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Abstract In this paper, we will investigate certain properties of some operator prod-
ucts on Hilbert spaces, by applications of completions of operator matrices. It is
shown that, quite surprisingly, the invariance properties of the operator product
T1T2T

(1,...)
2 T (1,...)

1 T1T2 have a neat relationship with the properties of the reverse order
laws for generalized inverses of the operator product T1T2. That is, the mixed-type
reverse order laws

T2{1, . . .}T1{1, . . .} ⊆ (T1T2){1}

hold if and only if the operator product T1T2T
(1,...)
2 T (1,...)

1 T1T2 is invariant, where
(1, . . .) is taken respectively as (1), (1, 2), (1, 3), (1, 4), (1, 2, 3) as well as (1, 2, 4).
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1 Introduction

Throughout this paper “an operator” means “a bounded linear operator over Hilbert
space”. H, L, J and K denote arbitrary Hilbert spaces. L(H,K) denotes the set of
all bounded linear operators from H to K. Also L(H)=L(H,H). I denotes the unit
operator over Hilbert space and O is the zero operator over Hilbert space. For an
operator T ∈ L(H,K), we use R(T ) to denote the range of T and N (T ) to denote
the null-space of T . The symbol T ∗ denotes the adjoint of T . The operator T is a
self-adjoint operator if and only if T ∗ = T .

Recall that an operator X ∈ L(K,H) is called the Moore-Penrose inverse of T ∈
L(H,K), if X satisfies the following four operator equations [1,25],

(1) T XT = T, (2) XT X = X, (3) (T X)∗ = T X, (4) (XT )∗ = XT .

If such operator X exists then it is unique and is denoted by T †. It is well known
that the Moore-Penrose inverse of T exists if and only if R(T ) is closed, see [9].

Let φ �= η ⊆ {1, 2, 3, 4}. Then Tη denotes the set of all operators X , which satisfy
(i) for all i ∈ η. Any X ∈ Tη is called an η-inverse of T and is denoted by T (η).
For example, an operator X of the set T {1} is called a {1}-inverse of T and can be
written as X = T (1) ∈ T {1}. The well-known seven common types of generalized
inverses of T are respectively, the {1}-inverse (g-inverse), {1, 2}-inverse (reflexive
g-inverse), {1, 3}-inverse (least square g-inverse), {1, 4}-inverse (minimum norm g-
inverse), {1, 2, 3}-inverse, {1, 2, 4}-inverse and {1, 2, 3, 4}-inverse (Moore-Penrose
inverse). We refer the reader to [1,26] for basic results on the generalized inverses of
bounded linear operators.

Invariance properties of operator product involving generalized inverses are impor-
tant in the theory of operators. They have attracted considerable attention and many
interesting results have been obtained, see [4,16,28,29]. Let Ti , i = 1, 2, 3 be three
operators on Hilbert spaces. Concerning the invariance properties of T1T

(1,...)
2 T3 for

various type of generalized inverses T (1,...)
2 of T2 are well known in the literature, see

[2,3,5,15,22]. It has quite important applications in operator algebra and appliedfields,
such as, nonlinear control theory [10,23], statistics [1,24], projection algorithms and
perturbation analysis of operator [14,19]. Moreover, the invariance properties of oper-
ator product is an useful tool in many algorithms for computation of the generalized
inverses of operators, see [1,14,26].

Another property of operator product is the reverse order laws for generalized
inverses. Let T1 ∈ L(H,L) and T1 ∈ L(K,H) be two operators such that the product
T1T2 exists. An interesting problem is, for φ �= η ⊆ {1, 2, 3, 4}, when T2ηT1η ⊆
(T1T2)η? The reverse order laws for the generalized inverses of operator products
first discussed by Greville [17]. Bouldin [6] and Izumino [18] extended the results
of Greville [17] to the bounded linear operators on Hilbert space, by using the gaps
between subspaces.Djordjević [11] showed that the reverse order law (T1T2)† = T †

2 T
†
1

holds if and only if R(T ∗
1 T1T2) ⊆ R(T2) and R(T2T ∗

2 T
∗
1 ) ⊆ R(T ∗

1 ). Kohila et al.
[7,20] obtained the necessary and sufficient conditions for the reverse order law of
the Moore-Penrose inverse in C∗-algebra. The reader can find more results of the
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reverse order law for the generalized inverse of operator product in [9,12,13,18,27,
30].

Recently, in [28], the authors presented invariance properties of matrix products
related to the reverse order laws for generalized inverses. Liu et al. [21] extended the
results of [28] to the bounded linear operators on Hilbert space. They investigated the
relationship between the invariance properties of the bounded linear operator product
T1T2T

(1,...)
2 T (1,...)

1 T1T2 and the mixed-type reverse order laws for corresponding gen-
eralized inverses, by using a purely algebraic method. The drawback of their method
is that they cannot be applied to some more generalized structures. In this paper, by
applications of completions of operator matrices, we revisited these problem again
and some more simple conditions are derived. Compared with the results given in
[21], our condition can be easily checked and the proof is very simple.

We first mention the following results, which will be used in this paper.

Lemma 1.1 [8,11] Let T ∈ L(H,K) have a closed range. Let H1 and H2 be closed
and mutually orthogonal subspace of H, such that H1

⊕
H2 = H. Let K1 and K2

be closed and mutually orthogonal subspace of K, such that K = K1
⊕

K2. Then
the operator T has the following matrix representations with respect to the orthog-
onal sums of subspaces H = H1

⊕
H2 = R(T ∗)

⊕
N (T ) and K = K1

⊕
K2 =

R(T )
⊕

N (T ∗):

1. T =
(
T11 T12
O O

)

:
(
H1
H2

)

→
(

R(T )

N (T ∗)

)

and T † =
(
T ∗
11E

−1 O
T ∗
12E

−1 O

)

:
(

R(T )

N (T ∗)

)

→
(
H1
H2

)

, where E = T11T ∗
11 + T12T ∗

12 is invertible on R(T );

2. T =
(
T11 O
O O

)

:
(
R(T ∗)
N (T )

)

→
(

R(T )

N (T ∗)

)

and T † =
(
T−1
11 O
O O

)

:
(

R(T )

N (T ∗)

)

→
(
R(T ∗)
N (T )

)

, where T11 is invertible on R(T ∗).

Lemma 1.2 [1,11] Let T ∈ L(H,K) have a closed range and G ∈ L(K,H). Then

1. TGT = T ⇔ G ∈ T {1} and T {1} = {T † + Y − T †TYT T † : Y ∈ L(K,H)};
2. TGT = T and GTG = G ⇔ G ∈ T {1, 2} and T {1, 2} = {[T † + (I −

T †T )Y1]T [T † + Y2(I − T T †)] : Yi ∈ L(K,H), i = 1, 2};
3. TGT = T and (TG)∗ = TG ⇔ G ∈ T {1, 3} and T {1, 3} = {T † + (I −

T †T )Y : Y ∈ L(K,H)};
4. TGT = T and (GT )∗ = GT ⇔ G ∈ T {1, 4} and T {1, 4} = {T † + Y (I −

T T †) : Y ∈ L(K,H)};
5. TGT = T, GTG = G and (TG)∗ = TG ⇔ G ∈ T {1, 2, 3} and T {1, 2, 3} =

{T † + (I − T †T )YT T † : Y ∈ L(K,H)};
6. TGT = T,GTG = G and (GT )∗ = GT ⇔ G ∈ T {1, 2, 4} and T {1, 2, 4} =

{T † + T †TY (I − T T †) : Y ∈ L(K,H)};
7. TGT = T, (TG)∗ = TG and (GT )∗ = GT ⇔ G ∈ T {1, 3, 4} and T {1, 3, 4} =

{T † + (I − T †T )Y (I − T T †) : Y ∈ L(K,H)}.
Lemma 1.3 [1] Let T ∈ L(H,K), ET = I − T T † and FT = I − T †T . Then

R(FT ) = N (T ) and N (ET ) = R(A).
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Lemma 1.4 [1] Let T ∈ L(H,K) and W ∈ L(K,H) have closed ranges. Then

(I − T T †)(I − W †W ) ⇔ N (W ) ⊆ R(T ).

Lemma 1.5 [22] Let T ∈ L(H,K) and W ∈ L(I,J ) have closed ranges. Then
T QW = O for every Q ∈ L(J ,H) if and only if T = O or W = O.

2 Invariance Property of T1T2T
(1)
2 T (1)

1 T1T2 Related to the Reverse
Order Law T2{1}T1{1} ⊆ (T1T2){1}

Given operators T1 ∈ L(H,L) and T2 ∈ L(K,H). In this section, we will show that
the reverse order law T2{1}T1{1} ⊆ (T1T2){1} holds if and only if the operator product
T1T2T

(1)
2 T (1)

1 T1T2 is invariant, where T
(1)
1 ∈ T1{1} and T (1)

2 ∈ T2{1} are two variant
operators.

Theorem 2.1 Let T1 ∈ L(H,L) and T2 ∈ L(K,H) such that T1, T2 have closed
ranges and T1T2 �= O. Then the following statements are equivalent:

(1) T1T2T
(1)
2 T (1)

1 T1T2 is invariant with respect to the choice of T (1)
1 ∈ T1{1} and

T (1)
2 ∈ T2{1};

(2) N (T1) ⊆ R(T2), i.e, (I − T2T
†
2 )(I − T †

1 T1) = O;

(3) T2{1}T1{1} ⊆ (T1T2){1}.

Proof FromLemma1.1,we know that the operators T1, T2 and T1T2 have the following
matrix forms with respect to the orthogonal sum of subspaces:

T1 =
(
T 11
1 T 12

1
O O

)

:
(
R(T2)
N (T ∗

2 )

)

→
(
R(T1)
N (T ∗

1 )

)

, (2.1)

T †
1 =

(
(T 11

1 )∗D−1 O
(T 12

1 )∗D−1 O

)

:
(
R(T1)
N (T ∗

1 )

)

→
(
R(T2)
N (T ∗

2 )

)

, (2.2)

where D = T 11
1 (T 11

1 )∗ + T 12
1 (T 12

1 )∗ is invertible on R(T1).

T2 =
(
T 11
2 O
O O

)

:
(
R(T ∗

2 )

N (T2)

)

→
(
R(T2)
N (T ∗

2 )

)

, (2.3)

T †
2 =

(
(T 11

2 )−1 O
O O

)

:
(
R(T2)
N (T ∗

2 )

)

→
(
R(T ∗

2 )

N (T2)

)

, (2.4)

where T 11
2 is invertible.

T1T2 =
(
T 11
1 T 11

2 O
O O

)

:
(
R(T ∗

2 )

N (T2)

)

→
(
R(T1)
N (T ∗

1 )

)

(2.5)



Applications of Completions of Operator Matrices to Some Properties of . . . 127

and

(T1T2)
∗ =

(
(T 11

2 )∗(T 11
1 )∗ O

O O

)

:
(
R(T1)
N (T ∗

1 )

)

→
(
R(T ∗

2 )

N (T2)

)

. (2.6)

Combining (2.1)–(2.6) with the results in Lemma 1.2, it follows that there exist two
bounded linear operators Y ∈ L(L,H) and W ∈ L(K,J ):

Y =
(
Y11 Y12
Y21 Y22

)

:
(
R(T1)
N (T ∗

1 )

)

→
(
R(T2)
N (T ∗

2 )

)

,

W =
(
W11 W12
W21 W22

)

:
(
R(T2)
N (T ∗

2 )

)

→
(
R(T ∗

2 )

N (T2)

)

,

such that

T (1)
1 = T †

1 + Y − T †
1 T1YT1T

†
1

=
(

(T 11
1 )∗D−1 + Y11 − (T 11

1 )∗D−1T 11
1 Y11 − (T 11

1 )∗D−1T 12
1 Y21 Y12

(T 12
1 )∗D−1 + Y21 − (T 12

1 )∗D−1T 12
1 Y21 − (T 12

1 )∗D−1T 11
1 Y11 Y22

)

,

(2.7)

T (1)
2 = T †

2 + W − T †
1 T1WT1T

†
1 =

(
(T 11

2 )−1 W12
W21 W22

)

, (2.8)

where Yi j and Wi j , i, j = 1, 2 are arbitrary bounded linear operators on appropriate
spaces.

(1) ⇒ (2): Since the Moore-Penrose inverse is unique and belongs to the set {1}-
inverses, then T1T2T

(1)
2 T (1)

1 T1T2 is invariant with respect to the choice of T
(1)
1 ∈ T1{1}

and T (1)
2 ∈ T2{1} if and only if the following equation

T1T2T
(1)
2 T (1)

1 T1T2 = T1T2T
†
2 T

†
1 T1T2, (2.9)

holds with respect to the choice of T (1)
1 ∈ T1{1} and T (1)

2 ∈ T2{1}.
Substituting T †

1 for T (1)
1 in (2.9), we have

T1T2T
(1)
2 T †

1 T1T2 = T1T2T
†
2 T

†
1 T1T2. (2.10)

By (2.1)–(2.5), (2.8) and (2.10), we have

T1T2T
(1)
2 T †

1 T1T2 = T1T2T
†
2 T

†
1 T1T2

⇔
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 + T 11
1 T 11

2 W12(T 12
1 )∗D−1T 11

1 T 11
2 O

O O

)

=
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

⇔ T 11
1 T 11

2 W12(T
12
1 )∗D−1T 11

1 T 11
2 = O

⇔ T 11
1 T 11

2 W12(T
12
1 )∗D−1T 11

1 = O. (2.11)
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Since T 11
2 is invertible, T 11

1 T 11
2 �= O and W12 is arbitrary, then from Lemma 1.5, we

have

(T 12
1 )∗D−1T 11

1 = O. (2.12)

Substituting (2.1)–(2.8) and (2.12) in (2.9), we have

T1T2T
(1)
2 T (1)

1 T1T2 = T1T2T
†
2 T

†
1 T1T2

⇔
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 + T 11
1 T 11

2 W12Y21T 11
1 T 11

2 − T 11
1 T 11

2 W12(T 12
1 )∗D−1T 12

1 Y21T 11
1 T 11

2 O
O O

)

=
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

⇔ T 11
1 T 11

2 W12Y21T
11
1 T 11

2 − T 11
1 T 11

2 W12(T
12
1 )∗D−1T 12

1 Y21T
11
1 T 11

2 = O

⇔ T 11
1 T 11

2 W12(I − (T 12
1 )∗D−1T 12

1 )Y21T
11
1 T 11

2 = O. (2.13)

Since T 11
1 T 11

2 �= O and W12, Y21 are arbitrary, then from Lemma 1.5 and (2.13), we
have

I − (T 12
1 )∗D−1T 12

1 = O. (2.14)

By Lemma 1.3, and Lemma 1.4, we know that

N (T1) ⊆ R(T2) ⇔ (I − T2T
†
2 )(I − T †

1 T1) = O. (2.15)

Substituting (2.1)–(2.4) in (2.15) yields

N (T1) ⊆ R(T2) ⇔ (I − T2T
†
2 )(I − T †

1 T1) = O

⇔
(
O O
O I

) (
I − (T 11

1 )∗D−1T 11
1 −(T 11

1 )∗D−1T 12
1

−(T 12
1 )∗D−1T 11

1 I − (T 12
1 )∗D−1T 12

1

)

=
(
O O
O O

)

⇔
(

O O
−(T 12

1 )∗D−1T 11
1 I − (T 12

1 )∗D−1T 12
1

)

=
(
O O
O O

)

. (2.16)

According to (2.12) and (2.14), we have (2.15) and (2.16) hold. That is (1) ⇒ (2)
holds.

(2) ⇒ (3): If N (T1) ⊆ R(T2), then from (2.16) we have

(T 12
1 )∗D−1T 11

1 = O (2.17)

and

I − (T 12
1 )∗D−1T 12

1 = O. (2.18)

On the other hand, from the formula (1) in Lemma 1.2, we know that the reverse
order law T2{1}T1{1} ⊆ (T1T2){1} holds if and only if the equation

T1T2T
(1)
2 T (1)

1 T1T2 = T1T2 (2.19)

holds for any T (1)
i ∈ Ti {1}, i = 1, 2.
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Since D = T 11
1 (T 11

1 )∗ + T 12
1 (T 12

1 )∗, then according to (2.1)–(2.8), (2.17) and

(2.18), we get that for any T (1)
i ∈ Ti {1}, i = 1, 2

T1T2T
(1)
2 T (1)

1 T1T2

=
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 + T 11
1 T 11

2 W12Y21T 11
1 T 11

2 − T 11
1 T 11

2 W12(T 12
1 )∗D−1T 12

1 Y21T 11
1 T 11

2 O
O O

)

=
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

=
(

(D − T 12
1 (T 12

1 )∗)D−1T 11
1 T 11

2 O
O O

)

= T1T2. (2.20)

Combining (2.19) with (2.20), the result (2) ⇒ (3) is true.
(3) ⇒ (1): If T2{1}T1{1} ⊆ (T1T2){1}, then the result T (1)

2 T (1)
1 ∈ (T1T2){1} holds

for any T (1)
1 ∈ T1{1} and T (1)

2 ∈ T2{1}. So, from the formula (1) in Lemma 1.2, we
know that the equation

T1T2T
(1)
2 T (1)

1 T1T2 = T1T2 (2.21)

holds for any T (1)
1 ∈ T1{1} and T (1)

2 ∈ T2{1}. Namely, (3) ⇒ (1) is true. 	


3 Invariance Property of T1T2T
(1,2)
2 T (1,2)

1 T1T2 Related to the
Mixed-Type Reverse Order Law T2{1, 2}T1{1, 2} ⊆ (T1T2){1}

Let T1 ∈ L(H,L) and T2 ∈ L(K,H) be two given operators, T (1,2)
1 ∈ T1{1, 2} and

T (1,2)
2 ∈ T2{1, 2} are two variant operators. In this section, we have the following

interesting results.

Theorem 3.1 Let T1 ∈ L(H,L) and T2 ∈ L(K,H) such that T1, T2 have closed
ranges and T1T2 �= O. Then the following statements are equivalent:

1. T1T2T
(1,2)
2 T (1,2)

1 T1T2 is invariant for any T
(1,2)
1 ∈ T1{1, 2} and T (1,2)

2 ∈ T2{1, 2};
2. N (T1) ⊆ R(T2);
3. T2{1, 2}T1{1, 2} ⊆ (T1T2){1}.
Proof Combining (2.1)–(2.6) with the results in Lemma 1.2, it follows that there
exist four bounded linear operators W ∈ L(L,H), M ∈ L(L,H), U ∈ L(H,K) and
V ∈ L(H,K):

W =
(
W11 W12
W21 W22

)

:
(
R(T1)
N (T ∗

1 )

)

→
(
R(T2)
N (T ∗

2 )

)

,

where Wi j , i, j = 1, 2 are arbitrary,

M =
(
M11 M12
M21 M22

)

:
(
R(T1)
N (T ∗

1 )

)

→
(
R(T2)
N (T ∗

2 )

)

,

where Mi j , i, j = 1, 2 are arbitrary,
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U =
(
U11 U12
U21 U22

)

:
(
R(T2)
N (T ∗

2 )

)

→
(
R(T ∗

2 )

N (T2)

)

,

where Ui j , i, j = 1, 2 are arbitrary,

V =
(
V11 V12
V21 V22

)

:
(
R(T2)
N (T ∗

2 )

)

→
(
R(T ∗

2 )

N (T2)

)

,

where Vi j , i, j = 1, 2 are arbitrary,

such that

T (1,2)
1 = [T †

1 + (I − T †
1 T1)W ]T1[T †

1 + M(I − T1T
†
1 )] =

(
μ11 μ12
μ21 μ22

)

, (3.1)

T (1,2)
2 = [T †

2 + (I − T †
2 T2)U ]T2[T †

2 + V (I − T2T
†
2 )] =

(
(T 11

2 )−1 V1
U1 U1T 11

2 V1

)

,

(3.2)

where U1, V1 are arbitrary bounded linear operators and

D = T 11
1 (T 11

1 )∗ + T 12
1 (T 12

1 )∗,
μ11 = (T 11

1 )∗D−1 + [I − (T 11
1 )∗D−1T 11

1 ]W11 − (T 11
1 )∗D−1T 12

1 W21,

μ12 = μ11.(T
11
1 M12 + T 12

1 M22),

μ21 = (T 12
1 )∗D−1 + [I − (T 12

1 )∗D−1T 12
1 ]W21 − (T 12

1 )∗D−1T 11
1 W11,

μ22 = μ21.(T
11
1 M12 + T 12

1 M22).

(1) ⇒ (2): Since the Moore–Penrose inverse is unique and belongs to the set
{1, 2}-inverses, then T1T2T

(1,2)
2 T (1,2)

1 T1T2 is invariant with respect to the choice of

T (1,2)
1 ∈ T1{1, 2} and T (1,2)

2 ∈ T2{1, 2} if and only if the following equation

T1T2T
(1,2)
2 T (1,2)

1 T1T2 = T1T2T
†
2 T

†
1 T1T2, (3.3)

holds with respect to the choice of T (1,2)
1 ∈ T1{1, 2} and T (1,2)

2 ∈ T2{1, 2}.
Substituting T †

1 for T (1,2)
1 in (3.3), we have

T1T2T
(1,2)
2 T †

1 T1T2 = T1T2T
†
2 T

†
1 T1T2. (3.4)

By (2.1)–(2.5), (3.2) and (3.4), we have

T1T2T
(1,2)
2 T †

1 T1T2 = T1T2T
†
2 T

†
1 T1T2

⇔
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 + T 11
1 T 11

2 V1(T 12
1 )∗D−1T 11

1 T 11
2 O

O O

)

=
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)



Applications of Completions of Operator Matrices to Some Properties of . . . 131

⇔ T 11
1 T 11

2 V1(T
12
1 )∗D−1T 11

1 T 11
2 = O

⇔ T 11
1 T 11

2 V1(T
12
1 )∗D−1T 11

1 = O. (3.5)

Since T 11
2 is invertible, T 11

1 T 11
2 �= O and V1 is arbitrary, then from Lemma 1.6, we

have

(T 12
1 )∗D−1T 11

1 = O. (3.6)

Substituting (2.1)–(2.8), (3.1), (3.2) and (3.6) in (3.3), we have

T1T2T
(1,2)
2 T (1,2)

1 T1T2 = T1T2T
†
2 T

†
1 T1T2

⇔
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 + T 11
1 T 11

2 V1[I − (T 12
1 )∗D−1T 12

1 ]W21T 11
1 T 11

2 O
O O

)

=
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

⇔ T 11
1 T 11

2 V1(I − (T 12
1 )∗D−1T 12

1 )W21T
11
1 T 11

2 = O. (3.7)

Since T 11
1 T 11

2 �= O and V1, W21 are arbitrary, then from Lemma 1.6 and (3.7), we
have

I − (T 12
1 )∗D−1T 12

1 = O. (3.8)

Combining (3.6), (3.8) with (2.15) and (2.16), we have (1) ⇒ (2).
(2) ⇒ (3): From the formulas in Lemma 1.2, we know that the reverse order law

T2{1, 2}T1{1, 2} ⊆ (T1T2){1} holds if and only if

T1T2T
(1,2)
2 T (1,2)

1 T1T2 = T1T2 (3.9)

holds for any T (1,2)
i ∈ Ti {1, 2}, i = 1, 2.

Since D = T 11
1 (T 11

1 )∗ + T 12
1 (T 12

1 )∗, then according to (2.5), (3.1), (3.2), (3.6) and
(3.8), we get that for any T (1,2)

i ∈ Ti {1, 2}, i = 1, 2

T1T2T
(1,2)
2 T (1,2)

1 T1T2 =
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

=
(

(D − T 12
1 (T 12

1 )∗)D−1T 11
1 T 11

2 O
O O

)

=
(
T 11
1 T 11

2 O
O O

)

= T1T2. (3.10)

That is the results (2) ⇒ (3) holds.
(3) ⇒ (1): If T2{1, 2}T1{1, 2} ⊆ (T1T2){1}, then the result T (1,2)

2 T (1,2)
1 ∈

(T1T2){1} holds for any T (1,2)
1 ∈ T1{1, 2} and T (1,2)

2 ∈ T2{1, 2}. So from the for-
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mula (1) in Lemma 1.2, we know that the equation

T1T2T
(1,2)
2 T (1,2)

1 T1T2 = T1T2 (3.11)

holds for any T (1,2)
1 ∈ T1{1, 2} and T (1,2)

2 ∈ T2{1, 2}. Namely, (3) ⇒ (1) is true. 	


4 Invariance Property of T1T2T
(1,3)
2 T (1,3)

1 T1T2 Related to the
Mixed-Type Reverse Order Law T2{1, 3}T1{1, 3} ⊆ (T1T2){1}

Given operators T1 ∈ L(H,L) and T2 ∈ L(K,H). In this section, we will show that
the mixed-type reverse order law T2{1, 3}T1{1, 3} ⊆ (T1T2){1} holds if and only if
the operator product T1T2T

(1,3)
2 T (1,3)

1 T1T2 is invariant, where T (1,3)
1 ∈ T1{1, 3} and

T (1,3)
2 ∈ T2{1, 3} are two variant operators.

Theorem 4.1 Let T1 ∈ L(H,L) and T2 ∈ L(K,H) such that T1, T2 have closed
ranges and T1T2 �= O. Then the following statements are equivalent:

(1) T1T2T
(1,3)
2 T (1,3)

1 T1T2 is invariant for any T
(1,3)
1 ∈ T1{1, 3} and T (1,3)

2 ∈ T2{1, 3};
(2) N (T1) ⊆ N (T1T2T

†
2 ), i.e, T1T2T

†
2 (I − T †

1 T1) = O;
(3) T2{1, 3}T1{1, 3} ⊆ (T1T2){1}.
Proof Combining (2.1)–(2.6) with the results in Lemma 1.2, it follows that there exist
two bounded linear operators P ∈ L(L,H) and Q ∈ L(H,K):

P =
(
P11 P12
P21 P22

)

:
(
R(T1)
N (T ∗

1 )

)

→
(
R(T2)
N (T ∗

2 )

)

, where Pi j , i, j = 1, 2 are arbitrary,

Q =
(
Q11 Q12
Q21 Q22

)

:
(
R(T2)
N (T ∗

2 )

)

→
(
R(T ∗

2 )

N (T2)

)

, where Qi j , i, j =1, 2 are arbitrary,

such that

T (1,3)
1 = T †

1 + (I − T †
1 T1)P =

(
τ11 τ12
τ21 τ22

)

, (4.1)

T (1,3)
2 = T †

2 + (I − T †
2 T2)Q =

(
(T 11

2 )−1 O
Q21 Q22

)

, (4.2)

where

D = T 11
1 (T 11

1 )∗ + T 12
1 (T 12

1 )∗,
τ11 = (T 11

1 )∗D−1 + [I − (T 11
1 )∗D−1T 11

1 ]P11 − (T 11
1 )∗D−1T 12

1 P21,

τ12 = [I − (T 11
1 )∗D−1T 11

1 ]P12 − (T 11
1 )∗D−1T 12

1 P22,

τ21 = (T 12
1 )∗D−1 + [I − (T 12

1 )∗D−1T 12
1 ]P21 − (T 12

1 )∗D−1T 11
1 P11,

τ22 = [I − (T 12
1 )∗D−1T 12

1 ]P22 − (T 12
1 )∗D−1T 11

1 P12.



Applications of Completions of Operator Matrices to Some Properties of . . . 133

(1) ⇒ (2): From (2.1)–(2.6), (4.1) and (4.2), we know that for any T (1,3)
1 ∈ T1{1, 3}

and T (1,3)
2 ∈ T2{1, 3},

T1T2T
(1,3)
2 T (1,3)

1 T1T2 =
(
T 11
1 T 11

2 O
O O

) (
(T 11

2 )−1 O
Q21 Q22

)(
τ11 τ12
τ21 τ22

)(
T 11
1 T 11

2 O
O O

)

=
(

(T 11
1 τ11T 11

1 T 11
2 O

O O

)

. (4.3)

It is well known that the Moore–Penrose inverse is unique and belongs to the set
{1, 3}-inverses, then T1T2T

(1,3)
2 T (1,3)

1 T1T2 is invariant with respect to the choice of

T (1,3)
1 ∈ T1{1, 3} and T (1,3)

2 ∈ T2{1, 3} if and only if the following equation

T1T2T
(1,3)
2 T (1,3)

1 T1T2 = T1T2T
†
2 T

†
1 T1T2, (4.4)

holds with respect to the choice of T (1,3)
1 ∈ T1{1, 3} and T (1,3)

2 ∈ T2{1, 3}.
Combining (2.1)–(2.6) with (4.1) and (4.2), we have

T1T2T
(1,3)
2 T (1,3)

1 T1T2 = T1T2T
†
2 T

†
1 T1T2

⇔
(

(T 11
1 τ11T 11

1 T 11
2 O

O O

)

=
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

⇔ T 12
1 (T 12

1 )∗D−1T 11
1 P11T

11
1 T 11

2 − T 11
1 (T 11

1 )∗D−1T 12
1 P21T

11
1 T 11

2 = O.

(4.5)

Let P11 = (T 11
1 )∗ and P21 = O , then from (4.5), we have

T 12
1 (T 12

1 )∗D−1T 11
1 (T 11

1 )∗T 11
1 T 11

2 = O ⇔ (T 12
1 )∗D−1T 11

1 = O. (4.6)

By Lemma 1.3, and Lemma 1.4, we know that

N (T1) ⊆ N (T1T2T
†
2 ) ⇔ T1T2T

†
2 (I − T †

1 T1) = O. (4.7)

Substituting (2.1)–(2.4) in (4.7) yields

N (T1) ⊆ N (T1T2T
†
2 ) ⇔ T1T2T

†
2 (I − T †

1 T1) = O

⇔
(
T 11
1 O
O O

) (
I − (T 11

1 )∗D−1T 11
1 −(T 11

1 )∗D−1T 12
1−(T 12

1 )∗D−1T 11
1 I − (T 12

1 )∗D−1T 12
1

)

=
(
O O
O O

)

⇔
(
T 12
1 (T 12

1 )∗D−1T 11
1 −T 11

1 (T 11
1 )∗D−1T 12

1
O O

)

=
(
O O
O O

)

. (4.8)

From (4.6), we get that (4.8) holds. That is (1) ⇒ (2) holds.
(2) ⇒ (3): If N (T1) ⊆ N (T1T2T

†
2 ), then from (4.8), we have

(T 12
1 )∗D−1T 11

1 = O. (4.9)
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By (2.1)–(2.4), (4.1), (4.2) and (4.9), we get that for any T (1,3)
i ∈ Ti {1, 3}, i = 1, 2

T1T2T
(1,3)
2 T (1,3)

1 T1T2 =
(
T 11
1 τ11T 11

1 T 11
2 O

O O

)

=
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

=
(

(D − T 12
1 (T 12

1 )∗)D−1T 11
1 T 11

2 O
O O

)

=
(
T 11
1 T 11

2 O
O O

)

= T1T2. (4.10)

According to the formulas in Lemma 1.2, we know that the mixed-type reverse
order law T2{1, 3}T1{1, 3} ⊆ (T1T2){1} holds if and only if for any T (1,3)

i ∈ Ti {1, 3},
i = 1, 2 the equation T1T2T

(1,3)
2 T (1,3)

1 T1T2 = T1T2 holds. So from (4.10), (2) ⇒ (3)
holds.

(3) ⇒ (1): If T2{1, 3}T1{1, 3} ⊆ (T1T2){1}, then the result T (1,3)
2 T (1,3)

1 ∈
(T1T2){1} holds for any T (1,3)

1 ∈ T1{1, 3} and T (1,3)
2 ∈ T2{1, 3}. So from the for-

mula (1) in Lemma 1.2, we know that the equation

T1T2T
(1,3)
2 T (1,3)

1 T1T2 = T1T2 (4.11)

holds for any T (1,3)
1 ∈ T1{1, 3} and T (1,3)

2 ∈ T2{1, 3}. Namely, (3) ⇒ (1) is true.
From Lemma 1.2, we know that G ∈ T {1, 4} if and only if G∗ ∈ T ∗{1, 3}. So from

the results obtained in the above section, we can get the following results without the
proof. 	

Theorem 4.2 Let T1 ∈ L(H,L) and T2 ∈ L(K,H) such that T1, T2 have closed
ranges and T1T2 �= O. Then the following statements are equivalent:

1. T1T2T
(1,4)
2 T (1,4)

1 T1T2 is invariant for any T
(1,4)
1 ∈ T1{1, 4} and T (1,4)

2 ∈ T2{1, 4};
2. R(T †

1 T1T2) ⊆ R(T2), i.e, (I − T2T
†
2 )T †

1 T1T2 = O;
3. T2{1, 4}T1{1, 4} ⊆ (T1T2){1}.

5 Invariance Property of T1T2T
(1,2,3)
2 T (1,2,3)

1 T1T2 Related to the
Mixed-Type Reverse Order Law T2{1, 2, 3}T1{1, 2, 3} ⊆ (T1T2){1}

Let T1 ∈ L(H,L) and T2 ∈ L(K,H) be two given operators, T (1,2,3)
1 ∈ T1{1, 2, 3}

and T (1,2,3)
2 ∈ T2{1, 2, 3} are two variant operators. In this section, we will show that

the mixed-type reverse order law T2{1, 2, 3}T1{1, 2, 3} ⊆ (T1T2){1} holds if and only
if the operator product T1T2T

(1,2,3)
2 T (1,2,3)

1 T1T2 is invariant.

Theorem 5.1 Let T1 ∈ L(H,L) and T2 ∈ L(K,H) such that T1, T2 have closed
ranges and T1T2 �= O. Then the following statements are equivalent:

1. T1T2T
(1,2,3)
2 T (1,2,3)

1 T1T2 is invariant for any T
(1,2,3)
1 ∈ T1{1, 2, 3} and T (1,2,3)

2 ∈
T2{1, 2, 3};

2. N (T1) ⊆ N (T1T2T
†
2 ), i.e, T1T2T

†
2 (I − T †

1 T1) = O;
3. T2{1, 2, 3}T1{1, 2, 3} ⊆ (T1T2){1}.
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Proof Combining (2.1)–(2.6) with the results in Lemma 1.2, it follows that there exist
two bounded linear operators A ∈ L(L,H) and B ∈ L(H,K):

A =
(
A11 A12
A21 A22

)

:
(
R(T1)
N (T ∗

1 )

)

→
(
R(T2)
N (T ∗

2 )

)

, where Ai j , i, j = 1, 2 are arbitrary,

B =
(
B11 B12
B21 B22

)

:
(
R(T2)
N (T ∗

2 )

)

→
(
R(T ∗

2 )

N (T2)

)

, where Bi j , i, j = 1, 2 are arbitrary,

such that

T (1,2,3)
1 = T †

1 + (I − T †
1 T1)AT1T

†
1

=
(

(T 11
1 )∗D−1 + [I − (T 11

1 )∗D−1T 11
1 ]A11 − (T 11

1 )∗D−1T 12
1 A21 O

(T 12
1 )∗D−1 + [I − (T 12

1 )∗D−1T 12
1 ]A21 − (T 12

1 )∗D−1T 11
1 A11 O

)

,

(5.1)

and

T (1,2,3)
2 = T †

2 + (I − T †
2 T2)BT2T

†
2 =

(
(T 11

2 )−1 O
B21 B22

)

. (5.2)

(1) ⇒ (2): From (2.1)–(2.6), (5.1) and (5.2), we know that for any T (1,2,3)
1 ∈

T1{1, 2, 3} and T (1,2,3)
2 ∈ T2{1, 2, 3},

T1T2T
(1,2,3)
2 T (1,2,3)

1 T1T2

=
(
T 11
1 O
O O

) (
(T 11

1 )∗D−1 + [I − (T 11
1 )∗D−1T 11

1 ]A11 − (T 11
1 )∗D−1T 12

1 A21 O
(T 12

1 )∗D−1 + [I − (T 12
1 )∗D−1T 12

1 ]A21 − (T 12
1 )∗D−1T 11

1 A11 O

)

×
(
T 11
1 T 11

2 O
O O

)

=
(

η O
O O

)

, (5.3)

where

η = T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 + T 11
1 [I − (T 11

1 )∗D−1T 11
1 ]A11T

11
1 T 11

2

−T 11
1 (T 11

1 )∗D−1T 12
1 A21T

11
1 T 11

2 .

It is well known that the Moore-Penrose inverse is unique and belongs to the set
{1, 2, 3}-inverses, then T1T2T (1,2,3)

2 T (1,2,3)
1 T1T2 is invariant with respect to the choice

of T (1,2,3)
1 ∈ T1{1, 2, 3} and T (1,2,3)

2 ∈ T2{1, 2, 3} if and only if the following equation

T1T2T
(1,2,3)
2 T (1,2,3)

1 T1T2 = T1T2T
†
2 T

†
1 T1T2, (5.4)

holds with respect to the choice of T (1,2,3)
1 ∈ T1{1, 2, 3} and T (1,2,3)

2 ∈ T2{1, 2, 3}.
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Combining (2.1)–(2.6) with (5.1) and (5.2), we have

T1T2T
(1,2,3)
2 T (1,2,3)

1 T1T2 = T1T2T
†
2 T

†
1 T1T2

⇔
(

η O
O O

)

=
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

⇔ T 11
1 [I − (T 11

1 )∗D−1T 11
1 ]A11T

11
1 T 11

2

−T 11
1 (T 11

1 )∗D−1T 12
1 A21T

11
1 T 11

2 = O. (5.5)

Let A11 = (T 11
1 )∗ and A21 = O , then from (5.5), we have

T 12
1 (T 12

1 )∗D−1T 11
1 (T 11

1 )∗T 11
1 T 11

2 = O ⇔ (T 12
1 )∗D−1T 11

1 = O. (5.6)

According to the proof of Sect. 4, we know that

N (T1) ⊆ N (T1T2T
†
2 ) ⇔ T1T2T

†
2 (I − T †

1 T1) = O

⇔
(
T 11
1 O
O O

) (
I − (T 11

1 )∗D−1T 11
1 −(T 11

1 )∗D−1T 12
1−(T 12

1 )∗D−1T 11
1 I − (T 12

1 )∗D−1T 12
1

)

=
(
O O
O O

)

⇔
(
T 12
1 (T 12

1 )∗D−1T 11
1 −T 11

1 (T 11
1 )∗D−1T 12

1
O O

)

=
(
O O
O O

)

. (5.7)

From (5.6), we get that (5.7) holds. That is (1) ⇒ (2) holds.
(2) ⇒ (3): If N (T1) ⊆ N (T1T2T

†
2 ), then from (5.7), we have

(T 12
1 )∗D−1T 11

1 = O. (5.8)

By (2.1)–(2.4), (5.1), (5.2) and (5.8), we get that for any T (1,2,3)
i ∈ Ti {1, 2, 3}, i = 1, 2

T1T2T
(1,2,3)
2 T (1,2,3)

1 T1T2 =
(

η O
O O

)

=
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

=
(

(D − T 12
1 (T 12

1 )∗)D−1T 11
1 T 11

2 O
O O

)

=
(
T 11
1 T 11

2 O
O O

)

= T1T2. (5.9)

According to the formulas in Lemma 1.2, we know that the mixed-type reverse
order law T2{1, 2, 3}T1{1, 2, 3} ⊆ (T1T2){1} holds if and only if for any T (1,2,3)

i ∈
Ti {1, 2, 3}, i = 1, 2 the equation T1T2T

(1,2,3)
2 T (1,2,3)

1 T1T2 = T1T2 holds. So from
(5.9), (2) ⇒ (3) holds.

(3) ⇒ (1): If T2{1, 2, 3}T1{1, 2, 3} ⊆ (T1T2){1}, then the result T (1,2,3)
2 T (1,2,3)

1 ∈
(T1T2){1} holds for any T (1,2,3)

1 ∈ T1{1, 2, 3} and T (1,2,3)
2 ∈ T2{1, 2, 3}. So from the
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formula (1) in Lemma 1.2, we know that the equation

T1T2T
(1,2,3)
2 T (1,2,3)

1 T1T2 = T1T2 (5.10)

holds for any T (1,2,3)
1 ∈ T1{1, 2, 3} and T (1,2,3)

2 ∈ T2{1, 2, 3}. Namely, (3) ⇒ (1) is
true. 	


From Lemma 1.2, we know that G ∈ T {1, 2, 4} if and only if G∗ ∈ T ∗{1, 2, 3}.
So from the results obtained in the above section, we can get the following results
without the proof.

Theorem 5.2 Let T1 ∈ L(H,L) and T2 ∈ L(K,H) such that T1, T2 have closed
ranges and T1T2 �= O . Then the following statements are equivalent:

1. T1T2T
(1,2,4)
2 T (1,2,4)

1 T1T2 is invariant for any T
(1,2,4)
1 ∈ T1{1, 2, 4} and T (1,2,4)

2 ∈
T2{1, 2, 4};

2. R(T †
1 T1T2) ⊆ R(T2), i.e, (I − T2T

†
2 )T †

1 T1T2 = O;
3. T2{1, 2, 4}T1{1, 2, 4} ⊆ (T1T2){1}.

6 The Invariance Property of T1T2T
(1,3,4)
2 T (1,3,4)

1 T1T2 and the
Mixed-Type Reverse Order Law T2{1, 3, 4}T1{1, 3, 4} ⊆ (T1T2){1}

Given operators T1 ∈ L(H,L) and T2 ∈ L(K,H). In this section, we will study the
invariance property of T1T2T

(1,3,4)
2 T (1,3,4)

1 T1T2 and the mixed-type reverse order law
T2{1, 3, 4}T1{1, 3, 4} ⊆ (T1T2){1}.
Theorem 6.1 Let T1 ∈ L(H,L) and T2 ∈ L(K,H) such that T1, T2 have closed
ranges and T1T2 �= O.Then the operator product T1T2T

(1,3,4)
2 T (1,3,4)

1 T1T2 is invariant

for any T (1,3,4)
1 ∈ T1{1, 3, 4} and T (1,3,4)

2 ∈ T2{1, 3, 4}.

Proof Combining (2.1)–(2.6) with the results in Lemma 1.2, it follows that there exist
two bounded linear operators S ∈ L(L,H) and N ∈ L(H,K):

S =
(
S11 S12
S21 S22

)

:
(
R(T1)
N (T ∗

1 )

)

→
(
R(T2)
N (T ∗

2 )

)

, where Si j , i, j = 1, 2 are arbitrary,

N =
(
N11 N12
N21 N22

)

:
(
R(T2)
N (T ∗

2 )

)

→
(
R(T ∗

2 )

N (T2)

)

, where Ni j , i, j = 1, 2 are arbitrary,

such that

T (1,3,4)
1 = T †

1 + (I − T †
1 T1)S(I − T1T

†
1 )

=
(

(T 11
1 )∗D−1 [I − (T 11

1 )∗D−1T 11
1 ]S12 − (T 11

1 )∗D−1T 12
1 S22

(T 12
1 )∗D−1 [I − (T 12

1 )∗D−1T 12
1 ]S22 − (T 12

1 )∗D−1T 11
1 S12

)

(6.1)
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and

T (1,3,4)
2 = T †

2 + (I − T †
2 T2)N (I − T2T

†
2 ) =

(
(T 11

2 )−1 O
O N22

)

. (6.2)

From (2.5), (6.1) and (6.2), we know that for any T (1,3,4)
1 ∈ T1{1, 3, 4} and

T (1,3,4)
2 ∈ T2{1, 3, 4},

T1T2T
(1,3,4)
2 T (1,3,4)

1 T1T2

=
(
T 11
1 O
O O

) (
(T 11

1 )∗D−1 [I − (T 11
1 )∗D−1T 11

1 ]S12 − (T 11
1 )∗D−1T 12

1 S22
(T 12

1 )∗D−1 [I − (T 12
1 )∗D−1T 12

1 ]S22 − (T 12
1 )∗D−1T 11

1 S12

)

×
(
T 11
1 T 11

2 O
O O

)

=
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

= T1T2T
†
2 T

†
1 T1T2. (6.3)

Since the Moore-Penrose inverse is unique, then from (6.3), we know that
T1T2T

(1,3,4)
2 T (1,3,4)

1 T1T2 is invariantwith respect to the choice of T
(1,3,4)
1 ∈ T1{1, 3, 4}

and T (1,3,4)
2 ∈ T2{1, 3, 4}. 	


Theorem 6.2 Let T1 ∈ L(H,L) and T2 ∈ L(K,H) such that T1, T2 have closed
ranges and T1T2 �= O. Then the following statements are equivalent:

1. N (T1) ⊆ N (T1T2T
†
2 ), i.e, T1T2T

†
2 (I − T †

1 T1) = O;
2. T2{1, 3, 4}T1{1, 3, 4} ⊆ (T1T2){1}.
Proof (1) ⇒ (2): If N (T1) ⊆ N (T1T2T

†
2 ), then from (5.7), we have

(T 12
1 )∗D−1T 11

1 = O. (6.4)

By (2.1)–(2.4), (6.1), (6.2), (6.3) and (6.4), we get that for any T (1,3,4)
i ∈ Ti {1, 3, 4},

i = 1, 2

T1T2T
(1,3,4)
2 T (1,3,4)

1 T1T2 =
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

=
(

(D − T 12
1 (T 12

1 )∗)D−1T 11
1 T 11

2 O
O O

)

=
(
T 11
1 T 11

2 O
O O

)

= T1T2. (6.5)

According to the formulas in Lemma 1.2, we know that the mixed-type reverse
order law T2{1, 3, 4}T1{1, 3, 4} ⊆ (T1T2){1} holds if and only if for any T (1,3,4)

i ∈
Ti {1, 3, 4}, i = 1, 2 the equation T1T2T

(1,3,4)
2 T (1,3,4)

1 T1T2 = T1T2 holds. So from
(6.5), (1) ⇒ (2) holds.
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(2) ⇒ (1): If T2{1, 3, 4}T1{1, 3, 4} ⊆ (T1T2){1} holds, then from (2.1)–(2.6), we
have

T1T2T
(1,3,4)
2 T (1,3,4)

1 T1T2 = T1T2 ⇔
(
T 11
1 (T 11

1 )∗D−1T 11
1 T 11

2 O
O O

)

=
(
T 11
1 T 11

2 O
O O

)

⇔ (D − T 12
1 (T 12

1 )∗)D−1T 11
1 T 11

2 = T 11
1 T 11

2

⇔ (T 12
1 )∗D−1T 11

1 = O. (6.6)

Combining (5.7) with (6.6), we get that the result (2) ⇒ (1) holds. 	
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