n and p be a real number. Then the following assertions

hold:

(1) If p ≥ 1 is integer then we have

[A, B]p =
p−1∑
i=1

Ap−i B Ai−1 and [A, B]−p = −
p∑

i=1

Ai−p−1B A−i . (3.4)

(2) If 0 < p < 1 then one has

[A, B]p = B Ap−1 + sin(pπ)

π
A

∫ ∞

0
s p−1[As, B]−1ds. (3.5)

(3) If p is such that p = i p + rp where i p is the integer part of p and 0 < rp < 1
then

[A, B]p = [A, B]i p Arp + Ai p [A, B]rp , (3.6)

where [A, B]i p and [A, B]rp can be computed by (3.4) and (3.5), respectively.

Proof (1) Matrix-equalities (3.4) follow from (3.1) and (3.2), with the definition of
[., .]p, respectively.

(2) Let 0 < p < 1 and A ∈ S+∗
n . We first recall that (see [6,8] for instance)

Ap = sin(pπ)

π
A

∫ ∞

0
s p−1(s I + A

)−1
ds. (3.7)
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We can then write

(A + t B)p − Ap = sin(pπ)

π
A

∫ ∞

0
s p−1

((
As + t B

)−1 − A−1
s

)
ds

+t
sin(pπ)

π
B

∫ ∞

0
s p−1(As + t B

)−1
ds. (3.8)

Writing

(
As + t B

)−1 − A−1
s = −t

(
As + t B

)−1
B A−1

s ,

equality (3.8) yields

(A + t B)p − Ap

t
= − sin(pπ)

π
A

∫ ∞

0
s p−1(As + t B

)−1
B A−1

s ds

+ sin(pπ)

π
B

∫ ∞

0
s p−1(As + t B

)−1
ds

Now, setting

FA,B(s, t) = (
As + t B

)−1
, FA,B(s, 0) = A−1

s ,

we are in position of Lemma 3.2 which tells us that FA,B(., t) converges uniformly
to FA,B(., 0) with respect to t ↓ 0. We can therefore write

lim
t↓0

(A + t B)p − Ap

t
= − sin(pπ)

π
A

∫ ∞

0
s p−1 lim

t↓0
(

As + t B
)−1

B A−1
s ds

+ sin(pπ)

π
B

∫ ∞

0
s p−1 lim

t↓0
(

As + t B
)−1

ds,

which, with (3.7) again and the fact that A−1
s B A−1

s = −[As, B]−1, yields the
desired result.

(3) Let p be such that p = i p + rp then we can write

(
A + t B

)i p+rp − Ai p+rp =
((

A + t B
)i p − Ai p

)(
A + t B

)rp

+Ai p
((

A + t B
)rp − Arp

)
.

Dividing by t > 0 and then letting t ↓ 0we obtain (3.6) after a simplemanipulation.
The proof of the theorem is so completed. ��

Now, we will be interested by [A, B]� when �(X) = log X , case for which we
write [A, B]log.
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Theorem 3.4 For all A, B ∈ S+∗
n we have

[
A, B

]
log =

∫ 1

0

(
(1 − s)I + s A

)−1
B

(
(1 − s)I + s A

)−1
ds

= −
∫ 1

0

[
(1 − s)I + s A, B

]
−1ds.

Proof Let A, B ∈ S+∗
n . It is well-known that, see [11] for instance

log A =
∫ 1

0

I −
(
(1 − s)I + s A

)−1

s
ds.

We then deduce

[
A, B

]
log = lim

t↓0
log(A + t B) − log A

t
= lim

t↓0

∫ 1

0

FA,B(s, 0) − FA,B(s, t)

ts
ds,

where

FA,B(s, t) =
(
(1 − s)I + s A + st B

)−1
,

FA,B(s, t) − FA,B(s, 0) = −st FA,B(s, t)B FA,B(s, 0).

We are in the situation of Lemma 3.2 which, by similar way as above, yields

[
A, B

]
log = −

∫ 1

0
lim
t↓0

(
FA,B(s, 0)B FA,B(s, t)

)
ds

= −
∫ 1

0
FA,B(s, 0)B FA,B(s, 0)ds,

and the desired result follows, so completing the proof. ��

4 Computation of [A, B]1/2 for 2 × 2-Matrices

In this section, we will be interested by computing explicitly [A, B]1/2 when A and
B are two 2 × 2-symmetric positive semi-definite matrices. The main result of this
section is recited as follows.

Theorem 4.1 Let A ∈ S+
2 and B ∈ S2, with det A = 1. Then there holds

[
A, B

]
1/2

= (
det A1

)−1/2
A1

(
x̃ I + X̃

)
, (4.1)
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where A1 = A + I, x̃ and X̃ are given by

x̃ = x̃(A, B) := 1

4
T r(A−1B) − 1

2
T r X̃ ,

and

X̃ = X̃(A, B) := A−1
1

(
B + 1

2
T r(A−1B)I

)
.

To establish the previous theorem, we first need to prove a list of lemmas which we
will state in the following.

Lemma 4.2 Let A, B ∈ Sn with A invertible. Then we have

det (A + t B) = (det A)
(
1 + t T r(A−1B)

)
+ t εt (A, B),

where εt (A, B)) tends to 0 when t → 0.

Proof The real-map d : X �−→ det X is differentiable on Mn with gradient

∇d(X)(Y ) = 〈com X, Y 〉,

where com X denotes the co-matrix of X and 〈., .〉 is the classical inner product of
Mn defined by 〈X, Y 〉 = T r(X T Y ). We then deduce, for all A, B ∈ Sn ,

det (A + t B) = det A + t〈com A, B〉 + t εt (A, B).

If further A is invertible then com A = A−1(det A) and the desired result follows
after a simple manipulation. ��
Remark 4.1 For simplifying the writing, the notation εt throughout the following
represents a quantity (depending generally on A and B) which tends to 0 when t → 0.
As usual, εt has not the same (expression) in each statement.

Lemma 4.3 Let A ∈ S+
n and B ∈ Sn, with det A = 1. If we set

ct =
√

det
(

A + t B
)

then we have

√
ct = 1 + t

4
T r(A−1B) + t εt . (4.2)

√
det

(
A + t B + ct I

) = √
det A1

(
1 + t

2
T r X̃

)
+ t εt , (4.3)

where A1 and X̃ are as in the statement of the previous theorem.
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Proof By Lemma 4.2 we have

det (A + t B) = 1 + t T r(A−1B) + t εt

and so
ct = 1 + t

2
T r(A−1B) + t εt (4.4)

and √
ct = 1 + t

4
T r(A−1B) + t εt ,

and so (4.2) is proved. Otherwise, with (4.4) we have

det (A + t B + ct I ) = det
(

A + I + t

(
B + 1

2
T r(A−1B)I

)
+ t εt

)
,

which with Lemma 4.2 again becomes

det (A + t B + ct I ) = (det A1)
(
1 + t T r X̃

) + t εt ,

from which we deduce (4.3), so completes the proof. ��
Lemma 4.4 Let A ∈ S+

2 and B ∈ S2, with det A = 1. Then we have

(
A + t B

)1/2 = (
det A1

)−1/2
A1

(
I + t

(
x̃ I + X̃

)) + t εt . (4.5)

Proof By Lemma 1.1 one has

(
A + t B

)1/2 =
√

ct√
det (A + t B + ct I )

(
A + t B + ct I

)
.

According to Lemma 4.3 we then deduce

(
A + t B

)1/2 = 1 + t
4T r(A−1B) + t εt√

det A1

(
1 + t

2T r X̃
)

+ t εt

(
A + t B + ct I

)
.

By an elementary manipulation we then have

(
A + t B

)1/2 = (
det A1

)−1/2(1 + t

4
T r(A−1B) + t εt

)

(
1 − t

2
T r X̃ + t εt

)(
A + t B + ct I

)

= (
det A1

)−1/2(1 + t x̃ + t εt
)(

A + t B + ct I
)
.

This, with (4.4), yields

(
A + t B

)1/2 = (
det A1

)−1/2(1 + t x̃ + t εt
)(

A + I + t B + t

2
T r(A−1B)I + t εt

)
,
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or again

(
A + t B

)1/2 = (
det A1

)−1/2
A1

(
I + t

(
x̃ I + X̃

)) + t εt ,

and the proof is completed. ��
Now, using the above lemmas we are in position to establish our previous theorem.

Indeed, by definition we have

[
A, B

]
1/2 = lim

t↓0
(A + t B)1/2 − A1/2

t
,

which, with (4.5) and (1.2), yields (after a simple reduction)

[
A, B

]
1/2 = lim

t↓0

((
det A1

)−1/2
A1

(
x̃ I + X̃

) + εt

)
= (

det A1
)−1/2

A1
(
x̃ I + X̃

)
,

so completes the proof of Theorem 4.1.

Corollary 4.5 Let A ∈ S+∗
2 and B ∈ S2. Then we have

[
A, B

]
1/2

= √
a
(

det Aa

)−1/2
Aa

(
ỹ I + Ỹ

)
,

where a = √
det A, Aa = A + aI and ỹ, Ỹ are defined as follows

ỹ = ỹ(A, B) := 1

4
T r(A−1B) − 1

2
T r Ỹ ,

and

Ỹ = Ỹ (A, B) := A−1
a

(
B + a

2
T r(A−1B)I

)
.

Proof Let a = √
det A and set C = A/a, D = B/a. Then it is easy to see that

[A, B]1/2 = [aC, aD]1/2 = √
a[C, D]1/2,

with det C = 1. Applying Theorem 4.1 for [C, D]1/2, we obtain the desired result
after simple computation and manipulation. Detail is simple and therefore omitted
here. ��

The following example, illustrating the above, will be needed in the sequel.

Example 4.1 Let us consider

A =
(

89 − 60
− 60 41

)
, B =

(
398 − 257

− 257 166

)
.
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Executing a MATLAB program, we obtain the following results

a = 7.000000000000027,

Aa =
(

96.00000000000003 − 60.00000000000000
− 60.00000000000000 48.00000000000003

)
,

Ỹ =
(

4.511904761904752 − 1.285714285714292
0.2857142857142776 2.226190476190464

)
,

ỹ = − 2.083333333333330,

[A, B]1/2 =
(

17.99999999999999 − 11.00000000000000
− 11.00000000000000 6.999999999999993

)
≈

(
18 − 11

− 11 7

)
.

Remark 4.2 As usual, [A, B]1/2 previously defined for A ∈ S+∗
n can be extended for

A ∈ S+
n by setting

[A, B]1/2 = lim
ε↓0[A + ε I, B]1/2.

5 Application 1: Sylvester Matrix Equation

Let A ∈ S+∗
n and B ∈ Sn be given and consider the following matrix equation

Find Z ∈ Sn such that AZ + Z A = B. (5.1)

Suchmatrix equation, known in the literature as Sylvester equation, arises in various
contexts and contributes as good tool for solving many scientific problems. For an
approach solving general Sylvester equation by using derivative, we can consult [4].

Here, we will see how our present approach can be applied for the previous matrix
equation in the aim to give an explicit form of its solution in terms of the generalized
matrix product. Precisely the following result may be stated.

Theorem 5.1 Let A ∈ S+∗
n and B ∈ Sn. Then the Eq. (5.1) has one and only one

solution in Z ∈ Sn given by Z = [A2, B]1/2.

Proof If for a matrix M = (mi j ) ∈ Mn we denote by

vect M = (
m11, m21, . . . , m12, m22, . . . , mnn

) ∈ R
n2

then the matrix equation AZ + Z A = B can be written in the form of a linear system
as well

(
I ⊗ A + A ⊗ I

)
z = b, with z = vect Z , b = vect B,

where the notation ⊗ refers to the so-called Kronecker product (or tentorial product)
between two matrices. Such linear system can be solved if and only if I ⊗ A + A ⊗ I
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is invertible. Since A ∈ S+∗
n then I ⊗ A + A ⊗ I ∈ S+∗

n2
and so the matrix equation

[A, Z ]2 := AZ + Z A = B has one and only one solution Z ∈ Sn . Now, writing

(
A + t Z

)2 = A2 + t B + tεt , εt = εt (A, B) → 0 as t → 0,

and taking the root side by side, by remarking that A + t Z ∈ S+∗
n for t enough small,

we obtain

A + t Z =
(

A2 + t B + tεt

)1/2
.

Since the map r : X �−→ X1/2 is continuously differentiable on S+∗
n then we obtain

A + t Z =
(

A2 + t B + tεt

)1/2 = A + t∇r(A2)
(
B + εt

) + tηt , ηt → 0 as t → 0,

where ∇r(A2) denotes the gradient of the map r at A2. It follows that, after simplifi-
cation and then by letting t ↓ 0,

Z = ∇r(A2)(B) = [
A2, B

]
1/2.

The proof of the lemma is completed. ��
In [5], the authors showed that, if A ∈ S+∗

n and B ∈ S+
n then the solution Z of the

next matrix equation
A2Z + Z A2 = AB + B A (5.2)

is always positive semi-definite. Applying the above theorem to this matrix equation
we immediately obtain the following.

Corollary 5.2 The solution of the matrix Eq. (5.2) is given by

Z =
[

A4, AB + B A
]
1/2

∈ S+
n .

6 Application 2: Lyapunov Matrix Equation

Let M ∈ Mn, B ∈ S+
n . It is often of interest to solve the equation

Find Z ∈ S+
n such that M Z + Z MT = B. (6.1)

Such matrix equation, known in the literature as the Lyapunov equation, occurs in the
theory of stability and also arises in the theory of structures, see [9] for instance.

Before giving an explicit solution of (6.1) in terms of the generalizedmatrix product,
we state the next needed lemma.
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Lemma 6.1 Let � : S+∗
n −→ S+∗

n be defined by �(X) = X P X, where P ∈ S+∗
n is

a fixed matrix. Let A ∈ S+∗
n and B ∈ S+

n . Then the equation:

Find Z ∈ S+
n such that

[
A, Z

]
�

= B

has one and only one solution given by

Z = [
AP A, B

]
�−1, with �−1(X) = G

(
P−1, X

)
for all X ∈ S+∗

n ,

where G is the geometric matrix mean defined through (1.1).

Proof By Example 2.3, (i) the Eq. (6.1) can be written as

(AP)Z + Z(AP)T = B.

Since A, P ∈ S+∗
n and AP = A1/2

(
A1/2P A1/2

)
A−1/2 then Sp(AP) ⊂ (0,∞) and

so the n2 × n2-matrix I ⊗ (AP) + (AP) ⊗ I is invertible. It follows that the equation
[A, Z ]� = B has one and only one solution Z ∈ Sn . Further, [A, Z ]� = B is
equivalent to

�
(

A + t Z
) = �(A) + t B + t εt , εt → 0 as t → 0.

The map �−1 : X �−→ G(P−1, X), inverse of �, is continuously differentiable on
S+∗

n and so we can write

A + t Z = A + t∇�−1(�(A)
)
(B + εt ) + t ηt , ηt → 0 as t → 0.

Similarly to the proof of Theorem 5.1 we deduce

Z = ∇�−1(�(A)
)
(B) =

[
�(A), B

]
�−1

=
[

AP A, B
]
�−1

∈ Sn .

Since B ∈ S+
n and the matrix map �−1 is monotone increasing then Z ∈ S+

n . The
proof of the lemma is completed. ��

It is well known that every diagonalizable n × n matrix M with Sp(M) ⊂ (0,∞)

can be written as product of two (symmetric) positive definite n × n matrices. Indeed,
if M = Q−1DQ with D diagonal positive semi-definite, then we can write M = AP
with A = Q−1DQ−T and P = QT Q.

We now are in position to state the following result concerning explicit solution of
the Lyapunov Eq. (6.1).

Theorem 6.2 Let M ∈ Mn be diagonalizable with Sp(M) ⊂ (0,∞) and B ∈ S+
n .

Let M = AP be a decomposition of M, with A, P ∈ S+∗
n . Then the Lyapunov Eq. (6.1)

has as solution

Z = P−1/2
[

P1/2M2P−1/2, P1/2B P1/2
]
1/2

P−1/2. (6.2)
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Proof Let M = AP be as assumed. Then, Eq. (6.1) is equivalent to

AP Z + Z P A = B.

According to Example 2.3, (i) this latter matrix equation can be written in the next
equivalent form

[A, Z ]� = B, with �(X) = X P X for all X ∈ S+∗
n .

This, with Lemma 6.1, yields

Z = [AP A, B]�−1 ∈ S+
n . (6.3)

Now, if we remark that the inverse map of X �−→ �(X) = X P X is

X �−→ �−1(X) = G(P−1, X) = P−1/2
(

P1/2X P1/2
)1/2

P−1/2,

then (6.3) becomes (after simple manipulation)

Z = lim
t↓0 P−1/2

(
P1/2

(
AP A + t B

)
P1/2

)1/2 −
(

P1/2AP AP1/2
)1/2

t
P−1/2

= P−1/2
[

P1/2AP AP1/2, P1/2B P1/2
]
1/2

P−1/2.

To complete the proof we write

P1/2AP AP1/2 = P1/2AP AP P−1/2 = P1/2M2P−1/2,

and the desired result follows. ��
Remark 6.1 (i) From (6.3) we deduce that if moreover B ∈ S+∗

n then so is Z , since
�−1 is monotone increasing.

(ii) It is obvious that the decomposition M = AP , with A and P as above, is not
unique. If the n2 × n2-matrix I ⊗ M + M ⊗ I is invertible then (6.1) has one and
only one solution and in this case its solution Z given by (6.2) does not depend on
the choice of P .

Finally, we present the following example illustrating the above.

Example 6.1 We search Z ∈ S+∗
2 such that M Z + Z MT = B with,

M =
⎛
⎝

7 − 4

− 7 5

⎞
⎠ ∈ M2, B =

⎛
⎝

50 − 41

− 41 34

⎞
⎠ ∈ S+∗

2 .
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It is easy to see that M = AP with

A =
⎛
⎝
2 1

1 4

⎞
⎠ ∈ S+∗

2 , P =
⎛
⎝

5 − 3

− 3 2

⎞
⎠ ∈ S+∗

2 , P1/2 =
⎛
⎝

2 − 1

− 1 1

⎞
⎠ .

Simple computation leads to

P1/2M2P−1/2 =
⎛
⎝

89 − 60

− 60 41

⎞
⎠ ∈ S+∗

2 , P1/2B P1/2 =
⎛
⎝

398 − 257

− 257 166

⎞
⎠ ∈ S+∗

2 .

Thanks to Example 4.1 with (6.2), we then obtain

Z = P− 1/2

⎛
⎝

18 − 11

− 11 7

⎞
⎠ P−1/2 =

⎛
⎝

3 − 1

− 1 2

⎞
⎠ ∈ S+∗

2 ,

which is the researched solution.
For this example, it is very easy to see that I ⊗ M + M ⊗ I is invertible. According

to Remark 6.1, another decomposition of M = AP gives then the same solution.

References

1. Ando, T., Li, C.K., Mathias, R.: Geometric means. Linear Algebra Appl. 38, 305–334 (2004)
2. Atteia, M., Raïssouli, M.: Self dual operators on convex functionals, geometric mean and square root

of convex functionals. J Convex Anal 8, 223–240 (2001)
3. Bhatia, R.: Matrix analysis. Verlag, New York (1997)
4. Bhatia, R., Uchiyama, M.: The operator equation

∑n
i=1 An−1X Bi = Y . Expo. Math. 27, 251–255

(2009)
5. Chan, N.N., Kwong, M.K.: Hermitian matrix inequalities and a conjecture. Am. Math. Monthly 92,

533–541 (1985)
6. Cardoso, J.R.: Computation of the Pth root and its Fréchet derivative by integrals. Electr. Trans. Num.

An. 39, 414–436 (2012)
7. Furuta, T.: Positive sem-definite solution of the operator equation

∑n
j=1 An− j X A j−1 = B. Linear

Algebra Appl. 432, 949–955 (2009)
8. Kato, T.: Perturbation theory for linear operators. Springer, Berlin (1984)
9. Lefschetz, S., Lasalle, J.P.: Stability by Lyapunov direct method. Academic Press, New York (1987)

10. Raïssouli,M., Leazizi, F.: Continued fraction expansion of the geometricmatrixmean and applications.
Linear Algebra Appl. 359, 37–57 (2003)

11. Raïssouli, M., Bouziane, H.: Arithmetico-geometrico-harmonic functional mean in the sense of convex
analysis. Ann. Sci. Math. Québec 30(1), 79–107 (2006)


	Generalized Product of Two Square Matrices and Application for Some Algebraic Equations
	Abstract
	1 Introduction and Basic Notions
	2 Generalized Matrix Product
	3 Computation of [A,B]Φ for Φ(X)=Xp and Φ(X)=logX
	4 Computation of [A,B]1/2 for 2times2-Matrices
	5 Application 1: Sylvester Matrix Equation
	6 Application 2: Lyapunov Matrix Equation
	References




