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Abstract In this paper the spectrum of composition operators on the space of real
analytic functions is investigated. In some cases it is completely determined while in
some other cases it is only estimated.

Keywords Spaces of real analytic functions · Composition operator · Spectrum

Mathematics Subject Classification Primary 47B33 · 46E10; Secondary 47A10

1 Introduction

Let ϕ : R → R be a non-constant real analytic map and let A (R) be the space of
real analytic functions defined on R. Each symbol ϕ : R → R defines a composition
operator Cϕ : A (R) → A (R) by Cϕ( f ) := f ◦ ϕ, f ∈ A (R). When A (R) is
endowed with its natural locally convex topology (see e.g. [9]), Cϕ is a continuous
linear operator onA (R). In our article [7] we studied the eigenvalues and eigenvectors
of composition operators Cϕ : A (R) → A (R). In this note we complement those
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results with some examples and remarks concerning the spectrum of Cϕ : A (R) →
A (R).

Our results in [7] give precise information about the injectivity of the operator
Cϕ −λI : A (R) → A (R), λ ∈ C\{0}. In order to investigate the spectrum σ(Cϕ), we
have to studywhen the operatorCϕ −λI : A (R) → A (R) is surjective. This operator
is surjective if and only if the operator Tλ : A (R) → A (R), defined by Tλ f (x) :=
f (x)−(1/λ) f (ϕ(x)), x ∈ R, f ∈ A (R), is surjective. If we set g(x, y) := (1/λ)y+
γ (x), for γ ∈ A (R), then Tλ : A (R) → A (R) is surjective if and only if for each
γ ∈ A (R) there is f ∈ A (R) such that f (x) = g(x, f (ϕ(x))), x ∈ R. We use
methods of the paper [4].

Equations of the form f (x) = g(x, f (ϕ(x))with g : R2 → R and ϕ : R → R real
analytic are considered in [4] and [17] (see also [1,2] or the book [3]).As it ismentioned
in the introduction of [4], if u is a fixed point of ϕ and λ �= ϕ′(u)n for each n ∈ N0, then
f (x) = (1/λ) f (ϕ(x)) + γ (x) has a formal solution f (x) = u + ∑∞

n=1 cn(x − u)n .
Smajdor [17] studies conditions to ensure that this series representation has a positive
radius of convergence near u.

In the rest of the article we denote id (x) = x, x ∈ R, and, for a map ϕ : R → R,
we write ϕ[0] = id and ϕ[n] for the n-times composition of ϕ, n ∈ N. By I : A (J ) →
A (J ) we denote the identity operator.

The composition operators on spaces of real analytic functions have been considered
in several papers, like [5,6,9–14]. For literature on the space of real analytic functions
see a recent survey [9]. For functional analytic tools see [16].

2 Preliminaries

By interval J we mean also unbounded ones (i.e., halflines or the whole real line). It
is clear that results on the (point) spectrum of a composition operator on A (R) can
be easily transferred to the case of A (J ) where J is an open interval in R. We recall
the following two results from [7].

Proposition 2.1 Let ϕ : J → J be a real analytic function on an open interval J ⊂ R

and let Cϕ : A (J ) → A (J ) be the associated composition operator. Then
1. ([7, Proposition 1.1 (4)]) 0 ∈ σ(Cϕ) if and only if ϕ : J → J is not a real

analytic diffeomorphism.
2. ([7, Proposition 2.8 (4)]) If u ∈ J is a fixed point of ϕ such that |ϕ′(u)| �= 0, 1,

then ϕ′(u)n ∈ σ(Cϕ) for each n ∈ N0.

We say that some subset A of an open interval J ⊂ R is bounded away from the
upper end of J if there is δ ∈ J such that all elements of A are < δ. Analogously
we define subsets bounded away form the lower end of J . We also use the following
description of the point spectrum of Cϕ from [7]:

Theorem 2.2 Let ϕ : J → J be a real analytic map for some open interval J ⊂ R.

(a) If ϕ has no fixed points and the set of its critical points is bounded away from the
upper end of J (in case ϕ > id ) or from the lower end of J (in case ϕ < id ) then
σp(Cϕ) = C\{0} and every eigenspace is isomorphic to A (T).
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(b) If ϕ has a fixed point u then:
(b1) if ϕ[2] has exactly one fixed point and either 0 < |ϕ′(u)| < 1 or 1 < |ϕ′(u)|

and ϕ has no critical points then

σp(Cϕ) = {(ϕ′(u))n : n = 0, 1, . . .}

and the eigenspaces are all one dimensional;
(b2) if ϕ[2] = id �= ϕ then σp(Cϕ) = {−1, 1} and the eigenspaces are isomorphic

to A+(R) the space of even real analytic functions;
(b3) if ϕ = id then σp(Cϕ) = {1} and the eigenspace is equal to A (J ).

(c) In all other cases σp(Cϕ) = {1} and the eigenspace consists of constant functions
only.

We will use also the following result of Smajdor [17, Theorem p. 40]:

Theorem 2.3 Let ϕ be a holomorphic function of one complex variable on a neigh-
bourhood of u ∈ C, ϕ(u) = u, |ϕ′(u)| < 1. Let h be a holomorphic function of two
complex variables on a neighbourhood of (u, v) ∈ C

2, h(u, v) = v. If there is a
formal solution f (z) = ∑

n fn(z − u)n of the equation

f (z) = h(z, f (ϕ(z)), f (u) = v, (1)

then there is a holomorphic solution of (1) on some neighbourhood of u.
In case

1 − ∂h

∂v
(u, v) · (ϕ′(u))n �= 0 for every n = 0, 1, . . . (2)

the formal solution is unique and so it is convergent around u and gives a holomorphic
solution of (1) on some neighbourhood of u.

Please note that in the proof of Proposition 4.1 we give a simple example where for
|ϕ′(u)| = 1 the result above fails.

3 Spectrum

The case of ϕ : J → J without fixed points is mostly solved.

Corollary 3.1 Let ϕ : J → J be real analytic, J ⊂ R an open interval, and ϕ have
no fixed points.

(a) If ϕ is a diffeomorphism onto J then σ(Cϕ) = σp(Cϕ) = C\{0}.
(b) If ϕ is not a diffeomorphism onto J but the set of critical points of ϕ is bounded

away from the upper end of J (in case ϕ > id ) or from lower end of J (in case
ϕ < id ) then σ(Cϕ) = C and σp(Cϕ) = C\{0}.

Proof Combine Proposition 2.1 and Theorem 2.2. 	

Problem 3.2 Describe σ(Cϕ) if ϕ > id has no fixed points but the set of critical
points of ϕ is not bounded away from the upper end of the domain.
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Now, we concentrate on the fixed point case. We will need the following standard
extension lemma (this procedure for diffeomorphisms was used in [4], we write it
precisely in the general case).

Lemma 3.3 Let ϕ : (a, b) → (a, b) be a real analytic map on an open interval
(a, b) ⊂ R and let ϕ(c, d) ⊂ (c, d) ⊂ [c, d] ⊂ (a, b) for some fixed a, b, c, d.
Assume that for every x ∈ (a, b) there is n ∈ N such that ϕ[n](x) ∈ (c, d) (i.e., (a, b)
is the attraction basin for (c, d)).

If f̃ ∈ A (c, d) satisfies

f̃ (ϕ(x)) − λ f̃ (x) = γ (x) for every x ∈ (c, d), (3)

for some fixed λ ∈ C\{0} and γ ∈ A (a, b), then f̃ extends to f ∈ A (a, b) satisfying

f (ϕ(x)) − λ f (x) = γ (x) for every x ∈ (a, b). (4)

Proof Define

Jn := {x ∈ (a, b) | ϕ[n](x) ∈ (c, d)}.

Clearly, (Jn) is an increasing open exhaustion of (a, b). Take any compact increasing
exhaustion ([an, bn])n∈N with

(c, d) ⊂ [an, bn] ⊂ (a, b) and
⋃

n∈N
[an, bn] = (a, b).

Without loss of generality we may assume that Jn ⊃ [an, bn].
We define inductively:

f0 := f̃ , fn(x) := 1

λ
(γ (x) + fn−1(ϕ(x))) for x ∈ Jn .

By (3) it is easy to observe that fn = f̃ on (c, d) and thus fn extends f̃ on [an, bn].
Now, defining f (x) := fn(x) for x ∈ [an, bn] we obtain a real analytic function
f ∈ A (a, b). Since

f (ϕ(x)) − λ f (x) = γ (x) for every x ∈ (c, d)

and since both sides of the above equality are analytic on (a, b) so the equality holds
everywhere on (a, b). 	


Note that if ϕ[2] has the unique fixed point u then u must be the unique fixed point
of ϕ as well since otherwise ϕ(u) = w �= u but then ϕ[2](w) = w and ϕ[2] would
have had two fixed points u and w.
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Theorem 3.4 Let ϕ : J → J be a real analytic function on an open interval J ⊂ R

and let Cϕ : A (J ) → A (J ) the associated composition operator. Suppose that ϕ[2]
has a unique fixed point u and |ϕ′(u)| < 1. Then

(i) If λ �= 0 and λ �= ϕ′(u)n for each n ∈ N0, then λ /∈ σ(Cϕ), and
(ii) ker(Cϕ − λI ) is finite dimensional for all λ ∈ C.

Remark 3.5 The case of ϕ diffeomorphic onto is proved in [4, Th. 4.4].

Proof (i): Consider λ �= 0, λ �= ϕ′(u)n, n ∈ N0. By Theorem 2.2,Cϕ −λI is injective,
we will show that it is surjective.

It suffices to solve, for every γ ∈ A (J ), the equation

f (x) − (1/λ) f (ϕ(x)) = γ (x),

which is equivalent to

f (x) = g(x, f (ϕ(x)),

with g(x, y) = γ (x) + (1/λ)y. In order to apply Theorem 2.3 to the equation above,
we define v := λγ (u)/(λ − 1). Clearly, g(u, v) = v. Since

∂g

∂v
(u, v) = 1

λ
,

the condition (2) is satisfied.
Therefore all the assumptions of Theorem 2.3 are satisfied and the unique formal

solution f0 is real analytic on a neighbourhood of u. Hence there is r > 0 such that
[u − r, u + r ] ⊂ J and f0 ∈ A (u − r, u + r) satisfies

f0(x) − 1/λ f (ϕ(x)) = γ (x) for every x ∈ (u − r, u + r).

Since |ϕ′(u)| < 1, we may assume without loss generality that ϕ(]u − r, u + r [) ⊂
]u − r, u + r [. In the proof of [7, Theorem 2.6] it is proved that if ϕ : J → J , J ⊂ R

an open interval, has a fixed point u, |ϕ′(u)| < 1, and ϕ[2] has exactly one fixed point,
then for every x ∈ J holds ϕ[n](x) → u as n → ∞. Thus (c, d) = (u − r, u + r)
satisfies the assumptions of Lemma 3.3. This completes the proof.

(ii): This follows from results of [7, Section 2] transferring them to an arbitrary
interval instead of the whole line. For readers convenience we sketch the proof. By
assumption ϕ[2] has a unique fixed point in J and we can aply [7, Theorem 2.6]
to conclude that ϕ′(u)n is an eigenvalue of Cϕ for each n ∈ N0. By [7, Theo-
rem 2.9 (c) and (d)], ker(Cϕ − λI ) is one dimensional for λ = 0 (if ϕ′(u) = 0)
or λ = ϕ′(u)n (if 0 < |ϕ′(u)| < 1). We can apply [7, Propositions 1.1 and 2.4] to
conclude that ker(Cϕ − λI ) = {0} for λ �= ϕ′(u)n, n ∈ N0. 	
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Corollary 3.6 If ϕ : J → J is a real analytic on an open interval J ⊂ R, such that
ϕ[2] has the unique fixed point u satisfying |ϕ′(u)| < 1, then

σ(Cϕ) =
{

{ϕ′(u)n | n ∈ N0} if ϕ is a diffeomorphism,

{ϕ′(u)n | n ∈ N0} ∪ {0} otherwise

and

σp(Cϕ) = {ϕ′(u)n | n ∈ N0}\{0}

Moreover, ker(Cϕ − λI ) is finite dimensional for all λ ∈ C.

Proof The description of σp(Cϕ) follows fromTheorem2.2. The description of σ(Cϕ)

follows combining of Proposition 2.1 and Theorem 3.4. 	

Corollary 3.7 If ϕ : J → J is a real analytic diffeomorphism on an open interval
J ⊂ R such that ϕ[2] has a unique fixed point u satisfying |ϕ′(u)| > 1, then σ(Cϕ) =
σp(Cϕ) = {ϕ′(u)n | n ∈ N0} and ker(Cϕ − λI ) is finite dimensional for all λ ∈ C.

Proof The map ψ := ϕ−1 : J → J is a real analytic diffeomorphism with a unique
fixed point u ∈ J and 0 < |ψ ′(u)| < 1. The conclusion follows from Corollary
3.6 and the following observation: for μ �= 0, μ �= ψ ′(u)n = 1/ϕ′(u)n, n ∈ N0, the
operatorCψ −μI : A (J ) → A (J ) is surjective/injective if and only ifCϕ −(1/μ)I :
A (J ) → A (J ) is surjective/injective. 	

Problem 3.8 Describe σ(Cϕ) if ϕ has a fixed point u, |ϕ′(u)| > 1, ϕ[2] has a unique
fixed point but ϕ is not a diffeomorphism. 	


By [4, Theorem 4.5] we obtain immediately:

Proposition 3.9 Let ϕ : j → J , J ⊂ R open interval, be a real analytic diffeomor-
phism with fixed points x1 < x2 < · · · < xs such that |ϕ′(xi )| �= 1 for i = 1, 2, . . . , s,
s > 1. For each λ �= 0, the operator Cϕ − λI : A (J ) → A (J ) has closed range,
kerCϕ − λI = {0} if λ �= 1, kerCϕ − I is finite dimensional and the codimension of
imCϕ − λI in A (J ) is infinite. In particular, σp(Cϕ) = {1} and σ(Cϕ) = C\{0}.
Proof By Proposition 2.1 (1), 0 /∈ σ(Cϕ) and by Theorem 2.2, σp(Cϕ) = {1}, and
ker(Cϕ − I ) is one dimensional. The rest of the statement is a direct consequence of
[4, Theorem 4.5]. 	

Example 3.10 (a) If ϕ(x) = eαx , α > 1/e, then σp(Cϕ) = C\{0} and σ(Cϕ) = C

(use Corollary 3.1).
(b) If ϕ has no fixed points on R and ϕ has only finitely many critical points, then

σp(Cϕ) = C\{0} and σ(Cϕ) = C by Corollary 3.1.
(c) If ϕ(x) = α arctan(x), 0 < α < 1, then σp(Cϕ) = {αn | n ∈ N0} and

σ(Cϕ) = σp(Cϕ) ∪ {0}. In this case ϕ has a unique fixed point u = 0 and ϕ′(u) = α.
We have 0 < |ϕ′(u)| < 1 and ϕ is not surjective, hence the statement follows from
Corollary 3.6.
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Before we deal with more examples, we present for the reader’s convenience the
main result in [4, Section 3] in a way suitable for our purposes explaining details
omitted in [4].

Let ϕ : R → R be a real analytic self map, let λ ∈ C, λ �= 0, and consider the
operator T : A (R) → A (R), T f (x) := f (ϕ(x)) − λ f (x). Let (Uj ) j be an open
covering of R such that ϕ(Uj ) ⊂ Uj for each j and such that each Uj intersects only
finitelymany otherUk’s. Denote by Tk : A (Uk) → A (Uk) and Tk, j : A (Uk∩Uj ) →
A (Uk ∩ Uj ) the operator T defined on the corresponding space. With the notation
g|V for the restriction of the function g to the set V , define

A (R, (Uk), T ) := {γ ∈ A (R) : γ |Uk ∈ im (Tk) ∀k},
E := {( fk, j )k, j : fk, j = − f j,k, fk, j ∈ ker(Tk, j )},
F := {( fk)k : fk ∈ ker(Tk) ∀k},

and

S : F → E, S(( fk)k := (( fk − f j )|Uk ∩Uj )k, j .

Theorem 3.11 ([4, Theorem 3.1]) There is a linear surjective map

F : A (R, (Uk), T ) → E/S(F)

with kernel equal to im (T ).
In particular, if S(F) �= E, then T is not surjective.

Proof Given γ ∈ A (R, (Uk), T ), for each k there is fk ∈ A (Uk) such that Tk fk =
γ |Uk . Set fk, j := ( fk − f j )|Uk ∩Uj . Clearly Tk, j fk, j (x) = 0 for each x ∈ Uk ∩Uj

and each k, j . Hence ( fk, j )k, j ∈ E . We define F(γ ) = ( fk, j )k, j + S(F). To see
that F is well defined, suppose that Tkgk = γ |Uk with gk ∈ A (Uk) and set gk, j :=
(gk − g j )|Uk ∩ Uj . We have ( fk, j − gk, j )k, j = S(( fk − gk)k) and Tk( fk − gk) = 0
for each k. Therefore ( fk, j )k, j − (gk, j )k, j ∈ S(F) and F is indeed well defined.

We shownow thatF is surjective. Fix ( fk, j )k, j+S(F) ∈ E/S(F). Our assumptions
on the covering (Uk)k of R permit us to find open sets Vk in the complex plane with
Vk ∩ R = Uk and extensions of the functions fk, j to holomorphic functions gk, j on
Vk ∩ Vj .

Indeed, let fk, j ∈ A (Uk ∩ Uj ) then there is an open complex neighbourhood W
of Uk ∩Uj , W ∩R = Uk ∩Uj , such that fk, j extends holomorphically as a function
gk, j on W . We define:

τ j (x)

:=
{
min(d(x, ∂RUj ), d(x, ∂CW )) if x ∈ Uk ∩Uj and d(x, ∂RUj ) ≤ d(x, ∂RUk), k �= j;
d(x, ∂RUj ) otherwise.

We define τk analogously. Then we define open sets Vj and Vk , for instance,

Vj := {x + iy ∈ C
d : x ∈ Uj , |y| < τ j (x)}.
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Then

Vk ∩ Vj ⊂ W, Vk ∩ Vj ∩ R = Uk ∩Uj , Vj ∩ R = Uj , Vk ∩ R = Uk .

If Uk intersects more sets Uj (but finitely many) then we can take intersections of the
obtained sets Vk . In that way we get gk, j holomorphic on Vk ∩ Vj .

Since for the orthogonal projection p : C = R
2 → R we have p(Vj ) = Vj ∩R =

Uj (see the definition of Vj ), thus

p(Vj ∩ Vk ∩ Vl) = Uj ∩Uk ∩Ul

and every connected component of Vj ∩ Vk ∩ Vl contains a non-empty open part of
Uj∩Uk∩Ul .As easily seenon the intersectionUj∩Uk∩Ul it holds f j,k+ fk,l+ fl, j = 0
by the very definition of the functions. Thus also extensions satisfy g jk +gkl +gl j = 0
on Vj ∩ Vk ∩ Vl for any triple { j, k, l}.

By the Cartan-Grauert result (see [8, Prop. 1]) every open set in R
d has a basis

of complex neighbourhoods being domains of holomorphy. So there is a domain of
holomorphy V ⊂ ⋃

Vk , V ∩ J = J . Thus we can apply the solution to the first Cousin
problem [15, Th. 5.5.1] for the covering (Vk ∩ V ) of V and Cousin data (g j,k) to find,
after taking restrictions, ( fk)k with fk ∈ A(Uk) such that fk, j = fk − f j for each
k, j . Define γk := Tk fk ∈ A(Uk). Since fk, j ∈ ker(Tk, j ), γk(x) = γ j (x) for each
x ∈ Uk ∩ Uj , and we can find γ ∈ A (R) such that γ |Uk = γk = Tk fk for each k.
This means γ ∈ A (R, (Uk), T ). Moreover F(γ ) = ( fk, j )k, j + S(F).

It remains to show that ker(F) = im (T ). If γ ∈ im (T ), there is f ∈ A (R) such
that T f = γ . Then γ ∈ A (R, (Uk), T ) since γ |Uk = Tk( f |Uk) for each k. Moreover,
F(γ ) = 0 ∈ E/S(F) and γ ∈ ker(F).

To prove the reverse inclusion, take γ ∈ A (R, (Uk), T )withF(γ ) = 0 ∈ E/S(F).
For each k there is fk ∈ A (Uk) such that Tk fk = γ |Uk . By assumption (( fk −
f j )|Uk ∩ Uj )k, j ∈ S(F). Therefore we can find (gk)k , gk ∈ A (Uk), Tkgk = 0 such
that fk − f j = gk −g j onUk ∩Uj for each k, j . Hence fk −gk = f j −g j onUk ∩Uj

for each k, j . Accordingly, there is f ∈ A (R) such that f |Uk = fk −gk for each k. If
x ∈ Uk , we get T f (x) = Tk fk(x) − Tkgk(x) = γ (x). Since (Uk) is an open covering
of R we get T f = γ and γ ∈ im (T ). 	

Proposition 3.12 If ϕ(x) = xs, s ∈ N, s > 1, then for Cϕ : A (R) → A (R) we have
that σp(Cϕ) = {1}, ker(Cϕ − I ) is one dimensional and its elements are the constants,
but σ(Cϕ) = C.

Proof The statement on eigenvalues and eigenspaces follows by Theorem 2.2.
Now, we consider the spectrum. First of all, since ϕ is not a diffeomorphism,

0 ∈ σ(Cϕ) by Proposition 2.1. The map ϕ has three fixed points 0, 1,−1 if s is odd
and two 0, 1 if s is even. Anyway, ϕ′(1) = s (which coincides with ϕ′(−1) if s is odd).
By Proposition 2.1, as s �= 1, sn ∈ σ(Cϕ) for each n ∈ N0. It remains to show that

T := Cϕ − λI : A (R) → A (R)

is not surjective for λ �= 0, λ �= sn, n ∈ N0.
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We consider first the case when s is odd.
SetU−1 := (−∞, 0),U0 := (−1, 1),U1 := (0,∞), that are invariant sets under ϕ

and they coverR. Denote by Tk the restriction of T = Cϕ−λI toA (Uk), k = −1, 0, 1.
By Theorem 3.4, ker T0 is finite dimensional, since ϕ and ϕ[2] have on U0 only one
fixed point. On the other hand, since ϕ is a real analytic diffeomorphism both in U−1
and inU1, we can apply Corollary 3.7 to conclude that ker Ti is finite dimensional for
i = −1, 1. Now set U−1,0 := U−1 ∩ U0 = (−1, 0) and U0,1 := U0 ∩ U1 = (0, 1)
and Ti,k for the operator T restricted to A(Ui,k). Each Ui,k is invariant under ϕ and
ϕ is a real analytic diffeomorphism on each Ui,k without fixed points. We can apply
Theorem 2.2 to obtain that each ker Ti,k is infinite dimensional.

In the notation of Theorem 3.11, we have that S : F → E is not surjective, because
the domain is finite dimensional and the range is infinite dimensional. We can apply
Theorem 3.11 to conclude that Cϕ − λI : A (R) → A (R) is not surjective (even
more is true: codim imCϕ − λI = ∞).

Now suppose that s is even. We define U0 = R\{0}, U1 = (−1, 1). They are
invariant with respect to ϕ. We will describe ker T |A (Ui ).

First, if f ∈ ker T |A (U0), then for x < 0 we can calculate f (x) = (1/λ) f (xs) so it
is uniquely determined by f |R+ and the latter function belongs to ker T |A (R+). Since
ϕ is a diffeomorphism and ϕ[2] has one fixed point on R+ thus by Corollary 3.7, the
kernel is finite dimensional. Now, ker T |A (U1) is finite dimensional by Theorem 3.4.

For the space A (U0 ∩ U1) the kernel of Tλ is infinite dimensional, since again its
elements f are determined uniquely by f |(0,1) and the latter belongs to ker T |A (0,1).
By Theorem 2.2, this kernel is infinite dimensional.

We apply again Theorem 3.11 to conclude that T = Cϕ − λI : A (R) → A (R)

is not surjective, since the map S : F → E is not surjective. Indeed, the domain
is finite dimensional but the range space is infinite dimensional and so codim im
Cϕ − λI = ∞. 	


In order to get more examples, the following observation is useful. The proof is
easy.

Lemma 3.13 Let ϕ : R → R be a real analytic self map and let δ : R → R be a real
analytic diffeomorphism. The real analytic self map ψ : R → R, ψ := δ−1 ◦ ϕ ◦ δ,

satisfies σp(Cψ) = σp(Cϕ) and σ(Cψ) = σ(Cϕ). Moreover, u is a fixed point of ϕ if
and only if δ−1(u) is a fixed point of ψ . If u is a fixed point of ϕ, then ψ ′(δ−1(u)) =
ϕ′(u). Moreover, a subset A of R is invariant by ϕ if and only if δ−1(A) is invariant
for ψ .

As an immediate consequence of Lemma 3.13 and Proposition 3.12, we get

Example 3.14 Let δ : R → R be a real analytic diffeomorphism and let s ∈ N, s > 1.
The real analytic self map ϕ(x) := δ−1(δ(x)s), x ∈ R, satisfies σp(Cϕ) = {1} and
σ(Cϕ) = C.

To mention a concrete explicit example, if δ(x) = ex − e−x , then δ−1(x) =
log( 12 ((y

2 + 4)1/2 − y)).
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4 Quadratic Function

We now investigate the spectrum σ(Cϕ) of Cϕ : A (R) → A (R), when ϕ(x) =
ax2 + bx + c, a �= 0. We distinguish several cases, depending on the number of fixed
points on ϕ. Lemma 3.13 will be used to reduce the problem to the study of certain
parameter family.

Case 1. The symbol ϕ has no fixed points. In this case, since ϕ has only one critical
point, it follows from Corollary 3.1 that σ(Cϕ) = C and σp(Cϕ) = C\{0}.

Case 2 and 3. The symbol has fixed points v, u (possibly u = v) and

ϕ(x) = x + a(x − u)(x − v), a �= 0.

Choose u ≤ v if a < 0 or u > v if a > 0. then taking

δ(x) = −1

a
x + u

we will obtain

ψ(x) = δ−1 ◦ ϕ ◦ δ(x) = [1 + a(u − v)] x − x2.

Clearly, u, v were selected to ensure that μ := 1 + a(u − v) ≥ 1. By Lemma 3.13, it
is enough to consider

ϕ(x) = −x2 + μx with μ ≥ 1.

Case 2. The symbol ϕ has only one fixed point u. Then the behaviour of Cϕ is the
same as Cψ for ψ(x) = −x2 + x .

Proposition 4.1 In Case 2, ϕ(x) = −x2 + x, σp(Cϕ) = {1} but σ(Cϕ) ⊇ {0} ∪
[1,+∞).

Proof Clearly, by Theorem 2.2 and Proposition 2.1 we have

σp(Cϕ) = {1}, σ (Cϕ) ⊃ {1, 0}.

Now, we consider the map T : A (R) → A (R), T ( f ) = Cϕ( f ) − λ f , and we
will show that the function id , id (x) = x , does not belong to the image of T for
λ ∈ (1,+∞).

It is a simple calculation that there is the unique formal solution f (z) = ∑∞
n=0 fnzn

of the equation T ( f ) = id , with

f0 = 0, f1 = 1

1 − λ
, fn = 1

1 − λ

[ n
2

]

∑

j=1

(
n − j

j

)

(−1) j−1 fn− j . (5)
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It is clear that for 1 − λ < 0, f1 < 0 and f2 > 0. Then one shows inductively by (5)
that fn(−1)n−1 > 0. Therefore

| fn| >
1

|1 − λ|
(
n − 1
1

)

| fn−1| = n − 1

|1 − λ| | fn−1|.

Again inductively

| fn| >
(n − 1)!
|1 − λ|n

and the series
∑∞

n=0 fnzn is nowhere convergent. So there is no real analytic solution
f for the equation T ( f ) = id for any λ > 1. 	

In Case 2. we also get the following partial positive step.

Proposition 4.2 Let ϕ(x) = −x2 + x, λ �= 0, and assume that the equation

f (ϕ(x)) − λ f (x) = γ (x) (6)

has an analytic solution f on (−ε, ε) for some ε > 0 and some fixed γ ∈ A (R). Then
this solution extends to a solution on R.

Remark 4.3 Note that (6) has always the unique formal solution — we do not know
for precisely which λ and γ it converges around zero.

Proof We observe that for x ∈ (0, 1) ϕ[n](x) → 0 as n → ∞ so, by Lemma 3.3, we
extend f to (−ε, 1).

Since ϕ : (−∞, 1/2) → (−∞, 1/4) is a diffeomorphism onto, its inverse ψ is
a diffeomorphism (−∞, 1/4) �→ (−∞, 1/2). Moreover, for x ∈ (−∞, 1/2) the
equation

f (ϕ(x)) − λ f (x) = γ (x)

is equivalent to

f (ψ(x)) − (1/λ) f (x) = −(1/λ)γ (ψ(x)).

Since for x ∈ (−∞, 0) ψ [n](x) → 0 as n → ∞ we can extend f onto (−∞, 0) by
Lemma 3.3.

Summarizing, f is a solution of (6) on (−∞, 1).
Since for x ∈ (0, 1/2) and y = 1 − x ∈ (1/2, 1) we have

λ f (x) + γ (x) = f (ϕ(x)) = f (ϕ(y)) = λ f (y) + γ (y)

we have

f (y) = f (1 − y) + γ (1 − y) − γ (y)

λ
.
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This formula extends f analytically onto (1/2,+∞) and so on the whole real line.
Clearly, this extension satisfies (6) everywhere. 	


Case 3. The symbol ϕ has exactly two different fixed points u, v. Then the behaviour
of Cϕ is the same as Cψ for

ψ(x) = −x2 + μx, μ > 1.

The map ψ has one critical point μ/2 and fixed points 0 and μ − 1.
Case 3.1. Critical point is outside the interval joining fixed points, i.e.,μ/2 > μ−1

so 1 < μ < 2.
Case 3.2. Critical point is equal to one fixed point, i.e., μ/2 = μ − 1 so μ = 2.
Case 3.3. Critical point is between fixed points, i.e., μ/2 < μ − 1 so μ > 2.

Proposition 4.4 In Case 3.1 and 3.2, ϕ(x) = −x2 +μx, 1 < μ ≤ 2, σ(Cϕ) = C but
σp(Cϕ) = {1} and for every λ ∈ C kernel of Cϕ − λI is one-dimensional.

Proof We define

U1 := (−∞, μ − 1) ∪ (1,+∞), U0 := (0, μ).

Observe that for every x ∈ (−∞, μ − 1) there is exactly one point y ∈ (1,∞) such
that ϕ(x) = ϕ(y) (y = μ − x). Thus f ∈ A (U1) belongs to the kernel of Cϕ − λI ,
λ �= 0 if and only if f |(−∞,μ−1) ∈ ker(Cϕ − λI ) on A (−∞, μ − 1) and

f (y) = f (μ − y), y ∈ (1,+∞).

Therefore the kernels of Cϕ − λI on A (U1) and on A (−∞, μ − 1) have the same
dimension. In the latter case ϕ and ϕ[2] have only one fixed point 0 on (−∞, μ − 1).
Hence, by Theorem 2.2, kerCϕ − λI is one dimensional in A (U1).

Since ϕ : (0, μ) → (0, μ) and its square have exactly one fixed point μ − 1,
kerCϕ − λI is one dimensional in A (U0) by Theorem 2.2.

Finally, U1 ∩U0 = (0, μ − 1) ∪ (1, μ). Again as in case of U1 one can prove that
the kernels of Cϕ − λI in A (U1 ∩ U0) and in A (0, μ − 1) are isomorphic. Since
ϕ has no fixed point in (0, μ − 1) and only one critical point, the required kernel is
infinite dimensional by Theorem 2.2.

We apply Theorem 3.11 to conclude that, for every λ �= 0, the map Cϕ − λI :
A (R) → A (R) is not surjective. By Proposition 2.1, σ(Cϕ) = C.

The remaining parts of the Proposition follows from Theorem 2.2. 	

In Case 3.3 we have only the following partial result:

Proposition 4.5 If ϕ(x) = −x2 + μx, μ > 2, then σ(Cϕ) ⊃ {λ ∈ C : |λ| ≤
1} ∪ {μn}n ∪ {(2 − μ)n}n.
Proof Clearly, {0, 1} ∪ {μn}n ∪ {(2 − μ)n}n ⊂ σ(Cϕ) by Propositions 2.1 and 2.2.
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Fix λ �= 1, 0 < |λ| ≤ 1. Since ϕ(1) = μ − 1, we can select a sequence xn ∈
(0, 1) ⊂ (0, μ), x1 = 1, such that

ϕ[n](xn) = μ − 1, n ∈ N

Such xn exists because ϕ(μ/2) = μ2/4 ≥ μ and 1 < μ/2. In fact, xn =
μ−

√
μ2−4xn−1
2 = 2xn−1

μ+
√

μ2−4xn−1
, n ∈ N. Hence xn/xn−1 < 2/μ < 1, n ∈ N, and

(xn)n∈N is decreasing to zero as n → ∞. Moreover, xn/xn−1 tends to 1/μ as n → ∞.
If Cϕ f − λ f = γ for some γ ∈ A (R), then

λ f (μ − 1) + γ (μ − 1) = f (μ − 1), so f (μ − 1) = γ (μ − 1)/(1 − λ),

and analogously

f (0) = γ (0)

1 − λ
,

because both 0 and μ − 1 are fixed points for ϕ. Since

f ◦ ϕ[n](x) = λn f (x) + λn−1γ (x) + λn−2γ (ϕ(x)) + · · · + γ (ϕ[n−1](x)),

we have

γ (μ − 1)

1 − λ
= λn f (xn) + λn−1γ (xn) + · · · + λγ (ϕ[n−2](xn)) + γ (1). (7)

Fix c < 1/6. If γ (0) = 0, we can choose n1 > 2 so that, for n ≥ n1, |xn| ≤ c and
| f (xn)| ≤ c, since f (xn) tends to f (0) = γ (0)/(1 − λ) = 0.

Take γ (x) = xkγ0(x), with γ0 ∈ A (R) satisfying γ0(μ − 1) = 0 and 1/2 <

|γ0(x)| < 1 for x ∈ [0, 1), γ0(1) = 1. Since xn/xn−1 tends to 1/μ as n → ∞, there is
n0 > n1 such that xn < (1/2)xn−1 for n > n0.We can take k big enough to ensure that
|γ (x j )| < c/n0 for 2 ≤ j ≤ n0. Then, for n > n0, we have |γ (xn)| ≤ 2c(1/2)n−n0 .
Summarizing:

|λn f (xn) + λn−1γ (xn) + · · · + λγ (ϕ[n−2](xn))| ≤ 2c + 2c
1

1 − (1/2)k
≤ 6c.

As c < 1/6, we reach a contradiction with (7). Therefore Cϕ − λI is not surjective. 	
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5. Bonet, J., Domański, P.: Power bounded composition operators on spaces of analytic functions. Collect.

Math. 62, 69–83 (2011)
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9. Domański, P.: Notes on real analytic functions and classical operators, Topics in Complex Analysis
and Operator Theory (Winter School in Complex Analysis and Operator Theory, Valencia, February
2010), Contemporary Math. 561 (2012) 3–47. Amer. Math. Soc, Providence (2012)
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13. Domański, P., Langenbruch, M.: Composition operators with closed image on spaces of real analytic
functions. Bull. Lond. Math. Soc. 38, 636–646 (2006)

14. Domański, P., Vogt, D.: The space of real analytic functions has no basis. Studia Math. 142, 187–200
(2000)

15. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North Holland, Amsterdam
(1986)

16. Meise, R., Vogt, D.: Introduction to Functional Analysis. Clarendon, Oxford (1997)
17. Smajdor, W.: On the existence and uniqueness of analytic solutions of the functional equation ϕ(z) =

h(z, ϕ[ f (z)]). Ann. Polon. Math. 19, 37–45 (1967)

http://dx.doi.org/10.1007/s00020-014-2175-4
http://dx.doi.org/10.1007/s00020-014-2175-4

	A Note on the Spectrum of Composition Operators on Spaces of Real Analytic Functions
	Abstract
	1 Introduction
	2 Preliminaries
	3 Spectrum
	4 Quadratic Function
	Acknowledgements
	References




