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Abstract In this paper we work in the ‘split’ discrete Clifford analysis setting, i.e.
the m-dimensional function theory concerning null-functions, defined on the grid Z™,
of the discrete Dirac operator 9, involving both forward and backward differences,
which factorizes the (discrete) Star-Laplacian. We show how the space M, of discrete
spherical monogenics homogeneous of degree k, is decomposable into irreducible
s50(m)-representations.
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1 Introduction

In particle physics, the (massless) Dirac operator is a well-studied operator in the
setting of elementary particle physics [ 14]. This operator can be studied in a more math-
ematical setting, namely Euclidean Clifford analysis in general dimensions, where the
Dirac operator factorizes the Laplace operator, making Clifford analysis a refinement

Communicated by Uwe Kéhler.

DX H. De Ridder
Hilde.DeRidder@UGent.be

T. Raeymaekers
Tim.Raeymaekers @ UGent.be

Department of Mathematical Analysis, Ghent University,
Building S8, Krijgslaan 281, 9000 Ghent, Belgium

® Birkhiuser


http://crossmark.crossref.org/dialog/?doi=10.1007/s11785-017-0644-x&domain=pdf
http://orcid.org/0000-0002-1343-0320

1114 H. De Ridder, T. Raeymaekers

of harmonic analysis. The Dirac operator is a Spin(m)-invariant operator, or equiva-
lently, invariant under its Lie algebra so(m).

The current paper deals with a special type of Clifford analysis, namely discrete
Clifford analysis, where functions are defined on a grid (hZ)™ rather than the con-
tinuous m-dimensional space R™. In recent years, a function theory studying discrete
functions defined on the standard grid with mesh size 1 (Z™) has given rise to a discrete
counterpart of Euclidean Clifford analysis [2,5]. Different choices have been made
for the discrete Dirac operator [15,16,19], containing forward, backward and central
differences.

The ‘split’ discrete Clifford analysis setting, which we are considering here (e.g.
[4,7,13]) introduces a discrete Dirac operator d defined using only forward and back-
ward differences, which factorizes the discrete star Laplace operator A* [20]. The
function theory has already lead to a number of results regarding polynomial solutions
of this differential operator, namely a Taylor series decomposition [11], a Cauchy—
Kowalewskaya extension theorem [12], etc.

In this paper, we are however more interested in the representation theoretical aspect
of this theory. It is well known that in classical harmonic analysis, the Laplace operator
is arotational invariant operator, or equivalently, invariant under the Lie algebra so(m).

In [10], it has been shown that infinitesimal rotation operators can be defined in
the split discrete Clifford analysis setting under which the star Laplacian is invariant.
However, while the space Hy of discrete k-homogeneous harmonic polynomials is a
representation of so(m), contrary to the classical harmonic case, it is not irreducible.
This has been shown in [9], where a full decomposition has been made into irreducible
representations. The aim of this paper is to do the same for the space My of discrete
monogenic polynomials of arbitrary degree of homogeneity k. In the process, we will
be able to define spinor spaces in the discrete setting.

In classical harmonic analysis, the infinitesimal ‘rotations’, i.e. the elements of
the orthogonal Lie algebra corresponding to the rotation group SO (m), are given by
the angular momentum operators L, , = X0y, — Xp0y,. These operators satisfy the
commutation relations

[L(l,bv Lc,d] = ‘Sb,c La,d - Sb,d La,c - Sa,c Lb,d + (Sa,d Lb,c’

which are exactly the defining relations of the special orthogonal Lie algebra
s0(m) and they form endomorphisms of the space Hy (R™, C) of scalar-valued har-
monic k-homogeneous polynomials, thus transforming the latter in an (irreducible)
so(m, C)-representation. To establish M (R™,S), i.e. the spinor-valued homoge-
neous monogenics of degree k, classically as so(m, C)-representation, the following
operators are considered

1
dR(eqp) : M(R",S) - M(R™,S), My <La,b ~5¢a €b> M.

These operators are endomorphisms of the space of spinor-valued k-homogeneous
polynomials in m vector variables which also satisfy the defining relations of so(m, C):
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[dR(eap). dR(ec.a)] = 8p,c dR(ea,a) — Sp.a dR(ea,c)
_aa,c dR(eb,d) + Sa,d dR(eb,c)~

In [10], we developed similar operators in the discrete Clifford analysis setting: the
angular momentum operators are discrete operators L, p = &, dp + &p 94, a # b. For
a = b, we define L,, = 0. Then the operators 2, p, acting on discrete functions f
as Qu.p f = Lab f epeq, satisfy the defining relations of the orthogonal lie algebra
so(m):

[Qa,ba Qc,d] = Sb,c Qa,d - Sb,d Qa,c - Sa,c Qb,d + 8a,d Qb,c'

Furthermore, they are endomorphisms of the space H; of Clifford-algebra val-
ued homogeneous harmonics of degree k, since 2,; commutes with sl =
{A, 52, E+ % }, for all (a, b). Here 52 is the square of the discrete vector variable &
and [ is the discrete Euler operator (see Sect. 2). In [9], we showed that Hj, is the sum
of 2™ isomorphic copies of the irreducible representation of so(m, C) with highest
weight (k, 0, ...,0).

The discrete Dirac operator 9 is however not invariant under the operators 2, p,
hence M, cannot be expressed as so(m, C)-representation by means of these oper-

1
ators. Therefore, we considered in [10] the operators L, — 3 and the four-vector

1,0 1
Vap =eqepe; e = —ey

functions f as

e, ej- ep. Let the operator dR(e,.p), a # b, act on discrete

1
dR(ea,b) f = Va,b (La,b - 5) fej_ eli_' M

For a = b, we defined dR(eq o) = 0. Note that, for the sake of continuity, we use
the same notation for the discrete and continuous rotation operators. From this point
on, we always refer to the discrete versions unless stated otherwise. The operators
dR (e, p) satisfy the defining relations of the special lie algebra so(m):

[dR(ea,h)a dR(ec,d)] = 8p,c dR(€q,q) — Sp,a dR(eq,c)
_Sa,c dR(eb,d) + 8a,d dR(eb,c)a

and commute with osp(1]2) = {8, EE+ %} which makes them endomorphisms of
M. As such, the space My is a reducible so(m, C)-representation. In [10], it was
already suggested that M} can be decomposed into irreducible parts of highest weight
k. = (k+ %, %, o %) resp. (k) = (k + %, %, o —%), but this was left as an
open conjecture. In the following sections, we will show how this decomposition is
done exactly.
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2 Preliminaries

Let R™ be the m-dimensional Euclidian space with orthonormal basis ¢;, j =
1,...,m and consider the Clifford algebra R,, o over R”. Passing to the so-called
‘split’ discrete setting [7,13], we embed the Clifford algebra R,, o into the bigger
complex one Cy, o, the underlying vector space of which has twice the dimension,
and introduce forward and backward basis elements e]i satisfying the following anti-
commutator rules:

{e;,e[}:!ej,e[}zo, {ej,e;}:ﬁﬂ, jol=1,...,m.

The connection to the original basis ¢; is given by e;r + e; =ej,j=1,...,m,

which indeed implies that e? = 1. We will often write ej- = e;“ - e; and ef A e; =
e R I

e;e —e; e =eje;.

Now consider the standard m-dimensional equidistant lattice Z™; the coordinates
of a Clifford vector x will thus only take integer values. We construct a discrete
Dirac operator factorizing the discrete Laplacian, using both forward and backward
differences Ajt, Jj =1,...,m,acting on Clifford-valued functions f as follows:

ATIAIO) = fCHep) = O, ATIFIO = FO) = f—e)).

With respect to the Z"-grid, the usual definition of the discrete Laplacian in x € Z™
is

m

MA@ =D ATATII=) (fa+e) + fx—e)) —2m f ).
j=1

j=1

This operator is also known as “Star Laplacian”; we will from now on simply write A.
An appropriate definition of a discrete Dirac operator d factorizing A, i.e. satisfying
8% = A, is obtained by combining the forward and backward basis elements with the
corresponding forward and backward differences, more precisely

m

_ Fat L am A
8_Z<ejAj+ejAj).

j=1

Denote the co-ordinate difference operators 9; = ej A;.r +e A and consider the
discrete co-ordinate vector variables &; = e;r Xj_ + ej_ X;r, j =1,...,m, with
X jt scalar operators. In order to receive an analogue of the classical Weyl relations
ij Xk — Xk ax,. = &, the co-ordinate vector variable operators &; are defined by their
interaction with the corresponding co-ordinate operators 9;, according to the skew
Weyl relations, cf. [7]
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which imply that 9; SJ’.‘[I] =k Sj].‘fl [1]. The operators &; and 9; furthermore satisfy
the following anti-commutator relations:

(g 6)={0;, ) = [0, &) =0, j#k jk=1,....m

implying that 9 {[1] =0, j # £.

The natural powers & ;.‘[1] of the operator &; acting on the constant 1 are the basic
discrete k-homogeneous polynomials of degree k in the variable x;, i.e. E& ;.‘[1] =
k& ;‘ [1], where E = 27:1 &; 0; is the discrete Euler operator. They constitute a basis
for all discrete polynomials. Explicit formulas for éj’.‘[l] are given for example in
[7,12]; furthermore gf[l](xj) =0ifk >2|x;| + 1.

A discrete function taking values in the Clifford algebra C,,, is discrete harmonic
(resp. left discrete monogenic) in a domain 2 C Z™ if Af(x) = 0 (resp. 3f (x) =
0), for all x € 2. The space of discrete harmonic (resp. monogenic) homogeneous
polynomials of degree k (i.e. Ef = kf) is denoted Hy (resp. My), while the space
of all discrete harmonic (resp. monogenic) homogeneous polynomials is denoted H
(resp. M). It is clear that

o o0
H= @Hk, M= @Mk.
k=0 k=0

The respective dimensions of these spaces over C are:

. oom k+m—1 _ k+m-—3
o =2 (7))

dim(My) = 22" (k +’Z - 2).

The calculations are similar to the classical case (see e.g. [2]).

3 Orthogonal Lie Algebras

As the remainder of this paper will deal with the explicit construction of representations
for the orthogonal algebra so(m, C), we will start by briefly introducing this Lie algebra
s0(m, C); a detailed description can be found for example in [17]. In even dimension
m = 2n, the Lie algebra so(m, C) is generated as a matrix algebra as follows. Define
E; j as the (;m x m)-matrix with entry 1 on position (i, j), while all other entries are
0. Then we can define the matrices

H; = Eii — Enyin+i
Xij=Eij— Entjn+i
Yij=Eintj = Ejn+ti

Zij = Enti,j — Entji,
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forall 1 < i, j < n.Note that due to the symmetry of ¥; ; and Z; ; in the indices, it suf-
fices in fact that for those sets of operators, we pick i < j. The matrices H;, X; ;, Y; ;
and Z; ; generate exactly the Lie algebra so(2n, C) using the commutator as Lie
bracket. When considering the same set of generators as (2n + 1 x 2n 4 1)-matrices,
in addition with the matrices

Ui = Eion+1 — E2nt1,n+i
Vi = En+i,2n+1 - E2n+1,i7
for all 1 < i < n, we find a set of generators for so(2n + 1, C), again using the

commutator as Lie bracket. From now on we consider these generators as abstract
elements, satisfying the same relations as their matrix equivalents. Hence

50(2”, C) = Span(C {Hll’ X(l,b9 Y(l,b9 Za,b’ 1 < as b < nv a 75 b} ’
5'0(2”1 + 17 (C) = Span(c {HCI’ Xa,b7 Ya,b’ Za,b, Ua5 Va» 1 g a, b g n,a ;é b} .

The Cartan subalgebra is chosen as
h={Hs, 1 <a<nj,

independently of the parity of the dimension, i.e. s0(2n, C) and so(2n + 1, C) are
both Lie algebras of rank n. The roots of so(m, C) (see also [21]) are determined by
considering the action of the Cartan algebra on the other generators of the adjoint
representation of so(m, C). Hence, forall 1 < a, b,c,d < n:

[He, Yab] = Bca + 8cb) Yap = (La + Lp) (He)) Yap,
[He. Xap] = Bca — 8ev) Xap = (La — Lp) (He)) Xap,
[He, Zap] = — Bca + 8cb) Zap = (—La — Lp) (He)) Za p,
[He, Ug]l = 8ca Ua = (La(Hc)) Uy,
[He, Val = —8ca Ug = (=La(Hc)) Ug.

Here {L,, 1 < a < n}isabasis of the dual vector space h* of the Cartan subalgebra b,
i.e. Ly (Hp) = 84,5 Note in particular that the Cartan subalgebra elements H, appears
in the commutator of a certain positive root with a negative root of the same index:

[Ya,b» Za,b] = —H, — Hp, [Xa,bv Xb,a] = H, — Hp.

We thus deduce the following roots and root vectors.



Spinor Spaces in Discrete Clifford Analysis 1119

Root Root vector
m=2n
La—Lyp Xab
Lyg+ Ly Yab
—Lg—Lyp Za,b
m=2n+1
Lg— Ly Xa,b
Ly+ Ly Ya,b
—L,;— Lb Za,b
Lq Uq
—Lq Va

By the usual convention (see e.g. [17]), we choose the positive roots in even dimen-
sion to be

{Lo+Lp, Ly —Lp:1<a<b<n}
and negative roots
{—Ls—Lp,Lp — L, :1<a<b<n}.
In odd dimension, one chooses positive roots
{Lo+Lp,Ly—Lp:1<a<b<njU{L,:1<a<n}
and negative roots
{(—Ls—Lp,Lp — Ls:1<a<b<njU{-L,:1<a<n}.

In [10], we introduced the algebra so(m,C) (up to an isomorphism) in the
discrete Clifford analysis context. The generators of so(m, C) were not given in
terms of the root vectors and Cartan subalgebra, but rather by the generators

{dR(ea,b) 1<a#b< m} see (1) satisfying the defining relations of so(m, C):

[dR(eap). dR(ec,d)| = 8a,a dR(ep.c) + 8p.c dR(eq,a)
—8a.cdR(epa) — 8p.adR(eqc), 2)

see [10]. The next step is to identify both realisations of so(m, C) in the discrete

Clifford analysis setting, by determining the explicit expressions of the root vectors
and Cartan subalgebra.

4 Decomposition of M in Irreducible Representations

Since the definition of the generators of so(m, C) differs in even and odd dimensions,
we have to make a distinction. We start with the even dimensional case.
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4.1 Even Dimension m = 2n
Definition 1 We define the operators H,, X4.p, Ya,p and Z, j € so(m, C):
H, = idR(eZafl,Za), I <a<n,

1
Xap = 5 (dR(€2a—1,20-1) + i dR(e2a—1,26) — i dR(e2a.20-1) + dR(€24,2)) »

(NS R \S]

Yoo = = (dR(e2a—1,20-1) — i dR(e2a—1,26) — i dR(€24,2p—1) — dR(e2a,20)) ,

1
Zap = 3 (dR(e2a—1,20-1) + i dR(e2a—125) + i dR(e2q2p-1) — dR(e2a.20)) ,

1<a,b<n.

Note that, because d R(eq,p) = —dR(ep,q), we find that Yy , = =Y, p and Zp , =
—Z, . For X, p,, we find that X, , # X, and that X, , = H,, hence we will only
consider couples (a, b) with a # b.

The original operators d R (e, ) can be reconstructed as linear combinations of the
operators X, p, Y4.p, Za,p and H,.

Straightforward calculations, which make use of (2) show that these operators
satisfy the same commutator relations as their matrix equivalents. In particular, we
have the following lemma.

Lemma 1 The operators He, Xqp, Yap and Z,p,1 < a,b,c,d < n, satisfy the
commutation relations of so(m, C):

[HCs Ya,b] = ((Sca + 8cb) Ya,b = (La + Lb) (Hc) Ya,b,
[HCa Xa,b] = (CSCa - 8Cb) Xa,b = (La - Lb) (Hc) Xa,by
[Hcv Za,b] = - ((Sca + 8017) Zu,b = - (Lu + Lb) (Hc) Za,b,

[Xa,bs Yc,d = Sbc Ya,d - de Ya,c-

This means that the operators X, p with a < b and Y, , are indeed positive root
vectors corresponding to the roots L, — Ly, resp. L, 4+ Lp. Furthermore, X, p with
a > b and Z, ), are negative root vectors corresponding to the roots L, — Ly, resp.
—L, — L.

Proof Since the commutator relations between the operators d R(e, ) are the same
as those between the operators €2, 5, of the harmonics, the proof is completely similar
as the proof given in [9].

We already established in [10] that since the operators d R(e; ;) are endomor-
phisms of My, M is a representation of so(2n, C) although this representation is
not irreducible. The next step in our reasoning is to decompose M into irreducible
representations of so(m, C). This is done by splitting 1 into a sum of idempotents,
see further. When constructing irreducible representations, the main target is to find
so-called highest weight vectors. These are in our context functions belonging to Mjy,
which:
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e vanish under the action of all positive root vectors,
e are simultaneous eigenfunctions for the action of all H,,.

The property of such highest weight vectors is that they generate an entire irre-
ducible representation by all consecutive actions of negative root vectors. The aim is
to construct idempotents L such that there exists a discrete monogenic function Py,
such that Py L satisfies the conditions for a highest weight vector. Here Py L denotes
the multiplication of P, with the idempotent L. For a function P L to be an eigenfunc-

tion of the maximal abelian subgroup 0, it must hold that L ej-a_l ej-a is again equal
to L up to a (complex) constant. Consider, fora = 1, ..., n, the Clifford elements
+  _ (aF — -+ + _ (oF o +
Ly, = (ej,_1e £iey, ). L, = (eje5 te5,),
M = (e5,_1€5,_, tiey, ;) Mi—(e_eJr +ey,)
2a—1 — \M2a—1"2a—1 2a—1) > 2a — \N2a*2a 2al

For the rest of this article, we will need the following notations. For F, €
{L;t, M,;t} ,a=1,...,m,denote

0, ifF,=LIorM; 0, ifF,=L%*
cT el and IRl = e

F:
|Fal 1, ifF,=L;orM} 1, ifF,=MF.

Furthermore, denote by fa the idempotent

a’

MF, ifF,=MZE.

a

a =

- {L;F, ifF, = L*

Then |fa| =1—|F,| and ||fa|| = || F,||. Before we introduce the highest weight
vectors, we will study the effect of multiplication by basis elements on these idempo-
tents.

Lemma 2 The multiplication by ej- from the right on the idempotent F, € { Lf, M f}
is:

1 Foal+1 :
Fa1 65, = (=Dl By, )

Fag ez, = (1)t By,
As a result, for 1 < a < n, we have that
Fayo1 Fag €3,y €3, = (=1)/ e tHB2H i By .
Denote, for 1 <s1 < sp < m:

Fo2 = FiF... Fsl—l Fsl Fsl-i-l sz—l Fsz Fs2+1 Fsz+2~-~Fm—1 Fu,
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then we find that for | < a < b < n and a general idempotent F = [ [, Fs, with
Fy e {LF, MF}):

1 1 Fra—tl+1Fop—1 |1+ Faa—1 |1+ Fap—1 141 52a,2b—1
Vaa—1ap-1 Fex, ey | = (—l)l 2a— 11+ F2p—1 [+ Faa—1 I+ F2o-1I+1 g ,

1 1L Fag—11+Fap |+ Faa—1 1+ F2pll ; 2a,2b—1
Vaa—_1.6 F ey, ;€55 = (— D Faa-t I+ P [+ Pt I+ 12l p2a ,

1 L F; Fop F, Fop-ll ; p2a,2b—1
Vaaop—1 F ey, ey | = (— D F2alH P2 [ H I Fall+ 1 Fop-1 ]l p2a ,

Vaaos F e, ed = (— 1)l P 1Fal +1 P | p2a20-1,

Proof Note that

1 (et wiet o= Ye=irt £ 1 _ (o —ete- ) LT
Log—1%a-1 = (e2a—] $le2a—]e2a71) =Fily Loy e = (e2a erzaeza) =FLy,:

MY ety = (—ep  Hiey, e, ) =+iME | MEed, = (—e, Fepel,) =2 MF,
We may indeed summarize this as
Fag-1ez, = (=D By g g ez, = (D)1 By
From this it follows that
Foareng = (D" li By 1, Fageq, = (=1)1Pl By,
Hence we find that
Fru1 Fag ey, 1 €3y = Fag_1€5,_, Fay ey, = (=Dt By By

Also important to note is that ex e, LE = LT and el e, M¥ = —M so for the
idempotent F = [[,_, F, we find that

Vap F = —eteqgeff ey F = (=) TIElHIRI E,

We thus get that

Vauot,26—1 F ex,_y €3y = (=D HPRatlFliP—tl gy By By o5 egy
= (=) Pt HF2 1l By By Py ek B
- ﬁzbfl eé_b—l Fyp F2b+1 S
— (_1)|F2a—1H‘|F2b—l‘+||F2a71“+||F2b—1” i2 FI F
o Fagy Fag_y Pog

e Fop 1 Fop Fopgy ... By
— (_1)|F2a—1‘+|F2b—1‘+||F2a71”+”F2b—1”""1 F2a.2b—1
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Analogously, we find that

Vaa_1.26 Fej_a—l eé}j — (_1)1+\|F2a—1||+\|F2b|| FF...Fy, eé_a—l ej_b
— (_l)lJrHFZa—l”JrHFZb” Fi...Foyu_2 Fou_1 eZLa—l fza
Py €3, Fap1 Fapia ... Fy
= (= )Pt 1 a1 P BV Ry L Foy s Fagy fm
o Fap_y Fap Fopt1... Fp
— (_1)\F2a—1\+|F2b|+|\F2a—|||+|\F2b|| | Fla.2b—1

Also

Vaa.2b—1 Fe%;z eé_b—l — (_1)1+\|an\|+lleb—lll FI\F>...Fy, eil eé_b—l
= (=!Il By By ) Fog €3, Faag
- I?2b—1 ej_bfl Fop Fopy1 ... Fy
— (_1)\F2a|+\sz—1|+|\F2a|\+||F2b—1 I FI Fs...Foy_i FZa F2a+1
ooy Fop Fopiy ... Fy
— (_l)‘FZaH“Fbel|+”F2a”+”F2b71H | F2a.2b—1

Finally

1 1 1+ F; F. 1l L1
Vaaop F ey, €35, = (—1) +Hl Faall+ Fapll FiFy...Fyey e,

1+ Fa I+ F 1 E
= (=Dl By By Fag e, Frat

~ 1
.. pesy Fopyr ... Fy
F, F F F T -
— (_1)| 2a |+ Fap |+ Faa [+ Fap |l F1 Fa...Fra_1 Fog Foa1

e Fop 1 Fop Fopyr ... Fiy
— (_1)|F2a|+|F2b\+IIF2a||+|\F2h|| F2a.2b—1

Consider the basic discrete monogenic k-homogeneous functions
g = (2 -6 G +ED M) g1 = (G2 — €D (&2 + ) (&2 — 5 [11.

From now on we denote (k). = (k + %, %, el %) and (k) = (k + %, %, e —%)
We will show under which conditions on the idempotent F = [],_, Fj, the space

spanc {gx F} is a weight space of h with weight (k)’_ resp. (k)’_.

Lemma 3 The polynomial gy F € My, F = HT:] F; with F; € {LfF, Mf}, isa
weight vector of so(m, C) with

o weight (k) if k + |Fi| + |[F2| + | Fill + | F2|l is even and || Fag—1l + | F2ll +
| Fog—1] + | Faql is even for 2 < a < n.

o weight ()_ ifk+|Fi|+|F2|+ | Fill+ | F2|l is even, || Faa—1ll 4+ | Faa ll + | F2a—11+
| Foql is evenfor2 < a <n — 1 and || Fop—1ll + | Fonll + [ F2n—1| + | F24| is odd.
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Proof We consider the action of the Cartan subalgebra-elements Hy, 1 < s < n, on
gr F. Since g; only contains the vector variables &1 and &, we will first consider H:

) 1 I
Hi(ge F)=iVia(Liz— 5 )k Fepey.

We will also denote

Pk = (2 + &) (B2 — &N 1T,
a1 = G +E) (B2 — &) (B + &N LI

In [6] it was established that 9; g = (—1)j k fx—1 hence
Ligi=6102+8&0) g =kG1 —&) fiu1 = —k (52 —&1) fr—1 = —Kk gk-

We thus get that

. 1
Hy (g F) =i (—k— 5) Vio gk Fefes.

Notice that Vi3 gx = (=Dk gk V12 since
eierér = (efe; —eje]) (X[ e + X7 ef) = (—XT e + X[ ¢f)
= (X{ ey + Xy ef) (—efe; +eref) =—Eiefen,
erer& =Eetel.
Applying this, we find that

. 1
Hi (g F) = (=D (k + 5) gk Vi2Fef ey

= (_1)k+IF1\+|F2|+HF1 I+ E2 (k n l) o F.
2

For g F to be a weight vector with weight (k)’_ it must be an eigenfunction of H|

with eigenvalue k + %, hence it must hold that k + | F| + | F2| + || F1 || 4 || F2]| is even.
We find 8 possible combinations for F; F»:

e keven:

FiFe{LlfLy, LT Ly, LT My, LT M,
+ 7+ + 7+ -7 - o Vi
Ml LZ’M] M2’M1 LZ’M] M2}'

e k odd:

FiFe{LTLy, LT LY, LY My, LT My, M L3,
+ - -7+ -+
M M5, My Ly, My M5}
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Next, we consider the action of H,,2 < a < n, on g F to conclude under which
conditions g F is an eigenfunction of H, with eigenvalue :l:%. Since the generator
gk only contains &; and &, it vanishes under the action of La,—124 = &24—1 024 +
&24 024—1. Note that Vo,_1,24 8k = 8k V2a—1,24 since gi contains only ef and ezi.
Thus

i L 1 i L 1
H, (g F) = 5 Voa—1,2a 8k F e3,_1 €5, = 58 Vau—1,2a F ey, €3,
= (= D) Pt I+ Prall 41 Framt |+ Paal+1; L g
2
1
— (_1)||F2u71H+”F2a”+‘F2a71‘+|F2a| — g F.

2

This equals +1 g« F when || Fag—1 | + || Fa | + | Faq—11+|Faq| isevenand — % g F
otherwise.
We find that || Foq 1]l + | F2all + [ F2a—1] + | F24] is even for Fo4 1 F24 in

+ + — — + —+ — —
{L2a—1 L2a’ LZa—l L2a’ LZa—l M2a’ L2a—lM2a’

+ + + + — — — —
MZaf] L2a’ M2a71 M2a’ M2a7] L2a’ MZafl M2a}

and odd for F»,_1 F>, in

+ -y + 74+ e +
{L2a—l L2a’ L2a—1 L2a’ L2a—1 MZa’ L2a—l M2a’
+ - gt - - + - +
MZafl L2a’ M2a71 M2a’ M2a71 L2u’ MZafl M2a} :
This proves the lemma.

Remark 1 Inparticular, we find that go; 'L, L] respectively gox+1 L Ly [[r; LT
are weight vectors of b in My resp. Moy 1 of weight (2k)’, resp. (2k + 1),

Corollary 1 There are 2*™~" weight vectors g F, with F one of the idempotents
mentioned above, of weight (k)', and 22m=1 \weight vectors gi F, with F one of the
above mentioned idempotents, with weight (k)'_.

Proof To obtain weight (k)’+, one has eight choices for each factor Fp;_1 Fag in
F,1 < s < n. We thus get 8" = 23n — p4n=n _ 22m—n choices for the idempotent
F. The same reasoning can be made for the weight (k)’_.

We will now show that the weight vectors, defined in Lemma 3 are actually highest
weight vectors, i.e. that they vanish under the action of all positive roots.

Theorem 1 The polynomials gi. F, with

o k+|Fi|+ |F2| + | Fill + | P2l even
o | Fou—ill + 1 Faall + | Faa—1| + | Faq| even, forall2 < a < n — 1, and
o || Fou_1ll + 1 F2nll + | Fon—1| + | F2n| even resp. odd
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are highest weight spaces with highest weight (k)', resp. (k)_, i.e.

1 1 &
H, (gx F) = 8la(k+§)+§2;8ja g F
/:

and

Xap (8 F) =Yap (g F) =0, foralll <a<b<n.
Proof Lemma 3 tells us that these gx F are weight vectors with weight (k)’, for the
conditions stated above. The only thing that we still have to prove is that g; F vanishes
under the action of X, and Y, p,a < b.

We first consider the action of X, ;, on gx F. We make a distinction between a = 1
anda # 1. Take 1 = a < b, then

2X1 8k F = (dR(e1,20-1) +idR(e12p) — i dR(e22p—1) + dR(e2,2)) 8k F

1
= V-1 (Szb—l 0 — 5) g Fet €31

) 1
+i Vi <$2h o — 5) gr Fei ez,
. 1 11
—iVoop—1 | 2p—1 02 — 5 )8 Feyey
1
+ Voo (ézb 0 — 5) gk F ey e3;
1 L1
= Vi1 | —k&wp—1 fr-1 — 5 8k Fey ey
. 1 11
+iViop | —k&w frio1 — 5 8k Fei ey,
. 1 11
—iVoop—1 | kéop—1 fio1 — 5 8k Fey ey
1
+ Voo (k &b fr—1— 3 8k> F ey ey,
Now we use
V1,261 6201 = —&p—1 V1,201, V1,26 620 = —&2b V1,26

Furthermore, since for b # 1, 2,

Vip &2 £ &) =& F&1) Vi,
Vop G2 x&) = (& L&) Vo =— (& Fé1) Vo,



Spinor Spaces in Discrete Clifford Analysis 1127

we find, for j € {2b — 1, 2b}:

Vijer=Vij& -&)E+E)E —§D)...
=&E+Es&)E-EDE+E) ... V= fi Vi,
Vijfi=Vij&+&)E —-&)E+E5D)...
=& -8s)E&E+s5DE —-8)... Vi, =& V1,

Vajgk=VajE—ENE+E)E—ED ... = (=D i Vo,
Vajfi=Vaj&+E)E—E)E+E)...= (=D g Vo
We get that

2Xipe F = <k€2b1 8k—1— %fk) Viop—1 Fetes_,
+i <k$2b 8k—1 — %fk) Viop F e ey,
—i ((—1)‘““ k&2p—1 gk—1 — % (—DF fk> Vaop1 Feted,
+ ((—1)”k—1 k &2 g1 — % (—DF fk) Voo F e3 €35,

Using Lemma 2, we get

2X1pek F = (_1)|F1|+|\F1H+|F2b—1|+HF2b—1H

<—k Exp—1 8k—1 + l fi + (_1)|F2b—l|+”F2b—l”+|F2b\+||F2b||
2
1
—k & gk—1 + 3 Ji

()RR R B ((_1)1(,(5%_1 it — (— 1) % fk)

+(_1)|F1|+HF1 [l F2 [+ Fa ll4-1 Fap—1 141 Fap |41l Fap—1 |11 Fop |
1 _
((—1)’%&;, g1 — 5 (=D fk)) F2h-t,

We thus see that this vanishes when
k+Fi| + | Full + | F2| + | P2l

is even.
For 1 <a < b < n we get that

2Xap gk F = ) (V2a—1,2b—1 8k FezLa,l Efb,l + i Vaa—1,26 8k Fefa,l eﬁ

. 11 11
—i Vouop—1 8k F ey, e5,_1 + Vaa,2p 8k F ey, €2b>
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— _l Sk ((_1)\F2a71|+|F2h—1H—lIan—lH+HF21;—|H+1
2
+(_1)‘F2a—l|+|F2hH’”F2a71“+||F2h”+l

+(_1)\an\+\sz71HHanIIH\szqH 4 (_1)\F2a\+\F2bI+HF2aH+\|F2bII) F2a.2b—1

This will be zero when |Foq—1| + | Fou—1ll + | F24| + || F241l is even, and this for all
2<a<n—1.

Note that:
1 . .

Xap = 3 (dR(e2a—1,20-1) + i dR(e2a—1,26) — i dR(€2q,2p-1) + dR(e2a,20)) ,
1 . :

Yop = 3 (dR(e2a—1,2b—1) — i dR(€2a—1,20) — i dR(€20,20—1) — dR(€2a,25)) -

If we apply the appropriate change of sign in the second and last term of previous
calculations, we immediately get that Y, ,(gx F) = 0fora < b.Since Y, ), = —Yp 4,
this will also be zero for a > b.

Remark 2 In particular, the polynomials gox [[r; L and goky1 LT Ly [y LT
are highest weight vectors with weight (2k)’, resp. (2k + 1)/,..

Remark 3 The dimension of (k);E is (see e.g. [17])

o1 k+m-—2
X .

As the dimension of M equals

H2m k+m—2 _ pdn k+m-—2
k k

and as we found 2% disjoint isomorphic copies of (k)', combined with 23" copies of
(k)"_, the space My is fully decomposed in 23" copies of (k)’, and 23" copies of (k)’_.

Definition 2 We define the space of positive resp. negative spinors Si as the image
under so(m, C) of the idempotents [{; L], resp. (]_[;";11 L;r) L,:

S5, =so(m,C) (spanc {LT LT ... LT, | L3 })
and

S5, = so(m, C) (spang {LT LT ... L], | L3 }).

The elements Lfr L2+ e L2+n_1 L;“n, resp. Lfr L2+ e L;n_l L,, are highest weight
vectors with weight (0), = (%, e %) resp. (0)_ = (%, e %, —%) Let us give an
example to clarify this construction.
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Example 1 Letm = 4 (i.e.n = 2) and consider L = L LT LT L. The Lie algebra
s0(4, C) is given in this context by

spanc {dR(e12), dR(e13), dR(e14), dR(e23), dR(e24), dR(e34)} .

The elements d R(e12) and d R(e34) return L up to complex constant. The other four
rotations give us (up to a complex constant) the idempotent Lf Ly Ly LI. Hence

Sy =spanc {LT LT LT LY, LT Ly Ly LT}

Starting from L L3 L7 L}, the rotations dR(e13), dR(e14), d R(e23) and d R(e24)
lead us to the idempotent LT L, Ly L, which shows that

Sy =spanc {LY LT LY Ly, LT Ly Ly Ly}

The space of positive/negative spinors Sff is 2-dimensional.

In general, the elements d R(ex,—1,24) acting on an idempotent return the same
idempotent up to a multiplicative complex factor. Since, for 1 < a < b < n:

1 1 2a,2b—1 1 1 - 72a,2b—1
Vaa—1,20—1L €a—162p—1 = —L= , Voa—1,26 L €r0—162p =1 L= ,
1 L - 12a,2b—1 1 L 2a,2b—1
V20,2b—1 L eza 32b71 =1 L a N Vza,gb L eza €2b = L a .
: 2a2b—1 _ 7+ 71+ + — — + + + s
with 'L =L{Ly...Ly, {Ly,... L_2b—1 Ly, ... Ly, Ly,, similar to the
notation used before, we see that d R (e, p) acting on

+ 7+ + +
L=L{Lf...L} L3

changes the sign of an even number of L,’s. The operator always leaves LT and L;‘n
unchanged. The resulting idempotent will always have an even number of minus-
signs. Starting from the idempotent L with all plus-signs, we thus get all possible
idempotents of the following form:

Ly .. ... . L}
S~~~ ~~—— n
where each place . . consists of either Ly, Ly, jor L, Ly, 1,1 <a<n-—1

We get 2"~ spinors belonging to the positive spinorspace and we have the following
weight space decomposition

S5, = @ V(i%,il il)’

PRREES)

where V( ! ) denotes the weight space with weight (j:%, j:%, ey :I:%) and

+1+5,.
where the sum goes over all weights with an even number of minus-signs. The highest
weight remains (% e %) and the highest weight vector is L.



1130 H. De Ridder, T. Raeymaekers

Starting from L} L] ... L3 | L5 , we will generate all possible idempotents of
the following form:

+ L
l\r-“\r-“\z-’ 2n

2a410 1 <a<sn-—1.
We thus also get 2" ~! spinors belonging to the negative spinorspace and the following

weight space decomposition:

S, =D V(:I:%,:t%,...,:l:%)’

where each place . . consists of either L L2a 4 orly L

where the sum goes over all weights with an odd number of minus-signs. The highest

weight is still (%, o %, —%) and the highest weight vectoris LY L] ... L] | L5 .

4.2 Odd Dimension m = 2n + 1

We now extend the set of generators Hy, X4.5, Yap and Z, p, of so(m, C) with 2n
operators

U, = (dR(eZa 1.m) — i dR(eq, m))

Va = (dR(eZa—l,m) +i dR(eZa,m)) s

SJ-t-

where 1 < a < n. With the addition of these 2n operators, we are again able
to reconstruct all original dR(e, p)’s since V2 dR(e2qa—1.m) = Uy + V, and
2idR(e2am) = Uy — Vg
The classic commutator relations follow immediately.

Lemmad4 For1 < a,b < n, it holds that

[Hy, Upl = 8ap Up = Lp(Hy) Up,
[Hy, Vbl = —8ap Vo = —Lp(Hy) V.

In particular, Uy, is a root vector of so(m, C) corresponding to the positive root Ly
and Vy, is a root vector corresponding with the negative root — Ly, for all 1 < b < n.

Lemma 5 The operators U, and Vy satisfy the following additional commutator rela-
tions with X p, Yap and Zg p, 1 < a,b,c,d < n:

[UL7 X(/l b] = _(Scb Uaa [VL7 X(/Z b] - Sca Vb’
[UCa Y, b] [VCa Y, b] —aca Up — 3¢ Ua,
[Uc» Zg b] = _(Scb Va + 8ca Vb, [Vc» Zg b]
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[UCa Ud] = —1Ic¢d, c #dr [VC9 Vd] = _ZC,d9 c #d’
—Xcd, ¢#d,

Ue, Vyl = ’

[Uc, V4l —H,, c=d.

Proof The statements follow immediately from the definitions of U, and V,; and from
the defining relations (2) which the operators d R(e,,5) satisfy.

We introduce four extra idempotents

LE=(efe, tiel), M:=(e,e te,)

m m m m=m

and denote

n

n
=15 5) s U=1i Ly [T (L5 L3) L3

a=1 a=2

We will now show that the highest weight vectors of weight (k)’, from the even-
dimensional setting are also highest weight vectors with weight (k)’_ in the odd-
dimensional case when we multiply them with one of the four possible extra factors
L and ME.

Theorem 2 The weight vectors gy F, F = [, Fy with F; € {Lsi, Msi} with

o k+|Fil+|F| + I Fill + 12|l even
o [[Faa—tll + 1 F2all + [F2a—1] + | F2a| even, forall2 < a < n,

vanish under the positive root vectors Uy, 1 < a < n, i.e. Uy (gr F) = 0, for all
1<a<n.

Proof Consider
V2U, (gk F) = (dR(e2a—1,m) — i dR(€2am)) gk F.

Since g contains only the vector variables & and &, we will make a distinction
between a = 1 and a # 1. We start with assuming that a = 1:

1 . 1
V2U (g F) = Vi (sm d — 5) gk Fef el —iVan (sm & — 5) gk Fey et

1
Vl,m <_k Sm fk—l - 5 gk) FelL erJn_

. 1
—iVon <k§m Je—1— Egk> Feyep.

Now we again use that, for j # 1, 2:

Vijfe=8aV1j, Vajfi= (—D g Vajiv Vi, & = fi V1,
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Vajgk = (=D fi Vo ;.

Hence
V2U (g F) = <k€m Vim fe—1 — % Vim gk) Fet e,
—i (—k &m Vam fio1 — % Vaum gk) Feye,
= <k$m 8k—1— %fk) Vim Fei e,
—i ((—1)’<ksm k-1 — % (—D* fk) Vo F ey ey

We complete the proof by noting that

Vi F et ek = (<) PRIl Enl 1 p2m

Vam Feé‘ e’Jn- — (_1)HF2H+|F2|+HFm||+|an\ | F2m.

Thus +/2 Uy (gx F) will be zero since k + |Fi| + | Fa| + || F1|| + || F|| is even.
When a # 1, the action of Ly,—1 ,,, on g F results in zero hence

1 i
\/EULI (g F) = _E V2a—1,m 8k Fei;_l ei + E V2a,m 8k Fei; en%
1

1 1 . 1l 1
= _5 8k (VZa—l,m Fey, e, —iVogmF ey, em)

L, (=1t 1P 1
+(_1)\|an\|+|an|+\|Fm||+\Fm|+1) pram

= ()P I a1 P41 P

(1+(_l)nfza_.||+\an_1\+||an||+\an\+1) Flam

This will be zero when || Fog—1 || + | Foa |l + | Foa—1] + | Faa| is even, forall 2 < a < n.

Corollary 2 The polynomials g F € My with F = ]_[;":1 Fg, F € {LYdE Myi} such
that

o k+|Fil+|F2l + [IF1ll + | F2l is even
o [[Faa—tll + | F2all + [F2a—1] + | F2al is even, forall2 < a <n,

are highest weight vectors of weight (k)',. In particular, goi L and goy 1 L are highest
weight vectors of weight (2k)', resp. 2k 4 1)',..

Note that the particular choice for the last factor F;, € {L,ﬁ, M,j,f} does not affect
the results.
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We again count how many distinct highest weight vectors gx F, F = [ [, Fy, with
weight (k)q_ we find: foreach F>,_1 F>,, 1 < a < n, wehave 8 possible combinations,
namely

+ + — — + + — —
{LZa—1L2a’ L2a—1L2a’ L2a—1M2a’ L2a—1M2a’

+ + + + — — — —
M2u71 LZa’ M2u71 M2u’ M2a71 L2u’ M2a71 MZa} ’

and for F,, we have four possible choices L, M-. Combining this, we find 8" 22 =
2342 = 22m=n jsomorphic irreducible representations with highest weight (k)',, each

of which has dimension
o k+m—2 '
k

Hence the total dimension of all isomorphic irreducible representations is

k -2
24n+2< +rZ ):dimc M,

i.e. the dimensional analysis shows that M} may be decomposed as 232 isomorphic
irreducible representations with highest weight (k)’, .

Definition 3 We define the spinor space Sy, as the image under so(m, C) of the
idempotent L = [, L}:

Sons1 = so(m, C) (spanc {Lf L3 ... L3, L3, ., }).

The element LT L;‘ e L;‘n L;‘n 41 18 a highest weight vector with weight 0, =
(%, ey %) and thus generates an irreducible representation with the same weight.

Example 2 Letm = 5 (i.e. n = 2) and consider L = LT L; L; LI L;“. We denote
dR (e, p)inshortas (a, b). The Lie algebra so(5, C) is given in this context by the span
over C ofthetenelements (1, 2), (1, 3), (1,4), (1,5), (2,3), 2,4), (2,5),(3,4), (3,5)
and (4, 5). The idempotents involved interact in the following way under the action
of so(m, C):
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(1,2), (3.4)

[ (35). (45) g —
[L1+ Ly L LY L;} >[L1+ Ly L3 L L5]

(Lt 15 1y 17 L)

U

[Ll+ Ly Ly Ly Lg}

U

(3.5). (49)

Hence
Ss=spanc {L{ Ly LY Ly LY, LT Ly Ly Ly LY, LT Ly Ly Ly Ly, LT LY LT Ly LS }.

The spinorspace Ss is 22-dimensional as expected.

In general, the rotations dR(e2;—1,24),a = 1,...,n, acting on an idempotent
return the same idempotent up to a multiplicative complex number. Again, we find
that dR(e,,p) With 1 < a, b < n, changes the sign of an even number of L;’s. The
additional rotations d R(e24—1,,) and d R(e2q4,m), With 1 < a < n, act as follows on
L:

+ 7+ + 7+ + 74 +
LyLy... Ly Ly, v+ LILS ... L

2n+ 2a—1 L2a ce L2 L

n ~2n+1-

The rotation always leaves LT invariant. The resulting idempotent always will have
an even number of minus-signs. Starting from the idempotent L with all plus-signs,
we thus get all possible idempotents of the following form:

+
1 - e see e e

where each place . . consists of either L;ru LZH orLy, Ly, 1,1 <a<n We

thus get 2" spinors and we have the following weight space decomposition

Szn"’_l:@‘/(:l:l:t% i%)s

2Ly

where the sum goes over all weights with an even number of minus-signs.

Example 3 Letm =7 (i.e.n = 3)and consider L = L} L3 L L} LT L{ LT We
will again denote d R(e, p) in short as (a, b). The Lie algebra so(5, C) is given in this
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setting by 21 elements and the corresponding spinorspace will be 8-dimensional. The
idempotents involved interact in the following way under the action of so(m, C):

.»[LfL;L;LjL;LgLﬂ [LfL§L§LIL§L§Lﬂ

. AANY
4 AREYRER
- L
! 2 .
[ L S
! ! .'I \ . . S
1 gt \ .. s,
Q , H \ ,/“ N ﬂ
& 1 ‘\ y A
. . .
+r-—7—-7—-7-—-7—- T Nl __2___ Syt r—g7r—g7t+tr+g7+t7rH
[Ll Ly Ly Ly Ly Lg L'f]" : h \ )[’Ll Ly Ly Ly Ly Lg L7]
A ¥ 7 i ’ : ATl LA
a ‘ i A AN
! \ 1 I‘ - \
r i 1’ . o
! \ s :
1 | 1 \ [
! ! \ ]
‘-\ [ ! 1 \ Vo
4 . . " .
\ LA 1 A D
8 PR et o !
\ (l ’ v . 1 ‘O i
A ¥ ac ! \ . ( aNL v 2
i -
La Sl e el el el Y . \ . Sl el sl el el el
[Ll L2 Ld L4 L5 Lﬁ L7J T lLl LZ Ld L4I.'I5 L() L7]
1 ! —v—7 -
.’ \ i 1 _-7 e /
: ! - ,
| Lo R
1 ! 1 4 4
. A . ,.’ .
\ . .
B ‘! \ k2 ,",
. Ay i WOk .

”{;fL;LijL;LgLﬂ [LfL;L;L;L;LgLﬂ

— > (5,7).(6,7) <---->(1,5),(25),(16),(2,6)
DU > (1,3),(2,3),(1,4), (2,4) “----oo- > (3,7),(4,7)
<mmim -> (3,5),(3,6), (4,5), (4,6) < > (1,7),(2,7)
() (1.2).3.9).65.6)
Hence

Sy=spanc{L{ L LT LI LY Ly LT, LY Ly Ly L LY LS LY,
LiLYy LI Ly Ly Ly LT, LY Ly Ly Ly Ly LY LT,
LYLy Ly Ly LY Lg Ly, LY LY LT L Ly Lg L7,
LY Ly Ly Ly Ly Lg Ly, LY Ly Ly LY LT Ly L7},

We indeed find an 8-dimensional spinorspace S7.
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5 Conclusion and Future Research

The space M of discrete k-homogeneous monogenic polynomials is a reducible
representation of so(m, C) which can, in the odd-dimensional case m = 2n + 1, be
decomposed into 22" ~" isomorphic copies of the irreducible so(m, C)-representation
with highest weight (k)’+ and in the even-dimensional setting m = 2n, we find 22m—n
isomorphic irreducible representations with highest weight (k)’, and 22m=" jrreps of
highest weight (k)’_. This is done by means of an appropriate amount of idempotents.

Let gx = (52 —§1) (52 +81) (62 — &1) (2 + &1) ... [1], (k factors), be a discrete
homogeneous monogenic function of degree k and let

7 - o+ + (ot a— +
Ly = (eZa—leZa—l i e2a—1)’ Ly, = (eZae2a j:eZa),

Mgtzz—l = (eZ_a—leZI—l +i eZ_a—l) ’ M;zzl = (e;ae;_a + eZ_a) :

Denote [[LE|| =0, |ME| =1,|L}|=|M,|=0and |[L]| = M| = 1.
In even dimension m = 2n, the polynomial gy F € My, F = Hg"zl F; with
Fy € {L¥, M}, is a highest weight vector of so(m, C) with

e weight (k)/+ when k + |F1|+ |Fao| + || F1ll + || F2|| is even and || Foy—1 || + || Faa |l +
| Froa—1| + | Fa4| is even for 2 < a < n.

o weight (k)" when k + [Fi| + |F2| + | F1|l + | F2l is even, [ Fag—1 ]l + || F2all +
| Faa—1]+ [Faqlisevenfor2 < a < n—1and || Fop—1 [l + [ Fon |l + [ F2n—11 4| F2n]|
is odd.

We find 22"~ highest weight vectors in M with weight (k)', and 22m=1 \weight
vectors, with weight (k)’_, each generating an irreducible so(m, C)-representation.

In odd dimensions m = 2n + 1, the polynomial gy F € My, F = [[i_, Fy with
F € {LSdE Msi} is a weight vector of so(m, C) with weight (k)/+ when k + |Fy| +
[F2 + I Fill + [[F2] is even and || Fag—1ll + | F2all + |F2a—1] + |F24| is even for
2 < a < n. We find 22" highest weight vectors in M, with weight (k)’+ and thus
as much irreps.

We have shown throughout this article how the space Mj of monogenic discrete
k-homogeneous polynomials can be decomposed into irreducible representations of
so(m, C). However, because of the presence of the basiselements e, and eal in the
definition of the generators of the rotations, the spinorspace is no maximal left ideal.
In future research we will investigate other possibilities to define rotations and the
spinorspace in the hopes of writing the spinorspace as maximal left ideal. An equivalent
description of Hy and My as SO (m)/Spin(m)-representations is also still work in
progress.
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