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Abstract In this paper we work in the ‘split’ discrete Clifford analysis setting, i.e.
them-dimensional function theory concerning null-functions, defined on the grid Zm ,
of the discrete Dirac operator ∂ , involving both forward and backward differences,
which factorizes the (discrete) Star-Laplacian. We show how the spaceMk of discrete
spherical monogenics homogeneous of degree k, is decomposable into irreducible
so(m)-representations.
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1 Introduction

In particle physics, the (massless) Dirac operator is a well-studied operator in the
setting of elementary particle physics [14]. This operator can be studied in amoremath-
ematical setting, namely Euclidean Clifford analysis in general dimensions, where the
Dirac operator factorizes the Laplace operator, making Clifford analysis a refinement
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of harmonic analysis. The Dirac operator is a Spin(m)-invariant operator, or equiva-
lently, invariant under its Lie algebra so(m).

The current paper deals with a special type of Clifford analysis, namely discrete
Clifford analysis, where functions are defined on a grid (hZ)m rather than the con-
tinuous m-dimensional space Rm . In recent years, a function theory studying discrete
functions defined on the standard gridwithmesh size 1 (Zm) has given rise to a discrete
counterpart of Euclidean Clifford analysis [2,5]. Different choices have been made
for the discrete Dirac operator [15,16,19], containing forward, backward and central
differences.

The ‘split’ discrete Clifford analysis setting, which we are considering here (e.g.
[4,7,13]) introduces a discrete Dirac operator ∂ defined using only forward and back-
ward differences, which factorizes the discrete star Laplace operator �∗ [20]. The
function theory has already lead to a number of results regarding polynomial solutions
of this differential operator, namely a Taylor series decomposition [11], a Cauchy–
Kowalewskaya extension theorem [12], etc.

In this paper, we are howevermore interested in the representation theoretical aspect
of this theory. It is well known that in classical harmonic analysis, the Laplace operator
is a rotational invariant operator, or equivalently, invariant under the Lie algebra so(m).

In [10], it has been shown that infinitesimal rotation operators can be defined in
the split discrete Clifford analysis setting under which the star Laplacian is invariant.
However, while the space Hk of discrete k-homogeneous harmonic polynomials is a
representation of so(m), contrary to the classical harmonic case, it is not irreducible.
This has been shown in [9], where a full decomposition has been made into irreducible
representations. The aim of this paper is to do the same for the space Mk of discrete
monogenic polynomials of arbitrary degree of homogeneity k. In the process, we will
be able to define spinor spaces in the discrete setting.

In classical harmonic analysis, the infinitesimal ‘rotations’, i.e. the elements of
the orthogonal Lie algebra corresponding to the rotation group SO(m), are given by
the angular momentum operators La,b = xa∂xb − xb∂xa . These operators satisfy the
commutation relations

[La,b, Lc,d ] = δb,c La,d − δb,d La,c − δa,c Lb,d + δa,d Lb,c,

which are exactly the defining relations of the special orthogonal Lie algebra
so(m) and they form endomorphisms of the space Hk(R

m,C) of scalar-valued har-
monic k-homogeneous polynomials, thus transforming the latter in an (irreducible)
so(m,C)-representation. To establish Mk(R

m,S), i.e. the spinor-valued homoge-
neous monogenics of degree k, classically as so(m,C)-representation, the following
operators are considered

dR(ea,b) : Mk(R
m,S) → Mk(R

m,S), Mk �→
(
La,b − 1

2
ea eb

)
Mk .

These operators are endomorphisms of the space of spinor-valued k-homogeneous
polynomials inm vector variableswhich also satisfy the defining relations of so(m,C):
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[
dR(ea,b), dR(ec,d)

] = δb,c d R(ea,d) − δb,d dR(ea,c)

−δa,c d R(eb,d) + δa,d dR(eb,c).

In [10], we developed similar operators in the discrete Clifford analysis setting: the
angular momentum operators are discrete operators La,b = ξa ∂b + ξb ∂a, a �= b. For
a = b, we define Laa = 0. Then the operators �a,b, acting on discrete functions f
as �a,b f = La,b f eb ea , satisfy the defining relations of the orthogonal lie algebra
so(m):

[
�a,b,�c,d

] = δb,c �a,d − δb,d �a,c − δa,c �b,d + δa,d �b,c.

Furthermore, they are endomorphisms of the space Hk of Clifford-algebra val-
ued homogeneous harmonics of degree k, since �a,b commutes with sl2 ={
�, ξ2,E + m

2

}
, for all (a, b). Here ξ2 is the square of the discrete vector variable ξ

and E is the discrete Euler operator (see Sect. 2). In [9], we showed thatHk is the sum
of 22m isomorphic copies of the irreducible representation of so(m,C) with highest
weight (k, 0, . . . , 0).

The discrete Dirac operator ∂ is however not invariant under the operators �a,b,
hence Mk cannot be expressed as so(m,C)-representation by means of these oper-

ators. Therefore, we considered in [10] the operators La,b − 1

2
and the four-vector

Va,b = ea eb e⊥
a e⊥

b = −e⊥
a ea e⊥

b eb. Let the operator dR(ea,b), a �= b, act on discrete
functions f as

dR(ea,b) f = Va,b

(
La,b − 1

2

)
f e⊥

a e⊥
b . (1)

For a = b, we defined dR(ea,a) = 0. Note that, for the sake of continuity, we use
the same notation for the discrete and continuous rotation operators. From this point
on, we always refer to the discrete versions unless stated otherwise. The operators
dR(ea,b) satisfy the defining relations of the special lie algebra so(m):

[
dR(ea,b), dR(ec,d)

] = δb,c d R(ea,d) − δb,d dR(ea,c)

−δa,c d R(eb,d) + δa,d dR(eb,c),

and commute with osp(1|2) = {
∂, ξ,E + m

2

}
which makes them endomorphisms of

Mk . As such, the space Mk is a reducible so(m,C)-representation. In [10], it was
already suggested thatMk can be decomposed into irreducible parts of highest weight
(k)′+ = (

k + 1
2 ,

1
2 , . . . ,

1
2

)
resp. (k)′− = (

k + 1
2 ,

1
2 , . . . ,− 1

2

)
, but this was left as an

open conjecture. In the following sections, we will show how this decomposition is
done exactly.
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2 Preliminaries

Let R
m be the m-dimensional Euclidian space with orthonormal basis e j , j =

1, . . . ,m and consider the Clifford algebra Rm,0 over Rm . Passing to the so-called
‘split’ discrete setting [7,13], we embed the Clifford algebra Rm,0 into the bigger
complex one C2m,0, the underlying vector space of which has twice the dimension,
and introduce forward and backward basis elements e±

j satisfying the following anti-
commutator rules:

{
e−
j , e−

�

}
=

{
e+
j , e+

�

}
= 0,

{
e+
j , e−

�

}
= δ j�, j, � = 1, . . . ,m.

The connection to the original basis e j is given by e+
j + e−

j = e j , j = 1, . . . ,m,

which indeed implies that e2j = 1. We will often write e⊥
j = e+

j − e−
j and e+

j ∧ e−
j =

e+
j e

−
j − e−

j e
+
j = e⊥

j e j .
Now consider the standard m-dimensional equidistant lattice Zm ; the coordinates

of a Clifford vector x will thus only take integer values. We construct a discrete
Dirac operator factorizing the discrete Laplacian, using both forward and backward
differences �±

j , j = 1, . . . ,m, acting on Clifford-valued functions f as follows:

�+
j [ f ](·) = f (· + e j ) − f (·), �−

j [ f ](·) = f (·) − f (· − e j ).

With respect to the Zm-grid, the usual definition of the discrete Laplacian in x ∈ Z
m

is

�∗[ f ](x) =
m∑
j=1

�+
j �−

j [ f ] =
m∑
j=1

(
f (x + e j ) + f (x − e j )

) − 2m f (x).

This operator is also known as “Star Laplacian”; we will from now on simply write�.
An appropriate definition of a discrete Dirac operator ∂ factorizing �, i.e. satisfying
∂2 = �, is obtained by combining the forward and backward basis elements with the
corresponding forward and backward differences, more precisely

∂ =
m∑
j=1

(
e+
j �+

j + e−
j �−

j

)
.

Denote the co-ordinate difference operators ∂ j = e+
j �+

j + e−
j �−

j and consider the

discrete co-ordinate vector variables ξ j = e+
j X−

j + e−
j X+

j , j = 1, . . . ,m, with

X±
j scalar operators. In order to receive an analogue of the classical Weyl relations

∂x j xk − xk∂x j = δ jk , the co-ordinate vector variable operators ξ j are defined by their
interaction with the corresponding co-ordinate operators ∂ j , according to the skew
Weyl relations, cf. [7]

∂ j ξ j − ξ j ∂ j = 1, j = 1, . . . ,m,
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which imply that ∂ j ξ
k
j [1] = k ξ k−1

j [1]. The operators ξ j and ∂ j furthermore satisfy
the following anti-commutator relations:

{
ξ j , ξk

} = {
∂ j , ∂k

} = {
∂ j , ξk

} = 0, j �= k, j, k = 1, . . . ,m

implying that ∂� ξ kj [1] = 0, j �= �.

The natural powers ξ kj [1] of the operator ξ j acting on the constant 1 are the basic

discrete k-homogeneous polynomials of degree k in the variable x j , i.e. E ξ kj [1] =
k ξ kj [1], where E = ∑m

j=1 ξ j ∂ j is the discrete Euler operator. They constitute a basis

for all discrete polynomials. Explicit formulas for ξ kj [1] are given for example in

[7,12]; furthermore ξ kj [1](x j ) = 0 if k � 2 |x j | + 1.
A discrete function taking values in the Clifford algebra C2m is discrete harmonic

(resp. left discrete monogenic) in a domain � ⊂ Z
m if � f (x) = 0 (resp. ∂ f (x) =

0), for all x ∈ �. The space of discrete harmonic (resp. monogenic) homogeneous
polynomials of degree k (i.e. E f = k f ) is denoted Hk (resp. Mk), while the space
of all discrete harmonic (resp. monogenic) homogeneous polynomials is denoted H
(resp.M). It is clear that

H =
∞⊕
k=0

Hk, M =
∞⊕
k=0

Mk .

The respective dimensions of these spaces over C are:

dim(Hk) = 22m
((

k + m − 1

k

)
−

(
k + m − 3

k − 2

))
,

dim(Mk) = 22m
(
k + m − 2

k

)
.

The calculations are similar to the classical case (see e.g. [2]).

3 Orthogonal Lie Algebras

As the remainder of this paperwill dealwith the explicit construction of representations
for the orthogonal algebra so(m,C),wewill start by briefly introducing thisLie algebra
so(m,C); a detailed description can be found for example in [17]. In even dimension
m = 2n, the Lie algebra so(m,C) is generated as a matrix algebra as follows. Define
Ei, j as the (m × m)-matrix with entry 1 on position (i, j), while all other entries are
0. Then we can define the matrices

Hi = Ei,i − En+i,n+i

Xi, j = Ei, j − En+ j,n+i

Yi, j = Ei,n+ j − E j,n+i

Zi, j = En+i, j − En+ j,i ,
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for all 1 � i, j � n. Note that due to the symmetry of Yi, j and Zi, j in the indices, it suf-
fices in fact that for those sets of operators, we pick i < j . The matrices Hi , Xi, j ,Yi, j
and Zi, j generate exactly the Lie algebra so(2n,C) using the commutator as Lie
bracket. When considering the same set of generators as (2n + 1× 2n + 1)-matrices,
in addition with the matrices

Ui = Ei,2n+1 − E2n+1,n+i

Vi = En+i,2n+1 − E2n+1,i ,

for all 1 � i � n, we find a set of generators for so(2n + 1,C), again using the
commutator as Lie bracket. From now on we consider these generators as abstract
elements, satisfying the same relations as their matrix equivalents. Hence

so(2n,C) = spanC
{
Ha, Xa,b,Ya,b, Za,b, 1 � a, b � n, a �= b

}
,

so(2n + 1,C) = spanC
{
Ha, Xa,b,Ya,b, Za,b,Ua, Va, 1 � a, b � n, a �= b

}
.

The Cartan subalgebra is chosen as

h = {Ha, 1 � a � n} ,

independently of the parity of the dimension, i.e. so(2n,C) and so(2n + 1,C) are
both Lie algebras of rank n. The roots of so(m,C) (see also [21]) are determined by
considering the action of the Cartan algebra on the other generators of the adjoint
representation of so(m,C). Hence, for all 1 � a, b, c, d � n:

[
Hc,Ya,b

] = (δca + δcb) Ya,b = ((La + Lb) (Hc)) Ya,b,[
Hc, Xa,b

] = (δca − δcb) Xa,b = ((La − Lb) (Hc)) Xa,b,[
Hc, Za,b

] = − (δca + δcb) Za,b = ((−La − Lb) (Hc)) Za,b,

[Hc,Ua] = δca Ua = (La(Hc))Ua,

[Hc, Va] = −δca Ua = (−La(Hc))Ua .

Here {La, 1 � a � n} is a basis of the dual vector space h∗ of the Cartan subalgebra h,
i.e. La (Hb) = δa,b. Note in particular that the Cartan subalgebra elements Ha appears
in the commutator of a certain positive root with a negative root of the same index:

[
Ya,b, Za,b

] = −Ha − Hb,
[
Xa,b, Xb,a

] = Ha − Hb.

We thus deduce the following roots and root vectors.
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Root Root vector

m = 2n
La − Lb Xa,b
La + Lb Ya,b
−La − Lb Za,b

m = 2n + 1
La − Lb Xa,b
La + Lb Ya,b
−La − Lb Za,b
La Ua
−La Va

By the usual convention (see e.g. [17]), we choose the positive roots in even dimen-
sion to be

{La + Lb, La − Lb : 1 � a < b � n}

and negative roots

{−La − Lb, Lb − La : 1 � a < b � n} .

In odd dimension, one chooses positive roots

{La + Lb, La − Lb : 1 � a < b � n} ∪ {La : 1 � a � n}

and negative roots

{−La − Lb, Lb − La : 1 � a < b � n} ∪ {−La : 1 � a � n} .

In [10], we introduced the algebra so(m,C) (up to an isomorphism) in the
discrete Clifford analysis context. The generators of so(m,C) were not given in
terms of the root vectors and Cartan subalgebra, but rather by the generators{
dR(ea,b) : 1 � a �= b � m

}
, see (1) satisfying the defining relations of so(m,C):

[
dR(ea,b), dR(ec,d)

] = δa,d dR(eb,c) + δb,c d R(ea,d)

−δa,c d R(eb,d) − δb,d dR(ea,c), (2)

see [10]. The next step is to identify both realisations of so(m,C) in the discrete
Clifford analysis setting, by determining the explicit expressions of the root vectors
and Cartan subalgebra.

4 Decomposition of Mk in Irreducible Representations

Since the definition of the generators of so(m,C) differs in even and odd dimensions,
we have to make a distinction. We start with the even dimensional case.
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4.1 Even Dimension m = 2n

Definition 1 We define the operators Ha, Xa,b,Ya,b and Za,b ∈ so(m,C):

Ha = i d R(e2a−1,2a), 1 � a � n,

Xa,b = 1

2

(
dR(e2a−1,2b−1) + i d R(e2a−1,2b) − i d R(e2a,2b−1) + dR(e2a,2b)

)
,

Ya,b = 1

2

(
dR(e2a−1,2b−1) − i d R(e2a−1,2b) − i d R(e2a,2b−1) − dR(e2a,2b)

)
,

Za,b = 1

2

(
dR(e2a−1,2b−1) + i d R(e2a−1,2b) + i d R(e2a,2b−1) − dR(e2a,2b)

)
,

1 � a, b � n.

Note that, because dR(ea,b) = −dR(eb,a), we find that Yb,a = −Ya,b and Zb,a =
−Za,b. For Xa,b, we find that Xb,a �= Xa,b and that Xa,a = Ha , hence we will only
consider couples (a, b) with a �= b.

The original operators dR(ea,b) can be reconstructed as linear combinations of the
operators Xa,b,Ya,b, Za,b and Ha .

Straightforward calculations, which make use of (2) show that these operators
satisfy the same commutator relations as their matrix equivalents. In particular, we
have the following lemma.

Lemma 1 The operators Hc, Xa,b,Ya,b and Za,b, 1 � a, b, c, d � n, satisfy the
commutation relations of so(m,C):

[
Hc,Ya,b

] = (δca + δcb) Ya,b = (La + Lb) (Hc) Ya,b,[
Hc, Xa,b

] = (δca − δcb) Xa,b = (La − Lb) (Hc) Xa,b,[
Hc, Za,b

] = − (δca + δcb) Za,b = − (La + Lb) (Hc) Za,b,[
Xa,b,Yc,d

] = δbc Ya,d − δbd Ya,c.

This means that the operators Xa,b with a < b and Ya,b are indeed positive root
vectors corresponding to the roots La − Lb, resp. La + Lb. Furthermore, Xa,b with
a > b and Za,b are negative root vectors corresponding to the roots La − Lb resp.
−La − Lb.

Proof Since the commutator relations between the operators dR(ea,b) are the same
as those between the operators �a,b of the harmonics, the proof is completely similar
as the proof given in [9].

We already established in [10] that since the operators dR(ea,b) are endomor-
phisms of Mk,Mk is a representation of so(2n,C) although this representation is
not irreducible. The next step in our reasoning is to decompose Mk into irreducible
representations of so(m,C). This is done by splitting 1 into a sum of idempotents,
see further. When constructing irreducible representations, the main target is to find
so-called highest weight vectors. These are in our context functions belonging toMk

which:
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• vanish under the action of all positive root vectors,
• are simultaneous eigenfunctions for the action of all Ha .

The property of such highest weight vectors is that they generate an entire irre-
ducible representation by all consecutive actions of negative root vectors. The aim is
to construct idempotents L such that there exists a discrete monogenic function Pk ,
such that PkL satisfies the conditions for a highest weight vector. Here Pk L denotes
themultiplication of Pk with the idempotent L . For a function Pk L to be an eigenfunc-
tion of the maximal abelian subgroup h, it must hold that L e⊥

2a−1 e
⊥
2a is again equal

to L up to a (complex) constant. Consider, for a = 1, . . . , n, the Clifford elements

L±
2a−1 = (

e+
2a−1e

−
2a−1 ± i e+

2a−1

)
, L±

2a = (
e+
2ae

−
2a ± e+

2a

)
,

M±
2a−1 = (

e−
2a−1e

+
2a−1 ± i e−

2a−1

)
, M±

2a = (
e−
2ae

+
2a ± e−

2a

)
.

For the rest of this article, we will need the following notations. For Fa ∈{
L±
a , M±

a

}
, a = 1, . . . ,m, denote

|Fa | =
{
0, if Fa = L+

a or M−
a

1, if Fa = L−
a or M+

a
and ‖Fa‖ =

{
0, if Fa = L±

a ,

1, if Fa = M±
a .

Furthermore, denote by F̃a the idempotent

F̃a =
{
L∓
a , if Fa = L±

a ,

M∓
a , if Fa = M±

a .

Then |F̃a | = 1 − |Fa | and ‖F̃a‖ = ‖Fa‖. Before we introduce the highest weight
vectors, we will study the effect of multiplication by basis elements on these idempo-
tents.

Lemma 2 Themultiplication by e⊥
a from the right on the idempotent Fa ∈ {

L±
a , M±

a

}
is:

F2a−1 e
⊥
2a−1 = (−1)|F2a |+1 i F2a−1,

F2a e
⊥
2a = (−1)|F2a |+1 F̃2a .

As a result, for 1 � a � n, we have that

F2a−1 F2a e
⊥
2a−1 e

⊥
2a = (−1)|F2a−1|+|F2a |+1 i F2a−1 F2a .

Denote, for 1 � s1 < s2 � m:

Fs1,s2 = F1 F2 . . . Fs1−1 F̃s1 F̃s1+1 . . . F̃s2−1 F̃s2 Fs2+1 Fs2+2 . . . Fm−1 Fm,
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then we find that for 1 � a < b � n and a general idempotent F = ∏m
s=1 Fs, with

Fs ∈ {
L±
s , M±

s

}
:

V2a−1,2b−1 F e⊥
2a−1 e

⊥
2b−1 = (−1)|F2a−1|+|F2b−1|+‖F2a−1‖+‖F2b−1‖+1 F2a,2b−1,

V2a−1,2b F e⊥
2a−1 e

⊥
2b = (−1)|F2a−1|+|F2b|+‖F2a−1‖+‖F2b‖ i F2a,2b−1,

V2a,2b−1 F e⊥
2a e

⊥
2b−1 = (−1)|F2a |+|F2b−1|+‖F2a‖+‖F2b−1‖ i F2a,2b−1,

V2a,2b F e⊥
2a e

⊥
2b = (−1)|F2a |+|F2b|+‖F2a‖+‖F2b‖ F2a,2b−1.

Proof Note that

L±
2a−1 e

⊥
2a−1 =

(
e+2a−1 ∓ i e+2a−1e

−
2a−1

)
= ∓ i L±

2a−1, L±
2a e

⊥
2a =

(
e+2a ∓ e+2ae

−
2a

)
= ∓L∓

2a ,

M±
2a−1 e

⊥
2a−1 =

(
−e−2a−1 ± i e−2a−1e

+
2a−1

)
= ± i M±

2a−1, M±
2a e

⊥
2a =

(
−e−2a ± e−2ae

+
2a

)
= ± M∓

2a .

We may indeed summarize this as

F2a−1 e
⊥
2a−1 = (−1)|F2a−1|+1 i F2a−1, F2a e

⊥
2a = (−1)|F2a |+1 F̃2a .

From this it follows that

F̃2a−1 e
⊥
2a−1 = (−1)|F2a−1| i F̃2a−1, F̃2a e

⊥
2a = (−1)|F2a | F2a .

Hence we find that

F2a−1 F2a e
⊥
2a−1 e

⊥
2a = F2a−1 e

⊥
2a−1 F̃2a e

⊥
2a = (−1)|F2a |+|F2a |+1 i F2a−1 F2a .

Also important to note is that e⊥
a ea L±

a = L±
a and e⊥

a ea M±
a = −M±

a so for the
idempotent F = ∏m

s=1 Fs , we find that

Va,b F = −e⊥
a ea e

⊥
b eb F = (−1)1+‖Fa‖+‖Fb‖ F.

We thus get that

V2a−1,2b−1 F e⊥
2a−1 e

⊥
2b−1 = (−1)1+‖F2a−1‖+‖F2b−1‖ F1 F2 . . . Fm e⊥

2a−1 e
⊥
2b−1

= (−1)1+‖F2a−1‖+‖F2b−1‖ F1 . . . F2a−2 F2a−1 e
⊥
2a−1 F̃2a

. . . F̃2b−1 e
⊥
2b−1 F2b F2b+1 . . . Fm

= (−1)|F2a−1|+|F2b−1|+‖F2a−1‖+‖F2b−1‖ i2 F1 F2
. . . F2a−2 F2a−1 F̃2a

. . . F̃2b−1 F2b F2b+1 . . . Fm

= (−1)|F2a−1|+|F2b−1|+‖F2a−1‖+‖F2b−1‖+1 F2a,2b−1.
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Analogously, we find that

V2a−1,2b F e⊥
2a−1 e

⊥
2b = (−1)1+‖F2a−1‖+‖F2b‖ F1 F2 . . . Fm e⊥

2a−1 e
⊥
2b

= (−1)1+‖F2a−1‖+‖F2b‖ F1 . . . F2a−2 F2a−1 e
⊥
2a−1 F̃2a

. . . F̃2b e
⊥
2b F2b+1 F2b+2 . . . Fm

= (−1)|F2a−1|+|F2b|+‖F2a−1‖+‖F2b‖ i F1 F2 . . . F2a−2 F2a−1 F̃2a

. . . F̃2b−1 F2b F2b+1 . . . Fm

= (−1)|F2a−1|+|F2b|+‖F2a−1‖+‖F2b‖ i F2a,2b−1.

Also

V2a,2b−1 F e⊥
2a e

⊥
2b−1 = (−1)1+‖F2a‖+‖F2b−1‖ F1 F2 . . . Fm e⊥

2a e
⊥
2b−1

= (−1)1+‖F2a‖+‖F2b−1‖ F1 . . . F2a−1 F2a e
⊥
2a F̃2a+1

. . . F̃2b−1 e
⊥
2b−1 F2b F2b+1 . . . Fm

= (−1)|F2a |+|F2b−1|+‖F2a‖+‖F2b−1‖ i F1 F2 . . . F2a−1 F̃2a F̃2a+1

. . . F̃2b−1 F2b F2b+1 . . . Fm

= (−1)|F2a |+|F2b−1|+‖F2a‖+‖F2b−1‖ i F2a,2b−1.

Finally

V2a,2b F e⊥
2a e

⊥
2b = (−1)1+‖F2a‖+‖F2b‖ F1 F2 . . . Fm e⊥

2a e
⊥
2b

= (−1)1+‖F2a‖+‖F2b‖ F1 . . . F2a−1 F2a e
⊥
2a F̃2a+1

. . . F̃2b e
⊥
2b F2b+1 . . . Fm

= (−1)|F2a |+|F2b|+‖F2a‖+‖F2b‖ F1 F2 . . . F2a−1 F̃2a F̃2a+1

. . . F̃2b−1 F2b F2b+1 . . . Fm

= (−1)|F2a |+|F2b|+‖F2a‖+‖F2b‖ F2a,2b−1.

Consider the basic discrete monogenic k-homogeneous functions

g2k = ((ξ2 − ξ1) (ξ2 + ξ1))
k [1], g2k+1 = (ξ2 − ξ1) ((ξ2 + ξ1) (ξ2 − ξ1))

k [1].

Fromnowonwedenote (k)′+ = (
k + 1

2 ,
1
2 , . . . ,

1
2

)
and (k)′− = (

k + 1
2 ,

1
2 , . . . ,− 1

2

)
.

We will show under which conditions on the idempotent F = ∏m
s=1 Fs , the space

spanC {gk F} is a weight space of h with weight (k)′+ resp. (k)′−.

Lemma 3 The polynomial gk F ∈ Mk, F = ∏m
s=1 Fs with Fs ∈ {

L±
s , M±

s

}
, is a

weight vector of so(m,C) with

• weight (k)′+ if k + |F1| + |F2| + ‖F1‖ + ‖F2‖ is even and ‖F2a−1‖ + ‖F2a‖ +
|F2a−1| + |F2a | is even for 2 � a � n.

• weight (k)′− if k+|F1|+|F2|+‖F1‖+‖F2‖ is even, ‖F2a−1‖+‖F2a‖+|F2a−1|+
|F2a | is even for 2 � a � n − 1 and ‖F2n−1‖ + ‖F2n‖ + |F2n−1| + |F2n| is odd.
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Proof We consider the action of the Cartan subalgebra-elements Hs, 1 � s � n, on
gk F . Since gk only contains the vector variables ξ1 and ξ2, we will first consider H1:

H1 (gk F) = i V12

(
L12 − 1

2

)
gk F e⊥

1 e⊥
2 .

We will also denote

f2k = ((ξ2 + ξ1) (ξ2 − ξ1))
k [1],

f2k+1 = (ξ2 + ξ1) ((ξ2 − ξ1) (ξ2 + ξ1))
k [1].

In [6] it was established that ∂ j gk = (−1) j k fk−1 hence

L12 gk = (ξ1 ∂2 + ξ2 ∂1) gk = k (ξ1 − ξ2) fk−1 = −k (ξ2 − ξ1) fk−1 = −k gk .

We thus get that

H1 (gk F) = i

(
−k − 1

2

)
V12 gk F e⊥

1 e⊥
2 .

Notice that V12 gk = (−1)k gk V12 since

e⊥
1 e1 ξ1 = (

e+
1 e

−
1 − e−

1 e
+
1

) (
X+
1 e−

1 + X−
1 e+

1

) = (−X+
1 e−

1 + X−
1 e+

1

)
= (

X+
1 e−

1 + X−
1 e+

1

) (−e+
1 e

−
1 + e−

1 e
+
1

) = −ξ1 e
⊥
1 e1,

e⊥
1 e1 ξ2 = ξ2 e

⊥
1 e1.

Applying this, we find that

H1 (gk F) = (−1)k+1 i

(
k + 1

2

)
gk V12 F e⊥

1 e⊥
2

= (−1)k+|F1|+|F2|+‖F1‖+‖F2‖
(
k + 1

2

)
gk F.

For gk F to be a weight vector with weight (k)′+ it must be an eigenfunction of H1

with eigenvalue k + 1
2 , hence it must hold that k +|F1|+ |F2|+ ‖F1‖+‖F2‖ is even.

We find 8 possible combinations for F1 F2:

• k even:

F1 F2 ∈ {
L+
1 L+

2 , L−
1 L−

2 , L+
1 M+

2 , L−
1 M−

2 ,

M+
1 L+

2 , M+
1 M+

2 , M−
1 L−

2 , M−
1 M−

2

}
.

• k odd:

F1 F2 ∈ {
L+
1 L−

2 , L−
1 L+

2 , L+
1 M−

2 , L−
1 M+

2 , M+
1 L−

2 ,

M+
1 M−

2 , M−
1 L+

2 , M−
1 M+

2

}
.
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Next, we consider the action of Ha, 2 � a � n, on gk F to conclude under which
conditions gk F is an eigenfunction of Ha with eigenvalue ± 1

2 . Since the generator
gk only contains ξ1 and ξ2, it vanishes under the action of L2a−1,2a = ξ2a−1 ∂2a +
ξ2a ∂2a−1. Note that V2a−1,2a gk = gk V2a−1,2a since gk contains only e±

1 and e±
2 .

Thus

Ha (gk F) = − i

2
V2a−1,2a gk F e⊥

2a−1 e
⊥
2a = − i

2
gk V2a−1,2a F e⊥

2a−1 e
⊥
2a

= (−1)‖F2a−1‖+‖F2a‖+|F2a−1|+|F2a |+1 i
i

2
gk F

= (−1)‖F2a−1‖+‖F2a‖+|F2a−1|+|F2a | 1
2
gk F.

This equals+ 1
2 gk F when ‖F2a−1‖+‖F2a‖+|F2a−1|+|F2a | is even and− 1

2 gk F
otherwise.

We find that ‖F2a−1‖ + ‖F2a‖ + |F2a−1| + |F2a| is even for F2a−1 F2a in

{
L+
2a−1 L

+
2a, L

−
2a−1 L

−
2a, L

+
2a−1 M

+
2a, L

−
2a−1M

−
2a,

M+
2a−1 L

+
2a, M

+
2a−1 M

+
2a, M

−
2a−1 L

−
2a, M

−
2a−1 M

−
2a

}

and odd for F2a−1 F2a in

{
L+
2a−1 L

−
2a, L

−
2a−1 L

+
2a, L

+
2a−1 M

−
2a, L

−
2a−1 M

+
2a,

M+
2a−1 L

−
2a, M

+
2a−1 M

−
2a, M

−
2a−1 L

+
2a, M

−
2a−1 M

+
2a

}
.

This proves the lemma.

Remark 1 In particular,wefind that g2k
∏m

s=1 L
+
s respectively g2k+1 L

+
1 L−

2

∏m
s=3 L

+
s

are weight vectors of h inM2k resp. M2k+1 of weight (2k)′+ resp. (2k + 1)′+.

Corollary 1 There are 22m−n weight vectors gk F, with F one of the idempotents
mentioned above, of weight (k)′+ and 22m−n weight vectors gk F, with F one of the
above mentioned idempotents, with weight (k)′−.

Proof To obtain weight (k)′+, one has eight choices for each factor F2s−1 F2s in
F, 1 � s � n. We thus get 8n = 23n = 24n−n = 22m−n choices for the idempotent
F . The same reasoning can be made for the weight (k)′−.

We will now show that the weight vectors, defined in Lemma 3 are actually highest
weight vectors, i.e. that they vanish under the action of all positive roots.

Theorem 1 The polynomials gk F, with

• k + |F1| + |F2| + ‖F1‖ + ‖F2‖ even
• ‖F2a−1‖ + ‖F2a‖ + |F2a−1| + |F2a | even, for all 2 � a � n − 1, and
• ‖F2n−1‖ + ‖F2n‖ + |F2n−1| + |F2n| even resp. odd
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are highest weight spaces with highest weight (k)′+ resp. (k)′−, i.e.

Ha (gk F) =
⎛
⎝δ1a

(
k + 1

2

)
+ 1

2

n∑
j=2

δ ja

⎞
⎠ gk F

and

Xa,b (gk F) = Ya,b (gk F) = 0, for all 1 � a < b � n.

Proof Lemma 3 tells us that these gk F are weight vectors with weight (k)′± for the
conditions stated above. The only thing that we still have to prove is that gk F vanishes
under the action of Xa,b and Ya,b, a < b.

We first consider the action of Xa,b on gk F . We make a distinction between a = 1
and a �= 1. Take 1 = a < b, then

2 X1,b gk F = (
dR(e1,2b−1) + i d R(e1,2b) − i d R(e2,2b−1) + dR(e2,2b)

)
gk F

= V1,2b−1

(
ξ2b−1 ∂1 − 1

2

)
gk F e⊥

1 e⊥
2b−1

+ i V1,2b

(
ξ2b ∂1 − 1

2

)
gk F e⊥

1 e⊥
2b

− i V2,2b−1

(
ξ2b−1 ∂2 − 1

2

)
gk F e⊥

2 e⊥
2b−1

+ V2,2b

(
ξ2b ∂2 − 1

2

)
gk F e⊥

2 e⊥
2b

= V1,2b−1

(
−k ξ2b−1 fk−1 − 1

2
gk

)
F e⊥

1 e⊥
2b−1

+ i V1,2b

(
−k ξ2b fk−1 − 1

2
gk

)
F e⊥

1 e⊥
2b

− i V2,2b−1

(
k ξ2b−1 fk−1 − 1

2
gk

)
F e⊥

2 e⊥
2b−1

+ V2,2b

(
k ξ2b fk−1 − 1

2
gk

)
F e⊥

2 e⊥
2b.

Now we use

V1,2b−1 ξ2b−1 = −ξ2b−1 V1,2b−1, V1,2b ξ2b = −ξ2b V1,2b.

Furthermore, since for b �= 1, 2,

V1,b (ξ2 ± ξ1) = (ξ2 ∓ ξ1) V1,b,

V2,b (ξ2 ± ξ1) = (−ξ2 ± ξ1) V2,b = − (ξ2 ∓ ξ1) V2,b,
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we find, for j ∈ {2b − 1, 2b}:

V1, j gk = V1, j (ξ2 − ξ1) (ξ2 + ξ1) (ξ2 − ξ1) . . .

= (ξ2 + ξ1) (ξ2 − ξ1) (ξ2 + ξ1) . . . V1, j = fk V1, j ,

V1, j fk = V1, j (ξ2 + ξ1) (ξ2 − ξ1) (ξ2 + ξ1) . . .

= (ξ2 − ξ1) (ξ2 + ξ1) (ξ2 − ξ1) . . . V1, j = gk V1, j ,

V2, j gk = V2, j (ξ2 − ξ1) (ξ2 + ξ1) (ξ2 − ξ1) . . . = (−1)k fk V2, j ,

V2, j fk = V2, j (ξ2 + ξ1) (ξ2 − ξ1) (ξ2 + ξ1) . . . = (−1)k gk V2, j .

We get that

2 X1,b gk F =
(
k ξ2b−1 gk−1 − 1

2
fk

)
V1,2b−1 F e⊥

1 e⊥
2b−1

+ i

(
k ξ2b gk−1 − 1

2
fk

)
V1,2b F e⊥

1 e⊥
2b

− i

(
(−1)1+k−1 k ξ2b−1 gk−1 − 1

2
(−1)k fk

)
V2,2b−1 F e⊥

2 e⊥
2b−1

+
(

(−1)1+k−1 k ξ2b gk−1 − 1

2
(−1)k fk

)
V2,2b F e⊥

2 e⊥
2b.

Using Lemma 2, we get

2 X1,b gk F = (−1)|F1|+‖F1‖+|F2b−1|+‖F2b−1‖(
−k ξ2b−1 gk−1 + 1

2
fk + (−1)|F2b−1|+‖F2b−1‖+|F2b|+‖F2b‖

(
−k ξ2b gk−1 + 1

2
fk

)

+(−1)|F1|+‖F1‖+|F2|+‖F2‖
(

(−1)k k ξ2b−1 gk−1 − (−1)k
1

2
fk

)

+(−1)|F1|+‖F1‖+|F2|+‖F2‖+|F2b−1|+|F2b|+‖F2b−1‖+‖F2b‖(
(−1)k k ξ2b gk−1 − 1

2
(−1)k fk

))
F2,2b−1.

We thus see that this vanishes when

k + |F1| + ‖F1‖ + |F2| + ‖F2‖

is even.
For 1 < a < b � n we get that

2 Xa,b gk F = −1

2

(
V2a−1,2b−1 gk F e⊥

2a−1 e
⊥
2b−1 + i V2a−1,2b gk F e⊥

2a−1 e
⊥
2b

−i V2a,2b−1 gk F e⊥
2a e

⊥
2b−1 + V2a,2b gk F e⊥

2a e
⊥
2b

)
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= −1

2
gk

(
(−1)|F2a−1|+|F2b−1|+‖F2a−1‖+‖F2b−1‖+1

+(−1)|F2a−1|+|F2b |+‖F2a−1‖+‖F2b‖+1

+(−1)|F2a |+|F2b−1|+‖F2a‖+‖F2b−1‖ + (−1)|F2a |+|F2b |+‖F2a‖+‖F2b‖
)
F2a,2b−1.

This will be zero when |F2a−1| + ‖F2a−1‖ + |F2a | + ‖F2a‖ is even, and this for all
2 � a � n − 1.

Note that:

Xa,b = 1

2

(
dR(e2a−1,2b−1) + i d R(e2a−1,2b) − i d R(e2a,2b−1) + dR(e2a,2b)

)
,

Ya,b = 1

2

(
dR(e2a−1,2b−1) − i d R(e2a−1,2b) − i d R(e2a,2b−1) − dR(e2a,2b)

)
.

If we apply the appropriate change of sign in the second and last term of previous
calculations, we immediately get that Ya,b(gk F) = 0 for a < b. Since Ya,b = −Yb,a ,
this will also be zero for a > b.

Remark 2 In particular, the polynomials g2k
∏m

s=1 L
+
s and g2k+1 L

+
1 L−

2

∏m
s=3 L

+
s

are highest weight vectors with weight (2k)′+ resp. (2k + 1)′+.

Remark 3 The dimension of (k)′± is (see e.g. [17])

2n−1
(
k + m − 2

k

)
.

As the dimension of Mk equals

22m
(
k + m − 2

k

)
= 24n

(
k + m − 2

k

)

and as we found 23n disjoint isomorphic copies of (k)′+ combined with 23n copies of
(k)′−, the spaceMk is fully decomposed in 23n copies of (k)′+ and 23n copies of (k)′−.

Definition 2 We define the space of positive resp. negative spinors S±
2n as the image

under so(m,C) of the idempotents
∏m

s=1 L
+
s , resp.

(∏m−1
s=1 L+

s

)
L−
m :

S
+
2n = so(m,C)

(
spanC

{
L+
1 L+

2 . . . L+
2n−1 L

+
2n

})

and

S
−
2n = so(m,C)

(
spanC

{
L+
1 L+

2 . . . L+
2n−1 L

−
2n

})
.

The elements L+
1 L+

2 . . . L+
2n−1 L

+
2n , resp. L

+
1 L+

2 . . . L+
2n−1 L

−
2n are highest weight

vectors with weight (0)′+ = ( 1
2 , . . . ,

1
2

)
resp. (0)′− = ( 1

2 , . . . ,
1
2 ,− 1

2

)
. Let us give an

example to clarify this construction.
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Example 1 Let m = 4 (i.e. n = 2) and consider L = L+
1 L+

2 L+
3 L+

4 . The Lie algebra
so(4,C) is given in this context by

spanC {dR(e12), dR(e13), dR(e14), dR(e23), dR(e24), dR(e34)} .

The elements dR(e12) and dR(e34) return L up to complex constant. The other four
rotations give us (up to a complex constant) the idempotent L+

1 L−
2 L−

3 L+
4 . Hence

S
+
4 = spanC

{
L+
1 L+

2 L+
3 L+

4 , L+
1 L−

2 L−
3 L+

4

}
.

Starting from L+
1 L+

2 L+
3 L−

4 , the rotations dR(e13), dR(e14), dR(e23) and dR(e24)
lead us to the idempotent L+

1 L−
2 L−

3 L−
4 which shows that

S
−
4 = spanC

{
L+
1 L+

2 L+
3 L−

4 , L+
1 L−

2 L−
3 L−

4

}
.

The space of positive/negative spinors S±
4 is 2-dimensional.

In general, the elements dR(e2a−1,2a) acting on an idempotent return the same
idempotent up to a multiplicative complex factor. Since, for 1 � a < b � n:

V2a−1,2b−1 L e⊥
2a−1 e

⊥
2b−1 = −L2a,2b−1, V2a−1,2b L e⊥

2a−1 e
⊥
2b = i L2a,2b−1,

V2a,2b−1 L e⊥
2a e

⊥
2b−1 = i L2a,2b−1, V2a,2b L e⊥

2a e
⊥
2b = L2a,2b−1.

with L2a,2b−1 = L+
1 L+

2 . . . L+
2a−1 L

−
2a . . . L−

2b−1 L
+
2b . . . L+

2n−1 L
+
2n , similar to the

notation used before, we see that dR(ea,b) acting on

L = L+
1 L+

2 . . . L+
2n−1 L

+
2n

changes the sign of an even number of La’s. The operator always leaves L
+
1 and L+

2n
unchanged. The resulting idempotent will always have an even number of minus-
signs. Starting from the idempotent L with all plus-signs, we thus get all possible
idempotents of the following form:

L+
1 . .︸︷︷︸ . .︸︷︷︸ . . . . .︸︷︷︸ L+

2n

where each place . .︸︷︷︸ consists of either L+
2a L

+
2a+1 or L

−
2a L

−
2a+1, 1 � a � n − 1.

We get 2n−1 spinors belonging to the positive spinorspace and we have the following
weight space decomposition

S
+
2n =

⊕
V(

± 1
2 ,± 1

2 ,...,± 1
2

),

where V(
± 1

2 ,± 1
2 ,...,± 1

2

) denotes the weight space with weight
(± 1

2 ,± 1
2 , . . . ,± 1

2

)
and

where the sum goes over all weights with an even number of minus-signs. The highest
weight remains

( 1
2 , . . . ,

1
2

)
and the highest weight vector is L .
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Starting from L+
1 L+

2 . . . L+
2n−1 L

−
2n , we will generate all possible idempotents of

the following form:

L+
1 . .︸︷︷︸ . .︸︷︷︸ . . . . .︸︷︷︸ L−

2n

where each place . .︸︷︷︸ consists of either L+
2a L

+
2a+1 or L

−
2a L

−
2a+1, 1 � a � n − 1.

We thus also get 2n−1 spinors belonging to the negative spinorspace and the following
weight space decomposition:

S
−
2n =

⊕
V(

± 1
2 ,± 1

2 ,...,± 1
2

),

where the sum goes over all weights with an odd number of minus-signs. The highest
weight is still

( 1
2 , . . . ,

1
2 ,− 1

2

)
and the highest weight vector is L+

1 L+
2 . . . L+

2n−1 L
−
2n .

4.2 Odd Dimension m = 2n+ 1

We now extend the set of generators Ha, Xa,b,Ya,b and Za,b of so(m,C) with 2n
operators

Ua = 1√
2

(
dR(e2a−1,m) − i d R(e2a,m)

)
,

Va = 1√
2

(
dR(e2a−1,m) + i d R(e2a,m)

)
,

where 1 � a � n. With the addition of these 2n operators, we are again able
to reconstruct all original dR(ea,b)’s since

√
2 dR(e2a−1,m) = Ua + Va and

−√
2 i d R(e2a,m) = Ua − Va .
The classic commutator relations follow immediately.

Lemma 4 For 1 � a, b � n, it holds that

[Ha,Ub] = δab Ub = Lb(Ha)Ub,

[Ha, Vb] = −δab Vb = −Lb(Ha) Vb.

In particular, Ub is a root vector of so(m,C) corresponding to the positive root Lb

and Vb is a root vector corresponding with the negative root −Lb, for all 1 � b � n.

Lemma 5 The operators Uc and Vd satisfy the following additional commutator rela-
tions with Xa,b,Ya,b and Za,b, 1 � a, b, c, d � n:

[
Uc, Xa,b

] = −δcb Ua,
[
Vc, Xa,b

] = δca Vb,[
Uc,Ya,b

] = 0,
[
Vc,Ya,b

] = δca Ub − δcb Ua,[
Uc, Za,b

] = −δcb Va + δca Vb,
[
Vc, Za,b

] = 0,
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[Uc,Ud ] = −Yc,d , c �= d, [Vc, Vd ] = −Zc,d , c �= d,

[Uc, Vd ] =
{

−Xc,d , c �= d,

−Hc, c = d.

Proof The statements follow immediately from the definitions ofUc and Vd and from
the defining relations (2) which the operators dR(ea,b) satisfy.

We introduce four extra idempotents

L±
m = (

e+
me

−
m ± i e+

m

)
, M±

m = (
e−
me

+
m ± e−

m

)

and denote

L =
n∏

a=1

(
L+
2a−1 L

+
2a

)
L+
m, L ′ = L+

1 L−
2

n∏
a=2

(
L+
2a−1 L

+
2a

)
L+
m .

We will now show that the highest weight vectors of weight (k)′+ from the even-
dimensional setting are also highest weight vectors with weight (k)′+ in the odd-
dimensional case when we multiply them with one of the four possible extra factors
L±
m and M±

m .

Theorem 2 The weight vectors gk F, F = ∏m
s=1 Fs with Fs ∈ {

L±
s , M±

s

}
with

• k + |F1| + |F2| + ‖F1‖ + ‖F2‖ even
• ‖F2a−1‖ + ‖F2a‖ + |F2a−1| + |F2a | even, for all 2 � a � n,

vanish under the positive root vectors Ua, 1 � a � n, i.e. Ua (gk F) = 0, for all
1 � a � n.

Proof Consider

√
2Ua (gk F) = (

dR(e2a−1,m) − i d R(e2a,m)
)
gk F.

Since gk contains only the vector variables ξ1 and ξ2, we will make a distinction
between a = 1 and a �= 1. We start with assuming that a = 1:

√
2U1 (gk F) = V1,m

(
ξm ∂1 − 1

2

)
gk F e⊥

1 e⊥
m − i V2,m

(
ξm ∂2 − 1

2

)
gk F e⊥

2 e⊥
m

= V1,m

(
−k ξm fk−1 − 1

2
gk

)
F e⊥

1 e⊥
m

− iV2,m

(
k ξm fk−1 − 1

2
gk

)
F e⊥

2 e⊥
m .

Now we again use that, for j �= 1, 2:

V1, j fk = gk V1, j , V2, j fk = (−1)k gk V2, j , V1, j gk = fk V1, j ,
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V2, j gk = (−1)k fk V2, j .

Hence

√
2U1 (gk F) =

(
k ξm V1,m fk−1 − 1

2
V1,m gk

)
F e⊥

1 e⊥
m

− i

(
−k ξm V2,m fk−1 − 1

2
V2,m gk

)
F e⊥

2 e⊥
m

=
(
k ξm gk−1 − 1

2
fk

)
V1,m F e⊥

1 e⊥
m

− i

(
(−1)k k ξm gk−1 − 1

2
(−1)k fk

)
V2,m F e⊥

2 e⊥
m .

We complete the proof by noting that

V1,m F e⊥
1 e⊥

m = (−1)‖F1‖+|F1|+‖Fm‖+|Fm |+1 F2,m,

V2,m F e⊥
2 e⊥

m = (−1)‖F2‖+|F2|+‖Fm‖+|Fm | i F2,m .

Thus
√
2U1(gk F) will be zero since k + |F1| + |F2| + ‖F1‖ + ‖F2‖ is even.

When a �= 1, the action of L2a−1,m on gk F results in zero hence

√
2Ua (gk F) = −1

2
V2a−1,m gk F e⊥

2a−1 e
⊥
m + i

2
V2a,m gk F e⊥

2a e
⊥
m

= −1

2
gk

(
V2a−1,m F e⊥

2a−1 e
⊥
m − iV2a,mF e⊥

2a e
⊥
m

)

= −1

2
gk

(
(−1)‖F2a−1‖+|F2a−1|+‖Fm‖+|Fm |

+(−1)‖F2a‖+|F2a |+‖Fm‖+|Fm |+1
)
F2a,m

= −1

2
gk (−1)‖F2a−1‖+|F2a−1|+‖Fm‖+|Fm |

(
1 + (−1)‖F2a−1‖+|F2a−1|+‖F2a‖+|F2a |+1

)
F2a,m .

This will be zero when ‖F2a−1‖+‖F2a‖+|F2a−1|+ |F2a| is even, for all 2 � a � n.

Corollary 2 The polynomials gk F ∈ Mk with F = ∏m
s=1 Fs, Fs ∈ {

L±
s , M±

s

}
such

that

• k + |F1| + |F2| + ‖F1‖ + ‖F2‖ is even
• ‖F2a−1‖ + ‖F2a‖ + |F2a−1| + |F2a | is even, for all 2 � a � n,

are highest weight vectors of weight (k)′+. In particular, g2k L and g2k+1 L ′ are highest
weight vectors of weight (2k)′+ resp. (2k + 1)′+.

Note that the particular choice for the last factor Fm ∈ {
L±
m, M±

m

}
does not affect

the results.
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We again count howmany distinct highest weight vectors gk F, F = ∏m
s=1 Fs , with

weight (k)′+ wefind: for each F2a−1 F2a, 1 � a � n, we have 8 possible combinations,
namely

{
L+
2a−1 L

+
2a, L−

2a−1 L
−
2a, L+

2a−1 M
+
2a, L−

2a−1 M
−
2a,

M+
2a−1 L

+
2a, M+

2a−1 M
+
2a, M−

2a−1 L
−
2a, M−

2a−1 M
−
2a

}
,

and for Fm we have four possible choices L±
m, M±

m . Combining this, we find 8n 22 =
23n+2 = 22m−n isomorphic irreducible representations with highest weight (k)′+, each
of which has dimension

2n
(
k + m − 2

k

)
.

Hence the total dimension of all isomorphic irreducible representations is

24n+2
(
k + m − 2

k

)
= dimC Mk,

i.e. the dimensional analysis shows thatMk may be decomposed as 23n+2 isomorphic
irreducible representations with highest weight (k)′+.

Definition 3 We define the spinor space S2n+1 as the image under so(m,C) of the
idempotent L = ∏m

s=1 L
+
s :

S2n+1 = so(m,C)
(
spanC

{
L+
1 L+

2 . . . L+
2n L

+
2n+1

})
.

The element L+
1 L+

2 . . . L+
2n L

+
2n+1 is a highest weight vector with weight (0)′+ =( 1

2 , . . . ,
1
2

)
and thus generates an irreducible representation with the same weight.

Example 2 Let m = 5 (i.e. n = 2) and consider L = L+
1 L+

2 L+
3 L+

4 L+
5 . We denote

dR(ea,b) in short as (a, b). The Lie algebra so(5,C) is given in this context by the span
overCof the ten elements (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)
and (4, 5). The idempotents involved interact in the following way under the action
of so(m,C):
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L+
1 L+

2 L+
3 L+

4 L+
5

L+
1 L−

2 L−
3 L−

4 L−
5

L+
1 L+

2 L+
3 L−

4 L−
5

L+
1 L−

2 L−
3 L+

4 L+
5

(1,5)
(2,5)

(3,5), (4,5)

(1,3), (2,3)

(1,4), (2,4)

(1,2), (3,4)

(3,5), (4,5)

(1,5)
(2,5)

Hence

S5 = spanC
{
L+
1 L+

2 L+
3 L+

4 L+
5 , L+

1 L−
2 L−

3 L+
4 L+

5 , L+
1 L−

2 L−
3 L−

4 L−
5 , L+

1 L+
2 L+

3 L−
4 L−

5

}
.

The spinorspace S5 is 22-dimensional as expected.

In general, the rotations dR(e2a−1,2a), a = 1, . . . , n, acting on an idempotent
return the same idempotent up to a multiplicative complex number. Again, we find
that dR(ea,b) with 1 � a, b � n, changes the sign of an even number of Li ’s. The
additional rotations dR(e2a−1,m) and dR(e2a,m), with 1 � a � n, act as follows on
L:

L+
1 L+

2 . . . L+
2n L

+
2n+1 �→ L+

1 L+
2 . . . L+

2a−1 L
−
2a . . . L−

2n L
−
2n+1.

The rotation always leaves L+
1 invariant. The resulting idempotent always will have

an even number of minus-signs. Starting from the idempotent L with all plus-signs,
we thus get all possible idempotents of the following form:

L+
1 . .︸︷︷︸ . .︸︷︷︸ . . . . .︸︷︷︸

where each place . .︸︷︷︸ consists of either L+
2a L

+
2a+1 or L

−
2a L

−
2a+1, 1 � a � n. We

thus get 2n spinors and we have the following weight space decomposition

S2n+1 =
⊕

V(
± 1

2 ,± 1
2 ,...,± 1

2

),

where the sum goes over all weights with an even number of minus-signs.

Example 3 Let m = 7 (i.e. n = 3) and consider L = L+
1 L+

2 L+
3 L+

4 L+
5 L+

6 L+
7 . We

will again denote dR(ea,b) in short as (a, b). The Lie algebra so(5,C) is given in this
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setting by 21 elements and the corresponding spinorspace will be 8-dimensional. The
idempotents involved interact in the following way under the action of so(m,C):

L+
1 L+

2 L+
3 L+

4 L+
5 L+

6 L+
7

L+
1 L−

2 L−
3 L+

4 L+
5 L+

6 L+
7

L+
1 L+

2 L+
3 L−

4 L−
5 L+

6 L+
7

L+
1 L−

2 L−
3 L−

4 L−
5 L+

6 L+
7L+

1 L+
2 L+

3 L+
4 L+

5 L−
6 L−

7

L+
1 L+

2 L+
3 L−

4 L−
5 L−

6 L−
7

L+
1 L−

2 L−
3 L−

4 L−
5 L−

6 L−
7

L+
1 L−

2 L−
3 L+

4 L+
5 L−

6 L−
7

(5, 7), (6, 7)

(1, 3), (2, 3), (1, 4), (2, 4)

(3, 5), (3, 6), (4, 5), (4, 6)

(1, 5), (2, 5), (1, 6), (2, 6)

(3, 7), (4, 7)

(1, 7), (2, 7)

(1, 2), (3, 4), (5, 6)

Hence

S7 = spanC { L+
1 L+

2 L+
3 L+

4 L+
5 L+

6 L+
7 , L+

1 L−
2 L−

3 L+
4 L+

5 L+
6 L+

7 ,

L+
1 L+

2 L+
3 L−

4 L−
5 L+

6 L+
7 , L+

1 L−
2 L−

3 L−
4 L−

5 L+
6 L+

7 ,

L+
1 L+

2 L+
3 L+

4 L+
5 L−

6 L−
7 , L+

1 L+
2 L+

3 L−
4 L−

5 L−
6 L−

7 ,

L+
1 L−

2 L−
3 L−

4 L−
5 L−

6 L−
7 , L+

1 L−
2 L−

3 L+
4 L+

5 L−
6 L−

7

}
.

We indeed find an 8-dimensional spinorspace S7.
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5 Conclusion and Future Research

The space Mk of discrete k-homogeneous monogenic polynomials is a reducible
representation of so(m,C) which can, in the odd-dimensional case m = 2n + 1, be
decomposed into 22m−n isomorphic copies of the irreducible so(m,C)-representation
with highest weight (k)′+ and in the even-dimensional setting m = 2n, we find 22m−n

isomorphic irreducible representations with highest weight (k)′+ and 22m−n irreps of
highest weight (k)′−. This is done by means of an appropriate amount of idempotents.

Let gk = (ξ2 − ξ1) (ξ2 + ξ1) (ξ2 − ξ1) (ξ2 + ξ1) . . . [1], (k factors), be a discrete
homogeneous monogenic function of degree k and let

L±
2a−1 = (

e+
2a−1e

−
2a−1 ± i e+

2a−1

)
, L±

2a = (
e+
2ae

−
2a ± e+

2a

)
,

M±
2a−1 = (

e−
2a−1e

+
2a−1 ± i e−

2a−1

)
, M±

2a = (
e−
2ae

+
2a ± e−

2a

)
.

Denote ‖L±
a ‖ = 0, ‖M±

a ‖ = 1, |L+
a | = |M−

a | = 0 and |L−
a | = |M+

a | = 1.
In even dimension m = 2n, the polynomial gk F ∈ Mk, F = ∏m

s=1 Fs with
Fs ∈ {

L±
s , M±

s

}
, is a highest weight vector of so(m,C) with

• weight (k)′+ when k+|F1|+ |F2|+‖F1‖+‖F2‖ is even and ‖F2a−1‖+‖F2a‖+
|F2a−1| + |F2a | is even for 2 � a � n.

• weight (k)′− when k + |F1| + |F2| + ‖F1‖ + ‖F2‖ is even, ‖F2a−1‖ + ‖F2a‖ +
|F2a−1|+ |F2a | is even for 2 � a � n−1 and ‖F2n−1‖+‖F2n‖+|F2n−1|+ |F2n|
is odd.

We find 22m−n highest weight vectors in Mk with weight (k)′+ and 22m−n weight
vectors, with weight (k)′−, each generating an irreducible so(m,C)-representation.

In odd dimensions m = 2n + 1, the polynomial gk F ∈ Mk, F = ∏m
s=1 Fs with

Fs ∈ {
L±
s , M±

s

}
, is a weight vector of so(m,C) with weight (k)′+ when k + |F1| +

|F2| + ‖F1‖ + ‖F2‖ is even and ‖F2a−1‖ + ‖F2a‖ + |F2a−1| + |F2a | is even for
2 � a � n. We find 22m−n highest weight vectors in Mk with weight (k)′+ and thus
as much irreps.

We have shown throughout this article how the space Mk of monogenic discrete
k-homogeneous polynomials can be decomposed into irreducible representations of
so(m,C). However, because of the presence of the basiselements ea and e⊥

a in the
definition of the generators of the rotations, the spinorspace is no maximal left ideal.
In future research we will investigate other possibilities to define rotations and the
spinorspace in the hopes ofwriting the spinorspace asmaximal left ideal.An equivalent
description of Hk and Mk as SO(m)/Spin(m)-representations is also still work in
progress.
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