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1 Introduction

For n ≥ 2, let B be the unit ball inRn and S be the unit sphere. We denote the space of
complex-valued harmonic functions on B by h(B). The well-known harmonic Bloch
space b is the space of all f ∈ h(B) such that

sup
x∈B

(1 − |x |2)|∇ f (x)| < ∞.

The space b is a member of the one-parameter family of weighted harmonic Bloch
spaces bα, α ∈ R. The aim of this work is to investigate the properties of this family in
a detailed, systematic and unified way. The holomorphic counterpart of this family of
spaces and the related little Bloch and Lipschitz spaces have been studied in [13,26].

To define bα we need to introducemore definitions.We denote by L∞ the Lebesgue
class of essentially bounded functions on B, and for α ∈ R we define

L∞
α = {ϕ : (1 − |x |2)αϕ(x) ∈ L∞},

so that L∞
0 = L∞. The norm on L∞

α is

‖ϕ‖L∞
α

= ‖(1 − |x |2)αϕ(x)‖L∞ .

We will also use the following subspaces of L∞
α :

Cα = {ϕ ∈ L∞
α : (1 − |x |2)αϕ(x) is continuous on B},

Cα0 = {ϕ ∈ Cα : (1 − |x |2)αϕ(x) = 0 on ∂B}.

Definition 1.1 For α > 0, the weighted harmonic Bloch space bα is h(B) ∩ L∞
α and

the weighted harmonic little Bloch space bα0 is h(B) ∩ Cα0.

Obviously (for α > 0), bα0 = { f ∈ bα : lim|x |→1−(1 − |x |2)α f (x) = 0}. The
norm on bα (and bα0) is the norm inherited from L∞

α .
To extend the above definition to the range α ≤ 0, we need to consider growth

rates of derivatives of f ∈ h(B). For this we will employ three different types of
differentiation. For the usual partial derivatives we will write

∂m f = ∂ |m| f
∂xm1

1 · · · ∂xmn
n

,

where m = (m1, . . . ,mn) is a multi-index, m1, . . . ,mn are nonnegative integers and
|m| = m1 + · · · + mn .

It is well-known that f ∈ h(B) has a homogeneous expansion f = ∑∞
k=0 fk , where

fk is a homogeneous harmonic polynomial of degree k and the series absolutely and
uniformly converges on compact subsets of B (see [2]). The radial derivative R f of
f ∈ h(B) is defined as
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R f (x) = x · ∇ f (x) =
∞∑

k=0

k fk(x), (1)

and

RN f (x) = RRN−1 f (x) =
∞∑

k=0

kN fk(x), N = 2, 3, . . . .

In addition to partial and radial derivatives we will extensively use certain radial
fractional differential operators Dt

s : h(B) → h(B), (s, t ∈ R) introduced in [7] and
[8]. These operators are defined in terms of reproducing kernels of harmonicBergman–
Besov spaces and are more convenient than partial or radial derivatives in studying
harmonic function spaces. We will review properties of Dt

s in Sect. 2.3. For now, we
only note that t determines the order of the differentiation and s plays a minor role.

The following theorem will enable us to define weighted harmonic Bloch space bα

for the whole range α ∈ R. We denote N = {0, 1, 2, . . .} with 0 included.

Theorem 1.2 Let α ∈ R and f ∈ h(B). The following are equivalent:

(a) For every N ∈ N with α + N > 0, we have (1 − |x |2)N ∂m f ∈ L∞
α for every

multi-index m with |m| = N.
(b) There exists an N ∈ N with α+N > 0 such that (1−|x |2)N ∂m f ∈ L∞

α for every
multi-index m with |m| = N.

(c) For every N ∈ N with α + N > 0, we have (1 − |x |2)NRN f ∈ L∞
α .

(d) There exists an N ∈ N with α + N > 0 such that (1 − |x |2)NRN f ∈ L∞
α .

(e) For every s, t ∈ R with α + t > 0, we have (1 − |x |2)t Dt
s f ∈ L∞

α .
(f) There exist s, t ∈ R with α + t > 0 such that (1 − |x |2)t Dt

s f ∈ L∞
α .

Moreover, if α + N > 0 and α + t > 0, then

‖(1 − |x |2)t Dt
s f ‖L∞

α
∼ | f (0)| + ‖(1 − |x |2)NRN f ‖L∞

α

∼
∑

|m|≤N−1

|(∂m f )(0)| +
∑

|m|=N

‖(1 − |x |2)N ∂m f ‖L∞
α

. (2)

A corresponding theorem holds when L∞
α is replaced by Cα0.

Theorem 1.3 Let α ∈ R and f ∈ h(B). The following are equivalent:

(a) For every N ∈ N with α + N > 0, we have (1 − |x |2)N ∂m f ∈ Cα0 for every
multi-index m with |m| = N.

(b) There exists an N ∈ N with α + N > 0 such that (1−|x |2)N ∂m f ∈ Cα0 for every
multi-index m with |m| = N.

(c) For every N ∈ N with α + N > 0, we have (1 − |x |2)NRN f ∈ Cα0.
(d) There exists an N ∈ N with α + N > 0 such that (1 − |x |2)NRN f ∈ Cα0.
(e) For every s, t ∈ R with α + t > 0, we have (1 − |x |2)t Dt

s f ∈ Cα0.
(f) There exist s, t ∈ R with α + t > 0 such that (1 − |x |2)t Dt

s f ∈ Cα0.
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For α ≥ 0, equivalence of parts (a)–(d) of Theorems 1.2 and 1.3 are known and the
main part of the above theorems is that they also hold for α < 0. For α = 0, see [4,
Theorem 1.4] for the equivalence of parts (a)–(d) and an additional characterization
with a different type of derivative. Forα > 0, see [18, Theorem1.1] for the equivalence
of parts (a) and (b) for the choices of N = 0 and N = 1.

Definition 1.4 Let α ∈ R. The weighted harmonic Bloch space bα (respectively
weighted harmonic little Bloch space bα0) consists of those f ∈ h(B) such that
any one of the equivalent conditions of Theorem 1.2 (respectively Theorem 1.3) is
satisfied.

If α > 0 taking N = 0 in parts (b) of the above theorems shows that Definition 1.4
is consistent with Definition 1.1. Also, taking N = 1 in parts (b) of the above theorems
shows that b0 = b, the usual harmonic Bloch space and b00 is the usual harmonic little
Bloch space: b00 = { f ∈ h(B) : lim|x |→1−(1 − |x |2)|∇ f (x)| = 0}.

We mention a few immediate consequences of Definition 1.4. First, for every α ∈
R, we have bα0 ⊂ bα . Also, if f ∈ h(B), then f ∈ bα0; in particular every bα0
(and bα) contains harmonic polynomials and therefore is non-trivial. It is also clear
that

bα ⊂ bβ0 ⊂ bβ (for α < β). (3)

The above inclusions are in fact strict (see Remark 4.9 below) and therefore all these
spaces are different.

When α > 0 we have a standard norm on bα , but when α ≤ 0 we do not. For
α ∈ R if we pick any N ∈ N with α + N > 0 or pick s, t ∈ R with α + t > 0, each
term in (2) is a norm on bα . Since all these norms are equivalent, there is no essential
difference in choosing any one of them; and we will denote any one of these norms
by ‖ · ‖bα without indicating the dependence on N or s, t .

For s, t ∈ R and f ∈ h(B) we will write

I ts f (x) := (1 − |x |2)t Dt
s f (x).

It is clear from Theorem 1.2 that given α ∈ R, if t is chosen to satisfy α + t > 0, then
f ∈ bα if and only if I ts f ∈ L∞

α and ‖I ts f ‖L∞
α
is a norm on bα .

Our next aim is towrite bα (respectively bα0) as quotient spaces of L∞
α (respectively

Cα or Cα0) by using Bergman–Besov projections and obtain integral representations
for elements of bα . For this we need more definitions.

Let ν be the volume measure on B normalized so that ν(B) = 1. For q ∈ R we
define the weighted volume measures

dνq(x) = 1

Vq
(1 − |x |2)qdν(x).

These measures are finite only when q > −1 and in this case we choose Vq so that
νq(B) = 1. For q ≤ −1, we set Vq = 1. For 1 ≤ p < ∞, we denote the Lebesgue
classes with respect to νq by L p

q .
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For 1 ≤ p < ∞ and q > −1 the weighted harmonic Bergman space bp
q is

h(B) ∩ L p
q . It is well-known that the space b2q is a reproducing kernel Hilbert space

with kernel Rq(x, y). In [7,8] the spaces b
p
q and the reproducing kernels Rq(x, y) are

extended to the whole range q ∈ R. We will give a review of these in Sect. 2.2.

Definition 1.5 For s ∈ R, the harmonic Bergman–Besov projection is

Qsϕ(x) =
∫

B

Rs(x, y)ϕ(y)dνs(y),

for suitable ϕ.

Theorem 1.6 Let α ∈ R. The operator Qs : L∞
α → bα is bounded if and only if

s > α − 1. (4)

For an s satisfying (4), if t satisfies

α + t > 0, (5)

then for f ∈ bα ,

Qs I
t
s f = Vs+t

Vs
f, (6)

and therefore Qs is onto. Also, Qs : Cα → bα0 or Qs : Cα0 → bα0 is bounded (and
onto) if and only if (4) holds.

By (6) we have the following integral representation: For f ∈ bα , if (4) and (5)
holds, then

f (x) = Vs
Vs+t

∫

B

Rs(x, y)I
t
s f (y) dνs(y) =

∫

B

Rs(x, y)D
t
s f (y) dνs+t (y). (7)

This representation is very fruitful and we will use it many times in Sects. 5 and 6.
The case α = 0 of Theorem 1.6 is proved earlier in [4,11] and [14] where the

authors use different differential operators than our Dt
s . In [18] a different integral

representation valid for α > −1 is given. We note that Theorem 1.6 covers all α ∈
R, gives a necessary and sufficient condition for the boundedness of the projection
operator Qs and provides a simple reproducing formula.

For the holomorphic analogue of Theorem 1.6 for the full range −∞ < α < ∞,
see [13,26].

This paper is organized as follows. In Sect. 2 we collect some known facts which
we will need in the sequel. In Sect. 3 we will define a class of integral operators related
to harmonic Bergman projection and determine when they are bounded on L∞

α and
Cα0. In Sect. 4 we will prove Theorems 1.2 and 1.3 and derive basic properties of the
spaces bα and bα0. We will also determine when Rq(x, ζ ), ζ ∈ S belongs to bα (or
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bα0) and show that all bα and bα0 are distinct. In Sect. 5 we will prove Theorem 1.6
and as a consequence we will show that the dual of Bergman–Besov space b1q (for
every q ∈ R) is bα and its pre-dual is bα0 under suitable pairings.

Finally in Sect. 6 we will solve the Gleason problem and obtain atomic decom-
position for all α ∈ R. We will also give an oscillatory characterization of bα for
α > −1.

2 Preliminaries

For two positive expressions X and Y we will write X ∼ Y if X/Y is bounded above
and below by some positive constants. We will denote these constants whose exact
values are inessential by a generic upper case C . We will also write X � Y to mean
X ≤ CY .

The Pochhammer symbol (a)b is defined by

(a)b = �(a + b)

�(a)

when a and a+ b are off the pole set −N of the gamma function. By Stirling formula

(a)c

(b)c
∼ ca−b (c → ∞). (8)

For x ∈ B, y ∈ B, we will use the notation

[x, y] =
√

1 − 2x · y + |x |2|y|2.

It is easy to see that when x, y are nonzero

[x, y] =
∣
∣
∣|y|x − y

|y|
∣
∣
∣ =

∣
∣
∣|x |y − x

|x |
∣
∣
∣,

and when y = ζ ∈ S, we have [x, ζ ] = |x − ζ |.

2.1 Zonal Harmonics

Let Hk(R
n) denote the space of all homogeneous harmonic polynomials on R

n of
degree k. The restriction of fk ∈ Hk(R

n) to the unit sphere S is called a spherical
harmonic and the space of spherical harmonics of degree k is denoted byHk(S). The
finite-dimensional space Hk(S) ⊂ L2(S) is a reproducing kernel Hilbert space: For
ζ ∈ S, there exists (real-valued) Zk(·, ζ ) such that

fk(ζ ) =
∫

S

fk(η)Zk(η, ζ )dσ(η) (∀ fk ∈ Hk(S)),
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where dσ is normalized surface area measure on S. The spherical harmonic Zk(·, ζ )

is called zonal harmonic of degree k with pole ζ . It can be extended to R
n × R

n by
making it homogeneous in each variable: If x = |x |η, y = |y|ζ with η, ζ ∈ S,

Zk(x, y) = |x |k |y|k Zk(η, ζ ), k = 1, 2, . . .

For k = 0, we set Z0(x, y) ≡ 1. For future reference we state the following properties
of Zk (for details see Chapter 5 of [2]).

Lemma 2.1 The following properties hold:

(a) Zk(x, y) is real-valued and symmetric in its variables.
(b) Zk(x, 0) = Zk(0, y) = 0, for every x, y ∈ R

n, k = 1, 2, . . .
(c) For k ≥ 1 and ζ ∈ S,maxη∈S |Zk(η, ζ )| = Zk(ζ, ζ ) and Zk(ζ, ζ ) ∼ kn−2.

Therefore |Zk(x, y)| � |x |k |y|kkn−2.
(d) If fk ∈ Hk(R

n), then fk(x) = ∫
S
fk(η)Zk(x, η)dσ(η).

(e) If fk ∈ Hk(R
n) and l �= k, then

∫
S
fk(η)Zl(x, η)dσ(η) = 0.

2.2 Harmonic Bergman–Besov Spaces and Reproducing Kernels

Let 1 ≤ p < ∞ and q > −1. The weighted harmonic Bergman space bp
q consists of

all f ∈ h(B) such that

‖ f ‖bpq =
(∫

B

| f |pdνq

)1/p

=
(

1

Vq

∫

B

| f (x)|p(1 − |x |2)qdν(x)

)1/p

< ∞.

It is well-known that the space b2q is a reproducing kernel Hilbert space with repro-
ducing kernel Rq(x, y):

f (x) =
∫

B

Rq(x, y) f (y)dνq(y), ∀ f ∈ b2q (q > −1). (9)

It is also well-known that Rq(x, y) has the series expansion (see [16])

Rq(x, y) =
∞∑

k=0

(1 + n/2 + q)k

(n/2)k
Zk(x, y) (q > −1),

where the series absolutely and uniformly converges on K ×B, for any compact subset
K ofB. Rq(x, y) is real-valued, symmetric in the variables x and y and harmonic with
respect to each variable as these properties hold for Zk(x, y).

The family of weighted Bergman spaces can be extended to all q ∈ R in the
following way: Pick a nonnegative integer N such that

q + pN > −1. (10)
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The harmonic Bergman–Besov space bp
q consists of all f ∈ h(B) such that

(1 − |x |2)N ∂m f ∈ L p
q ,

for every multi-index m with |m| = N . When q > −1, choosing N = 0 shows that
bp
q = h(B)∩L p

q is the usual weighted Bergman space. The harmonic Bergman–Besov
spaces are studied in detail in [7,8] where it is shown that the choice of N is irrelevant
as long as (10) is satisfied. In [7,8] these spaces are called Besov spaces, whereas in
the literature the spaces bp

−n are usually called Besov spaces.
For every q ∈ R, the space b2q is a reproducing kernel Hilbert space with kernel

Rq(x, y) =
∞∑

k=0

γk(q)Zk(x, y), (11)

where (see [7, Theorem 3.7], [8, Theorem 1.3])

γk(q) :=

⎧
⎪⎪⎨

⎪⎪⎩

(1 + n/2 + q)k

(n/2)k
, if q > −(1 + n/2);

(k!)2
(1 − (n/2 + q))k(n/2)k

, if q ≤ −(1 + n/2).
(12)

For q > −1, we endow b2q with the canonical inner product 〈 f, g〉 = ∫
B
f gdνq and

Rq is the reproducing kernel with respect to this inner product. For q ≤ −1, there is
no standard inner product, there are many possible choices each leading to a different
reproducing kernel (see [8, Theorem 5.2] for the inner product leading to above Rq ).
The above choice of Rq follows [3] and [12], where holomorphic Bergman–Besov
spaces are studied.

We list a few simple properties that we will use later: For every q ∈ R we have
γ0(q) = 1 and therefore by Lemma 2.1(b),

Rq(x, 0) = Rq(0, y) = 1, ∀x, y ∈ B (∀q ∈ R). (13)

Checking the two cases in (12), we have by (8)

γk(q) ∼ k1+q (k → ∞). (14)

For each x ∈ B, Rq(x, · ) is harmonic on B and if K ⊂ B is compact and m is a
multi-index

|∂m Rq(x, y)| � 1, ∀x ∈ K , y ∈ B, (15)

where differentiation is performed with respect to x .
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2.3 The Operators Dt
s

Let s, t ∈ R. The radial differential operator Dt
s : h(B) → h(B) is defined in the

following way (see [7,8]): If f = ∑∞
k=0 fk is the homogeneous expansion, then

Dt
s f :=

∞∑

k=0

γk(s + t)

γk(s)
fk :=

∞∑

k=0

dk(s, t) fk . (16)

By (14),

dk(s, t) = γk(s + t)

γk(s)
∼ kt (k → ∞), (17)

and therefore roughly speaking Dt
s multiplies the kth homogeneous term by kt . The

exact form of Dt
s is chosen in order to have the relation

Dt
s Rs(x, y) = Rs+t (x, y), (18)

where differentiation is performed on either of the variables x or y. For every s ∈
R, D0

s = I , the identity. The additive property

Du
s+t D

t
s = Du+t

s (19)

shows that every Dt
s is invertible with the two-sided inverse D−t

s+t :

D−t
s+t D

t
s = Dt

s D
−t
s+t = I. (20)

The following lemma is Theorem 3.2 of [8].

Lemma 2.2 Equip h(B) with the topology of uniform convergence on compact sub-
sets. Then Dt

s : h(B) → h(B) is continuous for every s, t ∈ R.

In some cases we can write Dt
s as an integral operator. To see this we first show

that we can push Dt
s into some certain integrals.

Lemma 2.3 Let c ∈ R and ϕ ∈ L1
c . For every s, t ∈ R,

Dt
s

∫

B

Rc(x, y)ϕ(y)dνc(y) =
∫

B

Dt
s Rc(x, y)ϕ(y)dνc(y).

Proof Since, for fixed x the series expansion (11) uniformly converges for y ∈ B,

∫

B

Rc(x, y)ϕ(y)dνc(y) =
∞∑

k=0

γk(c)
∫

B

Zk(x, y)ϕ(y)dνc(y) =:
∞∑

k=0

γk(c)pk(x).
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As Zk(·, y) is a homogeneous harmonic polynomial of degree k, so is pk and the series
on the right is homogeneous expansion. Therefore by (16),

Dt
s

∫

B

Rc(x, y)ϕ(y)dνc(y) =
∞∑

k=0

dk(s, t)γk(c)
∫

B

Zk(x, y)ϕ(y)dνc(y)

=
∫

B

Dt
s Rc(x, y)ϕ(y)dνc(y),

where in the last equality we use uniform convergence of
∑∞

k=0 dk(s, t)γk(c)Zk(x, ·)
(which follows from Lemma 2.1(c), (14) and (17)). ��

If c = s, the following Corollary follows from (18).

Corollary 2.4 Let s ∈ R and ϕ ∈ L1
s . For every t ∈ R,

Dt
s

∫

B

Rs(x, y)ϕ(y)dνs(y) =
∫

B

Rs+t (x, y)ϕ(y)dνs(y).

Corollary 2.5 Let s > −1 and f ∈ L1
s ∩ h(B). For every t ∈ R,

Dt
s f (x) =

∫

B

Rs+t (x, y) f (y)dνs(y). (21)

Proof It is standard that the reproducing formula (9) remains true for all f ∈ b1q
(q > −1). Therefore

f (x) =
∫

B

Rs(x, y) f (y)dνs(y).

We apply Dt
s to both sides and use the previous corollary. ��

The operator Dt
s as an integral operator as in (21) appears in [11].

2.4 Estimates of Reproducing Kernels

For a j , b j > 0 ( j = 1, . . . J ) and x ∈ B, y ∈ B, let

W (x, y) =
∞∑

k=0

�(a1 + k) · · · �(aJ + k)

�(b1 + k) · · · �(bJ + k)
Zk(x, y). (22)

Note that by (12), Rq(x, y) is of the form (22) for every q ∈ R. The following estimates
for W (x, y) and its partial derivatives are taken from Section 7 of [8].
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Lemma 2.6 Let a j , b j > 0 ( j = 1, . . . J ) and m be a multi-index. Set c = n − 1 +
(a1 + · · · + aJ ) − (b1 + · · · + bJ ) + |m|. Then for every x ∈ B, y ∈ B,

∣
∣(∂mW )(x, y)

∣
∣ �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if c < 0;
1 + log

1

[x, y] , if c = 0;
1

[x, y]c , if c > 0,

where differentiation is performed with respect to the first variable.

Checking the two cases of (12), one immediately obtains the following estimate for
reproducing kernels.

Lemma 2.7 Let q ∈ R and m be a multi-index. Then for every x ∈ B, y ∈ B,

∣
∣(∂m Rq)(x, y)

∣
∣ �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if q + |m| < −n;
1 + log

1

[x, y] , if q + |m| = −n;
1

[x, y]n+q+|m| , if q + |m| > −n.

The q ≥ −1 part of the above lemma is proved in many places including [4,11].
Since by (16), Dt

s Rq(x, y) is also of the form (22), we have the following estimate.

Lemma 2.8 Let q, s, t ∈ R and m be a multi-index. Then for every x ∈ B, y ∈ B,

∣
∣∂m(Dt

s Rq)(x, y)
∣
∣ �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if q + t + |m| < −n;
1 + log

1

[x, y] , if q + t + |m| = −n;
1

[x, y]n+q+t+|m| , if q + t + |m| > −n.

When y = ζ ∈ S and x = rζ, 0 ≤ r < 1, the following two-sided estimate follows
from part (c) of Lemma 2.1 and (14).

Lemma 2.9 Let ζ ∈ S and 0 ≤ r < 1. Then

|Rq(rζ, ζ )| ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if q < −n;
1 + log

1

1 − r2
, if q = −n;

1

(1 − r2)q+n
, if q > −n.

For q > −1 the following estimate on weighted integrals of Rq is proved in various
places. For the whole range q ∈ R, it is a special case of [8, Theorem 1.5].
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Lemma 2.10 Let q ∈ R and c > −1. Then for x ∈ B,

∫

B

|Rq(x, y)|(1 − |y|2)cdν(y) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if q < c;
1 + log

1

1 − |x |2 , if q = c;
1

(1 − |x |2)q−c
, if q > c.

We will also need the following integral estimate. For a proof see [15, Proposi-
tion 2.2] or [17, Lemma 4.4].

Lemma 2.11 Let a > −1 and c ∈ R. Then for x ∈ B,

∫

B

(1 − |y|2)a
[x, y]n+a+c

dν(y) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if c < 0;
1 + log

1

1 − |x |2 , if c = 0;
1

(1 − |x |2)c , if c > 0.

We mention one more integral estimate.

Lemma 2.12 Let a > −1, c > 0 and 0 ≤ r < 1. Then

∫ 1

0

(1 − t2)a

(1 − r2t2)1+a+c
dt � 1

(1 − r2)c
.

For a proof see, for example, [11, Lemma 2.1].

3 A Class of Integral Operators

In this section we will consider a class of integral operators and determine when they
are bounded on L∞

α or Cα0.
For a, c ∈ R we define

Ta,c ϕ(x) = (1 − |x |2)a
∫

B

Ra+c(x, y) ϕ(y)(1 − |y|2)cdν(y)

Sa,c ϕ(x) = (1 − |x |2)a
∫

B

∣
∣Ra+c(x, y)

∣
∣ ϕ(y)(1 − |y|2)cdν(y)

Ea,c ϕ(x) = (1 − |x |2)a
∫

B

1

[x, y]n+a+c
ϕ(y)(1 − |y|2)cdν(y)

The following theorem determines exactlywhen the above operators are bounded from
L∞

α to L∞
α . Later, we will invoke this theorem many times.

Theorem 3.1 Let α, a, c ∈ R. The following are equivalent:

(a) Ta,c is bounded on L∞
α .
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(b) Sa,c is bounded on L∞
α .

(c) Ea,c is bounded on L∞
α .

(d) a + α > 0 and c > α − 1.

Before proving this theoremwe first show the following lemma. Recall that by (13),
Rq(0, y) = 1 for every q ∈ R and y ∈ B. The lemma below shows that if x stays
close to 0, then Rq(x, y) is uniformly away from 0 for every y ∈ B.

Lemma 3.2 Let q ∈ R. There exists ε > 0 such that for all |x | < ε and for all y ∈ B,
we have Rq(x, y) ≥ 1/2.

Proof Since γ0(q) = 1 and Z0(x, y) ≡ 1, we have

Rq(x, y) =
∞∑

k=0

γk(q)Zk(x, y) = 1 +
∞∑

k=1

γk(q)Zk(x, y).

By (14) and Lemma 2.1(c), for |x | ≤ 1/2,

∣
∣
∣
∣
∣

∞∑

k=1

γk(q)Zk(x, y)

∣
∣
∣
∣
∣
�

∞∑

k=1

k1+qkn−2|x |k |y|k � |x |
∞∑

k=1

kn+q−1
(
1

2

)k−1

� |x |.

Hence, for small enough ε,
∣
∣
∑∞

k=1 γk(q)Zk(x, y)
∣
∣ < 1/2 for |x | < ε and the lemma

follows. ��
Proof of Theorem 3.1 We first show the equivalence (a) ⇔ (b) ⇔ (d).

(b) ⇒ (a): This is immediate by the inequality |Ta,c ϕ(x)| ≤ Sa,c(|ϕ|)(x).
(a) ⇒ (d): We first show that c > α − 1. Let ϕ(x) = (1 − |x |2)−α . Then ϕ ∈ L∞

α

and with ε as in Lemma 3.2, for |x | < ε we have

Ta,c ϕ(x) ≥ (1 − |x |2)a
∫

B

1

2
(1 − |y|2)c−αdν(y).

If c ≤ α − 1, the last integral will be divergent and Ta,c ϕ couldn’t be in L∞
α .

To see that a + α > 0, we again let ϕ(x) = (1 − |x |2)−α and integrate in polar
coordinates to obtain

Ta,c ϕ(x) = (1 − |x |2)a
∫

B

Ra+c(x, y)(1 − |y|2)c−αdν(y)

= (1 − |x |2)a
∫ 1

0
nρn−1(1 − ρ2)c−α

∫

S

Ra+c(x, ρη)dσ(η)dρ.

By mean-value property the integral over S is Ra+b(x, 0) which is 1 by (13). So,

Ta,c ϕ(x) = �(n/2 + 1)�(c − α + 1)

�(n/2 + c − α + 1)
(1 − |x |2)a = C(1 − |x |2)a .



1156 Ö. F. Doğan, A. E. Üreyen

Since Ta,c ϕ ∈ L∞
α we must have a + α ≥ 0. What remains is to show that a + α = 0

is not possible. So, suppose a + α = 0. For x0 ∈ B, let

ϕx0(y) =
⎧
⎨

⎩

(1 − |y|2)−α |Ra+c(x0, y)|
Ra+c(x0, y)

if Ra+c(x0, y) �= 0;
(1 − |y|2)−α if Ra+c(x0, y) = 0.

Clearly, ‖ϕx0‖L∞
α

= 1. On the other hand by Lemma 2.10 we have

Ta,c ϕx0(x0) = (1 − |x0|2)a
∫

B

|Ra+c(x0, y)|(1 − |y|2)c−αdν(y)

∼ (1 − |x0|2)a
(

1 + log
1

1 − |x0|2
)

.

This implies, by continuity of Ta,c ϕx0 , that

‖Ta,c ϕx0‖L∞
α

= ‖(1 − |x |2)αTa,c ϕx0(x)‖L∞ ≥ (1 − |x0|2)αTa,c ϕx0(x0)

� 1 + log
1

1 − |x0|2 .

Since ‖ϕx0‖L∞
α

= 1, we get a contradiction with boundedness of Ta,c.
(d)⇒ (b): Suppose a+α > 0 and c > α−1. Let ϕ ∈ L∞

α . Then almost everywhere
|ϕ(y)| ≤ ‖ϕ‖L∞

α
(1 − |y|2)−α and it follows from Lemma 2.10 that

|Sa,c ϕ(x)| ≤ (1 − |x |2)a
∫

B

|Ra+c(x, y)| |ϕ(y)|(1 − |y|2)cdν(y)

≤ ‖ϕ‖L∞
α

(1 − |x |2)a
∫

B

|Ra+c(x, y)|(1 − |y|2)c−αdν(y)

� ‖ϕ‖L∞
α

(1 − |x |2)a 1

(1 − |x |2)a+α
.

Hence ‖Sa,c ϕ‖L∞
α

� ‖ϕ‖L∞
α
.

We next show (c) ⇔ (d).
(c) ⇒ (d): To see that c > α − 1, we let ϕ(x) = (1 − |x |2)−α . Note that for

|x | < 1/2 we have 1/2 ≤ [x, y] = ∣
∣|x |y − y/|y|∣∣ ≤ 3/2. Therefore, for |x | < 1/2,

Ea,c ϕ(x) � (1 − |x |2)a
∫

B

(1 − |y|2)c−αdν(y).

Since Ea,c ϕ ∈ L∞
α , we must have c−α > −1. That a+α ≤ 0 is not possible follows

from Lemma 2.11: Letting again ϕ(y) = (1 − |y|2)−α , we have

Ea,c ϕ(x) = (1 − |x |2)a
∫

B

(1 − |y|2)c−α

[x, y]n+a+c
dν(y).
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If a + α < 0, then by Lemma 2.11, the above integral is ∼ 1 and if a + α = 0, it is
∼ 1 + log(1 − |x |2)−1. In each case Ea,c ϕ cannot belong to L∞

α .
(d) ⇒ (c): This part easily follows from Lemma 2.11. ��

Remark 3.3 Theorem 3.1 remains true when L∞
α is replaced with Cα0. This can be

verified by repeating the above proof with making appropriate modifications (for
example, we change ϕ(x) = (1 − |x |2)−α with ϕ(x) = (1 − |x |2)−α/

(
1 + log(1 −

|x |2)−1
)
, etc.). We omit the details.

4 Proofs of Theorems 1.2 and 1.3

Before dealing with the general case α ∈ R, we will first consider the case α > 0. As
is mentioned before when α ≥ 0 the equivalence of parts (a)–(d) of Theorems 1.2 and
1.3 are known. Nevertheless for the convenience of the reader and to make this work
self-contained we will not refer to other sources and give a complete proof.

For future reference we record the following simple lemma which is a special case
of the reproducing formula (7).

Lemma 4.1 Let α > 0 and s > α − 1. If f ∈ bα , then

f (x) =
∫

B

Rs(x, y) f (y)dνs(y) = 1

Vs

∫

B

Rs(x, y) f (y)(1 − |y|2)sdν(y).

Proof The conditions imply f ∈ b1s and the lemma follows from the reproducing
formula (9) which is well-known to be true when f ∈ b1q . ��

We begin the proof of Theorem 1.2 with the following lemma. This lemma is
standard and can be proved by more elementary techniques. We include a proof for
completeness and to illustrate how it follows from the reproducing formula, the kernel
estimates and Theorem 3.1. Later, we will employ this technique many times.

Lemma 4.2 Let α > 0 and f ∈ h(B). The following are equivalent:

(a) f ∈ bα .
(b) (1 − |x |2)|∇ f (x)| ∈ L∞

α .
(c) (1 − |x |2)R f (x) ∈ L∞

α .

Moreover,

‖ f − f (0)‖bα ∼ ‖(1 − |x |2) |∇ f (x)| ‖L∞
α

∼ ‖(1 − |x |2)R f (x)‖L∞
α

. (23)

Proof (a) ⇒ (b): Let f ∈ bα . Pick s > α − 1. By Lemma 4.1,

f (x) − f (0) = 1

Vs

∫

B

Rs(x, y)
(
f (y) − f (0)

)
(1 − |y|2)sdν(y).

Taking partial derivative we obtain

∂ f

∂xi
(x) = 1

Vs

∫

B

∂

∂xi
Rs(x, y)

(
f (y) − f (0)

)
(1 − |y|2)sdν(y),
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where changing the order of the derivative and integral is easily justified using (15).
Applying Lemma 2.7, we get

(1 − |x |2)∣∣ ∂ f

∂xi
(x)

∣
∣ � (1 − |x |2)

∫

B

1

[x, y]n+s+1

∣
∣ f (y) − f (0)

∣
∣(1 − |y|2)sdν(y),

and part (b) now follows from Theorem 3.1.
(b) ⇒ (c): This immediately follows from (1).
(c) ⇒ (a): Let M := ‖(1 − |x |2)R f (x)‖L∞

α
. Then

|R f (x)| ≤ M

(1 − |x |2)α+1 , for x ∈ B. (24)

By calculus and (1),

f (x) − f (0) =
∫ 1

0
x · ∇ f (t x) dt =

∫ 1/2

0

R f (t x)

t
dt +

∫ 1

1/2

R f (t x)

t
dt =: I1 + I2.

To estimate I1 note that Cauchy’s estimate and (24) implies, for |x | ≤ 1/2,

|∇R f (x)| ≤ C sup
|y|=3/4

|R f (y)| � M. (25)

Since R f (0) = 0, we have R f (x) = ∫ 1
0 x · ∇R f (t x) dt and using (25) we deduce

|R f (x)| � M |x | for |x | ≤ 1/2. Therefore

|I1| ≤
∫ 1/2

0

|R f (t x)|
t

dt �
∫ 1/2

0

Mt |x |
t

dt � M ≤ M

(1 − |x |2)α .

For the second integral I2 we use (24) and Lemma 2.12 to obtain

|I2| ≤
∫ 1

1/2

|R f (t x)|
t

dt �
∫ 1

1/2
|R f (t x)| dt �

∫ 1

0

M

(1 − t2|x |2)α+1 dt � M

(1 − |x |2)α .

Hence ‖ f − f (0)‖bα � ‖(1 − |x |2)R f (x)‖L∞
α
. ��

We note that we can write (23) in the following form:

‖ f ‖bα ∼ | f (0)| + ‖(1 − |x |2) |∇ f (x)| ‖L∞
α

∼ | f (0)| + ‖(1 − |x |2)R f (x)‖L∞
α

.

It is straightforward to extend the previous lemma to higher order derivatives.

Lemma 4.3 Let α > 0 and f ∈ h(B). The following are equivalent:

(a) f ∈ bα .
(b) For every N ∈ N, we have (1 − |x |2)N ∂m f ∈ L∞

α for every multi-index m with
|m| = N.
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(c) There exists N ∈ N such that (1−|x |2)N ∂m f ∈ L∞
α for every multi-index m with

|m| = N.
(d) For every N ∈ N, we have (1 − |x |2)NRN f ∈ L∞

α .
(e) There exists N ∈ N such that (1 − |x |2)NRN f ∈ L∞

α .

Moreover,

‖ f ‖bα ∼
∑

|m|≤N−1

|(∂m f )(0)| +
∑

|m|=N

‖(1 − |x |2)N ∂m f ‖L∞
α

∼ | f (0)| + ‖(1 − |x |2)NRN f ‖L∞
α

.

(26)

Proof We show (a) ⇔ (b) ⇔ (c). The equivalence (a) ⇔ (d) ⇔ (e) can be justified
similarly.

(a) ⇒ (b): Suppose f ∈ bα . By Lemma 4.2,
∂ f

∂xi
∈ bα+1 for every i = 1, 2, . . . , n.

Applying Lemma 4.2 again we obtain
∂2 f

∂x j∂xi
∈ bα+2 for every i, j = 1, 2, . . . , n.

We continue until we obtain ∂m f ∈ bα+N for every m with |m| = N .
(b) ⇒ (c): This part is clear.
(c) ⇒ (a): Suppose (1 − |x |2)N ∂m f ∈ L∞

α , that is ∂m f ∈ bα+N for every multi-

index m with |m| = N . Let m′ be a multi-index with |m′| = N − 1. Then
∂

∂xi
∂m

′
f ∈

bα+N for every i = 1, 2, . . . , n and Lemma 4.2 implies ∂m
′
f ∈ bα+N−1. We repeat

the same argument sufficiently many times until we obtain f ∈ bα .
It is not hard to verify (26) and we omit the details. ��
We next show that instead of partial or radial derivatives we can use the operators

Dt
s . We remain in the region α > 0.

Lemma 4.4 Let α > 0 and f ∈ h(B). The following are equivalent:

(a) f ∈ bα .
(b) For every s, t ∈ R with α + t > 0, we have (1 − |x |2)t Dt

s f ∈ L∞
α .

(c) There exist s, t ∈ R with α + t > 0 such that (1 − |x |2)t Dt
s f ∈ L∞

α .

Moreover, ‖ f ‖bα ∼ ‖(1 − |x |2)t Dt
s f ‖L∞

α
.

Proof (a) ⇒ (b): Suppose f ∈ bα . Pick c > α − 1. By Lemma 4.1,

f (x) =
∫

B

Rc(x, y) f (y)dνc(y).

We apply Dt
s to both sides, push it into the integral by Lemma 2.3 and then use

Lemma 2.8 (with n + c + t > n + α − 1 + t > n − 1 > 0) to obtain

(1 − |x |2)t |Dt
s f (x)| � (1 − |x |2)t

∫

B

1

[x, y]n+c+t
| f (y)|(1 − |y|2)cdν(y).

Theorem 3.1 now implies ‖(1 − |x |2)t Dt
s f (x)‖L∞

α
� ‖ f ‖L∞

α
and part (b) follows.
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With (b) ⇒ (c) being clear, we show (c) ⇒ (a): Suppose (1−|x |2)t Dt
s f (x) ∈ L∞

α ,
that is Dt

s f ∈ bα+t . Pick c with c > α + t − 1. By Lemma 4.1,

Dt
s f (x) =

∫

B

Rc(x, y)D
t
s f (y)dνc(y).

We apply D−t
s+t to both sides, use (20) on the left, push D−t

s+t into the integral by
Lemma 2.3 and obtain

f (x) =
∫

B

D−t
s+t Rc(x, y)D

t
s f (y)dνc(y).

Applying Lemma 2.8 shows (with n + c − t > n + α + t − 1 − t > n − 1 > 0)

| f (x)| �
∫

B

1

[x, y]n+c−t
(1 − |x |2)t |Dt

s f (y)|(1 − |y|2)c−t dν(y).

It now follows from Theorem 3.1 that ‖ f ‖L∞
α

� ‖(1 − |x |2)t Dt
s f (x)‖L∞

α
. ��

Before proving Theorem 1.2 for all α ∈ R we mention one last elementary lemma.
We include a proof for completeness.

Lemma 4.5 Let N ≥ 1 be an integer. Then

RN =
∑

1≤|m|≤N

pm∂m,

where pm is a polynomial with degree equal to |m|.
Proof Let f be a smooth function. ThenR f (x) = x · ∇ f (x) = ∑n

i=1 xi ∂ f/∂xi , so
the lemma is true for N = 1. For N = 2 we compute

R2 f (x) =
n∑

j=1

x j
∂

∂x j

(
n∑

i=1

xi
∂ f

∂xi

)

=
n∑

i, j=1

xi x j
∂2 f

∂x j∂xi
+

n∑

j=1

x j
∂ f

∂x j

and the lemma is true for N = 2. The general case follows from induction. ��
We are now ready to deal with the main part of Theorem 1.2, i.e. extending the

previous lemmas to all α ∈ R.

Proof of Theorem 1.2 We will show (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (a); the
implications (a) ⇒ (b), (c) ⇒ (d) and (e) ⇒ (f) being clear. We will refer many times
to Lemmas 4.3 and 4.4 and in these cases we will make sure that the subscript of b is
always greater than 0.

(b) ⇒ (c): Suppose there exists N0 with α + N0 > 0 such that (1− |x |2)N0∂m f ∈
L∞

α , that is ∂m f ∈ bα+N0 for every multi-index m with |m| = N0.
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We first show that ifm′ is a multi-index with |m′| < N0, then ∂m
′
f is also in bα+N0 :

For |m| = N0, by Lemma 4.3, ∂m
′
∂m f ∈ bα+N0+|m′|. Since by (3), bα+N0+|m′| ⊂

bα+2N0 , we deduce that ∂m∂m
′
f ∈ bα+2N0 for every multi-index m with |m| = N0

and it follows from Lemma 4.3 that ∂m
′
f ∈ bα+N0 . Applying Lemma 4.5 now shows

RN0 f ∈ bα+N0 . (27)

Suppose N ∈ N is such that α + N > 0. If N > N0, Lemma 4.3 and (27) implies
RN f = RN−N0(RN0 f ) ∈ bα+N0+(N−N0) = bα+N . Similarly, if N < N0, then
RN0 f = RN0−N (RN f ) and Lemma 4.3 and (27) implies RN f ∈ bα+N0−(N0−N ) =
bα+N .

(d) ⇒ (e): Suppose there exists N0 ∈ N with α + N0 > 0 such that
(1 − |x |2)N0RN0 f ∈ L∞

α , that is RN0 f ∈ bα+N0 . Take any s, t ∈ R such that
α + t > 0. Then by Lemma 4.4, we have Dt

s(RN0 f ) ∈ bα+N0+t . By considering their
actions on homogeneous expansions it is clear that Dt

s and RN0 commute. Therefore
RN0(Dt

s f ) ∈ bα+N0+t and we conclude by Lemma 4.3 that Dt
s f ∈ bα+t .

(f) ⇒ (a): Suppose there exists s0, t0 ∈ R with α + t0 > 0 such that (1 −
|x |2)t0Dt0

s0 f ∈ L∞
α , that is Dt0

s0 ∈ bα+t0 . Pick c > α + t0 − 1. Then by Lemma 4.1,

Dt0
s0 f (x) =

∫

B

Rc(x, y)D
t0
s0 f (y)dνc(y).

Applying D−t0
s0+t0 to both sides, using (20) on the left and pushing D−t0

s0+t0 into the
integral by Lemma 2.3, we obtain

f (x) =
∫

B

D−t0
s0+t0 Rc(x, y) D

t0
s0 f (y)dνc(y).

Take N ∈ N with α + N > 0 and let m be a multi-index with |m| = N . Then

∂m f (x) = ∂m
∫

B

D−t0
s0+t0 Rc(x, y)D

t0
s0 f (y)dνc(y)

=
∫

B

∂m
(
D−t0
s0+t0 Rc(x, y)

)
Dt0
s0 f (y)dνc(y).

Applying Lemma 2.8 (with n + c − t0 + N > n + α + N − 1 > n − 1 > 0), we get

(1 − |x |2)N |∂m f (x)| � (1 − |x |2)N
∫

B

(1 − |y|2)t0 |Dt0
s0 f (y)|

[x, y]n+c−t0+N
(1 − |y|2)c−t0dν(y).

Theorem 3.1 now implies that (1 − |x |2)N ∂m f ∈ L∞
α .

By retracing the above proof it is not hard to see that (2) holds. ��
Proof of Theorem 1.3 is similar to the proof of Theorem 1.2; the main difference

is we refer to Remark 3.3 instead of Theorem 3.1. We omit the details.
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We now show the basic properties of the spaces bα and bα0. As mentioned before,
by (2) we can endow bα (and its subspace bα0) with many equivalent norms. In the
sequel we will mainly use the norms induced by Dt

s : Given α ∈ R, pick any s, t with
α + t > 0, then ‖(1 − |x |2)t Dt

s f ‖L∞
α

= ‖I ts f ‖L∞
α
is a norm on bα; all these norms

are equivalent and we will denote any one of them by ‖ · ‖bα without indicating the
dependence on s and t .

We first show that all bα (resp. bα0) are isomorphic. We emphasize that the propo-
sition below is true for every t ∈ R without any restriction.

Proposition 4.6 Let α ∈ R. For any s, t ∈ R, the map Dt
s : bα → bα+t (resp.

Dt
s : bα0 → b(α+t)0) is an isomorphism and is an isometry when appropriate norms

are used.

Proof Pick u such that α + t + u > 0. We endow bα with the norm ‖ f ‖bα =
‖I t+u

s f ‖L∞
α
and bα+t with the norm ‖g‖bα+t = ‖I us+t g‖L∞

α+t
. By (19),

‖Dt
s f ‖bα+t = ‖I us+t D

t
s f ‖L∞

α+t
= ‖(1 − |x |2)u Du

s+t (D
t
s f )‖L∞

α+t

= ‖(1 − |x |2)u Du+t
s f ‖L∞

α+t
= ‖I u+t

s f ‖L∞
α

= ‖ f ‖bα .

��
For 0 < r < 1, let fr : B → B, fr (x) = f (r x) be the dilate of f .

Corollary 4.7 Let α ∈ R. The following properties hold:

(a) bα and bα0 are complete spaces.
(b) Let f ∈ bα . Then fr → f (as r → 1−) in bα if and only if f ∈ bα0.
(c) bα0 is closure of polynomials in bα .
(d) bα0 is separable whereas bα is inseparable.

Proof It is well known that these properties hold for b0 and b00 (it is also elementary
to verify them for α > 0). The general case then follows from the isomorphism in
Proposition 4.6, the fact that Dt

s maps polynomials to polynomials and the simple
identity Dt

s( fr ) = (Dt
s f )r . ��

Fix ζ ∈ S. Then for any q ∈ R, we have Rq( · , ζ ) ∈ h(B). In the next theorem we
determine when Rq( · , ζ ) belongs to bα (or bα0) and therefore provide non-trivial (i.e.
non-polynomial) examples of elements of bα (or bα0). This theorem will also allow
us to distinguish between these spaces.

Theorem 4.8 Let q, α ∈ R and ζ ∈ S. Then

(i) Rq( · , ζ ) ∈ bα if and only if α ≥ n + q.
(ii) Rq( · , ζ ) ∈ bα0 if and only if α > n + q.

Proof Pick t large enough that α + t > 0 and n + q + t > 0. By (18), we have

I tq Rq(x, ζ ) = (1 − |x |2)t Dt
q Rq(x, ζ ) = (1 − |x |2)t Rq+t (x, ζ ),
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and Lemma 2.7 implies

|I tq Rq(x, ζ )| � (1 − |x |2)t
[x, ζ ]n+q+t

= (1 − |x |2)t
|x − ζ |n+q+t

� 1

(1 − |x |2)n+q
.

Hence, if α ≥ n + q, then I tq Rq(x, ζ ) ∈ L∞
α and therefore Rq(x, ζ ) ∈ bα . Similarly,

if α > n + q, then I tq Rq(x, ζ ) ∈ Cα0 and Rq(x, ζ ) ∈ bα0.
For the reverse implications, note that by Lemma 2.9, we have

Rq+t (rζ, ζ ) ∼ 1

(1 − r2)n+q+t
, 0 ≤ r < 1,

and so I tq Rq(rζ, ζ ) ∼ (1 − r2)−(n+q). Now, if α < n + q, then I tq Rq(x, ζ ) /∈ L∞
α

and therefore Rq(x, ζ ) /∈ bα . Similarly, if α ≤ n + q, then I tq Rq(x, ζ ) /∈ Cα0 and
Rq(x, ζ ) /∈ bα0. ��
Remark 4.9 Using the above theorem it is easy to see that the inclusions in (3) are
strict. First, if α < β, let q = (α + β)/2 − n. Then we have Rq( · , ζ ) ∈ bβ0 but
Rq( · , ζ ) /∈ bα . Next, for β ∈ R, we have Rβ−n( · , ζ ) ∈ bβ but Rβ−n( · , ζ ) /∈ bβ0.

5 Projections

In this section we will prove Theorem 1.6 and then apply it obtain duality results.

Proof of Theorem 1.6 We first show that Qs : L∞
α → bα is bounded if and only if

s > α − 1. Suppose s > α − 1. For ϕ ∈ L∞
α , the integral

∫
B
Rs(x, y)ϕ(y)dνs(y) =

Qsϕ(x) converges by (15) and is harmonic onB. Pick t such that α+t > 0.We need to
show that ‖Qsϕ‖bα = ‖I ts Qsϕ‖L∞

α
� ‖ϕ‖L∞

α
. For this we note that by Corollary 2.4,

I ts Qsϕ(x) = (1 − |x |2)t Dt
s

∫

B

Rs(x, y)ϕ(y)dνs(y)

= 1

Vs
(1 − |x |2)t

∫

B

Rs+t (x, y)ϕ(y)(1 − |y|2)sdν(y) = 1

Vs
Ts,t ϕ(x),

(28)

and Theorem 3.1 shows ‖I ts Qsϕ‖L∞
α

� ‖ϕ‖L∞
α
.

If s ≤ α − 1, let ϕ(x) = (1− |x |2)−α and ε be as in Lemma 3.2. Then for |x | < ε,

Qsϕ(x) =
∫

B

Rs(x, y)ϕ(y)dνs(y) ≥ 1

2Vs

∫

B

(1 − |y|2)s−αdν(y).

Since the integral on the right diverges, Qsϕ can not be in L∞
α .

We now show (6). Suppose (4) and (5) hold. Then s + t > −1. If f ∈ bα , we have
(1− |x |2)t Dt

s f ∈ L∞
α and so |Dt

s f (x)| � (1− |x |2)−(α+t). This shows Dt
s f ∈ L1

s+t
and applying Corollary 2.5 and (20), we obtain
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Qs I
t
s f (x) = 1

Vs

∫

B

Rs(x, y)I
t
s f (y)(1 − |y|2)sdν(y)

= Vs+t

Vs

∫

B

Rs(x, y)D
t
s f (y)dνs+t (y)

= Vs+t

Vs
D−t
s+t D

t
s f (x) = Vs+t

Vs
f (x).

Qs : L∞
α → bα is onto since f ∈ bα implies I ts f ∈ L∞

α and Qs
(
(Vs/Vs+t )I ts f

) =
f by above. Hence all the claims related to bα hold.
We next show that under (4), Qs maps Cα (and therefore Cα0) into bα0. For this we

first show that if p is a polynomial, then Qs((1−|x |2)−α p) is a harmonic polynomial
of the same degree and therefore belongs to bα0. By linearity of Qs , we can assume p
is a homogeneous polynomial. Then, by [2, Theorem 5.7], there exists p j ∈ H j (R

n)

such that

p = pk + |x |2 pk−2(x) + · · · + |x |2l pk−2l(x), (29)

where k is the degree of p and l = [k/2]. We have

Qs
(
(1 − |x |2)−α p

)
(x) =

∫

B

Rs(x, y)(1 − |y|2)−α p(y)dνs(y)

and using uniform convergence of the series expansion (11), (29), integrating in polar
coordinates and using Lemma 2.1 (d) and (e) we obtain that Qs((1 − |x |2)−α p) is a
harmonic polynomial of degree k.

Now, if ϕ ∈ Cα , then (1 − |x |2)αϕ =: ψ ∈ C(B). By Stone-Weierstrass theorem
we can approximate ψ with polynomials and therefore we can find a sequence (pi ) of
polynomials such that ‖ϕ − (1 − |x |2)−α pi‖L∞

α
→ 0 (as i → ∞). Boundedness of

Qs : L∞
α → bα shows Qs

(
(1 − |x |2)−α pi

) → Qs(ϕ) and by completeness of bα0,
we conclude Qsϕ ∈ bα0.

To see that (4) is necessary for boundedness of Qs on Cα or Cα0, suppose s ≤ α −1
and let ϕ(x) = (1−|x |2)−α/

(
1+ log((1−|x |2)−1

)
. Then ϕ ∈ Cα0, but by Lemma 3.2,

Qsϕ(x) diverges for sufficiently small |x |.
That Qs maps Cα0 (and Cα) onto bα0 follows from (6) and Theorem 1.3.

Remark 5.1 In case α > 0, we have bα ⊂ L∞
α and for an s satisfying (4), Qs is a true

projection on L∞
α with range bα (that Q2

s = Qs follows from (6) by choosing t = 0).
When α ≤ 0, bα is no longer a subspace of L∞

α but for t satisfying (5), I ts (bα) is an
isometric copy of bα in L∞

α . Under (4) and (5), the operator

P = Vs
Vs+t

I ts Qs

satisfies P2 = P by (6) and is a projection on L∞
α with range I ts (bα), the isometric

copy .

We record the following relations between the operators Qs, I ts and Ts,t .
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Corollary 5.2 Let α ∈ R. Suppose s, t satisfy (4) and (5). The following operator
identities hold:

(a) Qs I ts = Vs+t

Vs
I on bα .

(b) Ts,t I ts = Vs+t I ts on bα .

(c) I ts Qs = 1

Vs
Ts,t on L∞

α .

(d) QsTs,t = Vs+t Qs on L∞
α .

Proof Part (a) is just (6) and part (c) is (28). The other parts follow from these. ��
An immediate consequence of (7) is the following growth estimate. The α > 0 part

of this estimate is clear by definition of bα .

Corollary 5.3 Let α ∈ R and f ∈ bα . Then

| f (x)| � ‖ f ‖bα

⎧
⎪⎪⎨

⎪⎪⎩

(1 − |x |2)−α, if α > 0;
1 + log

1

1 − |x |2 , if α = 0;
1, if α < 0,

for every x ∈ B.

Proof Pick s, t such that (4) and (5) holds. Then by (7),

f (x) = Vs
Vs+t

∫

B

Rs(x, y)I
t
s f (y) dνs(y).

Using |I ts f (y)| � (1 − |x |2)−α‖I ts f ‖L∞
α

and ‖ f ‖bα = ‖I ts f ‖L∞
α

and applying
Lemma 2.10, we get the above estimates. ��

5.1 Duality

When 1 < p < ∞ and q > −1, it is well-known that (bp
q )′, the dual of the harmonic

Bergman space bp
q , can be identified with bp′

q , where 1/p + 1/p′ = 1. It is shown in
[8, Theorem 13.4] that this statement is true for all q ∈ R. Our aim in this subsection
is to show that (b1q)

′ can be identified with bα and (bα0)
′ can be identified with b1q .

Here, q, α ∈ R without any restriction and the aforementioned identification can be
obtained using many different pairings. More precisely, we have the following.

Theorem 5.4 Let q ∈ R. Pick s, t such that

s > q, (30)

q + t > −1. (31)
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The dual of b1q can be identified with bα (for any α ∈ R) under the pairing

〈 f, g〉 =
∫

B

I ts f I
s−q−α
t+q+α g dνq+α, ( f ∈ b1q , g ∈ bα). (32)

Before proving Theorem 5.4 we need to review a few facts from [8]. Recall that in
Sect. 2.2 we defined harmonic Bergman–Besov spaces bp

q in terms of partial deriva-
tives. Analogous to Theorems 1.2 and 1.3 we have the following: Given 1 ≤ p < ∞
and q ∈ R, pick s, t ∈ R with q + pt > −1. Then f ∈ h(B) belongs to bp

q if and
only if I ts f ∈ L p

q and ‖I ts f ‖L p
q
is a norm on bp

q (see Theorem 1.2 of [8]).

The following projection theorem for bp
q spaces is Theorem 1.4 of [8].

Theorem A (See [8]). Let 1 ≤ p < ∞ and q ∈ R. Then Qs : L p
q → bp

q is bounded
(and onto) if and only if

q + 1 < p(s + 1). (33)

Given s satisfying (33) if t satisfies

q + pt > −1, (34)

then for f ∈ bp
q , we have Qs I ts f = Vs+t

Vs
f .

The following theorem is Corollary 11.1 of [8]. It is similar to Corollary 5.2 but it is
for the spaces L p

q and bp
q .

Theorem B (See [8]) Let 1 ≤ p < ∞ and q ∈ R. If (33) and (34) holds, then

(a) Qs I ts = Vs+t

Vs
I on bp

q .

(b) Ts,t I ts = Vs+t I ts on b
p
q .

(c) I ts Qs = 1

Vs
Ts,t on L p

q .

(d) QsTs,t = Vs+t Qs on L p
q .

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4 First, note that (30) and (31) are just (33) and (34) with p = 1.
Let t ′ = s − q − α and s′ = t + q + α. Then by (30) and (31), we have

s′ > α − 1, (35)

α + t ′ > 0. (36)

If g ∈ bα , then I t
′

s′ g ∈ L∞
α by (36) and if f ∈ b1q , then I ts f ∈ L1

q by (31). Therefore
the pairing (32) defines a linear functional on b1q .
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Conversely, let L ∈ (b1q)
′. We will show that there exists g ∈ bα such that L( f ) =

〈 f, g〉. We begin by observing that L ◦ Qs ∈ (L1
q)

′ by Theorem A and (30). Therefore
by Riesz representation theorem there exists χ ∈ L∞ such that for ϕ ∈ L1

q ,

L Qs(ϕ) =
∫

B

ϕ χ dνq =
∫

B

ϕ ψ dνq+α,

where we setψ(x) := (1−|x |2)−αχ(x). It is clear thatψ ∈ L∞
α . For f ∈ b1q we have

I ts f ∈ L1
q and by first part (a) and then part (b) of Corollary B,

L( f ) = Vs
Vs+t

LQs I
t
s f = Vs

Vs+t

∫

B

I ts f ψ dνq+α = Vs
V 2
s+t

∫

B

Ts,t I
t
s f ψ dνq+α.

Explicitly writing the action of Ts,t , and then applying Fubini’s theorem and Corol-
lary 5.2 (c), we obtain

L( f ) = Vs
V 2
s+t

∫

B

I ts f Ts′,t ′ψ dνq+α = VsVs′

V 2
s+t

∫

B

I ts f I
t ′
s′ Qs′ψ dνq+α.

Let g = VsVs′

V 2
s+t

Qs′ψ . Then g ∈ bα by Theorem 1.6 and (35), and L( f ) = 〈 f, g〉.
Retracing the above proof it is easy to see that ‖g‖bα ∼ ‖L‖. Finally uniqueness of g
follows from the uniqueness part of Riesz representation theorem. ��

We now consider the dual of bα0.

Theorem 5.5 Let α ∈ R. Pick s, t such that

s > α − 1,

α + t > −1.

The dual of bα0 can be identified with b1q (for any q ∈ R) under the pairing

〈 f, g〉 =
∫

B

I ts f I
s−q−α
t+q+α g dνq+α, ( f ∈ bα0, g ∈ b1q).

Proof The proof is very similar to the previous proof. We interchange the roles of
Theorem 1.6 and Theorem A, and also interchange the roles of Corollary 5.2 and
Corollary B, and make minor modifications. We omit the details. ��

For α = 0 and q > −1 Theorems 5.4 and 5.5 have been proved in [11,14,22]. For
the holomorphic analogues of these theorems with the full range α ∈ R and q ∈ R,
see [13,26]. The pairings in [13] are exact holomorphic counterparts of our pairings,
whereas in [26] slightly different pairings (involving a limit) are used.
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6 Gleason Problem, Atomic Decomposition and Oscillatory
Characterization

6.1 Gleason Problem

Let a ∈ B. The Gleason problem for weighted harmonic Bloch (or little Bloch) spaces
is to determine whether there exist bounded operators A1, A2, . . . , An : bα → bα (or
bα0 → bα0) such that

f (x) − f (a) =
n∑

j=1

(x j − a j ) A j f (x).

This problem is solved in the affirmative for a = 0, α = 0 in [4] and for general
a ∈ B and α > −1 in [18]. In [10] this problem is solved not just forB but for bounded
convex domains with C2 boundary, but still with the restriction α > −1.

Our aim here is to solve Gleason problem for all α ∈ R. The main ingredients of
our proof are the reproducing formula (7) and the kernel estimates of Sect. 2.4.

Theorem 6.1 Let α ∈ R and a ∈ B. There exist bounded linear operators
A1, A2, . . . , An on bα (respectively bα0) such that for all f ∈ bα (respectively bα0)

f (x) − f (a) =
n∑

j=1

(x j − a j ) A j f (x), ∀x ∈ B. (37)

Proof Let f ∈ bα . For x ∈ B, by calculus,

f (x) − f (a) =
∫ 1

0
∇ f

(
τ x + (1 − τ)a

) · (x − a) dτ

=
n∑

j=1

(x j − a j )

∫ 1

0
∂ j f

(
τ x + (1 − τ)a

)
dτ,

where wewrite ∂ j f for ∂ f/∂x j . Defining A j by A j f (x) = ∫ 1
0 ∂ j f

(
τ x+(1−τ)a

)
dτ ,

it is obvious that (37) holds. It is also clear by differentiating under the integral that
A j f ∈ h(B). We proceed to show that A j is bounded on bα . For this we pick N ∈ N

with α + N > 0. By Theorem 1.2 it suffices to show that

∑

|m|≤N−1

|(∂m A j f )(0)| +
∑

|m|=N

‖(1 − |x |2)N ∂m A j f ‖L∞
α

� ‖ f ‖bα .

We choose s, t ∈ R so that (4) and (5) holds and in addition we choose s > −n.
Then I ts f ∈ L∞

α and ‖ f ‖bα ∼ ‖I ts f ‖L∞
α
. By (7),

f (x) = Vs
Vs+t

∫

B

Rs(x, y) I
t
s f (y) dνs(y),
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and so

A j f (x) = Vs
Vs+t

∫ 1

0

∫

B

(∂ j Rs)(τ x + (1 − τ)a, y) I ts f (y) dνs(y) dτ,

where pushing the derivative into the integral is possible by (15). Letm be amulti-index
with |m| ≤ N . Differentiating and using the chain rule we obtain

∂m A j f (x) = Vs
Vs+t

∫ 1

0
τ |m|

∫

B

(∂m∂ j Rs)(τ x + (1 − τ)a, y) I ts f (y) dνs(y) dτ.

Application of Lemma 2.7 and Fubini’s theorem gives

|∂m A j f (x)| �
∫

B

|I ts f (y)|
∫ 1

0

1

[τ x + (1 − τ)a, y]n+s+|m|+1 dτ dνs(y).

The inner integral is estimated in [18, Lemma 2.1] where it is shown that

∫ 1

0

1

[τ x + (1 − τ)a, y]n+s+|m|+1 dτ � 1

[x, y]n+s+|m| .

Therefore

|∂m A j f (x)| �
∫

B

1

[x, y]n+s+|m| |I ts f (y)| (1 − |y|2)s dν(y).

If |m| = N , then it follows from Theorem 3.1 that

‖(1 − |x |2)N ∂m A j f ‖L∞
α

� ‖I ts f ‖L∞
α

.

If |m| ≤ N − 1, then since [0, y] = 1, we have

|∂m A j f (0)| �
∫

B

|I ts f (y)|(1 − |y|2)sdν(y) ≤ ‖I ts f ‖L∞
α

∫

B

(1 − |y|2)s−αdν(y)

� ‖I ts f ‖L∞
α

.

We conclude that A j is bounded on bα .
For bα0 we repeat the same argument. In this case f ∈ bα0 implies I ts f ∈ Cα0 by

Theorem 1.3 and at the end we refer to Remark 3.3 instead of Theorem 3.1. ��

6.2 Atomic Decomposition

Atomic decomposition for the standard harmonic Bloch space b0 (and the little Bloch
space b00) is obtained first in [6]. That result is slightly extended in [5]where a different
proof based on Möbius transformations is given. Their result is generalized in [23] to
standard harmonic Bloch space on smooth bounded domains.
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Here, by using the isomorphism in Proposition 4.6, we will provide atomic decom-
position for all bα, α ∈ R.

We first introduce some definitions. For details see [1,5] or [6]. Let a ∈ B. The
canonical Möbius transformation ϕa on B that exchanges a and 0 is given by

ϕa(x) = (1 − |a|2(a − x) + |a − x |2a
[x, a]2 .

The pseudohyperbolic metric ρ(x, y) on B is defined by ρ(x, y) = |ϕx (y)|. Clearly,
0 ≤ ρ(x, y) < 1 and a straightforward computation shows ρ(x, y) = |x − y|

[x, y] . The

pseudohyperbolic ball with center a and radius r, 0 < r < 1 is Er (a) = {x ∈ B :
ρ(x, a) < 1}.

Let 0 < r < 1 and (xm) be a sequence inB. The sequence (xm) is called r -separated
if the pseudohyperbolic balls Er (xm) are pairwise disjoint. The sequence (xm) is called
an r -lattice if

⋃
m Er (xm) = B and (xm) is r/2-separated.

The following theorem gives the atomic decomposition for b0 and b00. Here, �∞ =
{(xm) : xm is bounded} and c0 = {(xm) : limm→∞ xm = 0}.
Theorem C (See [5,6]). Let s > −1. There exists δ0 = δ0(s) > 0 with the following
property: If (xm) is a δ-lattice with δ < δ0, then for f ∈ b0, there exists (λm) ∈ �∞
such that ‖λm‖�∞ ∼ ‖ f ‖b0 and

f (x) =
∑

m

λm(1 − |xm |2)s+n Rs(x, xm).

If additionally f ∈ b00, then (λm) ∈ c0.

The following is generalization of the above theorem to all α ∈ R.

Theorem 6.2 Let α ∈ R and s > α − 1. There exists δ0 = δ0(α, s) > 0 with the
following property: If (xm) is a δ-lattice with δ < δ0, then for f ∈ bα , there exists
(λm) ∈ �∞ such that ‖λm‖�∞ ∼ ‖ f ‖bα and

f (x) =
∑

m

λm(1 − |xm |2)s−α+n Rs(x, xm). (38)

If additionally f ∈ bα0, then (λm) ∈ c0.

Remark 6.3 The index s of the reproducing kernel Rs in (38) need not be greater than
−1, in these cases extended kernels are involved.

Proof of Theorem 6.2 Let δ0 = δ0(s − α) be as provided by Theorem C and (xm)

be a δ-lattice with δ < δ0. Let f ∈ bα . Then by Proposition 4.6, D−α
s f ∈ b0 and

‖D−α
s f ‖b0 ∼ ‖ f ‖bα . Applying Theorem C with s replaced by s−α we see that there

exists (λm) ∈ �∞ such that

D−α
s f (x) =

∑

m

λm(1 − |xm |2)s−α+n Rs−α(x, xm), (39)
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with ‖λm‖�∞ ∼ ‖D−α
s f ‖b0 ∼ ‖ f ‖bα . We now apply Dα

s−α to both sides of (39).
Using the fact that (xm) is a δ-lattice it is not hard to see that the series on the right of
(39) uniformly converges on compact subsets. Therefore we can push Dα

s−α into the
sum by Lemma 2.2 and obtain

Dα
s−αD

−α
s f (x) =

∑

m

λm(1 − |xm |2)s−α+nDα
s−αRs−α(x, xm).

(38) now follows from (20) and (18). The claim for bα0 is justified similarly. ��

6.3 Oscillatory Characterization

Throughout this subsection we will assume α > −1. Then one can choose N =
1 in Theorem 1.2 (a) and therefore f ∈ h(B) belongs to bα if and only if ‖(1 −
|x |2) |∇ f (x)| ‖L∞

α
< ∞. Our aim is to show that instead of ∇ f one can characterize

bα in terms of growth rate of | f (x)− f (y)|/|x − y|. For the standard harmonic Bloch
space b0 = b, the following result is shown in [19].

Theorem D (See [19]) Let f ∈ h(B) Then f ∈ b0 if and only if

K ( f ) := sup
x,y∈B, x �=y

(1 − |x |2)1/2(1 − |y|2)1/2 | f (x) − f (y)|
|x − y| < ∞.

Moreover, K ( f ) ∼ ‖(1 − |x |2) |∇ f (x)| ‖L∞ ∼ ‖ f − f (0)‖b0 .
The analogue of Theorem D for standard holomorphic Bloch space B on the unit

ball of Cn is proved in [9] for n = 1, in [21] still with n = 1 but with an elementary
proof and in [20] for arbitrary n.

In [25], Zhao generalized the result of [20] in two directions. First he showed that
the power 1/2 of 1 − |x |2 and 1 − |y|2 can be replaced by λ and 1 − λ for suitable
λ, second a similar result holds for weighted holomorphic α-Bloch spaces Bα for
−1 < α ≤ 1. (We note that [25] uses a slightly different notation than ours and writes
α + 1 where we write α and therefore denotes the standard Bloch space by B1).

We will first show the harmonic counterpart of the main result of [25] and after that
we will consider the case α > 1.

Theorem 6.4 Let −1 < α ≤ 1. Let λ satisfy the following properties:

(1) 0 ≤ λ ≤ α + 1 if −1 < α < 0,
(2) 0 < λ < 1 if α = 0,
(3) α ≤ λ ≤ 1 if 0 < α ≤ 1.

Then f ∈ h(B) belongs to bα if and only if

Kα,λ( f ) := sup
x,y∈B, x �=y

(1 − |x |2)λ(1 − |y|2)α+1−λ | f (x) − f (y)|
|x − y| < ∞. (40)

Moreover, Kα,λ( f ) ∼ ‖(1 − |x |2) |∇ f (x)| ‖L∞
α

∼ ‖ f − f (0)‖bα .
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Choosing in each case λ = (α + 1)/2 we obtain the following symmetric form.

Corollary 6.5 Let −1 < α ≤ 1 and f ∈ h(B). Then

f ∈ bα ⇐⇒ sup
x,y∈B, x �=y

(1 − |x |2)(α+1)/2(1 − |y|2)(α+1)/2 | f (x) − f (y)|
|x − y| < ∞.

One can prove Theorem 6.4 following the arguments of [25]. Here we want to give
a different proof based on the integral representation (7) and the following estimate
of the oscillation of reproducing kernels.

Theorem E (See [24]) Let s > −n and 0 ≤ τ ≤ 1. Then

|Rs(x, u) − Rs(y, u)|
|x − y| � 1

[x, y]1−τ

(
1

[x, u]n+s+τ
+ 1

[y, u]n+s+τ

)

,

for every x, y, u ∈ B with x �= y.

Proof of Theorem 6.4 Let −1 < α ≤ 1 and λ satisfy the given properties. Suppose
additionally that in case −1 < α < 0, we have 0 < λ < α + 1. We will separately
consider the cases −1 < α < 0 and λ = 0 or λ = α + 1.

Pick any s, t such that (4) and (5) holds. Since Kα,λ( f − f (0)) = Kα,λ( f ),
we can assume f (0) = 0. Then by Theorem 1.2, ‖ f ‖bα = ‖I ts f ‖L∞

α
∼ ‖(1 −

|x |2) |∇ f (x)| ‖L∞
α
. By the integral representation (7), we have

f (x) = Vs
Vs+t

∫

B

Rs(x, u)I ts f (u) dνs(u)

and therefore

| f (x) − f (y)|
|x − y| �

∫

B

|Rs(x, u) − Rs(y, u)|
|x − y| |I ts f (u)| (1 − |u|2)sdν(u).

Using that (1 − |u|2)α|I ts f (u)| ≤ ‖I ts f ‖L∞
α

= ‖ f ‖bα and applying Theorem E we
obtain

Kα,λ( f ) � ‖ f ‖bα

(1 − |x |2)λ(1 − |y|2)α+1−λ

[x, y]1−τ

( ∫

B

(1 − |u|2)s−α

[x, u]n+s+τ
dν(u)

+
∫

B

(1 − |u|2)s−α

[y, u]n+s+τ
dν(u)

)

. (41)

We now choose 0 ≤ τ ≤ 1 in the following ranges:

(1) −α < τ ≤ min{λ − α, 1 − λ} if −1 < α < 0 and 0 < λ < α + 1,
(2) 0 < τ ≤ min{λ, 1 − λ} if α = 0 and 0 < λ < 1,
(3) 0 ≤ τ ≤ min{λ − α, 1 − λ} if 0 < α ≤ 1 and α ≤ λ ≤ 1.
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Then the following inequalities will hold:

α + τ > 0, (42)

τ ≤ 1 − λ, (43)

τ ≤ λ − α. (44)

Estimating the integrals in (41) by Lemma 2.11 (with α + τ > 0) gives

Kα,λ( f ) � ‖ f ‖bα

(
(1 − |x |2)λ(1 − |y|2)α+1−λ

[x, y]1−τ (1 − |x |2)α+τ
+ (1 − |x |2)λ(1 − |y|2)α+1−λ

[x, y]1−τ (1 − |y|2)α+τ

)

.

Since [x, y] ≥ 1− |x | and [x, y] ≥ 1− |y| and 1− τ ≥ λ and 1− τ ≥ α + 1− λ by
(43) and (44), we conclude Kα,λ( f ) � ‖ f ‖bα � ‖(1 − |x |2) |∇ f (x)| ‖L∞

α
.

We now deal with the remaining case −1 < α < 0 and λ = 0 or λ = α + 1. For
this part we follow the proof of [19]. Let −1 < α < 0 and λ = 0 (the case λ = α + 1
will follow from symmetry) and let f ∈ bα . As before we can assume f (0) = 0 and
therefore ‖(1 − |x |2) |∇ f (x)| ‖L∞

α
∼ ‖ f ‖bα . By calculus,

f (x) − f (y) =
∫ 1

0
∇ f (t x + (1 − t)y) · (x − y) dt

and therefore

| f (x) − f (y)|
|x − y| ≤

∫ 1

0
|∇ f (t x + (1 − t)y)| dt.

Using that |∇ f (t x + (1 − t)y)| � (1 − |t x + (1 − t)y|2)−(α+1)‖ f ‖bα , we deduce

| f (x) − f (y)|
|x − y| � ‖ f ‖bα

∫ 1

0

dt

(1 − |t x + (1 − t)y|2)α+1 .

Since |t x + (1 − t)y| ≤ t |x | + (1 − t)|y| ≤ t + (1 − t)|y|, we have

1 − |t x + (1 − t)y|2 ≥ 1 − |t x + (1 − t)y| ≥ (1 − t)(1 − |y|).

Hence

Kα,0 = (1 − |y|2)α+1 | f (x) − f (y)|
|x − y| � ‖ f ‖bα

∫ 1

0

dt

tα+1 � ‖ f ‖bα

� ‖(1 − |x |2) |∇ f (x)| ‖L∞
α

.

To see the “if” part, let ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i th slot be the
standard i th basis vector. Then

∂ f

∂xi
(x) = lim

t→0

f (x + tei ) − f (x)

t
.
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By (40), we have

| f (x + tei ) − f (x)| ≤ t Kα,λ( f )

(1 − |x |2)λ(1 − |x + tei |2)α+1−λ

and therefore

∣
∣
∣
∣
∂ f

∂xi
(x)

∣
∣
∣
∣ ≤ Kα,λ( f )

(1 − |x |2)α+1 .

Hence ‖(1 − |x |2) |∇ f (x)| ‖L∞
α

� Kα,λ( f ). ��
Remark 6.6 In case −1 < α < 0, by Theorem 1.2 we have

f ∈ bα ⇐⇒ sup
x∈B

(1 − |x |2)α+1|∇ f (x)| < ∞.

On the other hand choosing λ = α + 1 in Theorem 6.4 shows

f ∈ bα ⇐⇒ sup
x,y∈B, x �=y

(1 − |x |2)α+1 | f (x) − f (y)|
|x − y| < ∞.

So in this case one can replace |∇ f | in the definition of bα with | f (x)− f (y)|/|x− y|.
The conditions on α and λ in Theorem 6.4 are all unimprovable. As an example,

let us consider the case α = 0 and show that Theorem 6.4 is not true for λ = 0 (by
symmetry this will show that Theorem 6.4 is not true also for λ = 1).

Pick ζ ∈ S and let f (x) = R−n(x, ζ ). Then f ∈ b0 by Theorem 4.8. On the other
hand by Lemma 2.9, for x = rζ ,

f (rζ ) = R−n(rζ, ζ ) ∼ 1 + log
1

1 − r2
.

Therefore

sup
x∈B, x �=0

| f (x) − f (0)|
|x | ≥ sup

0<r<1

1

r
log

1

1 − r2
= ∞

and so,

K0,0( f ) = sup
x,y∈B, x �=y

(1 − |y|2) | f (x) − f (y)|
|x − y| = ∞.

In the other cases we argue similarly: We let f (x) = Rα−n(x, ζ ) for ζ ∈ S.
Then Theorem 4.8 implies f ∈ bα . On the other hand using the estimate for f (rζ ) in
Lemma2.9one can easily show that ifλ is outside the given ranges, then Kα,λ( f ) = ∞.
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Note that in case α = 1, the only choice for λ in Theorem 6.4 is λ = 1 and for
f ∈ h(B) we have

f ∈ b1 ⇐⇒ sup
x,y∈B, x �=y

(1 − |x |2)(1 − |y|2) | f (x) − f (y)|
|x − y| < ∞. (45)

We now generalize (45) to α ≥ 1 in the following form

Theorem 6.7 Let α ≥ 1 and f ∈ h(B). Then f ∈ bα if and only if

Mα( f ) := sup
x,y∈B, x �=y

(1 − |x |2)α(1 − |y|2)α
[x, y]α−1

| f (x) − f (y)|
|x − y| < ∞.

Moreover, Mα( f ) ∼ ‖ f − f (0)‖bα .

Proof The proof is similar to the proof of Theorem 6.4. Let f ∈ bα . Pick s > α − 1.
By (7) we have (with t = 0)

f (x) =
∫

B

Rs(x, u) f (u)dνs(u)

and so

| f (x) − f (y)|
|x − y| �

∫

B

|Rs(x, u) − Rs(y, u)|
|x − y| | f (u)| (1 − |u|2)sdν(u).

Applying Theorem E with τ = 0 and using that | f (u)| ≤ (1 − |u|2)−α‖ f ‖bα we
obtain

Mα( f ) � ‖ f ‖bα

(1 − |x |2)α(1 − |y|2)α
[x, y]α

(∫

B

(1 − |u|2)s−α

[x, u]n+s
dν(u)

+
∫

B

(1 − |u|2)s−α

[y, u]n+s
dν(u)

)

.

Estimating the above integrals with Lemma 2.11 shows

Mα( f ) � ‖ f ‖bα

(1 − |x |2)α(1 − |y|2)α
[x, y]α

(
1

(1 − |x |2)α + 1

(1 − |y|2)α
)

.

Since [x, y] ≥ 1 − |x | and [x, y] ≥ 1 − |y| we deduce Mα( f ) � ‖ f ‖bα . Replacing
f with f − f (0) and noting that Mα( f − f (0)) = Mα( f ) we conclude Mα( f ) �
‖ f − f (0)‖bα .

The proof of “if” part is same as the proof of the “if” part of Theorem 6.4. We only
note that limt→0[x, x + tei ] = [x, x] = 1 − |x |2. ��

With making suitable modifications in the above proof one can easily verify the
following generalization of Theorem 6.7.
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Theorem 6.8 Let α ≥ 1, λ1, λ2 ≥ α and f ∈ h(B). Then f ∈ bα if and only if

Mα,λ1,λ2( f ) := sup
x,y∈B, x �=y

(1 − |x |2)λ1(1 − |y|2)λ2
[x, y]λ1+λ2−(α+1)

| f (x) − f (y)|
|x − y| < ∞.

Moreover, Mα,λ1,λ2( f ) ∼ ‖ f − f (0)‖bα .

Finally, we mention that all the results of this subsection have counterparts for
little Bloch spaces. When −1 < α ≤ 1 the “little” counterpart of Theorem 6.4 is the
following.

Theorem 6.9 Let −1 < α ≤ 1. Let λ satisfy the following properties:

(1) 0 < λ ≤ α + 1 if −1 < α < 0,
(2) 0 < λ < 1 if α = 0,
(3) α ≤ λ ≤ 1 if 0 < α ≤ 1.

Then f ∈ h(B) belongs to bα0 if and only if

lim
|x |→1−

(

sup
y∈B, y �=x

(1 − |x |2)λ(1 − |y|2)α+1−λ | f (x) − f (y)|
|x − y|

)

= 0.

We note that in case −1 < α < 0 we need λ to be strictly greater then 0. For α ≥ 1
we have the following “little” counterpart of Theorem 6.8.

Theorem 6.10 Let α ≥ 1, λ1, λ2 ≥ α and f ∈ h(B). Then

f ∈ bα0 ⇐⇒ lim
|x |→1−

(

sup
y∈B, y �=x

(1 − |x |2)λ1(1 − |y|2)λ2
[x, y]λ1+λ2−(α+1)

| f (x) − f (y)|
|x − y|

)

= 0.

Theorem 6.9 (respectively 6.10) can be proved by using Theorem 6.4 (respec-
tively 6.8) and following the arguments of [19, proof of Theorem 3.2]. The details are
straightforward and omitted.
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7. Gergün, S., Kaptanoğlu, H.T., Üreyen, A.E.: Reproducing kernels for harmonic Besov spaces on the
ball. C. R. Math. Acad. Sci. Paris 347, 735–738 (2009)

8. Gergün, S., Kaptanoğlu, H.T., Üreyen, A.E.: Harmonic Besov spaces on the ball. Int. J. Math. 27(9),
59 (2016). doi:10.1142/S0129167X16500701

9. Holland, F., Walsh, D.: Criteria for membership of Bloch space and its subspace, BMOA. Math. Ann.
273, 317–335 (1986)

10. Hu, Z.: Gleason’s problem for harmonic mixed norm and Bloch spaces in convex domains. Math.
Nachr. 279(1–2), 164–178 (2006)
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