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Abstract The main aim of this paper is to study the Lipschitz continuity of certain
(K , K ′)-quasiconformal mappings with respect to the distance ratio metric, and the
Lipschitz continuity of the solution of a quasilinear differential equation with respect
to the distance ratio metric.
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1 Introduction and Main Results

Martio [22] was the first who considered the study on harmonic quasiconformal map-
pings in C. In the recent years the articles [8,14,16–18,26] brought much light on
this topic. In [6,21], the Lipschitz characteristic of (K , K ′)-quasiconformal mappings
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has been discussed. In [20], the authors proved that a K -quasiconformal harmonic
mapping from the unit disk D onto itself is bi-Lipschitz with respect to hyperbolic
metric, and also proved that a K -quasiconformal harmonic mapping from the upper
half-plane H onto itself is bi-Lipschitz with respect to hyperbolic metric. In [23],
the authors proved that a K -quasiconformal harmonic mapping from D to D′ is bi-
Lipschitz with respect to quasihyperbolic metrics on D and D′, where D and D′ are
proper domains in C. Important definitions will be included later in this section.

In [15], Kalaj considered the bi-Lipschitz continuity of K -quasiconformal solution
of the inequality

|� f | ≤ B|D f |2. (1.1)

Here� f represents the two-dimensional Laplacian of f defined by� f = fxx + fyy =
4 fzz and the mapping f satisfying the Laplace equation � f = 0 is called harmonic.
For z = x + iy and f = u + iv, D f denotes the Jacobian matrix

(
ux uy

vx vy

)

so that J f = | fz |2 − | fz |2 is the Jacobian of f .
The first aim of this paper is to consider the Lipschitz continuity of (K , K ′)-

quasiconformal solution of the inequality (1.1)with respect to the distance ratiometric.

Theorem 1.1 Let f be a (K , K ′)-quasiconformal C2 mapping from the unit disk
D = {z : |z| < 1} onto itself, satisfying the inequality (1.1) and f (0) = 0. Then f is
Lipschitz continuous with respect to the distance ratio metric.

The proof of Theorem 1.1 will be presented in Sect. 2. Before we proceed further,
let us fix up further notation, preliminaries and remarks.

1.1 (K, K ′)-Quasiconformal Mappings

We say that a function u : D → R is absolutely continuous on lines, ACL in brief, in
the domain D if for every closed rectangle R ⊂ D with sides parallel to the axes x
and y, u is absolutely continuous on almost every horizontal line segment and almost
every vertical line segment in R. Such a function has, of course, partial derivatives
ux and uy a.e. in D (cf. [1]). Further, we say u ∈ AC L2 if u ∈ AC L and its partial
derivatives are locally L2 integrable in D.

A sense-preserving continuous mapping f : D → � is said to be

1. (K , K ′)-quasiregular if f is AC L2 in D, J f �= 0 a.e. in D and there are constants
K ≥ 1 and K ′ ≥ 0 such that |D f |2 ≤ K J f + K ′ a.e. in D, where |D f | =
| fz | + | fz |;

2. K -quasiregular if K ′ = 0.

In particular, f is called (K , K ′)-quasiconformal if f is a (K , K ′)-quasiregular
homeomorphism; and f is K -quasiconformal if f is a K -quasiregular homeomor-
phism.
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Here are some basic comments on these mappings. From [6, Example 2.1] and
[21, Example 2.1] we know that there are (K , K ′)-quasiregular mappings which are
not K1-quasiregular for any K1 ≥ 1. Moreover, it is known that (see [6, Example
4.1]) there are (K , K ′)-quasiconformal mappings whose inverses are not (K1, K ′

1)-
quasiconformal for any K1 ≥ 1 and K ′

1 ≥ 0.

Remark 1.2 If f is a (K , K ′)-quasiregular mapping, g is a analytic function and |g′|
is bounded by a constant L , then f ◦ g is (K , K ′L2)-quasiregular mapping.

A mapping f : D → � is proper if the preimage of every compact set in � is
compact in D (cf. [19, p. 4051] or [30, p. 17]).

1.2 The Distance Ratio Metric

For a subdomain G ⊂ C and for all z, w ∈ G, the distance ratio metric jG is defined
as

jG(z, w) = log

(
1 + |z − w|

min{δG(z), δG(w)}
)

,

where δG(z) denotes the Euclidean distance from z to ∂G. The distance ratio met-
ric was introduced by Gehring and Palka [12] and in the above simplified form by
Vuorinen [31]. However, the distance ratio metric jG is not invariant under Möbius
transformations. Therefore, it is natural to consider the Lipschitz continuity of con-
formal mappings or Möbius transformations with respect to the distance ratio metric.
Gehring and Osgood [11] proved that the distance ratio metric is not altered by more
than a factor of 2 under Möbius transformations.

Theorem A ([11, Proof of Theorem 4]) If G and G ′ are proper subdomains of Rn

and if f is a Möbius transformation of G onto G ′, then jG ′( f (x), f (y)) ≤ 2 jG(x, y)

for all x, y ∈ G.

Recall that amapping f : D → � is said to beLipschitz continuous (resp. Lipschitz
continuous with respect to the distance ratio metric) if there exists a positive constant
L1 (resp. a positive constant L) such that for all z, w ∈ D,

| f (z) − f (w)| ≤ L1|z − w| (resp. j�( f (z), f (w)) ≤ L jD(z, w)).

In 2011, Kalaj and Mateljević [17] proved that every quasiconformal C2 diffeo-
morphism f from the domain�with C1,α compact boundary onto the domain G with
C2,α compact boundary satisfying the Poisson differential inequality

|� f | ≤ B|D f |2 + C (1.2)

for some constants B ≥ 0 and C ≥ 0, is Lipschitz continuous respect to Euclidean
metric. Clearly if B = C = 0 in (1.2), then f is harmonic.

Recently, the authors in [6, Theorem 1.1] proved the following theorem:
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Theorem B Suppose f is a proper (K , K ′)-quasiregular C2 mapping of a Jor-
dan domain D with C1,α boundary onto a Jordan domain � with C2,α boundary.
If f satisfies the partial differential inequality (1.2) for constants B > 0 and
C ≥ 0, then f has bounded partial derivatives in D. In particular, f is Lipschitz
continuous.

Remark 1.3 From Theorem B we infer that if f : D → D satisfies the conditions
of Theorem 1.1, then there exists a constant M such that |D f | ≤ M . Hence for all
z, w ∈ D, we have | f (z) − f (w)| ≤ M |z − w| and | f (z)| ≤ M |z|. If M < 1, we get

jD( f (z), f (w)) = log

(
1 + | f (z) − f (w)|

min{δD( f (z)), δD( f (w))}
)

≤ log

(
1 + M |z − w|

M min{δD(z), δD(w)}
)

≤ jD(z, w),

which clearly shows that f : D → D is a Lipschitz continuous function with respect
to the distance ratio metric. �

In order to state our next result, we need to recall the definition of hypergeometric
series. For a, b, c ∈ Rwith c �= 0,−1,−2, . . ., the hypergeometric function is defined
by the power series

F(a, b; c; z) := 2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n! , |z| < 1,

where (a)0 = 1 and (a)n = a(a + 1) · · · (a + n − 1) for n = 1, 2, . . . are the
Pochhammer symbols. Obviously, for n = 0, 1, 2, . . ., (a)n = �(a + n)/�(a). In
particular, for a, b, c > 0 and a + b < c, we have (cf. [3,4])

F(a, b; c; 1) = lim
z→1− F(a, b; c; z) = �(c)�(c − a − b)

�(c − a)�(c − b)
< ∞.

Consider the operator equation

Tα( f ) = 0 in D, (1.3)

where f : D → C, α ∈ R, and

Tα = −α2

4
(1 − |z|2)−α−1 + α

2
(1 − |z|2)−α−1

(
z

∂

∂z
+ z

∂

∂z

)
+ (1 − |z|2)−α ∂2

∂z∂z

is the second order elliptic partial differential operator defined on the unit disk D.
In the case of α = 0, Tα( f ) = 0 is equivalent to saying that f is harmonic in D.
More generally, if f satisfies (1.3) with α = 2(n − 1), then f is polyharmonic (or n-
harmonic) inD, where n ∈ {1, 2, . . .} (cf. [2,5,9,27]). Recently, several newproperties
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of polyharmonic mappings are discussed in [2]. The following result concerns the
solutions to the equation (1.3).

Lemma C [25, Theorem 2.2] Let α ∈ R and f ∈ C2(D). Then f satisfies (1.3) if
and only if it has a series expansion for z ∈ D of the form

f (z) =
∞∑

k=0

ck F
(
−α

2
, k − α

2
; k + 1; |z|2

)
zk +

∞∑
k=1

c−k F
(
−α

2
, k − α

2
; k + 1; |z|2

)
zk,

(1.4)

where {ck}∞k=−∞ is a sequence of complex numbers satisfying

lim sup
|k|→∞

|ck |
1
|k| ≤ 1. (1.5)

In particular, the expansion (1.4), subject to (1.5), converges in C∞(D), and every
solution f of (1.3) is C∞-smooth in D.

In [10,24], the authors gave some properties of solution to (1.3) whereas in [28,29],
the authors considered the Lipschitz continuity of the distance-ratiometric under some
Möbius automorphisms of the unit ball and conformal mappings from D to D. In [7],
the authors discussed the Lipschitz continuity of polyharmonic mappings with respect
to the distance ratio metric. Thus, it is natural to investigate Lipschitz continuity of
the solution of (1.3) in D with respect to the distance ratio metric. We now state our
next result.

Theorem 1.4 For α > −1, let f : D → D be a C2-solution to (1.3) with the series
expansion of the form (1.4) and f (0) = 0. If

∞∑
k=1

(|ck | + |c−k |)
∞∑

n=0

(−α
2 )n(k − α

2 )n

(k + 1)nn! ≤ 1, (1.6)

then

jD( f (z), f (w)) ≤ jD(z, w),

and this inequality is sharp. That is, f is Lipschitz continuous with respect to the
distance ratio metric.

Remark 1.5 In Theorem 1.4, we restrict α > −1, see [25, proposition 1.4] for the
reason for this constraint.

The proof of Theorem 1.4 will be presented in Sect. 2.
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2 Proof of Theorems 1.1 and 1.4

First we shall deal with the Lipschitz continuity of certain (K , K ′)-quasiconformal
mappings and then consider the Lipschitz continuity of the solution to the differential
operator Tα with respect to the distance ratio metric.

Lemma 2.1 Assume the hypotheses of Theorem 1.1. Then there exists a constant
C(K , K ′, B) such that for z ∈ D

1 − |z|2
1 − | f (z)|2 ≤ C(B, K , K ′). (2.1)

Proof By assumption f is a (K , K ′)-quasiconformal C2 mapping from D onto itself,
satisfying the inequality (1.1) and f (0) = 0. For convenience, we denote the class
of all such functions f by QC(D, B, K , K ′). Then there is a positive constant A not
depending on f such that the function ϕ f , f ∈ QC(D, B, K , K ′), defined by

ϕ f (z) = − 1

A
+ 1

A
eA(| f (z)|−1)

is subharmonic in D.
Now, let us prove the existence of such an A. Take

ψ(ρ) = − 1

A
+ 1

A
eA(ρ−1).

Then ψ ′(ρ) = eA(ρ−1) and ψ ′′(ρ) = AeA(ρ−1). On the other hand, using fz =
(1/2)( fx − i fy) and fz = (1/2)( fx + i fy), we find that

|D| f ||2 = | f |2x + | f |2y = (| f |z + | f |z)2 + i2(| f |z − | f |z)2 = 4| f |z| f |z,

and thus,
�ϕ f = ψ ′′(| f |)|D| f ||2 + ψ ′(| f |)�| f |. (2.2)

Furthermore, put s = f/| f |. By elementary calculations we see that the following
equalities hold:

�| f | = | fz |2 + | fz |2
| f | − 2Re

(
f

1
2 f − 3

2 fz fz

)
+ Re (s� f )

and

|sz|2 = |sz|2 = 1

4

| fz |2 + | fz |2
| f |2 − 1

2| f |Re
(

f
1
2 f − 3

2 fz fz

)
.

Then we know that
�| f | = | f | · |Ds|2 + Re (s� f ). (2.3)
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We continue the discussion by setting ρ = | f |. According to [6, Lemma 3.1], we have

|Dρ| ≥ |D f |
K

−
√

K ′
K

, (2.4)

Using (1.1), (2.2), (2.3) and (2.4), it follows finally that

�ϕ f = eA(ρ−1)
[

A|Dρ|2 + ρ|Ds|2 + Re (s� f )
]

≥ eA(ρ−1)
[ A

K 2 (|D f | − √
K ′)2 − B|D f |2

]

= eA(ρ−1)
( A − BK 2

K 2 |D f |2 − 2A
√

K ′
K 2 |D f | + AK ′

K 2

)
.

We obtain from Theorem B that f is Lipschitz continuous, and then there exists a
constant M such that |D f | ≤ M . Hence, if we choose an appropriate A, satisfying
A �= BK 2 and

A
√

K ′ − √
ABK ′K 2

A − BK 2 ≥ M,

i.e.

(
√

K ′ − M)2A2 + [2B M K 2(
√

K ′ − M) − BK 2K ′]A + B2M2K 4 ≥ 0, (2.5)

we obtain the inequality �ϕ f (z) ≥ 0 for |z| < 1. We next show that this choice of A
is possible.

If M = √
K ′, then there exists an appropriate value of A satisfying the inequality

(2.5). If M �= √
K ′ and K ′ + 4M2 − 4M

√
K ′ ≤ 0, then (2.5) holds for all A. If

M �= √
K ′ and K ′ + 4M2 − 4M

√
K ′ > 0, then (2.5) holds for all

A ≥ BK 2K ′ − 2B M K 2(
√

K ′ − M) + BK 2
√

K ′(K ′ + 4M2 − 4M
√

K ′)
2(

√
K ′ − M)2

.

In conclusion, there must exist an appropriate A such that �ϕ f (z) ≥ 0 for |z| < 1.
Define

F(z) = sup{ϕ f (z) : f ∈ QC(D, B, K , K ′)}.

We prove that F is subharmonic in D. By [13, Theorem 1.6.2], we only need to prove
that F is continuous. Define h(z) = eA(|z|−1), |z| < 1. Elementary calculations show
that

hz(z) = A

2

z

|z|eA(|z|−1) and hz(z) = A

2

z

|z|eA(|z|−1).
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Then |Dh| = |hz | + |hz| = AeA(|z|−1) < A which implies that

|h(z) − h(z′)| ≤ A|z − z′| for z, z′ ∈ D.

According to Theorem B, we know that f is Lipschitz continuous. Therefore

|ϕ f (z) − ϕ f (z
′)| = 1

A

∣∣∣eA(| f (z)|−1) − eA(| f (z′)|−1)
∣∣∣ ≤ | f (z) − f (z′)| ≤ M |z − z′|,

where M is a constant. Hence, |F(z) − F(z′)| ≤ M |z − z′| so that F is continuous.
Finally, from the similar proof of [15, Lemma 2.3], we complete the proof. �


2.1 Proof of Theorem 1.1

From the hypotheses of Theorem 1.1 and Lemma 2.1, we obtain that

1 − |z|2
1 − | f (z)|2 ≤ C(K , K ′, B)

and thus, we obtain that

1 − |z|
1 − | f (z)| ≤ C(K , K ′, B)

1 + | f (z)|
1 + |z| ≤ 2C(K , K ′, B).

Moreover, from Theorem B, we see that f is Lipschitz continuous and therefore, there
exists a constant M1 such that |D f | ≤ M1. Now, we choose an appropriate constant
M satisfying M > max{M1, 1/(2C(K , K ′, B))} so that |D f | ≤ M . Consequently,
using the Bernoulli inequality, for any two points z and w in D, we have

jD( f (z), f (w)) = log

(
1 + | f (z) − f (w)|

min{δD( f (z)), δD( f (w))}
)

≤ log

(
1 + 2C(K , K ′, B)M

|z − w|
min{δD(z), δD(w)}

)

≤ 2C(K , K ′, B)M jD(z, w)

and thus, the proof of the theorem is complete. �


2.2 Proof of Theorem 1.4

For convenience, let g(t) = F(−α
2 , k − α

2 ; k + 1; t). For z, w ∈ D, let us assume that
| f (z)| ≥ | f (w)|. Then
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| f (z) − f (w)|

=
∣∣∣∣∣

∞∑
k=1

ck(|g(|z|2)zk − g(|w|2)wk) +
∞∑

k=1

c−k(|g(|z|2)zk − g(|w|2)wk)

∣∣∣∣∣
≤ |z − w|

∞∑
k=1

|g(|z|2)zk − g(|z|2)wk + g(|z|2)wk − g(|w|2)wk |
|z − w| |ck |

+ |z − w|
∞∑

k=1

|g(|z|2)zk − g(|z|2)wk + g(|z|2)wk − g(|w|2)wk |
|z − w| |c−k |

≤ |z − w|
∞∑

k=1

(|ck | + |c−k |)
( ∞∑

n=0

(−α
2 )n(k − α

2 )n

(k + 1)nn!
×|z|2n(|z|k−1 + |z|k−2|w| + · · · + |w|k−1)

+
∞∑

n=0

(−α
2 )n(k − α

2 )n

(k + 1)nn! |w|k(|z|2n−1 + |z|2n−2|w| + · · · + |w|2n−1)

)

≤ |z − w|
∞∑

k=1

(|ck | + |c−k |)
∞∑

n=0

(−α
2 )n(k − α

2 )n

(k + 1)nn!
2n+k−1∑

s=0

|z|s,

and

1 − | f (z)| ≥
∞∑

k=1

(|ck | + |c−k |)
∞∑

n=0

(−α
2 )n(k − α

2 )n

(k + 1)nn! − | f (z)|

≥
∞∑

k=1

(|ck | + |c−k |)
( ∞∑

n=0

(−α
2 )n(k − α

2 )n

(k + 1)nn! − g(|z|2)|z|k
)

=
∞∑

k=1

(|ck | + |c−k |)
∞∑

n=0

(−α
2 )n(k − α

2 )n

(k + 1)nn! (1 − |z|2n+k)

= (1 − |z|)
∞∑

k=1

(|ck | + |c−k |)
∞∑

n=0

(−α
2 )n(k − α

2 )n

(k + 1)nn!
2n+k−1∑

s=0

|z|s,

so that, using the Bernoulli inequality, we have

jD( f (z), f (w)) = log

(
1 + | f (z) − f (w)|

1 − | f (z)|
)

≤ log

(
1 + |z − w|

1 − |z|
)

≤ jD(z, w).
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As in [7, Theorem 7], the mapping f (z) = |z|2(p−1)zm or f (z) = |z|2(p−1)zm for
p, m ≥ 1, shows the sharpness in the last inequality. The proof of the theorem is
complete. �
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