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Abstract The characterization of normal truncated Toepltiz operators is first given
by Chalendar and Timotin. We give an elementary proof of their result without using
the algebraic properties of truncated Toeplitz operators.
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1 Introduction

LetD be the open unit disk in the complex plane. Let L2 denote the Lebesgue space of
square integrable functions on the unit circle ∂D. The Hardy space H2 is the subspace
of analytic functions on D whose Taylor coefficients are square summable. Then it
can also be identified with the subspace of L2 of functions whose negative Fourier
coefficients vanish. Let P and P⊥ be the orthogonal projections from L2 to H2 and
[H2]⊥, respectively. Here [H2]⊥ is the orthogonal complement of H2 in L2. For
f ∈ L∞, the space of essentially bounded Lebesgue measurable functions on ∂D, the
Toeplitz operator T f with symbol f ∈ L∞ is defined by

T f h = P( f h),

for h ∈ H2.
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An analytic function θ is called an inner function if |θ | = 1 a.e. on T. For each
non-constant inner function θ , the so-called model space is

Kθ = H2 � θH2.

It is a reproducing kernel Hilbert space with reproducing kernels

kθ
w(z) = 1 − θ(w)θ(z)

1 − w̄z
.

Let Pθ denote the orthogonal projection from L2 onto Kθ ,

Pθ f = P f − θ P(θ̄ f ). (1.1)

For ϕ ∈ L2, the truncated Toeplitz operator Aφ is defined by

Aθ
ϕ f = Pθ (ϕ f ),

on the dense subset Kθ ∩ H∞ of Kθ . In particular, Kθ ∩ H∞ contains all reproducing
kernels kθ

w. The operator A
θ
ϕ may be extended to a bounded operator on Kθ even for

unbounded symbols ϕ. The symbol ϕ is never unique and it is proved in [2] that

Aθ
ϕ = 0

if and only if

ϕ ∈ θH2 + θH2.

If θ(0) = 0, then Aθ
ϕ has a unique symbol

ϕ ∈ Kθ + Kθ .

The set of all bounded truncated Toeplitz operators is denoted by Tθ .
Recall that a bounded operator T on a Hilbert space H is normal if T ∗T = T T ∗.

The characterization of normal truncated Toepltiz operators is first given by Chalendar
and Timotin using the algebraic properties of truncated Toeplitz operators obtained
by Sarason [2] and Sedlock [3].

Theorem 1.1 [1, Theorem 6.2] Let θ be a non-constant inner function vanishing at
0. Then Aθ

ϕ is normal if and only if one of the following holds

(1) Aθ
ϕ belongs toBα

θ , for some unimodular constant α.

(2) Aθ
ϕ is a linear combination of a self-adjoint truncated Toeplitz operator and the

identity.

Here Bα
θ is a class of truncated Toeplitz operators introduced in [3]. In this note,

we give an elementary proof of their result.
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2 Proof of the Main Result

In this section we offer a proof of our characterization of normal truncated Toepltiz
operators Aθ

ϕ . We begin with some reduction. Notice that for any constant C , Aθ
ϕ+C =

Aθ
ϕ + C I, which implies Aθ

ϕ is normal if and only if Aθ
ϕ+C is normal. Thus we may

assume, without losing of generality, that ϕ(0) = 0.
For a ∈ D, let ua be the Möbius transform

ua(z) = z − a

1 − āz
.

The Crofoot transform is the unitary operator J : Kθ → Kua◦θ defined by

J ( f ) =
√
1 − |a|2
1 − āθ

f.

It is proved in [2] that

JTθ J
∗ = Tua◦θ .

Taking a = θ(0), we see that it is sufficient to consider the normal truncated Toeplitz
operators for θ(0) = 0. In this case, constant functions are in Kθ . Write ϕ = ϕ1 + ϕ2,
where ϕ1, ϕ2 are in Kθ . We may also assume ϕ1(0) = ϕ2(0) = 0.

It is easy to see that

(Aθ
ϕ)∗ = Aθ

ϕ̄ .

Our approach to characterizing normal truncated Toeplitz operators starts with a com-
putation of

||Aθ
ϕu||2 − ||(Aθ

ϕ)∗u||2.

Lemma 2.1 Let θ be a non-constant inner function. Suppose

ϕ = ϕ1 + ϕ2,

where ϕ1, ϕ2 are in Kθ . Then for every u ∈ Kθ ∩ H∞,

||Aθ
ϕu||2 − ||(Aθ

ϕ)∗u||2
= ||P⊥(θ̄ϕ1u)||2 − ||P(ϕ̄1u)||2 − (||P⊥(θ̄ϕ2u)||2 − ||P(ϕ̄2u)||2).

Proof By (1.1), we have for every u ∈ Kθ ∩ H∞

Aθ
ϕu = Pθ (ϕu)

= P(ϕu) − θ P(θ̄ϕu)
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= ϕ1u + P(ϕ̄2u) − θ P(θ̄ϕ1u + θ̄ ϕ̄2u)

= ϕ1u − θ P(θ̄ϕ1u) + P(ϕ̄2u).

Then

||Aθ
ϕu||2 = ||(ϕ1u − θ P(θ̄ϕ1u)) + P(ϕ̄2u)||2

= ||ϕ1u − θ P(θ̄ϕ1u)||2 + ||P(ϕ̄2u)||2 + 2Re〈ϕ1u − θ P(θ̄ϕ1u), P(ϕ̄2u)〉
= ||θ̄ϕ1u||2 − ||P(θ̄ϕ1u)||2 + ||P(ϕ̄2u)||2

+ 2Re〈ϕ1u − θ P(θ̄ϕ1u), P(ϕ̄2u)〉
= ||P⊥(θ̄ϕ1u)||2 + ||P(ϕ̄2u)||2 + 2Re〈ϕ1u − θ P(θ̄ϕ1u), P(ϕ̄2u)〉.

And

〈ϕ1u − θ P(θ̄ϕ1u), P(ϕ̄2u)〉 = 〈ϕ1u, P(ϕ̄2u)〉 − 〈θ P(θ̄ϕ1u), P(ϕ̄2u)〉
= 〈ϕ1u, ϕ̄2u〉 − 〈P(θ̄ϕ1u), θ̄ P(ϕ̄2u)〉
= 〈ϕ1u, ϕ̄2u〉 − 〈P(θ̄ϕ1u), θ̄uϕ̄2 − θ̄ P⊥(ϕ̄2u)〉
= 〈ϕ1u, ϕ̄2u〉.

Thus
||Aθ

ϕu||2 = ||P⊥(θ̄ϕ1u)||2 + ||P(ϕ̄2u)||2 + 2Re〈ϕ1u, ϕ̄2u〉. (2.1)

Similarly

||(Aθ
ϕ)∗u||2 = ||Aθ

ϕ2+ϕ̄1
u||2 = ||P⊥(θ̄ϕ2u)||2+||P(ϕ̄1u)||2+2Re〈ϕ2u, ϕ̄1u〉. (2.2)

Subtracting (2.2) from (2.1), we get the desired identity. �
For w ∈ D, let

kw(z) = 1

1 − w̄z

be the reproducing kernel of H2.
First we show that if Aθ

ϕ is normal then ϕ1/ϕ2 is a unimodular function.

Lemma 2.2 Let θ be a non-constant inner function vanishing at 0. Suppose ϕ =
ϕ1 + ϕ2, where ϕ1, ϕ2 are in Kθ , and ϕ1(0) = ϕ2(0) = 0. If Aθ

ϕ is normal then

|ϕ1| = |ϕ2|,

a.e. on T.

Proof By Lemma 2.1, Aθ
ϕ is normal implies

||P⊥(θ̄ϕ1u)||2 − ||P(ϕ̄1u)||2 = ||P⊥(θ̄ϕ2u)||2 − ||P(ϕ̄2u)||2, (2.3)
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for every u ∈ Kθ ∩ H∞. Take u = 1, we get

||P⊥(θ̄ϕ1)||2 − ||P(ϕ̄1)||2 = ||P⊥(θ̄ϕ1)||2 − ||P(ϕ̄2)||2.

Since
P⊥(θ̄ϕ j ) = θ̄ϕ j , (2.4)

and
P(ϕ̄ j ) = 0, (2.5)

we have
||ϕ1|| = ||ϕ2||. (2.6)

Next we consider the reproducing kernels of Kθ :

kθ
w(z) = 1 − θ(w)θ(z)

1 − w̄z
,

and take u = uw = kθ
w + 1 in (2.3). Using (2.4) and (2.5), we have

||P⊥(θ̄ϕ j uw)||2 = ||P⊥(θ̄ϕ j k
θ
w)||2 + ||P⊥(θ̄ϕ j )||2 + 2Re 〈P⊥(θ̄ϕ j k

θ
w), P⊥(θ̄ϕ j )〉

= ||P⊥(θ̄ϕ j k
θ
w)||2 + ||θ̄ϕ j ||2 + 2Re 〈P⊥(θ̄ϕ j k

θ
w), θ̄ϕ j 〉,

and

||P(ϕ̄ j uw)||2 = ||P(ϕ̄ j k
θ
w)||2 + ||P(ϕ̄ j )||2 + 2Re 〈P(ϕ̄ j k

θ
w), P(ϕ̄ j )〉

= ||P(ϕ̄ j k
θ
w)||2.

This together with Lemma 2.1 and (2.6) implies

Re 〈P⊥(θ̄ϕ1k
θ
w), θ̄ϕ1〉 = Re 〈P⊥(θ̄ϕ2k

θ
w), θ̄ϕ2〉. (2.7)

Since

kθ
w = (1 − θ(w)θ)kw,

we get

P⊥(θ̄ϕ j k
θ
w) = P⊥(θ̄ϕ j (1 − θ(w)θ)kw) = P⊥(θ̄ϕ j kw) − θ(w)P⊥(ϕ j kw)

= P⊥(θ̄ϕ j kw).

Hence

Re 〈P⊥(θ̄ϕ j k
θ
w), θ̄ϕ j 〉

= Re 〈P⊥(θ̄ϕ j kw), θ̄ϕ j 〉
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= Re 〈θ̄ϕ j kw, θ̄ϕ j 〉

= Re
∫ 2π

0

|ϕ j (eit )|2
1 − w̄eit

dt

2π

=
∫ 2π

0
|ϕ j (e

it )|2
(
Re

1

1 − w̄eit

) dt

2π

= 1

2

∫ 2π

0
|ϕ j (e

it )|2
(
1 + Re

1 + w̄eit

1 − w̄eit

) dt

2π

= 1

2
||ϕ j ||2 + 1

2

∫ 2π

0
|ϕ j (e

it )|2
(
Re

1 + w̄eit

1 − w̄eit

) dt

2π

= 1

2
(||ϕ j ||2 + |̂ϕ j |2(w)).

The last equality holds because

Re
1 + w̄eit

1 − w̄eit

is the Poisson kernel at w. Here |̂ϕ j |2 is the harmonic extension of the function |ϕ j |2.
It follows from (2.7) and (2.6) that

|̂ϕ1|2(w) = |̂ϕ2|2(w).

Let w → ζ ∈ T nontangentially, we see that

|ϕ1| = |ϕ2|,

a.e. on T. �
Let U is the unitary operator on L2 defined by

Uh(z) = z̄h̃(z),

where h̃(z) = h(z̄). Let Vθ be the operator

Vθh = P(θh),

for h ∈ L2. Consider the decomposition

[H2]⊥ = θ̄Kθ ⊕ θ̄ [H2]⊥.

It is easy to check that Vθ maps θ̄Kθ onto Kθ , and maps θ̄ [H2]⊥ to 0. Thus Vθ maps
[H2]⊥ onto Kθ . Since U maps H2 onto [H2]⊥, we see that

VθU : H2 → Kθ
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is also onto.
We shall use the following identity.

Lemma 2.3 Let θ be an inner function and let g be in H2. Then for every function
f ∈ H∞

||P(ḡVθU f )|| = ||P⊥(θ̄g f ∗)||,

where f ∗(z) = f (z̄).

Proof Notice that for all h ∈ L2, we have

(Uh)∗ = U (h∗)

and

(Ph)∗ = P(h∗).

Thus

P(ḡVθU f ) = P(ḡP(θU f )) = P(ḡθU f ) = P(z̄θ ḡ f̃ )

= PU ((θ̄g)∗ f ) = P(U (θ̄g f ∗))∗

= (PU (θ̄g f ∗))∗ = (U P⊥(θ̄g f ∗))∗.

Here we used PU = U P⊥ in the last equality. Since ||h|| = ||h∗||, for all h ∈ L2

and U is an isometry, we get the desired identity. �
The following result is well-known (see e.g. [4, Lemma 8]).

Theorem 2.1 If f ∈ H2, then for every w ∈ D,

P( f̄ kw) = f (w)kw.

Now we can prove the main result.

Theorem 2.2 Let θ be a non-constant inner function vanishing at 0. Suppose ϕ =
ϕ1 + ϕ2, where ϕ1, ϕ2 are in Kθ . Then Aθ

ϕ is normal if and only if either

ϕ2 − ϕ2(0) = α(ϕ1 − ϕ1(0))

or

ϕ2 − ϕ2(0) = αθ(ϕ1 − ϕ1(0)),

for some unimodular constant α.
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Proof We may assume ϕ1(0) = ϕ2(0) = 0. Sufficiency follows easily from Lemma
2.1.

Suppose Aθ
ϕ is normal. By (2.3) and Lemma 2.2, we have

||P(ϕ̄1u)||2 + ||P(θ̄ϕ1u)||2 = ||P(ϕ̄2u)||2 + ||P(θ̄ϕ2u)||2, (2.8)

for every u ∈ Kθ ∩ H∞. According to the discussion before Lemma 2.3, if we write
u = VθU f , where f ∈ H∞, (2.8) is equivalent to

||P(ϕ̄1VθU f )||2 + ||P(θ̄ϕ1VθU f )||2 = ||P(ϕ̄2VθU f )||2 + ||P(θ̄ϕ2VθU f )||2,

for every f ∈ H∞. Using Lemma 2.3 and that f �→ f ∗ is a bijection on H∞, we
have

||P⊥(θ̄ϕ1 f )||2 + ||P⊥(ϕ̄1 f )||2 = ||P⊥(θ̄ϕ2 f )||2 + ||P⊥(ϕ̄2 f )||2, (2.9)

for every f ∈ H∞. By Lemma 2.2,

||θ̄ϕ1 f || = ||θ̄ϕ2 f ||,

and

||ϕ̄1 f || = ||ϕ̄2 f ||.

We see that (2.9) implies

||P(θ̄ϕ1 f )||2 + ||P(ϕ̄1 f )||2 = ||P(θ̄ϕ2 f )||2 + ||P(ϕ̄2 f )||2, (2.10)

for every f ∈ H∞.
Take f = kw in (2.10). By Theorem 2.1, we get

|ϕ1(w)|2 + |(θϕ̄1)(w)|2 = |ϕ2(w)|2 + |(θϕ̄2)(w)|2, (2.11)

for every w ∈ D. Here (θϕ̄1)(w) means 〈θϕ̄1, kw〉.
On the other hand, using Lemma 2.2, we have

ϕ1(w)(θϕ̄1)(w) = 〈ϕ1(θϕ̄1), kw〉 = 〈θ |ϕ1|2, kw〉 = 〈θ |ϕ2|2, kw〉
= 〈ϕ2(θϕ̄2), kw〉 = ϕ2(w)(θϕ̄2)(w). (2.12)

for every w ∈ D.
Multiplying both sides of (2.11) by |ϕ2(w)|2 and using (2.12), we have

|ϕ1(w)ϕ2(w)|2 + |ϕ2(w)(θϕ̄1)(w)|2 = |ϕ2(w)|4 + |ϕ2(w)(θϕ̄2)(w)|2
= |ϕ2(w)|4 + |ϕ1(w)(θϕ̄1)(w)|2,
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which is equivalent to

(|ϕ1(w)|2 − |ϕ2(w)|2)(|(θϕ̄1)(w)|2 − |ϕ2(w)|2) = 0.

Thus for every w ∈ D, either

|ϕ1(w)| = |ϕ2(w)|,

or

|ϕ2(w)| = |(θϕ̄1)(w)|.

Then it follows from the properties of analytic functions that either

ϕ1 = αϕ2,

or

ϕ2 = αθϕ̄1,

for some unimodular constant α. �
Remark 2.1 The characterization given in Theorem 2.2 is equivalent to that in Theo-
rem 1.1. In fact, if we write ϕ = ϕ1 + ϕ̄2 + ϕ(0), where ϕ1, ϕ2 are in Kθ ∩ zH2, it is
shown in [1, Section 5] that Aθ

ϕ ∈ Bα
θ if and only if θϕ̄2 = αϕ1.
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