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Abstract In this work, we study the following Kirchhoff type problem

−
(
a + b

∫

�

|∇u|pdx
)
�pu = g(x)u−γ + λ f (x, u), in �,

u = 0, on ∂�,

where p ≥ 2, � is a regular bounded domain in R
N , (N ≥ 3). Firstly, for p > 2,

we prove under some appropriate conditions on the singularity and the nonlinearity
the existence of nontrivial weak solution to this problem. For p = 2, we show, under
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supplementary condition, the positivity of this solution. Moreover, in the case λ = 0
we prove an uniqueness result.We use the variationalmethod to prove ourmain results.

Keywords Kirchhoff type equation · Singularity problem · Variational methods ·
Resonance · Positive solution · Mountain pass lemma

Mathematics Subject Classification 35B09 · 35B33 · 35J20

1 Introduction and Main Results

In this article, we consider the Kirchhoff type problem

(Pλ,p)

{
−

(
a + b

∫
�

|∇u|pdx
)
�pu = g(x)u−γ + λ f (x, u), in �,

u = 0, on ∂�,

where p ≥ 2, � ⊂ R
N , (N ≥ 3) is a bounded regular domain, a, b ≥ 0, a + b > 0,

0 < γ < 1 and λ ≥ 0 are parameters.
Note that, the existence and multiplicity of solutions for the following problem

{
−

(
a + b

∫
�

|∇u|2dx
)
�u = f (x, u), in �,

u = 0, on ∂�,
(1.1)

where � ⊂ R
3 is a smooth bounded domain and f : � × R → R is a continuous

function, has been extensively studied (see [1–21]). This type of problem is related to
the stationary analogue of the following problem

ρ
∂2u

∂t2
−

(
ρ0

h
+ E

2L

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0,

where ρ, ρ0, h, E, and L are constants, which extends the classical d’Alembert
wave equation, by considering the effects of the changes in the length of the strings
during the vibrations. For more detail we refer the reader to [10] and the references
therein. Some important results concerning problem of the form (1.1) are given in
[11,12,14,15]. Problems like (1.1) are also introduced as models for other physical
phenomena as, biological systems where u describes a process which depends on the
average of itself.

An interesting generalization of problem (1.1) is

{
−

(
a + b

∫
�

|∇u|pdx
)
�pu = f (x, u), in �,

u = 0, on ∂�,

The problems of this type is important and arises in an interesting physical con-
text. Much interest has grown on singular problems (see for example [12,13,15]).
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However, the singular Kirchhoff type problems have few been considered, exept
for [9,10]. Before giving our main results let us recall literature concerning related
nonlinear equations. Liu and Sun in [10] have investigated problem (1.1) with
f (x, u) = g(x)u−γ +λh(x) u p

|x |s , and g, h ∈ C(�), 0 ≤ s < 1, 3 < p < 5−2s. They
proved that the non-degenerate case of problem (1.1) has at least two positive solutions
for λ > 0 small enough using the Nehari manifold. By the variational methods, they
obtained that problem (1.1) has at least two positive solutions forμ > 0 small enough.

Liao et al. [13] considered the following problem

{
−

(
a + b

∫
�

|∇u|2dx
)
�u = g(x)u−γ − λu p, in �,

u = 0, on ∂�,
(1.2)

where� ⊂ R
N (N ≥ 3) is a bounded domain, 0 < γ < 1, λ ≥ 0, 0 < p ≤ p∗−1 and

a, b ≥ 0, a + b > 0 are parameters. The coefficient g ∈ L
2∗

2∗+γ−1 (�) with g(x) > 0

for almost every x ∈ � and 2∗ = 2N

N − 2
denotes the critical Sobolev exponent. Using

the minimax method and some analysis techniques, they obtained the uniqueness of
positive solutions for problem (1.2).

Inspired by the above articles, in this paper, we would like to generalize problem
(1.2). More precisely, we investigate the existence of solutions for problem (Pλ,p) by
using variational methods. Under some appropriate conditions we prove the positivity
and uniqueness of solution in the case p = 2.

In the sequel, for Hölder argument reason, we suppose that the function g ∈
L

p∗
p∗+γ−1 (�) with g(x) > 0 for almost every x ∈ � and p∗ = Np

N − p
denotes the

critical Sobolev exponent for the embedding W 1,p
0 (�) into Lq(�) for q ∈ [1, Np

N−p ].
f ∈ C

(
� × R,R

)
is positively homogeneous of degree r − 1 where 1 < r < p.

more precisely we assume the following:

(H1) f : � × R −→ R is a continuous function such that

f (x, tu) = tr−1 f (x, u), (t > 0) for all x ∈ �, u ∈ R.

(H2) f (x, t) ≥ 0 in �1 ⊂⊂ � such that |�1| > 0.

Note that in the case 1 < r < p we have the validity of the coercivity properties of
the functional energy associated with the problem (Pλ,p).

Remark 1.1 (i) A more general condition on f is the Ambrosetti–Rabinowitz con-
dition, but in this case, we can’t prove that Lemma 2.2 hold true.

(ii) Put F(x, s) := ∫ s
0 f (x, t)dt , then, assumption (H1), f leads to the so-called

Euler identity

u f (x, u) = r F(x, u),

F(x, u) ≤ K |u|r for some constant K, (1.3)

and f (x, 0) = 0 = (∂ f/∂t)(x, 0) for every t ∈ R.
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Our main results are the following:

Theorem 1.2 Assuming the hypotheses (H1) and (H2) holds, then for all λ ≥ 0,
problem (Pλ,p) has at least one non trivial weak solution with negative energy.

Next, we give tow Theorems concerning the uniqueness and positivity of solution
in the special case when p = 2.

Theorem 1.3 For λ = 0 and under the same assumptions of Theorem 1.2, the solution
given in Theorem 1.2 for (P0,2) is unique.

Theorem 1.4 Under the same assumptions of Theorem 1.2. If � = �1, then, the
solution given in Theorem 1.2 for (Pλ,2) is positive.

2 Proof of Theorem 1.2

In this case, we consider the Kirchhoff type problem

(Pλ,p)

⎧⎪⎨
⎪⎩

−
(
a + b

∫
�

|∇u|pdx
)
�pu = g(x)u−γ + λ f (x, u), in �,

u > 0, in �,

u = 0, on ∂�,

For u ∈ W 1,p
0 (�), we define the energy functional associated to the above problem:

Iλ(u) = a

p

∫

�

|∇u|pdx + b

2p

( ∫

�

|∇u|pdx
)2

− 1

1 − γ

∫

�

g(x)|u|1−γ dx − λ

∫

�

F(x, u(x))dx,

where W 1,p
0 (�) is a Sobolev space equipped with the norm

‖u‖ =
(∫

�

|∇u|pdx
)1/p

.

Note that a function u is called a weak solution of (Pλ,p) if u ∈ W 1,p
0 (�) satisfies

the following:

(
a+b

∫

�

|∇u|pdx
) ∫

�

| ∇u |p−1 .∇ϕdx−
∫

�

g(x)|u|−γ ϕdx−λ

∫

�

f (x, u)ϕdx=0,

(2.1)
for all ϕ ∈ W 1,p

0 (�).
In order to prove Theorem 1.2, we show firstly that Iλ attains his global minimizer

in W 1,p
0 (�). For this purpose, we need the following lemmas:

Lemma 2.1 Iλ is coercive and bounded from below on W 1,p
0 (�).
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Proof Combining Hölder and Sobolev inequalities, it follows that

Iλ(u) = a

p

∫

�

|∇u|pdx + b

2p

( ∫

�

|∇u|pdx
)2

− 1

1 − γ

∫

�

g(x)|u|1−γ dx − λ

∫

�

F(x, u(x))dx,

≥ a

p
‖u‖p + b

2p
‖u‖2p − 1

1 − γ
|g| p∗

p∗+γ−1
|u|1−γ

p∗ − λK |u|rp|�| p−r
p ,

≥ a

p
‖u‖p + b

2p
‖u‖2p − C

1 − γ
|g| p∗

p∗+γ−1
‖u‖1−γ − λK‖u‖r |�| p−r

p ,

where C > 0 is a constant. Since 1 < r < p, this ends the proof. 
�
Thus

mλ = inf
u∈W 1,p

0 (�)

Iλ(u)

is well defined. Let us show that, mλ < 0.

Lemma 2.2 There exist ϕ ∈ W 1,p
0 (�) such that ϕ ≥ 0, ϕ �≡ 0 and Iλ(tϕ) < 0 for

t > 0 and small enough.

Proof Let ϕ ∈ C∞
0 (�) such that supp(ϕ) ⊂ �1 ⊂⊂ �,ϕ = 1 in a subspace �′ ⊂

supp(ϕ), 0 ≤ ϕ ≤ 1 in �, then

Iλ(tϕ) = a
t p

p
‖ϕ‖p + b

t2p

2p
‖ϕ‖2p − t1−γ

1 − γ

∫

�

g(x)|ϕ|1−γ dx

− λ
tr

r

∫

�1

F(x, ϕ)dx,

≤ t p
[
a

p
‖ϕ‖p + b

2p
‖ϕ‖2p

]
− t1−γ

1 − γ

∫

�

g(x)|ϕ|1−γ dx .

Consequently, Iλ(tϕ) < 0 for t < δ
1

p−(1−γ ) with

0 < δ < min

⎧
⎪⎪⎨
⎪⎪⎩
1,

1
1−γ

∫
�
g(x)|ϕ|1−γ dx

a

p
‖ϕ‖p + b

2p
‖ϕ‖2p

⎫
⎪⎪⎬
⎪⎪⎭

Finally, we point out that a
p‖ϕ‖p+ b

2p‖ϕ‖2p > 0. In fact if a
p‖ϕ‖p+ b

2p‖ϕ‖2p = 0,
then ϕ = 0 in � which is a contradiction. 
�

Now, using Lemmas 2.1 and 2.2 one has:
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Proposition 2.1 Suppose that 0 < γ < 1, λ ≥ 0, a, b ≥ 0 with a + b > 0,

g ∈ L
p∗

p∗+γ−1 (�) with g(x) > 0 for almost every x ∈ � and assuming the hypotheses
(H1) and (H2) holds. Then Iλ attains his global minimizer in W 1,p

0 (�), that is, there

exists u∗ ∈ W 1,p
0 (�) such that Iλ(u∗) = mλ < 0.

Proof Let {un} be a minimizing sequence, that is to say

Iλ(un) → mλ.

Suppose {un} is not bounded, so

‖un‖ → +∞ as n → +∞.

Since Iλ is coercive then

Iλ(un) → +∞ as ‖un‖ → +∞.

This contradicts the fact that {un} is a minimizing sequence.
So, {un} is bounded in W 1,p

0 (�). Therefore up to a subsequence, there exists u∗ ∈
W 1,p

0 (�) such that

⎧
⎨
⎩
un ⇀ u∗, weakly in W 1,p

0 (�),

un → u∗, strongly in Ls(�), 1 ≤ s < p∗
un(x) → u∗(x), a.e. in �,

(2.2)

Let, M(t) = a + bt, t ≥ 0 and M̂(t) = ∫ t
0 M(s)ds. The function M is positive, so

M̂ is increasing and the weak convergence of {un} implies

‖u∗‖ ≤ lim inf
n→+∞ ‖un‖

from where

M̂
(‖u∗‖p) ≤ M̂

((
lim inf
n→+∞ ‖un‖

)p)

Since the function M̂ is continuous and ‖un‖ > 0 we obtain

M̂

((
lim inf
n→+∞ ‖un‖

)p)
= M̂

(
lim inf
n→+∞ ‖un‖p

)
= lim inf

n→+∞ M̂
(‖un‖p) .

Hence,

M̂(‖u∗‖)p) ≤ lim inf
n→+∞ M̂

(‖un‖p) = lim inf
n→+∞

(
a

p
‖un‖p + b

2p
‖un‖2p

)
. (2.3)
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By Vital’s theorem (see [17] pp. 113), we can claim that

lim
n→∞

∫

�

g(x) |un|1−γ dx =
∫

�

g(x)|u∗|1−γ dx . (2.4)

Indeed, we only need to prove that {∫� g(x) |un|1−γ dx, n ∈ N} is equi-absolutely-
continuous. Note that {un} is bounded, by the Sobolev embedding theorem, there exits
a constantC > 0, such that | un |p∗≤ C . For every ε > 0, by the absolutely-continuity

of ∫� |g(x)| p∗
p∗+γ−1 dx , there exists δ > 0 such that

∫

�

|g(x)| p∗
p∗+γ−1 dx ≤ ε

p∗
p∗+γ−1 for every E ⊂ � with measE < δ.

Consequently, by the Hölder inequality, we have:

∫

�

|g(x)| | un |1−γ dx ≤
∣∣∣u1−γ

n

∣∣∣
p∗

(∫

�

|g(x)| p∗
p∗+γ−1 dx

) p∗+γ−1
p∗

< C1−γ ε.

Thus, claim (2.4) is valid.
Using inequality (1.3) and the Lebesgue dominated convergence theorem, we have:

u �→ λ

∫

�

F(x, u(x))dx

is weakly continuous, then

lim
n→∞

1

1 − γ

∫

�

g(x)|un|1−γ dx − λ

∫

�

F(x, un(x))dx

= 1

1 − γ

∫

�

g(x)|u∗|1−γ dx − λ

∫

�

F(x, u∗(x))dx . (2.5)

Using (2.3), (2.4) and (2.5) we deduce that Iλ is weakly lower semi-continuous and
consequently

mλ ≤ Iλ(u∗) ≤ lim inf
n→+∞ Iλ(un) = mλ,

then

Iλ(u∗) = mλ.

Similar to the arguments in [7,8,13], we can prove that u∗ is a solution of problem
(Pλ,p). This shows that (Pλ,p) has a negative energy solution. This completes the
proof of Proposition 2.1 and Theorem 1.2 
�
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3 Proof of Theorems 1.3 and 1.4

In this case, we consider the Kirchhoff type problem for p = 2

(Pλ,2)

⎧
⎪⎨
⎪⎩

−
(
a + b

∫
�

|∇u|2dx
)
�u = g(x)u−γ + λ f (x, u), in �,

u > 0, in �,

u = 0, on ∂�.

For u ∈ H1
0 (�), we define

Iλ(u) = a

2

∫

�

|∇u|2dx + b

4

( ∫

�

|∇u|2dx
)2

− 1

1 − γ

∫

�

g(x)|u|1−γ dx − λ

∫

�

F(x, u(x))dx,

where H1
0 (�) is the Sobolev space equipped with the norm ‖u‖ = ( ∫

�
|∇u|2dx)1/2.

Note that a function u is called a weak solution of (Pλ,2) if u ∈ H1
0 (�) and satisfies

the following:

(
a + b

∫

�

|∇u|2dx
) ∫

�

∇u.∇ϕdx −
∫

�

g(x)|u|−γ ϕdx − λ

∫

�

f (x, u)ϕdx = 0,

(3.1)
for all ϕ ∈ H1

0 (�).
In what follows, it is very important to mention that the Lemmas 2.1, 2.2 and

Proposition 2.1 are also true for p = 2, so we have automatically the existence result
of a solution denoted u∗ and we focus the last part of this paper to prove the positivity
of this solution when � = �1 and a uniqueness result when λ = 0.

Remark 3.1 On one hand, to the best of our knowledge, the existence and uniqueness
of solutions for problem (Pλ,2) has not been studied up to now. The results that we
obtain in Theorem 1.2 and Theorem 1.3 holds not only for the degenerate case, but also
for the non-degenerate case. On the other hand, in references [7–9], problem (1.2) was
considered only in dimension N = 3. However, we get the existence and uniqueness
of solution for problem (1.1) in high dimensions, i.e. N ≥ 3.

Remark 3.2 When a = 1, b = 0, problem (Pλ,2) reduces to the classic semilinear
singular equation. Theorem 1.2 is also true.Moreover, when λ = 0, our Theorem 1.2 is

the corresponding result of [16]. We point out that the condition that g ∈ L
2∗

2∗+γ−1 (�)

is more general than the condition that g ∈ L∞(�) in [16].

3.1 Proof of Theorem 1.3

In this section, we prove that u∗ is the unique solution of problem (P0,2). Assume that
v∗ is another positive solution of problem (P0,2). Since u∗, v∗ are positive solutions
of problem (P0,2), then it follows from (3.1) that
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(
a + b‖u∗‖2

) ∫

�

(∇u∗,∇(u∗ − v∗)) dx −
∫

�

g(x)u−γ∗ (u∗ − v∗)dx = 0, (3.2)

and

(
a + b‖v∗‖2

) ∫

�

(∇v∗,∇(u∗ − v∗))dx −
∫

�

g(x)v−γ∗ (u∗ − v∗)dx = 0. (3.3)

From (3.2) and (3.3), one obtains

0 =
(
a + b‖u∗‖2

) ∫

�

(∇u∗,∇ (u∗ − v∗)) dx −
(
a + b‖v∗‖2

)

×
∫

�

(∇v∗,∇ (u∗ − v∗)) dx −
∫

�

g(x)
(
u−γ∗ − v

−γ∗
)

(u∗ − v∗) dx,

= a‖u∗ − v∗‖2 + b
[
‖u∗‖4 − ‖u∗‖2

∫

�

(∇u∗,∇v∗) dx − ‖v∗‖2

×
∫

�

(∇v∗,∇v∗) dx + ‖v∗‖4
]

−
∫

�

g(x)
(
u−γ∗ − v

−γ∗
)

(u∗ − v∗) dx . (3.4)

Denote

J (u∗, v∗) = ‖u∗‖4 − ‖u∗‖2
∫

�

(∇u∗,∇v∗)dx − ‖v∗‖2
∫

�

(∇v∗,∇v∗)dx + ‖v∗‖4.

By the Hölder inequality, one has

J (u∗, v∗) ≥ ‖u∗‖4 − ‖u∗‖3‖v∗‖ − ‖v∗‖3‖u∗‖ + ‖v∗‖4

= (‖u∗‖ − ‖v∗‖)2
(
‖u∗‖2 + ‖u∗‖‖v∗‖ + ‖v∗‖2

)

≥ 0.

Since 0 < γ < 1, we have the following elementary inequality

(h−γ − l−γ )(h − l)) ≤ 0 ∀ h, l > 0.

Thus
∫

�

g(x)
(
u−γ∗ − v

−γ∗
)

(u∗ − v∗)dx ≤ 0.

Consequently, it follows from (3.4) that a‖u∗ − v∗‖2 ≤ 0. If a = 0, one has ‖u∗‖ =
‖v∗‖ and J (u∗, v∗) = 0. As a result,

J (u∗, v∗) = ‖u∗‖2
(
2‖u∗‖2 − 2

∫

�

(∇u∗,∇v∗)dx
)

= ‖u∗‖2‖u∗ − v∗‖2 = 0,

this implies ‖u∗ − v∗‖2 = 0.
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Thus, for every a ≥ 0, one has u∗ = v∗. Therefore u∗ is the unique solution of
problem (Pλ,2). This completes the proof of Theorem 1.3.

3.2 Proof of Theorem 1.4

In what follows and without loss of generality, let us assume that� = �1 and u∗ ≥ 0,
we can prove the following:

Proposition 3.3 If the set �1 given by (H2) is such that � = �1, then the solution
u∗ of problem (Pλ,2) is nonnegative.

Proof From Proposition 2.1, we have Iλ(u∗) = mλ < 0, so u∗ ≥ 0 and u∗ �≡ 0 in �.
We prove that u∗(x) > 0 for almost every x ∈ �. Since u∗(x) ≥ 0 for all x ∈ �, then
∀ φ ∈ H1

0 (�), φ ≥ 0, and t > 0, t ∈ R, such that u∗ + tφ ∈ H1
0 (�), we have the

following

0 ≤ lim inf
t→0

Iλ(u∗ + tφ) − Iλ(u∗)
t

= a
∫

�

(∇u∗,∇φ)dx + b‖u∗‖2
∫

�

(∇u∗,∇φ)dx

− lim sup
t→0+

1

1 − γ

∫

�

g(x)

(
(u∗ + tφ)1−γ − u1−γ∗

)

t
dx

− lim
t→0+ λ

∫

�

F(x, u∗ + tφ) − F(x, u∗)
t

dx . (3.5)

Obviously, one gets

∫

�

F(x, u∗ + tφ) − F(x, u∗)
t

dx =
∫

�

f (x, u∗ + tηφ)φdx,

∫

�

(
(u∗ + tφ)1−γ − u1−γ∗

)

t
dx = (1 − γ )

∫

�

(u∗ + tφ)−γ φdx,

where 0 < η < 1, θ < 1, and

f (x, u∗ + ηtφ)φ → f (x, u∗)φ, a.e. x ∈ �,

(u∗ + θ tφ)−γ φ → u−γ∗ φ, a.e. x ∈ �,

as t → 0+.

For any x ∈ �, put h(t) = g(x)
[u∗(x) + tφ(x)]1−γ − u1−γ∗ (x)

(1 − γ )t
. then h′(t) =

g(x)
u1−γ∗ (x) − [γ tφ(x) + u∗(x)][u∗(x) + tφ(x)]−γ

(1 − γ )t2
≤ 0, which implies that h is

non-increasing on (0,∞). Moreover, one has lim
t→0+ h(t) = g(x)u1−γ∗ (x)φ(x) for
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x ∈ �, which may be +∞ when u∗(x) = 0 and φ(x) > 0. Consequently, by the
Monotone Convergence Theorem (Beppo-Levi), we obtain

lim
t→0+

1

1 − γ

∫

�

g(x)

(
(u∗ + tφ)1−γ − u1−γ∗

)

t
dx =

∫

�

g(x)u−γ∗ φdx, (3.6)

which possibly equals to +∞.
Moreover, using Lebesgue’s dominated convergence theorem on the function f ,

one has:

lim
t→0+

∫

�

F(x, u∗ + tφ) − F(x, u∗)
t

dx =
∫

�

lim
t→0+ f (x, u∗ + tφ)φdx

=
∫

�

f (x, u∗)φdx . (3.7)

Then, from (3.5),(3.6) and (3.7), we obtain

∫

�

g(x)u−γ∗ φdx ≤
(
a + b‖u∗‖2

) ∫

�

(∇u∗,∇φ)dx −
∫

�

f (x, u∗)φdx, (3.8)

for all φ ∈ H1
0 (�) with φ > 0.

Thus, one has

∫

�

(∇u∗,∇φ)dx ≥ 0.

Since u∗ ≥ 0 and u∗ �≡ 0, by strong maximum principal, it follows that

u∗ > 0, ∀x ∈ �.

This completes the proof of Theorem 1.4. 
�

4 An Example

In this section, we give an example to illustrate our results. To this aim, we fix p ≥ 2

and a bounded domain� ⊂ R
3. Let g ∈ L

p∗
p∗+γ−1 (�) such that for almost every x ∈ �

we have g(x) > 0. We consider the following elliptic problem

(Pλ,p)

{
−

(
a + b

∫
�

|∇u|pdx
)
�pu = g(x)u−γ + λh(x)|u(x)|r−2u(x), in �,

u = 0, on ∂�,

where 0 < γ < 1 < r < p, a, b ≥ 0 such that a+ b > 0 and h be a positive bounded
function in �. It is easy to see that f (x, t) = h(x)|t |r−2t is positively homogeneous
of degree r−1, moreover, by a simple calculation we obtain F(x, t) = h(x)|t |r which
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is positively homogeneous of degree r . That is (H1) is satisfied. On the other hand,
since h > 0, it is easy to see that for all x ∈ � , we have F(x, t) = h(x)|t |r > 0, that
is (H2) is satisfied and �1 = �. Hence, all conclusions of Theorems 1.2, 1.3 and 1.4
hold true.
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