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Abstract Consider Hankel operators H s on the weighted Bergman space Lg (B, dvy).

s/2
In this paper we characterize the membership of (H; H f) = |Hy|® in the norm

ideal Cg, where 0 < s < 1 and the symmetric gauge function @ is allowed to be
arbitrary.

Keywords Weighted Bergman space - Hankel operator - Norm ideal

1 Introduction
Let B denote the open unit ball {z € C" : |z] < 1} in C". Write dv for the volume

measure on B with the normalization v(B) = 1. For each —1 < a < oo, we define
the weighted measure

dvg(2) = co(1 — |2/1)%dv(2)
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on B, where the coefficient ¢, is chosen so that v, (B) = 1. Recall that the weighted
Bergman space L,zl (B, dvy) is defined to be the subspace

{h € L>*(B, dvy) : h is analytic on B}

of L2(B, dv,). The orthogonal projection from L%(B, dvy) onto Ltzl(B, dvy) is given
by

_ S (w) 2
(Pf)(z)—/ T v, S € LB.duy).

Note that this integral formula defines Pf as a function even for f € L'(B, dvy).
Although P is obviously o dependent, for the sake of simplicity we intentionally omit
the weight of the space in the notation for this projection.

Given an appropriate symbol function f, the Hankel operator H : Ltzl (B, dvy) —
L%(B, dvy) © L2(B, dvy) is defined by the formula

Hih = fh— P(fh),

h e Lg (B, dvy). A subject of intense research interest, the theory of Hankel operators
can be conveniently divided into two natural components. Because of the relation

= — H*%
(M. Pl = Hy — HY,

the simultaneous study of the pair of Hankel operators Hy and H f is equivalent to
the study of the commutator [M ¢, P]. Results that simultaneous concern the pair Hy,
H  are often called the “two-sided” theory of Hankel operators, of which we cite
[1,9,11,17,20] as typical examples.

By contrast, the study of H y alone is often called the “one-sided” theory of Hankel
operators, which presents its unique challenges. As examples of “one-sided” theory in
the Bergman space case, let us cite [ 13—16]. Recall that in these papers, Li and Luecking
characterized the boundedness, compactness and Schatten-class membership of Hy.
Building on these results, in this paper we will take the logical next step. Namely, we
will determine exactly when the operator |H¢|* = (H ;? H f)s/ 2 belongs to the norm
ideal Cop, where 0 < s < 1 and the symmetric gauge function @ is allowed to be
arbitrary.

Before going any further, a brief review of “symmetric gauge functions” and the
associated “norm ideals” will be beneficial. Throughout the paper [10], will be our
standard reference in this connection. Following [10], let ¢ denote the linear space of
sequences {a;};eN, where a; € R and for every sequence the set {j € N : a; # 0}
is finite. A symmetric gauge function (also called symmetric norming function) is a
map

®:¢— [0,00)

that has the following properties:
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(a) @ is anormon c.
(b) ®{L1,0,...,0,...H =1.
(c) ®({a;}jen) = P({lax(j)l}jen) for every bijection 7 : N — N.

See [10, page 71]. Each symmetric gauge function ® gives rise to the symmetric norm

|Alle = sup ®({s1(A),...,s;(A),0,...,0,...}) (1.1

izl
for bounded operators. On any separable Hilbert space H, the set of operators
Co ={A e BH): ||Alle < oo} 1.2)

is a norm ideal [10, page 68]. This term refers to the following properties of Co:
Forany B, C € B(H) and A € Cgp, BAC € Cg and | BAC|lo < || Bll||Alla|IC]|.
If A € Cp, then A* € Cp and ||[A* o = || Al .

For any A € Co, ||All < ||All¢, and the equality holds when rank(A) = 1.

Co is complete with respect to ||.|| -

There are many familiar examples of symmetric gauge functions. For each 1 <
p < oo, the formula ®,({a;}jeN) = (Z?O:l |aj|P)1/1’ defines a symmetric gauge
function on ¢, and the corresponding ideal Cg , defined by (1.2) is just the Schatten
class Cp,. As another family of examples, let us mention the symmetric gauge function
@, defined by the formula

oo
- |4z ()| :
(Dp ({aj}jen) = X} j(p——l)/p’ {aj}jen € ¢,
]:
where 7 : N — N is any bijection such that |a ()| > |az@)| = -+ > laz(hHl = -,

which exists because each {a;};eN € ¢ only has a finite number of nonzero terms.
In this case, the ideal Cq,; defined by (1.2) is called a Lorentz ideal and often simply
denoted by the symbol C,;. When p = 1, C is just the trace class C;. But when
1 < p < 00, C, is strictly smaller than the Schatten class C,. Moreover, when

1 < p < o0, the dual C;/( —1) of C; is a norm ideal with interesting properties of its
own [10].

Given a symmetric gauge &, it is a common practice to extend its domain of
definition beyond the space ¢. Suppose that {b;};en is an arbitrary sequence of real
numbers, i.e., the set {j € N : b; # 0} is not necessarily finite. Then we define

d({b;}jen) = iu[})(b({bl, bk, 0,...,0,. ). (1.3)

Thus if A is a bounded operator, then ||All¢ = ®({s;(A)}jeN). Foreach0 < p < oo,
the singular numbers of |A|P = (A*A)P/% are {(s1 (AP, ..., (s;(A)P,...}, and
therefore

AP llo = P {(s;(A)}jen). 1.4)
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For an unbounded operator X, it is consistent with [10, Theorem II1.7.1] to interpret
all its singular numbers as infinity. Therefore it is consistent with (1.4) to adopt the
convention that ||| X|”|l¢ = oo for all 0 < p < oo whenever the operator X is
unbounded.

For our purpose we also need to deal with sequences indexed by sets other than N.
If W is a countable, infinite set, then we define

D ({bg}aew) = P({bz(j)}jeN),

where m : N — W is any bijection. The definition of symmetric gauge functions
guarantees that the value of ®({b,}qecw) is independent of the choice of the bijec-
tion m. For a finite index set F = {x1,..., x¢}, we simply define ®({by}xcr) =
S({by;, ..., by, 0,...,0,... .

Recall that the membership of the commutator [M ¢, P] = Hy — H ]’é in Cp was
characterized in [20] for arbitrary symmetric gauge functions ®, although in [20] the
weight of the Bergman space was set at@ = 0. This paper deals with the corresponding
“one-sided” problem for arbitrary weight —1 < o < oo, and we will introduce the
power 0 < s < 1 mentioned earlier.

The statement of our result involves modified kernel functions and the Bergman
metric, which we will now review. First of all, the formula

(1 _ |Z|2)(n+l+a)/2
(1— @-’ Z))n+l+a

k. (¢) = , 72,{ €B, (1.5)

gives us the normalized reproducing kernel for L% (B, dvy). For each integer i > 0,
we define the modified kernel function

(1 _ |Z|2){(n+1+01)/2}+i

Vi (§) = A= oy > D8E B. (1.6)
If we introduce the multiplier
mz(§) = i i (1.7)
1—=1(¢,2)
for each z € B, then we have the relation ¥, ; = mékz. Similar to the analogous

situations in the Hardy space and the Drury-Arveson space [6—8], this modification
gives v, ; a faster “decaying rate” than k;, which will allow us to establish certain
crucial bounds.

Let $ denote the Bergman metric on B. That is,

14 |z (w)]

, Z,w€EB,
1 — g (w)]

Bz, w) = %log

where ¢, is the Mobius transform of B [18, Section 2.2]. For each z € B and each
a > 0, we define the corresponding S-ball D(z,a) = {w € B: 8(z, w) < a}.



Hankel Operators on Weighted Bergman Spaces and Norm Ideals 633

Definition 1.1 [20, Definition 1.1]

(i) Leta be a positive number. A subset I" of B is said to be a-separated if D(z, a) N
D(w, a) = ¥ for all distinct elements z, w in T.

(i) Let 0 < a < b < o0. A subset I of B is said to be an a, b-lattice if it is
a-separated and has the property U,er D(z, b) = B.

Given an operator A, for example a Toeplitz operator or a Hankel operator, one is
always interested in formulas for its set of singular numbers. But as a practical matter,
aformula that is both explicit and exact, is usually not available. Thus one is frequently
forced to search for alternatives: are there quantities given by simple formulas that are
equivalent to {s1(A), s2(A), ..., s;(A), ...} in some clearly-defined sense?

In this general context, our investigation stems from the following intuition: if 7 is
suitably large, i.e., if ¥, ; “decays fast enough”, then for an a, b-lattice I in B, the set
of scalar quantities

{”waz,i ||}zeI‘

should be equivalent to the set of singular numbers {s1(Hy), s2(Hyf), ..., sj(Hf), ...}
of the Hankel operator H y. The main result of this paper confirms our intuition in a
very specific way: if one allows a constant multiple, then the s-powers of these two
sets of numbers are not distinguishable by the application of symmetric functions.

Theorem 1.2 Let O < s < 1 be given, and leti € Z4 satisfy the condition s(n +
14+ a+2i)>2n Let 0 < a < b < 00 be positive numbers such that b > 2a. Then
there exist constants 0 < ¢ < C < oo which depend only on the given s, i, a, b, the
complex dimension n and the weight o such that the inequality

@ HpYzill*}zer) < NHf P llo < COANH Y, lI°er)

holds for every f € L*(B, dvy), every symmetric gauge function ® and every a, b-
lattice T in B.

The reader may wonder, why does Theorem 1.2 only cover the powers 0 < s < 1?
The simple answer is, we could consider all 0 < s < oo, but that would not add
anything. The point is this: if ® is a symmetric gauge function, then foreach 1 < p <
oo the formula

{aj}jen —~ (®Ula;1”}jen))”

defines just another symmetric gauge function on ¢, which Theorem 1.2 already covers.
That is why we only need to consider 0 < s < 1.

The proof of Theorem 1.2 involves a somewhat complicated scheme. To conclude
the Introduction, let us outline the main steps in the proof.

For both directions in Theorem 1.2, it is necessary to control the projection 1 — P
by certain differential operators. This will be achieved in terms of the inequality

If —PfI < CUlpdfll+ lIp" 23 f Adpl) (1.8)

for f € C®(B) N L2(B, dv,), which will be the main content of Sect. 2.
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As one would expect, the proof of Theorem 1.2 uses properties of symmetric gauge
functions and symmetric norms extensively. For that reason we begin Sect. 3 with a
review of these properties. Another key ingredient in the proof is a workable decompo-
sition system for the unit ball. For this we adopt the decomposition system from [20],
which gives us the sets T ; and Qg j, (k, j) € I. Accordingly, we define the quanti-
ties A(f; Qk,j), (k, j) eI, for f € L%(B, dvy). With this decomposition system we
have

QU fYzill’Yzer) = COUA(f3 Ok )Yk, rer) (1.9)

if I is a-separated for some a > 0. In (1.9), the integer i € Z, must satisfy the
condition s(n + 1 + o + 2i) > 2n, and that is why there is such a requirement in
Theorem 1.2.

Section 4 is one of the two major steps, which shows that

< CO{A’(f; Qr. )k jpen)s (1.10)
o]

H ‘Mf e ®e

zel’

where i’ is appropriately large and {e, : z € T'} is an orthonormal set. Then, by using
the atomic decomposition for Lg(B, dvy), in Sect. 5 we show that (1.10) implies

My PP llo < COUA(f; Qk, )k, jren)- (1.11)

In Sect. 6, we adopt ideas from [15,16] and introduce the local projections Py ;,

which have certain amazing properties. With the local projections Py ; we can define

“analytic oscillations” M (f; k, j) for a given symbol function f. Then, using Lueck-

ing’s ideas in [16], we show that f admits a decomposition f = I + £@ such
that

A D Ok ). AL Ok ), AP APl Ok) (1)
can be controlled by {M(f;k, j): (k,j) eI} ’ '

It is then easy to deduce from (1.8), (1.11) and (1.12) that
IHf lo < COUM (fs5k, DYk, jyen)-
This essentially proves the upper bound in Theorem 1.2, for it is routine to show that
QUM (fi k. Dk, per) = COUANHfY2ill* }zer)
if I' has the property that U er D(z, b) = B for some 0 < b < 0.

For the proof of the lower bound in Theorem 1.2, the most crucial step is Proposi-
tion 6.8, which establishes the inequality

QUM (f: k. DYk per) = ClHf o (1.13)
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Then, using (1.12), (1.9) and (1.8), we can show that

P{IHpYzill*Yrer) = COUAM (f ks DYk, jyen)- (1.14)

Obviously, the lower bound in Theorem 1.2 follows from (1.13) and (1.14).

To summarize, Sects. 2—6 contain the technical steps outlined above, and the proof
of Theorem 1.2 itself is formally completed in Sect. 7. Finally, the Appendix at the
end of the paper contains technical proofs that are judged to be either similar to what
can be found in the literature, or too elementary for the main text.

2 Projection and D-bar Operators
We begin by recalling a particular integral estimate on B. As in [4], define
A =1= (P = A=t -1z, ¢ zeB.

Lemma 2.1 [4,Lemma?24]Leta,b,c,t e R Ifc > —2nand —2a <t+1 < 2b+2,
then the operator

1 — 2\a 1 — 2 bAC/Z ,
rh@ = [ ( :i'_) é’Z)'Lﬂ'liﬁbﬂ“ 2 f@)dve)

is bounded on L*(B, dv,).

For any f € C*®(B), let 5f denote the (0, 1)-form Z?zl(éjf)(g)dfj as usual.
Write

@O = U@L+ -+ 1@ O

for ¢ € B. If ¢ is a scalar function on B, then by [|¢d f| we mean the norm of the
scalar function ¢|d f| in L2(B, dvy), allowing the possibility that ll@d f| = oo. For
any (p, g)-form F on B, |F(¢)| and ||¢ F|| are similarly defined.

Let us write

p(¢)=1—|¢|* for ¢ €B,

and this notation will be fixed for the rest of the paper.
_ The following proposition is a classic estimate of the minimum-norm solution of a
a-problem, which can be obtained using Lemma 2.1.

Proposition 2.2 [2, Theorem 1.4] There is a constant C2 which depends only on n
and o such that

If — PfI < Caalllpd fl + 0?8 f AdplD) (2.1)

for every f € C®°(B) N L2(B, dvy).
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Recall that for each pair of i # j in {1, ..., n}, one has the tangential derivatives
Lij=¢;d —&d; and Lij =0 — &id;.

Thus [(3 f A dp)(¢)|? is simply the sum of all [(L; ; £)(¢)|%,i < j. Recall that ¢, is
the Mobius transform of B [18, Section 2.2]:

_ 1 _(é‘vz) _ _ 21/2< _<§sz> >}
wz(é)—]_(g’z){z 7= U=z ¢ = —52])¢-

4 |z|2

Note that ¢, is an involution, i.e., ¢; o ¢, = id. We end this section with an elementary
estimate on derivatives that will be needed in Sect. 6.

Lemma 2.3 There is a constant Cy 3 such that for every z € B, we have || p0; ¢; ||co <
Corz foreveryi € {l,...,n}and ||,01/2Li,j(pz||oo < Cazforalli # jin{l,..., n}

Proof Write D, (¢) for 1 — (¢, z) and N, (¢) for the vector {- - - } above. In other words,
we have ¢, = DZ_INZ. Note that ||p/D;|lcc <2 and that ||9; N, ||cc < 3. Since

Zi 1
(Bip)(¢) = mﬁﬂz(f) + m(aiNz)(f),

we have || p9;¢;|lco <2+ 2 -3 = 8. For the tangential derivatives, we have

$izi — iz

(Li,jﬁoz)({) = D.(C)

©:(2)
CiZi — LiZj
Wz — (- |Z|2)1/2Li,j§} :

2.2)

+ {((1 —zH2 —1)

D, (¢)

Note that [§;Z; — £zl = [(& — 2)Zj — (& — 2))Zi] < 21¢ —zl. On the other hand,
Ic —z|> = |¢]*> — 2Re(Z, z) + |z|*> < 2(1 — Re(¢, z)). Therefore [Cizi — ¢izj] <
2V2|1 — (¢, z)|Y/2, which leads to

$izi —&izj

1/2
p (&) D.0)

(2.3)

Also, we have p'/2(0)(1 — [zI)12/ID.(0)| = (1 — |p.(£)|»)'/? < 1[18, Theorem
2.2.2]. Combining this with (2.2) and (2.3), we find that ||,ol/2L,-’j(pZ||OQ <4+4+4+1=

9. O
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3 Other Preliminaries

The proof of Theorem 1.2 requires a familiarity with symmetric norms.

Lemma 3.1 [20, Lemma 2.2] Suppose that X and Y are countable sets and that
N is a natural number. Suppose that T : X — Y is a map that is at most N-to-1.
That is, for every y € Y, card{x € X : T(x) = y} < N. Then for every set of real
numbers {by}ycy and every symmetric gauge function ®, we have ®({br(x)}xex) <
Nq)({by}er)-

Recall from [10, page 125] that given a symmetric gauge function @, the formula
o0
O*({bj}jeN) =sup { |> _a;bj|: {a;}jen € &, @({aj}jen) < 1. {(bj}jen €2,
j=1

defines the symmetric gauge function that is dual to ®. Moreover, we have the relation
®** = & [10, page 125]. This relation implies that for every {a;};en € ¢, we have

®({aj}jen) =sup { |> ajbj| : {bj}jen € &, *({bj}jen) < 1. (B.1)
j=1

Lemma 3.2 [20, Lemma 5.1] Let {Ax} be a sequence of bounded operators on
a separable Hilbert space H. If {Ay} weakly converges to an operator A, then the
inequality

IAlle < sup Axlle

holds for every symmetric gauge function .

Lemma 3.3 Let A and B be two bounded operators. Then the inequalities
IHHABI*llo < IBI’lAF lo and [[IBAI' o < IBI*IIAL lo

hold for every symmetric gauge function ® and every 0 < s < 1.

Proof For the singular numbers of the operators involved, it is well known that
sj(AB) < s;(A)|B|| and s;(BA) < || Blis;(A)
forevery j € N[10, page 61]. Therefore for any gauge function ® andany 0 < s < 1,
IAB*lo = ®({(s;(AB))'}jen) < I BII'®({(s;(A)’}jen) = IIBI* AL’ |-

The other inequality is similarly proved. O
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Lemma 3.4 [20, Lemma 3.1] Suppose that A1, ..., A, are finite-rank operators on
a Hilbert space H and let A = A1 + --- + Ap. Then for every symmetric gauge
function @ and every 0 < s < 1, we have

AP e < 2" A lo + -+ + 1 Anl* o). (3.2)

Remark 3.5 Although (3.2) was only proved for finite-rank operators Ay, ..., A, in
[20], it actually hold for all bounded operators Ay, ..., A, and A = A1 +--- 4+ Ay
on any separable Hilbert space H. Indeed let Ay, ..., A,, € B(H) and A = A| +
.-+ 4 Ay, and let E and F be finite-rank orthogonal projections on H. Then by (3.2)
and Lemma 3.3,

IEIFA o < IFAP o < 2" UINF AL o + -+ + I FAl o)
<2 (1A o + -+ + 1 Anl ll0)-

Since rank(E) < oo, the supremum of ||E|FA|*||¢ over all finite-rank orthogonal
projections F' dominates || E|A|*||¢. Then observe that, by (1.1), if we take the supre-
mum of ||E|A|*|¢ over all finite-rank orthogonal projections E, we obtain |[|A]*] ¢.
Hence (3.2) holds forall Ay, ..., A, e B(H)and A=A+ ---+ A,.

As one would expect, the proof of Theorem 1.2 also requires a suitable decom-
position of the ball and the sphere. We will adopt the decomposition system in [20],
for that paper showed that the system, however complicated it may appear, actually
works. Next let us review the decomposition system in [20] and estimates related to
it.

Let S denote the unit sphere {& € C" : |£| = 1}. Recall that the formula

dw,§) =11— &% utes,
defines a metric on S [18, page 66]. Throughout the paper, we denote
B(u,r)={6€S:|1—(ué&)|"?<r)

foru € Sandr > 0.Leto bethe positive, regular Borel measure on S which is invariant
under the orthogonal group O(2n), i.e., the group of isometries on C” = R which
fix 0. We take the usual normalization o (§) = 1. There is a constant Ag € (27", 00)
such that

272 < o (B(u, r)) < Agr" (3.3)

forall u € Sand 0 < r < /2 [18, Proposition 5.1.4]. Note that the upper bound
actually holds when r > \/E

For each integer k > 0, let {ug 1, ..., Ui, mek)} be a subset of S which is maximal
with respect to the property

Bug,;, 27" YN Bug 27 =@ forall 1 <j < j <mk). (3.4
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The maximality of {ug 1, ..., Uk mk) } implies that
k —
VY Burj. 275 = s. (3.5)
For each pair of k > O and 1 < j < m(k), define the subsets

Tpj=fru:1-2"2% <r <1 =220y e B(uy ;,27%)} and (3.6
Orj ={ru:1-2"%<r <1-2726%2 y € By ;,9-275)} (3.7

of B. Let us also introduce the index set
I'={k, j):k=0,1=<j=<mk)}. (3.8)

Lemma 3.6 [20, Lemma 2.4] Given any 0 < a < oo, there exists a natural number
K which depends only on a and the complex dimension n such that the following holds
true: Suppose that T is an a-separated subset of B. Then there exist pairwise disjoint
subsets 'y, ..., Tk of T' such that u/’j:lru =1I" and such that card(T';, N Ty ;) <1
forallpe{l,...,K}and (k, j) € I.

Let E be a Borel set in B with vy (E) > 0. For any f € L?*(B, dvy), we define

1 12
ACFiE) = (v (E)/E|f|2dva> .

Although we use the same decomposition system as that in [20], there is a major
difference between [20] and this paper: Whereas most of the estimates in [20] were
carried out in terms of the various mean oscillations introduced there, quantities of the
form A(f; E) and || f ;|| will be much more prominent in this paper.

Proposition 3.7 Let 0 < s < 1 be given, and let i € Z. satisfy the condition
s(m+1+o+2i)>2n. Let 0 < a < oo also be given. Then there exists a constant
0 < C37 < oo which depends only on n, «, s, i and a such that the inequality

SN fill*}zer) < C37PUA(f; Ok, )}k, jer)

holds for every f € L*(B,dv), every symmetric gauge function ®, and every a-
separated subset I" of B.

The proof of this proposition is essentially a combination of a part of the work for
the proof of [20, Lemma 6.4] and a part of the work in [20, Section 2]. For this reason
the proof of Proposition 3.7 is relegated to the Appendix at the end of the paper.

Next we recall some elementary facts related to the Bergman metric.

Lemma 3.8 [21, Lemma 2.3] Forall u, v, x, y € B we have

(L= lpu D2 = lpe WA se04p0.0 L= 120 — )2
11— (@u(x), o)) - 11— (u, v)|
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Lemma 3.9 [22, Lemma 1.24] Given any r > 0, there are 0 < ¢(r) < C(r) < o0
such that

c(r)(1 — [z < v (D(z, 7)) < Cr)(1 — |z T

for every z € B.

Lemma 3.10 [22, Lemma 2.20] Given any r > 0, there is a §(r) > 0 such that
m;(w)| = 8(r) for all z, w € B satisfying the condition B(z, w) < r.

The proof of Theorem 1.2 involves a familiar counting lemma:

Lemma 3.11 [19,Lemmad4.1] Let X be a set and let E be a subset of X x X. Suppose
that m is a natural number such that

cardly e X : (x,y) e E}<m and cardly e X:(y,x) € E}<m

for every x € X. Then there exist pairwise disjoint subsets E1, Ea, ..., Eay of E such
that

E=EIUEU..UEy,

and such that for each 1 < j < 2m, the conditions (x, y), (x', y') € Ej and (x, y) #
(x',y") imply both x # x" and y # y'.

We end the preliminaries with an elementary operator-theoretical fact.

Lemma3.12 Let A : H — H and B : H — H" be bounded operators, where
H, H', H" are Hilbert spaces. Suppose that there is a positive number C such that
|Ax|| < C||Bx|| for every x € H. Then there is an operator T : H" — H' with
IT| < C such that A =TB.

Proof Let Rq denote the linear subspace {Bx : x € H} of H”, and let R be the closure
of Rp in H”. Since ||Ax| < C| Bx|| for every x € H, the formula

TBx =Ax, x¢€cH, (3.9)
gives us a well-defined linear operator T from R into H'. Moreover, we have || Ty|| <
Clly| for every y € Ry. By the density of Rg in R, T extends to a bounded operator

T : R — H with ||T|| < C.Itis then trivial to extend T to an operator on from "
to H' with the same norm. Finally, (3.9) implies the operator identity A = TB. O

4 Estimates Involving the Modified Kernel
We begin with inner products involving v, ;. First of all, there is a § € Z. such that

0<éd—a<l. 4.1)
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Lemma 4.1 Given anyi € Z, there is a constant C4.1 which depends only on n, o
and i such thatif z = |z|€ and w = |winwith&,n € S, and if 0 < |z] < |w| < 1,
then

1— |w|2 (n+14a)/2 1— |Z|2 i
¥z 3i4nt146, fYw3itnt1+s)] = Can (1——|z|2) (dZ(g, 77))

X 1 f il

for every f € L*(B, dvg).
Proof By (1.7), |Im;llcc <1+ |z| < 2 for every z € B. Thus
1— |w|2)(n+l+oc)/2

1—[z)?
i+5—a |},nZ |3i+2n+2+o{+8

2
(V2 3int148Vw,3itnr1+sl = [V, <

[

2
< p8—at2i+2nt2+a+s (1 — w

(n+1+a)/2
1—|z|? )

lmwm | Y i >

for all z, w € B. Thus if we write C = 2%+21+2+28 hepn

I mzma) ool f i 112
4.2)

1 — |w|2 (n+14a)/2
1— |z|2)

{Sf Ve 3itnt146, fVw3itn+1+8)|<C (

forall z,w € Band f € L2(B, dvy). Hence the proof will be complete if we can
show that

1—z)?
d*(&,n)

lmzmylloeo < 16

(4.3)

for all z, w € B satisfying the conditions z = |z|§, w = |w|n, &, n € S and |z| < |w].
For this, consider any ¢ € B. Then ¢ = |¢|x for some x € S. We have

21—(¢, ) = 11 = (x,&)|=d*(x, &) and 2|1 — (¢, w)| = [1 = (x, n)] = d*(x, ).

Hence we have either |1 — (¢, z)| > (1/8)d?(&, ) or |1 — (¢, w)| > (1/8)d?(&, n).
Since 1 — [w|> < 1 — |z]%, mz]loo < 2 and [|my |leo < 2, (4.3) follows. o

Lemma 4.2 Suppose that {ex : x € X} is an orthonormal set in a Hilbert space H,
where X is a countable index set. Furthermore, suppose that {gx : x € X} are vectors
in 'H satisfying the following two conditions:

(1) Thereis an N € N such that card{y € X : (gx, gy) # 0} < N for every x € X.
(2) gx = 0 for all but a finite number of x € X.
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Let A = ) . x & ® ex. Then for every symmetric gauge function ® and every
0 <s =1 wehave |[|AFlo < 2N P ({lIgxllI®}xex)-

Proof By (1) and a standard maximality argument, there is a partition X = X;U---U
Xy such that for every r € {1, ..., N}, the conditions x, y € X, and x # y imply
(8x, gy) = 0. Thus if we define A, = erxr gx ®ey,r €{l,..., N}, then

AfA =) lgelPex ®en.

xeX,

Thus for every 0 < s < 1 and every symmetric gauge function &,

1A o = | (454)%] = @8l Leex,) = @Ulgall hrex):

Since A = A + - - - + Ay, the conclusion of the lemma follows from this inequality
and Lemma 3.4. O

Lemma 4.3 Let0 < s < 1 be given, and leti € N satisfy the condition si > 4n. Write
i" =3i+n+1+86, where§ € Z, satisfies (4.1). Then there is a constant C43 which
depends only on n, a, s and i such that the following holds for every f € L*(B, dvg)
and every symmetric gauge function ®: Let {ey ; : (k, j) € I} be an orthonormal set.
Let zi,j € Ty, j for every (k, j) € I. For each (k, j) € I, let ¢k j be either 1 or 0, and
suppose that ci j = 0 for all but a finite number of (k, j) € I. Then the operator

F =My Z Ch,j ¥y i ® ekj = Z Ck,j ([ ¥z i) @ ek,

(k, j)el (k, j)el
satisfies the estimate ||| F|*|lo < C43®({ck i f ¥z il k. jyen)-
Proof By (3.4) and (3.3), there is an N € N such that for every (k, j) € I,
card{j' € {1,...,m()} : Blug j, 27N Bug j1,275) #0) < N. (4.4
This N will be fixed for the rest of the proof. To simplify the notation, let us write

rk, j) = ck il fdz il forall  (k,j) el
4.5)
ak,j;t,h) = c,,hck’j<f1/11k1j,l~/, fe, i) forall (k, j), (¢, h) €1

Then

o0
F*F = Z ak, j;t,h)e;n @ ek j = Bo + Z(Bz + B)),
(k, j),(t,h)el =1
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where

By = Yo atk jik+ € heren ®ex
(ko j), (k+£.h)el

£ > 0. It follows from Lemma 3.4 that

o0
NFEllo = IGF*F) 2o < 22 1Byl + 22702 3 1B o
=1
4.6)
To estimate each ||| B¢|*/2||e, we need to group the terms in By is a specific way.
By the assumption z ; € Ty j, (k, j) € I, we can write each z; ; in the form
Zk,j = |2k, jlék,j, where & ; € B(uyg,j, 27K). By (3.5), we can rewrite each By in the
form

o0
Be=Y Y > ek, jlik+ e, mak, jik+ L€, h)exren ® ek, .
k=01<j,j'<m(k) &1o neBuy, ;1,275
4.7)
where each e(k, j'; k + £, h) is either 1 or 0. Define the vector
¢ . .
s0ws= Y ek ikt thalk, kG een  (48)
Eiren€Buy 1,270
for such ¢, k and j, j’. Note that for all j, j’, q,q’ € {1,...m(k)}, we have
{4 ¢ _ _
<g,((,;.;k’j,, g,((,;;k,q,> =0 whenever B(uy j,2 k) N B(uy,q, 2 k) =@. 4.9
Also, it is obvious that
<g,ﬁzj. o q,> — 0 whenever k # k'. (4.10)

Let us introduce the index sets

EQ = {(k, j), (k. j) s d(ug . ug ) <2752} and
E™ = {((k, j), Gk, j)) 2 275 < dug j,ug ) < 275052, m= 1L

Then by (4.7) and (4.8), we have
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e o
¢
Be=) . gli,};k,j/ ®erj=) B{™, where
k=01<j.j'<m(k) m=0
Bém) = Z 8,8?.),‘;,(,] ®ex,j foreach m > 0.

(k. j). (k. j)€EM™)

But each Bém) needs to be further decomposed. By (3.4) and (3.3), there is a natural
number C; such that for each (k, j) € I and each m > 0, we have

card(j’ € {1, ...,m(k)} : d(ug j, ug ) < 271" T2} < €22 (4.11)
By (4.11) and Lemma 3.11, for each m > 0 we have a partition

(m) (m)
EM™=fg™u...u ESt) (4.12)
such that for each 1 < v < 2C 22", if ((ky, j1), (k1, i) and ((k2, j2), (k2, j})) are

two distinct elements in ES’"), then we have both (ki, j1) # (k2, j2) and (ky, jj) #
(kz, j;). Define

(m,v) %)
BZ = Z gk,j;k’j/ ®ek,j (413)
((k, ), Gk, j)EES™

form > 0and 1 < v < 2C;2*". The above-mentioned property of EM™ implies
that the projections ((k, j), (k, j/)) —> (k, j) and ((k, j), (k, j')) — (k, j') are both
injective on E Sm). It follows from the injectivity of this second projection and (4.9),
(4.4) and (4.10) that for each ((k, ), (k, j")) € E!™, we have

card {((k/’ 0, (K'.q") € E: <g152';k,j~ gg,)q;k’,q/> # O} <N.

Since {ey,; : (k,j) € I} is an orthonormal set and since the projection
((k, j), (k, j)) — (k, j) is injective on El()m), we can now apply Lemma 4.2 to
obtain

(m,v) s/2
I

4
<ON® ({Hg,ﬁ,)/;k,,.,
. jik.

Next we estimate the right-hand side of (4.14).
For each triple of £ > 0, (k, j) € [ and m > O, there is an h({; k, j;m) €
{1,...,m(k + 0)} such that d(ukj, ue.n(e:k, j:my) < 2757+ and

s/2
} ) (4.14)
(ko). Gk, j)EES™

rk 4 €, h(€; k, j;m)) > r(k+€,h) whenever d(ug j, ugsep) <275+,
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Claim: there is a C such that if ((k, j), (k, j")) € E™ and &.¢n € Bug,jr, 275,
then

la(k, jk + 0, h)| < Co2~t0H1+02=2im 2k 4 ¢ h(e: k, j;m)).  (4.15)

Using (4.5) and Lemma 4.1, let us verify it according to the following three cases.

(1) Suppose that £ = O and that m = 0. Since zxp = |zknlék,n and
En € Blugn,27%), if ((k, j), (k, j)) € E© and & € B(u jr,27%), then
duij, ugn) < dQugj,ug jr) + dug o, ugp) < 2752 4 27k < 2=k43 1
this case, recalling (4.5), it follows from (4.2) and the definition of A (-; -, -; -) that
la(k, j; k, h)| < 4°Cr(k, h(0; k, j; 0)).

(2) Suppose that £ = 0 and that m > 1. If ((k, j), (k, j')) € E" and &), €
B(ug, jr,27%), then d(ug, j, ug.n) < d(uk j, ug ;) +d(uy, jr, ugp) < 275+ +3 in
this case. Hence, recalling (4.5), it follows from Lemma 4.1 and the definition of
h(-; -, - ) that

2—2k+1

g ) PO i), (@16
s J? s

la(k, j; k, h)| < Ca <

Since ((k, j), (k, j)) € E™ and m > 1, it follows from the definition of
E™ that d(uk j, ug ) > 275"+ > 4d(uy ;. & ;). Similarly, d(ug, j, ug j7) >
Add(uy jr, &,n) since & € B(uy jr, 2Ky, By the triangle inequality, we have
A, &n) = (1/2)dug j ug, ) > 275" Substituting this in (4.16), we
obtain

la(k, j; k, k)| < 2°Cq127 5" (k, h(0; k, j; m)) (4.17)

if & € Bug,j,27%) and ((k, j), (k, j') € EM™.

(3) Suppose that £ > 1. Let ((k, j), (k, j))) € E™ and &, € B(ug, jr,27%). Then
d(ui, j, uggen) < 27KEm+2 2=k 4 p=k=t — o=k+m+3 Applying Lemma 4.1,
we have

Flta)/2 ;
1— |Zk+£,h|2><n o/ < 1— |zi 517 )l
1 — |z, I? d? (k. Ek+e.n)

x r2(k + £, h)

5-20k+0)+1\ "I/ -2k+1 i
< C RN —
= 7H 226 (dz@k, . sw,h))

xr2(k + £, h(t; k, j: m)). (4.18)

lak, j;k+ £, h)| < C4. <

By (4.2), we can also replace the factor (- - - )i above by 47 which coversthe casem = 0.
For the case m > 1, we can repeat the triangle inequality-argument between (4.16) and
(4.17) to obtain d (¢, j, Ekve.n) = (1/2)d (g j, uy jr) > p—ktm Substituting this in
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(4.18), we see that (4.15) also holds in the case £ > 1. This completes the verification
of (4.15).
For each pair of £ > 0 and (k, j) € I, define

Nk, j) = card{h : &cien € Blug, jr, 279}

Since &ren € Blukren 27570, if Exron € Blug, jr, 275), then d(uy jr, ugsen) <
2-k+1 Hence it follows from (3.4) and (3.3) that there is a C» such that

Nk, j) < €22

for all £ > 0 and (k, j’) € I. The fact that {e ; : (k, j) € I} is an orthonormal set
now produces a quantitative effect: by (4.8), (4.15) and this orthonormality, we have

Hg,ﬁf'});k,j/ < Co2 A=A 2 (k4 h(Es k, jim) Nk, )
< Cozfe(n+1+ol)2*2imr2(k 4 Z, h(g’ k, ]’ m)) A C21/22€n

= 32 tHp=2im 2p 4 0 h(l;k, jim)) (4.19)

for every ((k, j), (k, j')) € E™, where C3 = CoCy'*. Thus

m ¥

2
2~— —si .
Hgk,j;k,j/ < C;/ 2 Z(1+a)(s/2)2 stmrs(k + 0, h(Z; k, j: m))

Since the projection ((k, j), (k, j')) — (k, j) is injective on El(,m), (4.14) now leads

to
) s/2
=2No <{ ‘ 8k jik.J' o
@ (k. j),(k,j"))EEY

< Cu27HIHOG/2p=sim gy (1S (k4 €, h(C; k, j3 m) )k, jrer)
(4.20)

s/2

(m,v)
I

where C; = 2NCY*. If h(6; k, j;m) = h(6;k, j'; m), then d(uy j,ug ) <

2~k+m+4 By (3.4) and (3.3), there is an N| € N such that for every pair of £ > 0 and
m > 0, the map

(k, j) = (k+ £, h(t: k, j;m))

is at most N12>""-to-1 on I. Applying Lemma 3.1 in (4.20), we obtain

[0

< N1 Cq27 W2 Cim20m e (5 (k, )} et
P

14
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2nm
By (4.12) and (4.13), B{™ = BV 4 ... 4 B ™) Thus Lemma 3.4 leads to

2C122nm
(m,v)
2y ||
@ v=1

< 4C N  Cq2™ HFOCI=E=80M ) (1 (k, e jrer) -

s/2 s/2

(m)
I

P

Since si > 4n, another application of Lemma 3.4 gives us

00 2
i, <23 ot < e 0t U ol i )
m=0

Finally, substituting this in (4.6), we see that the lemma holds for the constant

oo
C4.3 — 21—(S/2)C5 + 22—(S/2)C5 Z 2—£(l+a)(s/2),
=1

which is finite because o« > —1. This completes the proof. O

Proposition 4.4 Let 0 < s < 1 be given, and let i € N satisfy the condition si > 4n.
Seti’ =3i +n+ 1+ 86, where § € Zy satisfies (4.1). Let a > 0 also be given. Then
there is a constant Cy4 4 which depends only on n, «, s, i and a such that the following
holds for every f € L*(B, dvy) and every symmetric gauge function ®: Let T" be an
a-separated set in B, and let {e; : z € I'} be an orthonormal set. Then the operator

Y = Mle//z,i’ ®e;, = Z(fl//z,i/) R e;

zel zel
satisfies the estimate |||Y |*|lo < C44P{A*(f; Ok, )}k, prel)-

Proof Givena > 0, let K denote the natural number provided by Lemma 3.6. Accord-
ing to that lemma, any a-separated set I' admits a partition ' = 't U --- U T'g
such that for each u € {I,..., K}, we have card('y N Ty ;) < 1 for every
(k, j) € I. We can write I" as the union of an increasing sequence of finite subsets
GicGyCc---CGp C---.

Consider any f € L?(B, dv,) and any symmetric gauge function ®. The condition
si > 4n certainly implies s(n + 1 + « + 2i) > 2n. Thus by Proposition 3.7,

SN fzill*Yzer) < C37PUA(f; Ok, )}k, jel)- (4.21)

For every pairof © € {1, ..., K}, and m > 1, define

Y/S.m) = Mf Z 'Q//z,i’ ® €; = Z (fl/jz,i/) 02y €z.

el NGy el NGy
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Since the finite set I, N G, has the property card(I',, N G, N Ty, ;) < 1 for every
(k, j) € 1, it follows from Lemma 4.3 and (4.21) that

7], = Cos@Uf Vel eer,n6,) < CasCar®UA* (f: Qe ikipen):

Set C44 = 2'79K C43C37. By the partition ' = 'y U - - - U 'y and Lemma 3.4, we
have

N N

Iy o <2!= (||r™

(m)
L

. @) <Caa®{A(f: Ok )k jyel)-

where

ym — My Z Vi e, = Z (frin) ® ez,

z2eGy, 726Gy

m > 1. Thus for every m > 1 we have
Yy M2 = 1Y ™5 o = Y™ P lle < Caa®UA(f; Ok )}k jrer)-

If ®({A°(f; Ok, j)}k, jyer) < oo, then this bound guarantees that the increasing
operator sequence {¥ ™Y ™*} converges to YY* strongly. Hence the sequence
(Y (m)y (m)xys/2y strongly converges to (YY*)$/2. Thus it follows from Lemma 3.2
that

(YY) /2|l = sup (Y™ Y™*)5/2|| g < Caa® (A (f; Ok )}k, jyel)-

m>1

Butif ®({A°(f; Ok, j)}«,j)er) = 00, then this inequality holds trivially. Finally, since
(YY*)$/2 = |Y*|* and |||[Y*|*|le = |||Y|*|lo, the proposition follows. |

Corollary 4.5 Let i € N satisfy the condition i > 4n. Set i’ = 3i +n + 1 + 6,
where § € Z. satisfies (4.1). Let a > 0 also be given. Then there is a constant Cy 5
which depends only on n, «, i and a such that if I is an a-separated set in B and if
{e, : z € T} is an orthonormal set, then

Z Vit ®e;

zel

< Cys.

Proof This follows from Proposition 4.4 by applying it to the specific symmetric
gauge function

Do({aj}jen) = sup{lail, ..., lajl, ...}, {aj}jen €,

with s = 1 and f being the constant function 1 on B. O
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5 Discrete Sums and the Bergman Projection

Next we will show that operators of the form M ¢ P can be dominated by the kind of
discrete sums Y in Proposition 4.4. This will reduce the main estimate in the proof of
the upper bound in Theorem 1.2 to the estimate provided by Proposition 4.4. What is
involved here is the familiar atomic decomposition for the weighted Bergman space
[3,5,22].

Lemma 5.1 [21, Lemma 2.2] Let I" be an a-separated set in B for some a > 0.

(a) For each 0 < R < o9, there is a natural number N = N(I', R) such that
card{v e " : B(u,v) < R} < N foreveryu € T.

(b) For every pair of z € B and r > 0, there is a finite partitionT =T U--- Uy,
such that for every v € {l1,...,m}, the conditions u,v € T'y, and u # v imply
Bu(2), pu(2)) > r.

Let I' be an a-separated set in B. For each pair of i € Z and z € B, denote

Er.i= Z I/fgou(z),i ® VYo, (2).i-

uel

Lemma 5.2 Let I be an a-separated set in B for some a > 0. Given 0 < s < 1, let
i € N satisfy the condition si > 4n. Seti’ = 3i +n + 1+ 68, where § € 1, satisfies
(4.1). Then for every z € B, there is a constant Cs3(z) which depends only on n, «,
I, s, i, and 7 such that

IIMfsEr il llo < Cs2(PUA (f5 Qk, )}k, j)el)
forevery f € L>(B, dvy) and every symmetric gauge function ®.

Proof For each z € B, Lemma 5.1(b) provides an m = m(I", z) € N and a partition I"
=I1U...-UTl, suchthatforeach v € {1, ..., m}, the conditionsu, v € ', andu # v
imply B(¢,(2), v(z)) > 2. In other words, each {¢,(z) : u € I',} is a 1-separated
set. Thus we can pick an orthonormal set {¢, : u € I'} and decompose Er . ;s in the
form

EF,Z,i/ = }7]}7;}< 4+ .4 FmF,;:, Where FU = Z 1/[%4(2),1'/ ®eu’

uel’,

1 < v < m. Since each {¢,(z) : u € I',} is 1-separated, Corollary 4.5 guarantees that
F, is bounded. For each v € {1, ..., m}, we can apply Proposition 4.4 witha = 1 to
obtain

IIM7Fol*llo < Caa®({A*(f5 Ok, )}k, jrel) (5.1
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forevery f € L2(B, dv,) and every symmetric gauge function ®. On the other hand,
applying Lemma 3.4, Remark 3.5 and Lemma 3.3, we have

My Ercilllo <27 (||MeFFF[ g+ + | [MEuF )
<2 IMEF Pl FEI + -+ 1My FulPllo | LI

Combining this with (5.1), we see that the constant Cs5(z) = 2!~ SCyq (| F1 | +- - -+
Il e |I®) will do for the lemma. O

Let us recall the well-known atomic decomposition for Lg B, dvy):

Proposition 5.3 [22, pages 69-72] Let i € Z4 be given. Then there exist an a-
separated set I' in B for some a > 0 and a finite set {z1, . .., 24} in B such that every
h e Ltzl (B, dvy) admits the representation

h = Z Z Cu,jd’%(zﬂi’

uel' 1<j=<q
where the coefficients c,, j satisfy the condition Y, cr 3" < <4 lcu,j 1> < oc.

Lemma 5.4 Leti € N satisfy the condition i > 4n. Set i’ = 3i +n + 1 + §, where
8 € 7 satisfies (4.1). Then there exist an a-separated set I in B for some a > 0, a

finite set {z1, ..., z4} in B, and a bounded operator T on L%(B, dvy) such that
P = EF,zl,i’T+"'+El",zq,i’T- 5.2)
Proof We apply Propositions 5.3 to this integer i’: there is an a-separated set I for some
a > 0and{zi,...,z4} CBsuchthateveryh € L% (B, dvy) admits the representation
h = Z Z Cu,j Vg, (zp).ir With Z Z lcu, 1> < oo (5.3)
uel' 1<j<q uel' 1<j<q

Let{e, j :u € I',1 < j < g} be an orthonormal set and define the operator

A= Z Z wﬁ"u(Zj)»i, ® Cu.j-

uel' 1<j<q

By Lemma 5.1(b) and Corollary 4.5, A is a bounded operator. By (5.3), the range of A
equals Lg (B, dvy). Thus astandard argument givesusac > Osuchthat || A*h|| > c||h|]
for every h € L% (B, dvy). This lower bound implies that AA*, which we regard as
an operator on the whole of L2(B, dvy), is invertible on the subspace LZ (B, dvy). In
other words, there is a bounded operator X on Lg(B, dvy) such that AA*Xh = h for
every h € LZ(B, dvy). Now define the operator T by the formula 7'(h + g) = Xh for
h e L2(B,dvy)and g € L*(B, dvy) © L2(B, dvy). Then | T| = || X|| < coand P =
AA*T . To complete the proof, simply observe that AA* = Er ¢, 7+ -+ Er, /. O
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Proposition 5.5 Let O < s < 1 be given. Then there is a constant Cs 5 which depends
only on n, a and s such that

IIM7sP*llo < Cs5PUA(f; Qk, )}k, jyer)

for every f € L>(B, dvy) and very symmetric gauge function ®.

Proof Given any 0 < s < 1, we pick an i € N such that si > 4n. Then set i’ =
3i +n+ 1+ 6, where § € Z, satisfies (4.1). For this i’, Lemma 5.4 provides an
a-separated set I in B for some a > 0, a finite set {z1, ..., z4} in B and a bounded
operator T such that (5.2) holds. Since si > 4nandi’ = 3i +n+1+6,by Lemma 5.2,
forevery j € {1, ..., q} we have

MsEr il lle < Cs2(z))@UA(f; Ok j)} k. jyer) (5.4)

for every f € L%(B, dvy) and every symmetric gauge function ®, where Cs2(z;)
depends only on n, @, s, i, I' and z;. By (5.2), we have MyP = MyEr; T +
-+ MyEr ., »T. Applying Lemma 3.4, Remark 3.5 and Lemma 3.3 to this sum,
we obtain

NMsP o <2(MpErz o T lo + -+ IIMfEr, i Tl o)
<2 TIPUMpEr il llo + -+ 1M Er il o).

Combining this with (5.4), we have

Mg P llo <2[ITII*(Cs2(z1) + -+ + Cs2(zg)PUA (f; Qk. )}k, jyel)

for every f € L?(B, dv,) and every symmetric gauge function ®. O

6 Bergman Balls and Local Projections

The cumbersome decomposition system adopted in Sect. 3 was designed to accom-
modate a disparity between the radial direction and the spherical direction of the ball.
The best place to see this disparity is (4.19): the factor 27U+ is the best decaying
rate that one can hope for in the radial direction. In contrast, the factor 2-2im jn 4.19),
which is the decaying rate in the spherical direction, represents artificial improvement:
one can pencil in as large an i as one pleases. But once we have proved Proposition 5.5,
we no longer need to be concerned the disparity between the two directions. For the
rest of the paper, it will simplify matters considerably if we adopt a new decomposition
system in terms of balls in the Bergman metric.
For the rest of the paper the paper we fix the point

wi ;= (1—=27*" Ny

for each (k, j) € I, recalling that for each k > 0, the set {uy_;} is a subset of § which
is maximal with respect to the property in (3.4) . Recalling (3.6) and (3.7), we have
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wi,j € Tk,j C Q,j for every (k, j) € I, and we think of wy_ ; as the “center” for
Tk’j.

Lemma 6.1 (1) There is a tp > 0 such that D(wy, j, T0) N D(wy p, T0) = ¥ for all
(k, j) #(, h)in 1.

(2) Thereisaty <t < 00 such that D(wy, j, T) D Qk,;j for every (k, j) € I.

(3) Thereisan Ny € N such that card{(t,h) € I : D(w j, T+1)ND(wyp, T+1) #
A} < No for every (k, j) € I.

Since the proof of Lemma 6.1 is completely elementary, it is omitted here.

Definition 6.2 For each (k, j) € I, we denote
Dy j = D(wy,j, ), Gij=D(wgj,t+1), Uj=D(wgj,3t+3)

and Iy j ={(t,h) € I : G j N Gy # D).
Note that

if (t,h) €I, then Ui D Gy j D O 6.1)

Also note that

We now fix a C* function n on [0, co) with the following properties:

(1) 0 < n(x) <1 forevery x € [0, 0c0);

() n(x?) =1if0 <x < (2" — 1)/(€*" + 1);
(i) n(x?) = 0if x > (272 — 1)/(e*"t2 4+ 1).
For each (k, j) € I, define

Mk.j (€)= (w1, ¢ €B.

Then each 7y ; is a C* function on B. Furthermore, because Puy. ; (m) =D(, 1)
and @y ; (Gg,j) = D(0, T + 1), we have

nk,j =1 on D ; and nt ; =0 on B\Gy ;.

By Lemma 6.1(3), we have Z(k,j)e] Nk,j < No on B. On the other hand, since
Uk, jrer T,j = B, we have 3 i)y mk,j > 1 on B. Now, for every (k, j) € I define

Nk, j

Vi = -
2 myer Mh

This gives us a family of C*-partition of unity on B. More specifically, we have
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(A) Z(k,j)el Yk,j = lonB;
(B) foreach (k, j) € I, yx,j = 0on B\Gy ;.

Lemnla 6.3 There is a constant Cg3 such that ||/O('_3Vyk,j||oo < C¢3 and
1P 2Ly yvk.jlloo < Cosforall (k,j)el,ve{l,....,n}andu #vin{l,...,nk

Proof Write H = Z(t’ nyer Me,h- Then H > 1 on B. Straightforward differentiation
yields

vk =H '9ymj — H ne joyH = H™'dymej — H >y Z Tt

(l,h)EIk,j
= H ™' (@uy ;1) (@uy ;- 00y )
—H e > 0 (@ Pup s D)
(t,h)elx,
where the (-, ) is the inner product in C”. Similarly, for u # vin {1, ..., n} we have

Ly ¥k,

= H ™' (pup ;1) @uyj» LouPu ;)
Nk, j

=2 2 TGP Gu Lo ).
(t,h)ely,

Obviously, 1’ is bounded on [0, 00). Thus, combining the bounds provided by
Lemma 2.3 with Lemma 6.1(3), the conclusion of the lemma follows. O

Let E be any Borel setin B. Then by L?(E, dv,) we mean the collection of functions
g in L?(B, dvy) satisfying the condition g = 0 on B\ E. The point is that we consider
each element in L2(E, dvy) as a function on the whole of the unit ball B.

For each (k, j) € I, let By ; be the collection of functions /4 in LZ(Uk’j, dvy)
that are analytic on Uy ;. That is, By ; consists of functions 4 in LZ(B, dv,,) that are
analytic on Uy ; and identically zero on B\ Uy ;. Obviously, By ; is a closed linear
subspace of L?(B, dvy). One may think of Bk, as a kind of “Bergman space”, but
keep in mind that the measure in question is the restriction of the weighted volume
measure dvy to Uy, ;. For each (k, j) € I, let

Py j: LZ(B,dva) — Bk,j

be the orthogonal projection. We consider each Py ; as a local projection (used in
[15,16]), and it performs a little magic:

Lemma 6.4 Forall f, g € LZ(B, dvy) and (k, j) € I, we have

(f = Pf xu ;8 — Pr.j&) = (Xue; [ — Prj [ xu ;8 — Pr,j&)-
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Proof Note that (h, xu, ;8 — Px,jg) = Oforevery h € L?(B, dv,) that is analytic on
Uk, j. Therefore

(f = Pf xu ;8 — Pr.j&) = ([, xur ;8 — Pr,j8)
= (XUk,_,' /s XU, ;8 — Pk,jg>
= xui,; f — Pej [ xu ;8 — Px,j8&)

as promised. O

Forall f € L?>(B, dvy) and (k, j) € I, we define

1/2
M(f;k, j) = ( If — Pk,,-f|2dva> .

Va (Uk,j) Ju,

Proposition 6.5 There is a constant Cg 5 such that the following estimates hold: Every
f € L*(B, dvy) admits a decomposition

f= f(l) + f(2)

with f® e C*®(B) such that for every (k, j) € I, we have

AV 00y <Cos Y, MA(fith),

(t,h)el,

AXplafPl: Qrj) < Ces Y. M*(fit.h) and
(t,/’L)EIk_j

A*(p' 210 @ Adpl; Q) < Ces Y MP(fit,h).

(t.h)ely

Proof If (t,h) € Iy j, then U, C D(wg,j, 5t +5). By Lemma 3.9, there is a Cy
such that

Ve (U ) < Crvg(Qy,j) whenever (¢, h) € Iy ;. (6.2)

Using the partition of unit {yx ; : (k, j) € I}, fora given f € L%(B, dv,) we define

fP= 3" wiPejf and fO=f—f@= 3" (f =P ;.

(k. j)el (k. el
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If (t,h) ¢ I j, then y;, = 0 on Gi ; D Ok, ;. Therefore for every (k, j) € I we
have

2

fQ |fVPdvg = / > (F=Punven| dva
k.j

Okj |(t.hyel ;

<No Y, |f = PraflPdvg,

(thyely ;¥ Ok

where the second < follows from the Cauchy-Schwarz inequality and Ny is given by
Lemma 6.1. Recalling (6.1), we have

[ urra v 3 [ i - pusPan.
Ok.j

(t,h)€ely Ut

Dividing both sides by v, (Qy, ;) and using (6.2), we find that

AP(fD; 0k ) < NoCr Y MA(fit, b,

t,hyel

proving the first inequality.
Since each y ; vanishes on B\Gy ;, by Lemma 6.1(3) we have f(z) e C*(B).
Moreover, since Py ; f is analytic on Uy, ;, foreach v € {1, ..., n} we have

P = Z Pejf - 0¥k j-

(k,j)el

Thus if { € Gy j, then

G f@0) = D PaHO@YNE@)

(t,hely, ;

= Z {(PLa /@) = (P HE}@uyen) (©),

(t,hyel

where the second = is due to the fact that 3, ;\; dyYe.n = dy1 = 0. Combining this
with Lemma 6.3, we obtain

PO PN < Cos Y I(Paf)Q) = (Prj /)OI if ¢ € Gy

t,h)elk,;

Using the Cauchy-Schwarz inequality, Lemma 6.1(3) and (6.1) again, we have
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[ wpas@Pan < nocts X [ pus - P P,
Ok t.hyel ;¥ Qi

<NoCZy Y 2( fU P — f1Pdve
t.h

(t,h)ely
g
Uk

Again, dividing both sides by vy (Qy, ;) and using (6.2), we have

If — Pk,,-f|2dva).

i

A2 1P 0 =2(No+ M) C2xCt Y MA(fith),
(th)el,

Since this holds for every v € {1, ..., n}, we obtain the second inequality. The proof
of the third inequality is similar and will be omitted. O

Lemma 6.6 Let 0 < s < 1, and suppose that i € N satisfies the condition si > n.
Then for any given € > 0, there is an 0 < R < oo such that

s/2 K
sup 02Uk ) Y. sup [, (@ <e.
(k,j)el (t,hyel ¢€Uk,j
ﬂ(“’k,j*“"t,h)zR

This lemma is in fact a discrete variant of the familiar Forelli-Rudin estimates
[12,17,18,21]. The proof will be omitted.

Lemma 6.7 Let 0 < p < oo. Then for every pair of finite-rank operators A and B,
o0 o
> (u(AB)P <2 (su(A)P (s,(B))F .
v=1 v=1

Proof 1t is well known that s;,,_1(AB) < s, (A)sy,(B) for all u,v € N [10, page
30]. In particular, we have s2,_1 (AB) < s,(A)s,(B)and s2,(AB) < s,+1(A)sy(B) <
sy (A)sy(B) for every v € N. Hence for any 0 < p < oo, we have

(s20-1(AB)P = (50 (A)sy(B))” and  (s20(AB))” = (su(A)sv(B))”

for every v € N. The lemma obviously follows from these inequalities. O

Proposition 6.8 Let 0 < s < 1 be given. Then there is a constant C¢ g which depends
only on n, o and s such that

QUM (f5 k, DYk, jen) < CosllIHrl o

for every f € L*(B, dvy) and every symmetric gauge function ®.
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Proof We begin by fixing certain constants. Given 0 < s < 1, pick an iy € N such
that si9 > 4n. Then set i = 3ip +n + 1 + 8, where § € Z, satisfies (4.1). Let
{ek,j : (k, j) € I} be an orthonormal set. By Lemma 6.1(1) and Corollary 4.5, there
is a Cy such that

> Vi ®erj| <Ci 6.3)
(k,j)ed

for every subset J of I. Also, once this i is so fixed, by Lemmas 3.9 and 3.10, there
is a ¢ > 0 which depends only on n, @ and i such that

1/2 N )
Vy (Uk,]) {é?]{] h”wk,j,t Q)N=c (6.4)
for every (k, j) € I. For R > 0, write

e(R)= sup v>(WUrj) D sup [, i (0.
kel (el €Uk
ﬁ("’k.j~"’t,h)zR

For this i, Lemma 6.6 allows us to pick an R > 6t + 7 such that
2¢(R) < ¢'/2, (6.5)

and this R is so fixed for the rest of the proof.
By Lemmas 6.1(1) and 5.1(a), there is an M € N such that

card{(r,h) € I : B(wk,j, wi,n) < R} <M

forevery (k, j) € I.By astandard maximality argument, there is a partition / = Ej U
--- U Eyy such that for every m € {1, ..., M}, we have B(wy, j, wy,n) > R whenever
(k, ), (t,h) € E;; and (k, j) # (¢, h). We will show that Ce g = 8M (C}/c*) suffices
for the proposition.

Let a symmetric gauge function ® be given, and let ®* be its dual. Fix an m €
{1, ..., M} for the moment. Given an f € L2(B, dvy), consider any

Jn C{k,j) € Ep : M(f; k, j) #0} with card(J,) < oo. (6.6)
For each (k, j) € J,,, define the unit vector

o = XUk_ij/fwk.j,i_Pk,j(fl/fwk,j,i) 67
! ”XUk_jfwwk_j,i - Pk,j(fI/fwk_j,i)H
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in L2(Uk,j, dvy). Let {by j : (k, j) € Jp} be a family of non-negative numbers. We

define the finite-rank operator

A= Z br,jer,j @ gk, j-
k,j)eIm

Note that the choice R > 6t + 7 ensures that for (k, j) # (¢, h) in E,,, we have
Uk,j N U, = 9. Hence (gx,j, &,n) = 0 for (k, j) # (¢, h) in E,,. Consequently,

O ({(50(A) hyen) = @* ({bz,,} e ) :

Also, define the operator

T = Z wwkd‘,i ®ek,j-

k,j)eIm

Then || T|| < Cy by (6.3).
By straightforward multiplication,

AHT = > b j(HpV,,i 8kj)en @en =Y + Z,
(k. j),(t,h)EJm

where

Y= > b j(Hpu,, i gkj)erj ®erj and
(k, J)EJIm

Z= Y > b j(Hpu, i 8kj)ex; ®ern

(k,j)edm (t,h)# Kk, j)
(t.h)em

(6.8)

Since Y = AH;T — Z, an application of Lemma 3.4 to the symmetric gauge function

for the trace class C; yields
Y1 < 2MAH TP+ 20121 -
By (6.7) and Lemma 6.4, we have

(HpYruy jis 8,j) = WxXue ; fYwi i = Prj (f Yy )l
= HXUk.,-lﬁwk,j,i (f - ¢,;k{j,iPk,j(f¢wk,j,i)>)‘ .

(6.9)
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Recalling (6.4), we have

(H V> HXUka ’ﬁwk ij(fI/IUkal)
f u}_j,iagk,A il
e w/> (U )

=cM(f;k, ),

Ixuve ; f — Pr,j [l
¢ e
(Uk ])

where the second > follows from the facts the that wz;kl_,-, i P i (f Yy, j,,-) € By, j and

that P ; f is the element in By ; that minimizes the norm | x, ; f — hll, h € By ;.
Thus

WY Fl =) Abrj(Hyvruy i ge ) = ¢ Y by M (fik, ).
(k, j)edn (k,j)€Im
(6.10)

On the other hand, since 0 < s < 1, the orthonormality of {ex ; : (k, j) € I} leads to

Nzl < Y. KZewea )= > > by H Y, )l

(k, ), (¢, h) e (k,j)edm (t.h)#(k, )
t,h)eIm

6.11)

Using Lemma 6.4 and the norm-minimizing property of Py ; again, we have

[(H Y, i 8. j)

N fYweni = Prj (Fw i)y xue; Vi = Prj (f Y i)
B I xuvi; [ ¥u i — Pr,j (g i)l
I xve; fYwni = Prj w0 | < W FYwni — Ywpi P j Fl

v 2k ) sup [Ww, i (OIM(f5 k, ).
CEUy,j

IA

Substituting this in (6.11), since B(wx, j, wy,n) > R for (k, j) # (¢, h) in Ej,;, we
obtain

Nz < Y2 b MYk pu>Wey) Y. sup [, i (OF

(k. j)em (t,)A(k, j) § €Yk
(t,h)eJm

<e®) Y b M(fik ).

(k. ) ETm

Combining this with (6.9) and (6.10), we find that

D by MU(fik. ) S2AHSTP | +2e(R) > by ;M (fik. j).
(k,j)€Jm (k,j)€Jm
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Since J,, is a finite set, the sum Z(k,j)ejm .-+ above is finite. By (6.5), 2¢(R) < ¢* /2.
Thus the obvious cancellation leads to

/) Y Bl M (fikj) < 20IAHTP . (6.12)
(k,j)€Im

To estimate |||AHT|*|l1, we apply Lemma 6.7, which gives us
o o0
HAHFTI = (s0(AHFT)) <2 (5(A)* (su(HfT)) .
v=1

v=1 =

Applying (3.1) and (6.8) to the right-hand side, we obtain
HAHFTI |1 < 20*({(5u(A) Joen) U (50 (Hf T)) " hen)

( by, ) IIHTE N0

<2Cio* ([bi’j](k,j)el,n) IHs " o,

where the second < follows from Lemma 3.3 and the fact that || T'|| < Cy. Substituting
this in (6.12) and simplifying, we find that

S b ME(fik ) < 8(CY/c)D* ({b;i, ) ) 1Hf Nl

X (k,j)ed,
(k. j)em "

Since the non-negative numbers {b,i’ Ix (k, j) € Jp,} are arbitrary, the duality between
® and ®* (see (3.1)) implies

UM (f5k, DYk, jresn) < 8(Ci/*) NH I |0

Since the above holds for every J,,, given by (6.6), recalling (1.3), we conclude that

QUM (fik, D}k, jrek,) < 8(C/c*) I1Hfl llo.

Finally, since this holds for every m € {1, ..., M}andsince I = E{ U---U Ep;, we
have

M
UM (fi k. Dk jper) = Z DUM(fsk, Nk jekn) < 8M (C1/) IHf o

m=1

This completes the proof. O
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Lemma 6.9 There is a constant Cg9 such that

P Y. arh = Coo®(ar,j«. per)
(t.h)ely (k,j)el

or every set of non-negative numbers {ay_ i}« iyer and every symmetric gauge function
4 Ik, ) rysy gaug
.

Proof First of all, by Lemmas 6.1(1) and 5.1(a), there is an N1 € N such that
card{(z,h) € I : B(wy,j, wrp) <4t +4} < Ny (6.13)

for every (k, j) € I. Let non-negative numbers {ay, ;j}«,j)er be given. For every
(k, j) € I, thereis a w(k, j) € I ; such that a;, ;) > a;, for every (¢, h) € I ;.
Thus Zz,h arpn < card(Ix, j)azx,jy < Noax(, ), where the second < follows from
Lemma 6.1(3). Hence

@ > < No®({an (k. )}k jyer)- (6.14)

(t, el kel
Obviously, B(wg, j, Wr,j)) < 2t + 2 for every (k, j) € I. Thus for any pair of
k, j), k', j") e I,if w(k, j) = m(k', j'), then B(wk j, wy j») < 4t + 4 by the
triangle inequality. By (6.13), the map = : I + [ is at most Np-to-1. Applying
Lemma 3.1, we obtain ®({azk, j)}«k, jer) < N1P{ak,j}«x, jer)- Recalling (6.14),
the lemma holds for the constant Cg9 = NgNj. O

Proposition 6.10 Ler 0 < s < 1 be given, and let i € Z. satisfy the condition
s(m+1+a+2i) > 2n. Leta > 0 also be given. Then there is a constant Cg_ 10 which
depends only on n, «, s, i and a such that

SUNHY-il*}zer) < Co.10@ UM (f5 k., Yk, jyer)

forevery f € L*(B, dvy), every symmetric gauge function ®, and every a-separated
set T in B.

Proof Givenany f € L*>(B, dvy),let f = £V 4 £@ be the decomposition provided
by Proposition 6.5. Applying Proposition 2.2 to f? Yei— P(fPv.1),z € B, we
have

WH Wil < VHpo ¥zl + 1 Hpo Yzl < I Oveill + 1 Hpo vzl
< HF DY il + Co2llpd(FP Y DIl 4+ Canllp3(F P i) A dpll
=1 VYill + Cozllpyrzid f PN + Caallp 90 f@ A dpll.
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For 0 < s < 1, the above implies

IH g il < 1 Pve il + Coolloveid fPN + C 510" 290 £ A dpll®.
Thus it suffices to find a C that depends only on n, &, s, i and a such that
SUNF DY i eer) < COUME(f3 k, DIk, jyer)s

SN pY2id f P )cer) < COUMS (fs k, )}k jrer) and
SN0 fP AdplS)eer) < COUM(fsk, D, jyer)

for every symmetric gauge function ® and every a-separated set I" in B.
Since s(n + 1 + o + 2i) > 2n and I is a-separated, by Propositions 3.7 and 6.5,

SUNF Pl Yeer) < C37PUHA (FDY; Ok Dbk jyer)

<Caclse (1 > misinm

(el s k.j)el

Applying Lemma 6.9, we obtain
2 ;
S f Vil Seer) = C37C5 Coo®UM® (f5 k. Dk, ppen).

That is, the first inequality holds for the constant C = C3,7C;_/52 Ce.9. By the same
argument, the other two inequalities also hold for the same C. O

Lemma 6.11 Leri € Z, and b > 0 be given. Then there is a constant Cg 11 which
depends only on n, «, i and b such that

M(fik, J) = ContllHpill

for every f € L*(B,dvy) and every pair of (k, j) € I and z € B satisfying the
condition B(wy, j, z) < b.

Proof Let b > 0 be given. By Lemma 3.9, there is a C; such that
v (D(w,2b 43t +3)) < Civy(D(w, 3t 4+ 3)) forevery w e B. (6.15)
Leti € Z. By Lemmas 3.9 and 3.10, there is a ¢co > O such that for every z € B,

[V (0)] = covy V2 (D(z, b+ 31 +3)) whenever ¢ € D(z, b+ 3t +3).
(6.16)

Let (k, j) € I and z € B be such that B(wy,j,z) < b. Then D(z,b + 37 +3) C
D(wg, j, 2b+371+3). By (6.15), we have vy (D(z, b+37+3)) < Crvg (D (wi,j, 31+
3)), and consequently
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vy (D, b+ 3t +3) = 20 A (D(wr j, 3T +3) = C; V2 AU ).
(6.17)

Since Uy,j = D(wg,j, 3t + 3), we have Uy ; C D(z,b + 3t + 3). Writing ¢; =
coCy 2, from (6.16) and (6.17) we obtain

Wi ()] = crvg (U j) forevery ¢ € Uy ;.
Hence

WH Wil = 1 fVzi — POV = lxue, Yei (f — V2 PUFY=)
> ey P Pl £ = xve, Yo POVl
> crvg (U Plixw ,— Prjfll=caM(f5k, j),

where the last > again follows from the norm-minimizing property of Py ; f. O

Proposition 6.12 Leti € Z, and b > 0 be given. Then there is a constant Ce 12
which depends only on n, «, i and b such that

QUM (fsk, DYk, pyen) < Co.2®{NH il }zer)

for every f € L%(B, dvy), every 0 < s < 1, every symmetric gauge function ®, and
every countable subset T of B with the property U cr D(z, b) = B.

Proof Let b > 0 be given. Then by Lemmas 6.1 and 5.1, there is an N € N such that
card{(k’, j') € I : B(wy,j, wp,j) <2b} <N forevery (k,j)el. (6.18)
Let I" be a countable subset of B with the property U.cr D(z, b) = B. Then for every

(k, j) € 1,thereis a zx j € I' such that B(wy, j, 2k, ;) < b. Leti € Z also be given.
By Lemma 6.11, we have

M(fik, j) = ContllHprz il

for every f € L2(B, dvy) and every (k, j) € I, where Cg 11 depends only on n, o, i
and b. Hence for every 0 < s < 1 and every symmetric gauge function ® we have

QUM (fs k, DYk jper) <max{Cor11, WU Hevry ,.ill* Yk pen)-  (6.19)
If (k, j), (K, j') € I are such that zx ; = z_j/, then

Bwg,j, wr 1) < B(wg,j, 2k,j) + B2k, j» Wi, j1) = B(Wk,js 2k, j) + Bzwr, jr, wir, jr)
< 2b.
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Thus, by (6.18), the map (k, j) +— zi ; is at most N-to-1. Applying Lemma 3.1, we
have

PUNH Yz il Yk jper) = NOENH Y21’ }zer)-

The combination of this with (6.19) proves the proposition. O

7 Proof of Theorem 1.2

We need one more proposition for the proof of the upper bound in Theorem 1.2.

Proposition 7.1 Set C71 = 2(1 + \/EC;Q), where Cy 5 is the constant in Proposi-
tion 2.2. Then for every f € C®(B) N L*>(B, dvy), every 0 < s < 1 and every
symmetric symmetric gauge function ® we have

NHf P llo < CoullIM, 54 PF o + 1M 125 105, P ll0). (7.1)

Proof Given f, s and ® as above, it suffices to consider the case where the right-hand
side of (7.1) is finite, for otherwise the inequality holds trivially. This finiteness implies
that every M5 P and every Mp‘/2i,-_,~fP is a bounded operator on L?(B, dv,). Let

‘H be the orthogonal sum of n + (1/2)n(n — 1) copies of L2(B, dvy). We now define
an operator

X :L2(B,dvy) — H
as follows: foreach h € L(% (B, dvy), the first n components of Xh are (,051 Ph, ...,
(p0y f)h, while the other (1/2)n(n— 1) components of X/ are (pl/zLi’j f)h, arranged
according to a fixed enumeration of the pairsi < j in {1, ..., n}. Then obviously we
have

2 2 2
IXRI? = (X*Xh,h) = 1M, bl + 1M112(5 05,001

h € L2(B, dvy). For h € L2(B, dvy), its analyticity leads to d(fh) = hd f. Hence

Upd(FWII+Ip2a(fh) A Bpl)?

| =

IXRI> = 109 (S WP + 1020 (f ) A dpll* =
for every h € L(zl (B, dvy). Applying Proposition 2.2, for every g € H°°(B) we have

IHsgll = Il fg — P(fll < Caallpd(f)ll + 11023(fg) Adpl) < V2CaalXgl.

Forh € Lg (B, dvy) and 0 < r < 1, the function A, defined by the formula 4, (z) =
h(rz) belongs to H°°(B). Thus an obvious application of Fatou’s lemma in the above
gives us

I|Heh|l = fh—P(fh)| < \/§C2_2||Xh|| for every h € LE(B, dvgy).
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By Lemma 3.12, there is an operator 7 : H — L%(B, dvy) with IT| < \/§C2,2 such
that

Hf=TX.
Thus it follows from Lemma 3.3 that

IH P llo < ITIPNX P llo < (V2C22)* 1X Pl < (1 +2C2) 11X Fllo-
(7.2)

To estimate ||| X|* o, write F = p|d f| and G = p'/?|d f A 9p|. Then note that
X*X = PMpP + PMgpP = (MpP)*MpP + (Mg P)*McP.
By Lemma 3.4 and Remark 3.5, we have

NXFlle = 1(X*X)*?|le < 21((MpP)* Mg P)*"?||lo + 2||(Mg P)* Mg P)*/*||o
=2||IMpP|* o + 2[1MG P |lo
=2(11M, 31 P llo + 1M 1213 s py P I l0)-

Combining this with (7.2), the proposition follows. O
At this point, we are finally ready to assemble the previous steps and present

Proof of Theorem 1.2 Lets,i, ', f and ® be given as in the statement of the theorem.
Applying Propositions 6.10 and 6.8, we obtain

S HpYrz,il*Yzer) < Co.t0®@UM (f5 k, DYk, jper) < Co.10Cesll|Hyl* [l
which establishes the lower bound in Theorem 1.2.

To prove the upper bound, let f = £ 4+ £ be the decomposition provided by
Proposition 6.5. Then by Lemma 3.4 and Remark 3.5, we have

IHf*lo < ZI’S(IIIHfmISIIcp + I1H ;o ' llo).- (7.3)
Since Hf(l) = - P)Mf<1> P, it follows from Lemma 3.3 and Proposition 5.5 that

IH ;o llo < 1M PPl < Css@UA(f D Qe wjper). (14

Since 0 < 5/2 < 1, it follows from Propositions 6.5 that

AFD o) =Cls > M (finh)

(t,hyel
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for every (k, j) € I. Substituting this in (7.4) and then applying Lemma 6.9 and
Proposition 6.12, we obtain

2 .
IH o lo < 1My PP llo < Cs.5Cgls Coo®@ (UM (1 k. Dk jyer)

52 . (7.5)
< Cs55C4'sCo9Co12P ({1 HpYrz.ill" }zer)-

To bound |||H @ I*|lo, we first apply Proposition 7.1, which gives us

NHfo P lle < C1allIM 5 0 PP llo + 1M 125 7@ 05, P @)

Then, applying Propositions 5.5 and 6.5, Lemma 6.9 and Proposition 6.12 in the same
manner as above, we obtain

/2
1M 5 ;00 PP llo < Cs.5Cy's Co9Co.2@({| Hy i [*}zer)  and
2
1M 1215 1045, PI’ o < Cs5Cels Co9Ce12® (I Hpre i [ hoer).

That is,
I1H o P lo < 2C7.1C5.5Cys Co9Co.12® (| H ¥z Yoer)-
Finally, combining this with (7.5) and (7.3), we find that
IHfFllo < 2'7°(1 +2C7.1)Cs55Cy/3 Co.9Ce.12® (1 Hprz,i 1°}zer).-

This proves the upper bound in Theorem 1.2 and completes the proof. O
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Appendix
We present the proof of Prop. 3.7 in this Appendix. Note that the proofs of the lemmas
are elementary hence the proofs will be omitted.
For each (k, j) € I, we define the subset
Fij={(t.i): 0>k 1 =i <m(0), Blug;i, 2 N Blug,j. 3-27%) # 0)
of 1. We then define

Wi,j = Ok,j UlUw.irer; Qu.its

(k, j) € 1.By (3.6) and (3.7), we have Wy ; D {ru : 1 — 27% <r < lu €
B(ug,j,3- 275
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Lemma A.1 There is a constant C4.1 which depends only on n and o such that

‘ Ca.1
A (fs Wi, Dbk, jrer) = T o-7as

QA (f5 Ok, DYk, jyel)

forevery f € L2(B, dvy), every symmetric gauge function ®, and every0 < s < 1.

As in [20], for each (k, j) € I we define
Hej={t,h)yel:0<t<k 1<h<m(),Blu.n2"")0Bu;,27%) # 7).

Lemma A.2 Given anyi € Z, there is a constant C4 3 which depends only on n,
and i such that the following estimate holds: Let (k, j) € I and z € Ty j. Then there
exist (£, v(€)) € Hy j for £ =0, ..., k such that for every f € L%(B, dvy), we have

k

IfYoill < Can Y 27 et E=0A(F Wy ).
=0

Lemma A3 Let 0 < s < 1 be given, and leti € Z. satisfy the condition s(n +
1 + o + 2i) > 2n. Then there exists a constant 0 < C43 < 00 which depends only
onn, a, s and i such that the following estimate holds: Let z(k, j) € Ty ; for each
(k, j) € I. Then for each f € L*(B, dvy) and each symmetric gauge function ®, we
have

S f Yz, )i I Yk, per) < CazPUA(f: Ok, DYk, jyen)-
Proof of Proposition 3.7 Let 0 < s < 1, and let i € Z, satisfy the condition s(n +
14+ a+2i) > 2n. Given 0 < a < oo, let K be the natural number provided by
Lemma 3.6. According to that lemma, each a-separated set I is the union of pairwise

disjoint subsets I'y, ..., I'x such that card(I';, N7y ;) < 1forallu € {1, ..., K} and
(k, j) € I. Thus foreach u € {1, ..., K}, it follows from Lemma A.3 that

Q[ fzill*Yzer,) < Caz @A (S Ok, )}k, jyer)

for every f € L*(B, dv,) and every symmetric gauge function ®. Since I'y U - - - U
I'k =T, we have

SN fYill*zer) = @UNS Vil Yzer) + -+ + QU SYzill*}zerg)-

Hence Proposition 3.7 holds for the constant C37 = KCa 3. O
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