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Abstract Let � be a bounded convex Reinhardt domain in C
2 and φ ∈ C(�). We

show that the Hankel operator Hφ is compact if and only if φ is holomorphic along
every non-trivial analytic disc in the boundary of �.
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Let � be a domain inCn and let L2(�) and A2(�) denote square integrable functions
on� and the Bergman space on� (the set of square integrable holomorphic functions
on�), respectively. Since A2(�) is a closed subspace in L2(�) theBergmanprojection
P : L2(�) → A2(�), the orthogonal projection, exists. Furthermore, let Hφ f =
(I − P)(φ f ) for all f ∈ A2(�) and φ ∈ L∞(�). We note that Hφ is called the Hankel
operator with symbol φ. We refer the reader to [9,11] and references there in for more
information on these operators.

Hankel operators form an active research area in operator theory. Our interest lies in
their compactness properties in relation to the behavior of the symbols on the boundary
of the domain. On the unit disc D in C Axler [1] showed that, for f holomorphic on
the unit disc D, the Hankel operator H f is compact on A2(D) if and only if f is in
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the little Bloch space (that is, (1 − |z|2)| f ′(z)| → 0 as |z| → 1). This result has
been extended into higher dimensions by Peloso [8] in case the domain is smooth
bounded and strongly pseudoconvex. The same year, Li [7] characterized bounded
and compact Hankel operators on strongly pseudoconvex domains for symbols that
are square integrable only. Recently, Čučković and Şahutoğlu [2, Theorem 3] gave
a characterization for compactness of Hankel operators on smooth bounded convex
domains inC2 with symbols smooth up to the boundary.We note that even though they
stated their result for smooth domains and smooth symbols on the closure, examination
of the proof shows that C1-smoothness of the domain and the symbol is sufficient.
They proved the following theorem.

Theorem (Čučković–Şahutoğlu) Let � be a C1-smooth bounded convex domain in
C
2 and φ ∈ C1(�). Then the Hankel operator Hφ is compact on A2(�) if and only if

φ ◦ f is holomorphic for any holomorphic function f : D → b�.

In this paper we prove a similar result with symbols that are only continuous up to
the boundary. The first result in this direction was proven by Le in [6]. He showed that
for � = D

n , the polydisc in C
n , and φ ∈ C(�), the Hankel operator Hφ is compact

on A2(�) if and only if φ = f + g where f and g are continuous on �, f = 0 on
b�, and g is holomorphic on �. We prove the following theorem, generalizing Le’s
result in C2.

Theorem 1 Let� be a bounded convex Reinhardt domain inC2 and φ ∈ C(�). Then
the Hankel operator Hφ is compact on A2(�) if and only if φ ◦ f is holomorphic for
any holomorphic function f : D → b�.

We note that in the theorem above there is no regularity restriction on the domain,
but the class of domains is smaller than the one considered in [2]. Itwould be interesting
to know if the same result is still true on convex domains in C

n .

Proof of Theorem 1

Let us start by some notation. We denote

Dr = {z ∈ C : |z| < r}, Sr = {z ∈ C : |z| = r},
A(0, δ1, δ2) = {z ∈ C : δ1 < |z| < δ2}

for r, δ1, δ2 > 0.
In the next lemma we prove that any analytic disc �0 ⊂ b� is contained in a disc

that intersects the coordinate axis. This allows us to simplify the problem for convex
Reinhardt domains, since any disc in b� must be horizontal or vertical.

Lemma 1 Let � be a bounded convex Reinhardt domain in C
2 and � ⊂ b� be

a non-trivial analytic disc. Then there exists r > 0 and p ∈ C such that either
� ⊂ Dr × {p} ⊂ b� or � ⊂ {p} × Dr ⊂ b�.

Proof Suppose that F(D) = � is a non-trivial disc in b�where F(ξ) = ( f (ξ), g(ξ)).
Then either f ′g′ ≡ 0 or there exists ξ0 ∈ D such that f ′(ξ0)g′(ξ0) 	= 0. In case
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f ′g′ ≡ 0, by identity principle, we conclude that either f ′ ≡ 0 or g′ ≡ 0. That is,
either f or g is constant.

On the other hand, if f ′(ξ0)g′(ξ0) 	= 0 then the disc� is a smooth complex curve in
a neighborhood F(ξ0). Furthermore, the fact that� is Reinhardt domain inC2 implies
that b� is smooth locally in a neighborhood of F(ξ0). This can be seen as follows:
Without loss of generality we assume that f (ξ0) 	= 0. Let ξ0 = x0 + iy0 and

G(x, y, θ) = (eiθ f (x + iy), g(x + iy)).

Thenone can show that the image ofG is a smooth surface inC2 nearG(ξ0, 0) = F(ξ0)

as the Jacobian of G is of rank 3 at (ξ0, 0). Since b� is a 3 dimensional surface we
conclude that the boundary of � is smooth near near F(ξ0) as it can be seen as the
image of G(x, y, θ). Then we can apply [3, Lemma 2] (since b� is smooth near
F(ξ0)) and use the identity principle to conclude that either f or g is constant. We
reach a contradiction with the assumption that f (ξ0) 	= 0. Therefore, either � is flat
and horizontal (g is constant) or flat and vertical ( f is constant).

For the rest of the proof, without loss of generality, we assume that � is horizontal.
There exists p ∈ C, δ1 > 0, and δ2 > 0 such that

A(0, δ1, δ2) × {p} ⊂ b�.

The assumption that � is convex and Reinhardt implies that � is complete. So,

{(z, w) ∈ C
2 : |z| ≤ δ2, |w| ≤ |p|} ⊂ �. (1)

Next, we will show that {(z, w) ∈ C
2 : |z| ≤ δ1, |w| > |p|} ∩ � = ∅. Suppose that

there exists (z0, w0) ∈ {(z, w) ∈ C : |z| ≤ δ1, |w| > |p|} ∩ � and let z ∈ C such that
|z| = δ2. We choose λ > 0 small enough such that (|z| − λ, |p| − λ) ∈ � and the line
segment joining (|z| − λ, |p| − λ) with (z0, w0), called L1, is such that

L1 ∩ (A(0, δ1, δ2) × {|p|eiθ : 0 ≤ θ ≤ 2π}) 	= ∅.

However, since A(0, δ1, δ2)×{|p|eiθ : 0 ≤ θ ≤ 2π} ⊂ b�,we conclude L1∩b� 	= ∅.
Since the initial and terminal points of L1 lie in � and � is convex, we arrive at a
contradiction. This shows that {(z, w) ∈ C

2 : |z| ≤ δ1, |w| > |p|} ∩ � = ∅.
Combining this with (1) we conclude that {(z, w) ∈ C

2 : |z| ≤ δ2, |w| = |p|} ⊂ b�.

�
We take this opportunity to correct a typo in [3, Lemma 2]. In the statement of the

lemma, the word “complete” should be “convex”. The lemma is proven for the correct
domains: piecewise smooth bounded convex Reinhardt domains in C2.

Remark 1 Lemma 1 implies that if � ⊂ C
2 is a bounded convex Reinhardt domain,

then any horizontal analytic disc in b� is contained in Dr × Sq for some r > 0 and
q > 0. Likewise, any vertical analytic disc in b� is contained in Sq ′ × Dr ′ for some
r ′ > 0 and q ′ > 0.
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|w|

|z|

As in [3] we represent a complete Reinhardt domain� ⊂ C
2 as union of horizontal

slices. In other words, let H� be an open disc in C such that

� =
⋃

w∈H�

�w × {w} (2)

where �w = {z ∈ C : |z| < rw} is the slice of � at w level. That is, (z, w) ∈ � if and
only if |z| < rw.

Lemma 2 ([3]) Let φ ∈ C(C) and f : C → C be an entire function. Then

‖HDr
φ f ‖L2(Dr )

→ ‖HDr0
φ f ‖L2(Dr0 )

as r → r0.

Lemma 1, Lemma 2, and [3, Lemma 3] imply the following corollary.

Corollary 1 Let � be a bounded convex Reinhardt domain in C
2, φ ∈ C(C), and

�w0 × {w0} be a non-trivial analytic disc in b� where w0 ∈ bH�. Then

lim
H��w→w0

‖H�w

φ (1)‖L2(�w) = ‖H�w0
φ (1)‖L2(�w0 ).

Lemma 3 Let � be a bounded convex Reinhardt domain in C
2 and φ ∈ C(�).

Furthermore, let w0 ∈ bH� and φ0(z, w) = φ(z, w0). Assume that Hφ is compact
on A2(�) and {g j } is a bounded sequence in A2(H�) such that g j → 0 uniformly on
H�\V as j → ∞ for any open set V containing w0. Then Hφ0g j → 0 as j → ∞.

Proof We note that g j → 0 weakly in A2(�) as j → 0. Hence, by compactness of
Hφ we have ‖Hφg j‖L2(�) → 0 as j → ∞. Now, we write

‖Hφ0g j‖L2(�) ≤ ‖Hφ−φ0g j‖L2(�) + ‖Hφg j‖L2(�).

So, we just consider the first term on the right hand side of the above inequality. Since
{g j } is a bounded sequence, there exists M > 0 such that ‖g j‖2L2(�)

≤ M for all

j ∈ N. Furthermore, since φ − φ0 is continuous on � and φ − φ0 = 0 on �w0 for all
ε > 0, there exists δ > 0 such that

sup{|φ(z, w) − φ0(z, w)|2 : (z, w) ∈ �, |w − w0| ≤ δ} <
ε

2M
.
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We note that, below, V (�) denotes the volume of�with respect to Lebesguemeasure.

‖Hφ−φ0g j‖2L2(�)
≤ ‖(φ − φ0)g j‖2L2({(z,w)∈�:|w−w0|≤δ})

+ V (�)‖(φ − φ0)g j‖2L∞({(z,w)∈�:|w−w0|>δ})
<

ε

2
+ V (�)‖(φ − φ0)g j‖2L∞({(z,w)∈�:|w−w0|>δ}).

Since (φ − φ0) ∈ C(�) and g j → 0 uniformly on {(z, w) ∈ � : |w − w0| > δ} as
j → ∞, we conclude that for any δ, ε > 0 there exists j0 ∈ N such that

V (�)‖(φ − φ0)g j‖2L∞({(z,w)∈�:|w−w0|>δ}) <
ε

2

for j ≥ j0. Therefore,

‖Hφ−φ0g j‖2L2(�)
< ε

for j ≥ j0 and the proof of the lemma is complete. �
Before we state the next lemma some explanation about the notation is in order.

We think of the operators as defined on spaces on � unless the domain is indicated
as a superscript. For instance, for an open subset V of � the operators HV

φ and PV

are defined on A2(V ) and L2(V ), respectively; whereas, Hφ and P are defined on
A2(�) and L2(�), respectively. Furthermore, in the next two lemmas, we think of φ

as a function of z (or as a function of (z, w) but independent of w). For instance, φ is
a function of z in H�w

φ and a function (z, w) (but independent of w) in Hφ .
The following lemma is a special case of equation (3) in [3, pg. 637] for φ = ψ0 =

φ0 and f1 = f2 ≡ 1.

Lemma 4 ([3]) Let � be a bounded convex Reinhardt domain in C
2 and φ ∈ C(�)

such that φ(z, w) = φ(z, 0) for (z, w) ∈ �. Then

‖Hφg‖2L2(�)
=

∫

H�

|g(w)|2
∫

�w

|H�w

φ (1)(z)|2dV (z)dV (w)

+
∫

�

(Hφg)(z, w)P�w(φ)(z)g(w)dV (z, w)

for g ∈ A2(H�)

Similarly the following lemma is included in [3, pg 640] again for φ = ψ0 = φ0
and f1 = f2 ≡ 1.

Lemma 5 ([3]) Let � be a bounded convex Reinhardt domain in C
2 and φ ∈ C(�)

such that φ(z, w) = φ(z, 0) for (z, w) ∈ �. Assume that {g j } is a bounded sequence
in A2(H�) such that g j → 0 uniformly on H�\V for any open set V containing
w0 ∈ H�. Then

∫

�

(Hφg j )(z, w)P�w(φ)(z)g j (w)dV (w, z) → 0 as j → ∞.



370 T. G. Clos, S. Şahutoğlu

The next lemma allows us to approximate the symbol with smooth appropriate
symbols. We define �� ⊂ b� to be the closure of the union of all non-trivial analytic
discs in b�. That is,

�� =
⋃

{ f (D) : f : D → b� is non-constant holomorphic mapping}. (3)

Lemma 6 Let � be a bounded convex Reinhardt domain inC2 that is not the product
of two discs. Assume that �� 	= ∅ and φ ∈ C(�) such that φ ◦ f is holomorphic for
any holomorphic function f : D → b�. Then there exists {ψn} ⊂ C∞(�) such that

i. ψn ◦ f is holomorphic for all n and for any holomorphic function f : D → b�,
ii. ‖ψn − φ‖L∞(��) → 0 as n → ∞.

Proof Let �1 = Dr1 × Ss1 be the family of horizontal analytic discs in b� as outlined
in Lemma 1. Then for 0 < r < 1 we define

φr (z, w) = φ(r z, w).

Since φ ∈ C(�), one can show that

φr → φ uniformly on � as r → 1−.

We consider φ, restricted to �1, to be a function of (z, θ) for z ∈ Dr1 and peri-
odic in θ ∈ R with period 2π . By assumption, the function φr (., θ) is holomorphic
on a neighborhood of Dr1 for every θ ∈ R. Let γ ∈ C∞

0 ((−1, 1)) be such that

γ ≥ 0 and
∫ 1
−1 γ (θ)dθ = 1. Similarly, let χ ∈ C∞

0 (Dr1) be such that χ ≥ 0 and∫
Dr1

χ(z)dV (z) = 1. Now, we define γδ(θ) = δ−1γ (θ/δ) and χε(z) = ε−2χ(z/ε).

Notice that {γδ}δ>0 and {χε}ε>0 are approximate identities.We define the convolution

Cφ
r, ε(z, θ) =

∫ π

−π

∫

Dr1

φ(r(z − α), (θ − θ ′))χε(α)γε(θ
′)dV (α)dθ ′.

One can show that for ε > 0 sufficiently small (depending on r ) the functionCφ
r,ε(., θ)

is holomorphic on a neighborhood of Dr1 for every θ ∈ R. Also the assumption that
φ ∈ C(�) implies that

Cφ
r, ε → φr uniformly on �1 as ε → 0+

for all 0 < r < 1. Therefore, the functions Cφ
r, ε are holomorphic “along” horizontal

analytic discs in b� for small ε > 0. Now, we extend Cφ
r, ε as a C∞-smooth function

onto � and call this extension C̃φ
r, ε.

If b� contains non-trivial vertical analytic discs �2 then we can use a similar
construction on �2. That is, using the regularization procedure outlined above in this
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proof, we can construct a collection of functions B̃φ
r,ε ∈ C∞(�) such that B̃φ

r, ε are
holomorphic “along” any vertical analytic disc in �2 for small ε > 0 and

B̃φ
r,ε → φr uniformly on �2 as ε → 0+

for all 0 < r < 1. Since � is not the product of discs, (hence �1 ∩ �2 = ∅), there
exists open sets F and G such that �1 ⊂ F , �2 ⊂ G, and F ∩ G = ∅. Then we
choose χF , χG ∈ C∞

0 (C2) such that 0 ≤ χG , χF ≤ 1, χG ≡ 1 on G, χF ≡ 1 on F ,
and χF + χG ≡ 1 on �.

We define
φr, ε = χFC̃

φ
r, ε + χG B̃φ

r, ε. (4)

By construction, χF ≡ 0 on G and χG ≡ 0 on F . Furthermore, C̃φ
r, ε is holomorphic

along �1, and B̃φ
r is holomorphic along �2 for small ε > 0. For n = 1, 2, . . . we

choose rn = (n − 1)/n and εn → 0+ so that

i. φrn , εn ◦ h is holomorphic for all n and every holomorphic h : D → b�,
ii. φrn , εn → φ uniformly on �� as n → ∞.

Finally, we finish the proof by defining ψn = φrn , εn . �
Let X and Y be two normed linear spaces and T : X → Y be a bounded linear

operator. We define the essential norm of T , denoted by ‖T ‖e, as

‖T ‖e = inf{‖T − K‖ : K : X → Y is a compact operator}

where ‖ · ‖ denotes the operator norm.

Lemma 7 Let � be a bounded convex domain in C
n and �� 	= ∅ be defined as in

(3). Assume that {φn} ⊂ C(�) is a sequence such that φn → 0 uniformly on �� as
n → ∞. Then limn→∞ ‖Hφn‖e = 0.

Proof Let ε > 0. Then there exists N such that sup{|φn(z, w)| : (z, w) ∈ ��} < ε

for n ≥ N . For n ≥ N we choose an open neighborhood Un, ε of �� such that
|φn(z, w)| < ε for (z, w) ∈ Un, ε. Furthermore, we choose a smooth cut-off function
χn, ε ∈ C∞

0 (Un, ε) such that 0 ≤ χn, ε ≤ 1 and χn, ε = 1 on a neighborhood of ��.
Let us define

φ1, n, ε = χn, εφn and φ2, n, ε = (1 − χn, ε)φn .

Thenφn = φ1, n, ε+φ2, n, ε and |φ1, n, ε| < ε on�whileφ2, n, ε = 0 on a neighborhood
of �� in �. Furthermore,

‖Hφ1, n, ε‖e ≤ ‖Hφ1, n, ε‖ ≤ sup{|φ1, n, ε(z, w)| : (z, w) ∈ �} < ε.

Next we will show that Hφ2, n, ε is compact. Since φ2, n, ε = 0 on a neighborhood
of �� in �, using convolution with approximate identity, one can choose {ψk, n, ε} ⊂
C∞(�) such that ψk, n, ε = 0 on a neighborhood of �� in � for all k and ψk, n, ε →
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φ2, n, ε uniformly on� as k → ∞.We choose finitelymany open ballsUj = B(p j , r j )
for j = 1, . . . , N such that �� ⊂ ∪N

j=1Uj , p j ∈ �� , and ψk, n, ε = 0 on Uj for

all j . Then we cover b�\ ∪N
j=1 Uj by finitely many open balls Uj = B(p j , r j ) for

j = N + 1, . . . , M such that p j ∈ b� and Uj ∩ �� = ∅ for j = N + 1, . . . , M .
Below RV denotes the restriction operator onto V ⊂ �. That is, RV f = f |V

for f ∈ A2(�). We note that Uj ∩ � is a bounded convex domain with no analytic
disc in the boundary for all j = N + 1, . . . , M . Then [4, Theorem 1.1] (see also
[10, Theorem 4.26]) implies that the ∂-Neumann operator on Uj ∩ � is compact (for
j = N +1, . . . , M) and [10, Proposition 4.1], in turn, implies that the Hankel operator

H
Uj∩�

RU j∩�(ψk, n, ε)
RUj∩� is compact for j = N + 1, . . . , M .

Therefore, we have chosen finitely many balls Uj = B(p j , r j ) for j = 1, . . . , M
such that

i. p j ∈ b� and b� ⊂ ∪M
j=1Uj ,

ii. the operator H
Uj∩�

RU j∩�(ψk, n, ε)
RUj∩� = 0 for p j ∈ ��,

iii. the operator H
Uj∩�

RU j∩�(ψk, n, ε)
RUj∩� is compact for p j /∈ ��.

So, the localHankel operators H
Uj∩�

RU j∩�(ψk, n, ε)
RUj∩� are compact for all j = 1, . . . , M .

Now we use [2, Proposition 1, (ii)] to conclude that Hψk, n, ε
is compact. Hence Hφ2, n, ε

is compact and ‖Hφn‖e ≤ ε for n ≥ N . Therefore, limn→∞ ‖Hφn‖e = 0. �

We will now show one implication of the main theorem on non-product domains
if the symbol is smooth up to the boundary.

Lemma 8 Let� ⊂ C
2 be a bounded convex Reinhardt domain that is not the product

of two discs and φ ∈ C∞(�). Assume that φ ◦ f is holomorphic for any holomorphic
function f : D → b�. Then Hφ is compact on A2(�).

Proof If b� does not contain any non-trivial analytic disc the ∂-Neumann operator
is compact [10, Theorem 4.26] (see also [4, Theorem 1.1]). Furthermore, if the ∂-
Neumann operator is compact then Hφ is compact for all φ ∈ C(�) [10, Proposition
4.1]. So if b� does not contain any non-trivial analytic disc, there is nothing to prove
as the operator Hφ is compact. Lemma 1 implies that the analytic discs in b� are flat
and horizontal or flat and vertical. We assume that there are non-trivial vertical and
horizontal analytic discs in b� as the proof is even simpler if there are no vertical
or horizontal discs. Let �1 and �2 be the horizontal and the vertical discs in b�. So
there exists 0 < r1 < s2, 0 < r2 < s1 (since � is not product of two discs) such that

�1 = Dr1 × Ss1 and �2 = Ss2 × Dr2 .

We note that �� = �1 ∪ �2 and �1 ∩ �2 = ∅. Let us define

φ1(z, w) = φ(z, w) − (|w|2 − s21 )
1

w

∂φ(z, w)

∂w
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for w 	= 0. We note that φ1 is a C∞-smooth function on � for w 	= 0 and φ1 = φ on
�1. Furthermore, using the fact that φ(., w) is holomorphic on Dr1 for |w| = s1, one
can verify that ∂φ1 = 0 on �1. Similarly we define

φ2(z, w) = φ(z, w) − (|z|2 − s22 )
1

z

∂φ(z, w)

∂z

and one can verify that φ2 = φ and ∂φ2 = 0 on �2.
We choose χ1, χ2 ∈ C∞(�) such that

i. χ1 ≡ 1 on a neighborhood of�1 and χ1 ≡ 0 on a neighborhood of�2∪{(z, w) ∈
� : |w| = 0},

ii. χ2 ≡ 1 on a neighborhood of�2 and χ2 ≡ 0 on a neighborhood of�1∪{(z, w) ∈
� : |z| = 0}.

Then we define

ψ = χ1φ1 + χ2φ2 ∈ C∞(�).

We note that ψ = φ and ∂ψ = 0 on ��. Lemma 7 implies that Hφ−ψ is compact
on A2(�). To finish the proof we only need to show that Hψ is compact. This can be
done exactly in the same manner as the proof of H�

β̃
is compact in [2, pp 3740]. �

Proposition 1 Let f ∈ C(D2) such that f (eiθ , .) and f (., eiθ ) are holomorphic on
D for each fixed θ . Then H f is compact on A2(D2).

Proof Let T2 = {(z, w) ∈ C
2 : |z| = |w| = 1} be the distinguished boundary and

FN (z, w) =
∑

|m|,| j |≤N

(
1 − |m|

N + 1

) (
1 − | j |

N + 1

)
amj ( f )z

mw j

where

amj ( f ) =
∫

T2
f (ζ1, ζ2)ζ

−m
1 ζ

− j
2 dσ(ζ )

and σ is the normalized Lebesgue measure onT2.We let SN ,2 be the N -th Fejér kernel
on T

2. As in [5, Chapter I, Section 9], it is just the product of the N -th Fejér kernels
on the circle. Since f ∈ C(T2), and the convolution SN ,2 ∗ f = FN , Fejér’s Theorem
on Cesàro summability (see, for example, [5, Section 9.2, pg 64] for homogeneous
Banach spaces) implies that

‖FN − f ‖L∞(T2) → 0

as N → ∞.
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Now we claim that amj (P) = 0 for any holomorphic polynomial P and m ≤ −1
or j ≤ −1. Let

P(z, w) =
n∑

l,k=0

blk z
lwk

and m ≤ −1 or j ≤ −1. Then

amj (P) =
n∑

l,k=0

blk〈ζ l1ζ k
2 , ζ1

mζ2
j 〉L2(T2)

= 1

(2π)2

∫ 2π

0

∫ 2π

0

n∑

l,k=0

blke
iθ1l eiθ2ke−iθ1me−iθ2 j dθ1dθ2

= 0. (5)

Next we will show that amj ( f ) = 0 for m ≤ −1 or j ≤ −1. Without loss
of generality, we suppose that j ≤ −1. Since f (eiθ1 , .) is holomorphic on D, using
Mergelyan’s Theorem, there exists a sequence of holomorphic polynomials {Pn, θ1 }n∈N
converging to f uniformly on D as n → ∞. Let us define Pn, θ1,r (ξ) = Pn,θ1(rξ) and
fr (z, w) = f (z, rw) for 0 < r < 1. Then Pn,θ1,r → fr (eiθ1 , .) uniformly on D as
n → ∞. As we have computed above in (5), one can show that amj (Pn, θ1, r ) = 0 for
allm ∈ Z, n ∈ N, and 0 < r < 1. So by taking limits as n → ∞we have amj ( fr ) = 0
for all 0 < r < 1. Finally taking the limit as r → 1− we conclude that amj ( f ) = 0
for j ≤ −1. The proof for m ≤ −1 is similar. Hence we have shown that amj ( f ) = 0
for j ≤ −1 or m ≤ −1.

We define

GN (z, w) =
∑

0≤m, j≤N

(
1 − m

N + 1

) (
1 − j

N + 1

)
amj ( f )z

mw j .

Since we have shown GN ≡ FN on T2 , we have ‖GN − f ‖L∞(T2) → 0 as N → ∞.
Since (GN − f )(eiθ , w) is holomorphic in w and (GN − f )(z, eiθ ) is holomorphic
in z, using the Maximum Modulus Principle for holomorphic functions, we have

‖GN − f ‖L∞(bD2) ≤ ‖GN − f ‖L∞(T2).

So ‖GN − f ‖L∞(b�) → 0 as N → ∞. Then Lemma 7 implies that ‖HGN− f ‖e → 0
as N → ∞. Furthermore, ‖H f ‖e = ‖HGn− f ‖e as HGN = 0. Therefore, we conclude
that ‖H f ‖e = 0. That is, H f is compact on A2(D2). �
Remark 2 Even though we stated the previous proposition onD2 the same proof, with
trivial modifications, works on products of two discs.

Now we are ready for the proof of the main result.
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Proof of Theorem 1 First we will prove the sufficiency. Assume that Hφ is compact
on A2(�). If there is no non-trivial analytic disc in the boundary of � then there is
nothing to prove. So assume that� = f (D) is a non-trivial disc in b� such thatφ◦ f is
not holomorphic. Without loss of generality we may assume that� is horizontal as the
proof for vertical discs is similar. Let us fix (z0, w0) ∈ � and define α j = ( j − 1)/j .
Then one can check that ‖(w − w0)

−α j ‖L2(H) → ∞ as j → ∞. Let us define

g j (w) = a j

(w − w0)
α j

where a j = 1/‖(w − w0)
−α j ‖L2(H�). Then ‖g j‖L2(H�) = 1 for all j . Furthermore,

g j → 0 uniformly on any compact subset in � as j → ∞. Without loss of generality,
we assume that � is the largest horizontal disc in b� passing through (z0, w0) and
φ0 be a continuous function on C

2 such that φ0(z, w) = φ(z, w0) for all (z, w) ∈ �.
That is, φ0 is the extension of φ|� toC in z. Since φ0 is not holomorphic (as a function
of z) on � we have H�

φ0
(1) 	= 0. That is, ‖H�

φ0
(1)‖L2(�) > 0. Then by Corollary 1,

there exists β > 0 and δ > 0 such that if w ∈ H� and |w − w0| < δ, then

‖H�w

φ0
(1)‖L2(�w) > β.

Let us define K = {w ∈ H� : |w − w0| ≤ δ}. Then
∫

H�

|g j (w)|2
∫

�w

|H�w

φ0
(1)(z)|2dV (z)dV (w)

≥
∫

K
|g j (w)|2

∫

�w

|H�w

φ0
(1)(z)|2dV (z)dV (w)

≥ β2‖g j‖2L2(K )
.

However, since ‖g j‖2L2(H�)
= 1 for all j and g j → 0 uniformly on any compact set

away from w0 we conclude that ‖g j‖2L2(K )
≥ 1/2 for large j . Therefore, for large j

we have

∫

H�

|g j (w)|2
∫

�w

|H�w

φ0
(1)(z)|2dV (z)dV (w) ≥ β2

2
> 0.

Then Lemma 4 and Lemma 5 imply that ‖Hφ0g j‖2L2(�)
does not converge to 0 as

j → ∞. This contradicts Lemma 3 as we have assumed that Hφ is compact.
Finally we will prove the necessity. We assume φ ∈ C(�) is such that φ ◦ f is

holomorphic for any holomorphic function f : D → b�. Furthermore, we assume
that � is not the product of two discs as that case is covered in Proposition 1. Lemma
6 implies that there exists a family of functions {ψn} ⊂ C∞(�) such that

i. ψn ◦ f is holomorphic for any n and any holomorphic f : D → b�,
ii. ψn → φ uniformly on �� as n → ∞.
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Lemma 8 implies that Hψn is compact and Lemma 7 implies that ‖Hφ−ψn‖e → 0 as
n → ∞. Therefore,

‖Hφ‖e = ‖Hφ‖e − ‖Hψn‖e ≤ ‖Hφ−ψn‖e.

This implies ‖Hφ‖e = 0, proving that Hφ is compact on A2(�). �
Acknowledgements We would like to thank Trieu Le and Yunus Zeytunucu for valuable comments on a
preliminary version of this manuscript.
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