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Abstract In this paper, we investigate a bijective map � between two von Neumann
algebras, one of which has no central abelian projections, satisfying �(A • B •C) =
�(A) •�(B) •�(C) for all A, B,C in the domain, where A • B = AB + BA∗ is the
Jordan 1-∗-product of A and B. It is showed that the map �(I )� is a sum of a linear
∗-isomorphism and a conjugate linear ∗-isomorphism, where �(I ) is a self-adjoint
central element in the range with �(I )2 = I .

Keywords Jordan triple ∗-product · Isomorphism · Von Neumann algebras

Mathematics Subject Classification 47B48 · 46L10

1 Introduction

LetA be a ∗-algebra and η be a non-zero scalar. For A, B ∈ A, define the Jordan η-∗-
product of A and B by A♦ηB = AB+ηBA∗.The Jordan η-∗-product, particularly the
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Jordan (−1)-∗-product and the Jordan 1-∗-product, is very meaningful and important
in some research topics (see, for example, [1,3,8–11]). Amap� between ∗-algebrasA
and B is said to preserve the Jordan η-∗-product if�(A♦ηB) = �(A)♦η�(B) for all
A, B ∈ A. Recently, many authors pay more attention to maps preserving the Jordan
η-∗-product between ∗-algebra (see, for example, [2,6]). In [6], Li et al. considered
maps which preserve the Jordan 1-∗-product and proved that such a map between
factor von Neumann algebras is a ∗-ring isomorphism. In [2], Dai and Lu completely
described maps preserving the Jordan η-∗-product between von Neumann algebras
without central abelian projections for all non-zero scalars η. They proved that if � is
a bijectivemappreserving the Jordanη-∗-product between twovonNeumann algebras,
one of which has no central abelian projections, then� is a linear ∗-isomorphism if η is
not real and� is a sumof a linear∗-isomorphismand a conjugate linear∗-isomorphism
if η is real.

Recently, Huo et al. [4] studied a more general problem. They considered the
Jordan triple η-∗-product of three elements A, B and C in a ∗-algebra A defined
by A♦ηB♦ηC = (A♦ηB)♦ηC (we should be aware that ♦η is not necessarily
associative). A map � between ∗-algebras A and B is said to preserve the Jordan
triple η-∗-product if �(A♦ηB♦ηC) = �(A)♦η�(B)♦η�(C) for all A, B,C ∈ A.

Clearly a map between ∗-algebras preserving the Jordan η-∗-product also preserves
the Jordan triple η-∗-product, but not conversely. For example, for α, β ∈ R, define
�(α + βi) = −4(α3 + β3i). Then the map � : C → C is a bijection. It is not
difficult to verify that � preserves the Jordan triple (−1)-∗-product and Jordan triple
1-∗-product, but it does not preserve the Jordan (−1)-∗-product or Jordan 1-∗-product.
So, the class of those maps preserving the Jordan triple η-∗-product is, in principle
wider than the class of maps preserving the Jordan η-∗-product.

Let η �= −1 be a non-zero complex number, and let � be a bijection between two
von Neumann algebras, one of which has no central abelian projections, satisfying
�(I ) = I and preserving the Jordan triple η-∗-product. Huo et al. [4] showed that �
is a linear ∗-isomorphism if η is not real and� is the sumof a linear ∗-isomorphism and
a conjugate linear ∗-isomorphism if η is real. It is easy to see that a map � preserving
the Jordan triple η-∗-product does not need satisfy�(I ) = I . Indeed, let�(A) = −A
for all A ∈ A. Then � preserves the Jordan triple η-∗-product but �(I ) = −I . In
this paper, we will discuss maps preserving the Jordan triple 1-∗-product without the
assumption �(I ) = I . We prove that if � is a bijective map preserving the Jordan
triple 1-∗-product between two von Neumann algebras, one of which has no central
abelian projections, then the map �(I )� is a sum of a linear ∗-isomorphism and a
conjugate linear ∗-isomorphism, where �(I ) is a self-adjoint central element in the
range with �(I )2 = I. We mention that the methods in [4] do not fit for solving our
problem since their proofs heavily depend on the assumption �(I ) = I .

2 Proof of Main Result

Before embarking on the proof, we need some notations and preliminaries. In this
section, we often write the Jordan 1-∗-product by A • B, that is A • B = AB + BA∗.
Algebras and spaces are over the complex number fieldC. A von Neumann algebraA
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is a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing
the identity operator I . The set Z(A) = {S ∈ A : ST = T S for all T ∈ A} is called
the center of A. A projection P is called a central abelian projection if P ∈ Z(A)

and PAP is abelian. Recall that the central carrier of A, denoted by A, is the smallest
central projection P satisfying PA = A. It is not difficult that the central carrier of A
is the projection onto the closed subspace spanned by {BA(x) : B ∈ A, x ∈ H}. If A
is self-adjoint, then the core of A, denoted by A, is sup{S ∈ Z(A) : S = S∗, S ≤ A}.
If P is a projection, it is clear that P is the largest central projection Q satisfying
Q ≤ P. A projection P is said to be core-free if P = 0. It is easy to see that P = 0
if and only if I − P = I.

Lemma 2.1 ([7, Lemma 4]) LetA be a von Neumann algebra with no central abelian
projections. Then there exists a projection P ∈ A such that P = 0 and P = I .

Lemma 2.2 Let A be a von Neumann algebra on a Hilbert space H. Let A be an
operator in A and P ∈ A is a projection with P = I. If ABP = 0 for all B ∈ A,

then A = 0. Consequently, if Z ∈ Z(A), then Z P = 0 implies Z = 0.

Proof From P = I, it follows that the linear span of {BP(x) : B ∈ A, x ∈ H} is
dense in H. So ABP = 0 for all B ∈ A, then A = 0. If Z ∈ Z(A) and Z P = 0, then
Z BP = 0 for all B ∈ A, hence Z = 0. �	
Lemma 2.3 Let A be a von Neumann algebra and A ∈ A. Then AB + BA∗ = 0 for
all B ∈ A implies that A = −A∗ ∈ Z(A).

Proof We take B = I, then A = −A∗. Therefore AB = BA for all B ∈ A, which
implies A belongs to the center of A. �	
Theorem 2.4 ([4, Theorem 2.1]) Let A be a von Neumann algebra with no central
abelian projections and B be a ∗-algebra. Suppose that a bijective map � : A → B
satisfies �(A • B • C) = �(A) • �(B) • �(C) for all A, B,C ∈ A. Then � is
additive.

Our main result in this paper reads as follows.

Theorem 2.5 LetA andB be two von Neumann algebras, one of which has no central
abelian projections. Suppose that a bijective map� : A → B satisfies�(A•B•C) =
�(A) • �(B) • �(C) for all A, B,C ∈ A. Then the following statements hold:

(1) �(I ) is a self-adjoint central element in B with �(I )2 = I.
(2) Defining a map φ : A → B by φ(A) = �(I )�(A) for all A ∈ A. Then there

exsits a central projection E ∈ A such that the restriction of φ to AE is a
linear ∗-isomorphism and the restriction of φ to A(I − E) is a conjugate linear
∗-isomorphism.

The proof will be organized in some lemas. First note that � is additive. Indeed, if
A has no central abelian projections, Lemma 2.4 assures that � is additive. If B has
no central abelian projections, observe that �−1 : B → A is a bijection and preserves
the Jordan triple 1-∗-product. Applying Lemma 2.4 to �−1, we know that �−1 and
hence � is additive. In what follows, without loss of generality, we assume that B has
no central abelian projections.
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Lemma 2.6 (1) For each A ∈ A, A = −A∗ if and only if �(A) = −�(A)∗;
(2) �(Z(A)) = Z(B);
(3) (�(I ) + �(I )∗)2 = 4I.

Proof Let A ∈ A be arbitrary. Since � is surjective, there exists B ∈ A such that
�(B) = I. Then

0 = �(i I • A • B)

= �(i I ) • �(A) • I

= �(i I )�(A) + �(A)�(i I )∗ + �(A)∗�(i I )∗ + �(i I )�(A)∗

holds true for all A ∈ A. That is,

�(i I )(�(A) + �(A)∗) + (�(A) + �(A)∗)�(i I )∗ = 0

holds true for all A ∈ A. So �(i I )B + B�(i I )∗ = 0 holds true for all B = B∗ ∈ B.

Since for every B ∈ B, B = B1 + i B2 with B1 = B+B∗
2 and B2 = B−B∗

2i , it follows
that �(i I )B + B�(i I )∗ = 0 holds true for all B ∈ B. It follows from Lemma 2.3
that �(i I ) = −�(i I )∗ ∈ Z(B). Similarly, �−1(i I ) ∈ Z(A).

Let A = −A∗ ∈ A and �(B) = I . Since 0 = B • A • �−1(i I ), it follows that

0 = �(B • A • �−1(i I )) = I • �(A) • (i I ) = 2i(�(A) + �(A)∗).

This implies that �(A) = −�(A)∗. Similarly, we note that �−1 also preserves the
Jordan triple 1-∗-product. If �(A) = −�(A)∗, then

0 = �−1(�(I ) • �(A) • �(i I )) = I • A • (i I ) = 2i(A + A∗),

and so A = −A∗. Nowwe have proved that A = −A∗ if and only if�(A) = −�(A)∗
for each A ∈ A.

Let Z ∈ Z(A) be arbitrary and �(B) = I . For every A = −A∗ ∈ A, we have

0 = �(B • A • Z) = I • �(A) • �(Z) = 2(�(A)�(Z) + �(Z)�(A)∗).

That is �(A)�(Z) = −�(Z)�(A)∗ holds true for all A = −A∗ ∈ A. Since �

preservers conjugate self-adjoint elements, it follows that C�(Z) = �(Z)C holds
true for all C = −C∗ ∈ B. Since for every C ∈ B, we have C = C1 + iC2,
where C1 = C−C∗

2 and C2 = C+C∗
2i are conjugate self-adjoint elements. Hence

C�(Z) = �(Z)C holds true for all C ∈ A. Then �(Z) ∈ Z(B), which implies that
�(Z(A)) ⊆ Z(B). Thus �(Z(A)) = Z(B) by considering �−1.

Let �(B) = I . Since �(I ) ∈ Z(B), then

4I = 4�(B) = �(I • I • B) = �(I ) • �(I ) • I = (�(I ) + �(I )∗)2.

�	
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Lemma 2.7 Let P be a projection in A and set QP = 1
4 (�(I ) + �(I )∗)(�(P) +

�(P)∗). Then the following statements hold:

(1) QP is a projection and �(P) = �(I )QP ;
(2) Suppose that A in A such that A = PA(I − P). Then �(A) = QP�(A) +

�(A)QP .

Proof Let P be a projection in A. Since �(I ) ∈ Z(B), then

4�(P) = �(I • P • I ) = �(I ) • �(P) • �(I )

= �(I )(�(I ) + �(I )∗)(�(P) + �(P)∗)
= 4�(I )QP .

Hence

4�(P) = �(I • P • P) = �(I ) • �(P) • �(P)

= (�(I ) + �(I )∗)�(P)(�(P) + �(P)∗)
= 4�(P)QP = 4�(I )Q2

P .

This implies that �(P) = �(I )Q2
P . Taking the adjoint and noting that QP

is self-adjoint, �(P)∗ = �(I )∗Q2
P . Summing the last two equations, we get

�(P) + �(P)∗ = (�(I ) + �(I )∗)Q2
P . Hence (�(I ) + �(I )∗)(�(P) + �(P)∗) =

(�(I )+�(I )∗)2Q2
P . By Lemma 2.6 (3), we obtain QP = Q2

P . So QP is a projection.
Let A in A such that A = PA(I − P). Noticing that �(P) = �(I )QP , we have

2�(A) = �(I • P • A) = �(I ) • �(P) • �(A)

= (�(I ) + �(I )∗)(�(P)�(A) + �(A)�(P)∗)
= (�(I ) + �(I )∗)(�(I )QP�(A) + �(I )∗�(A)QP ).

Since (�(I )+�(I )∗)2 = 4I and�(I ),�(I )∗ ∈ Z(B), multiplying both sides of the
above equation by QP from the left and right respectively, we get that QP�(A)QP =
0. Multiplying both sides of the above equation by I − QP from the left and right
respectively, we get that (I − QP )�(A)(I − QP ) = 0, which implies that �(A) =
QP�(A) + �(A)QP . �	

Lemma 2.8 �(I ) is a self-adjoint central element in B with �(I )2 = I.

Proof Since B has no central abelian projections, by Lemma 2.1, we can choose a
projection Q ∈ B satisfying Q = 0 and Q = I. Let B be in B such that B =
QB(I−Q). Let P = 1

4 (�
−1(I )+�−1(I )∗)(�−1(Q)+�−1(Q)∗).Applying Lemma

2.7 to �−1, we know that P is a projection and �−1(B) = P�−1(B) + �−1(B)P.
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Moreover

�(P) = 1

4
�((�−1(I ) + �−1(I )∗)(�−1(Q) + �−1(Q)∗))

= 1

4
�(�−1(I ) • �−1(Q) • I )

= 1

4
(I • Q • �(I )) = �(I )Q.

Hence

B = �(P�−1(B) + �−1(B)P)

= 1

2
�(I • P • �−1(B))

= 1

2
(�(I ) • �(P) • B)

= 1

2
((�(I ) + �(I )∗)(�(P)B + B�(P)∗))

= 1

2
((�(I ) + �(I )∗)(�(I )QB + �(I )∗BQ))

= 1

2
(�(I ) + �(I )∗)�(I )B.

This implies that (2I − (�(I ) + �(I )∗)�(I ))B = 0. For arbitrary B we have (2I −
(�(I )+�(I )∗)�(I ))QB(I − Q) = 0 and since I − Q = I , it follows from Lemma
2.2 that (2I −(�(I )+�(I )∗)�(I ))Q = 0. Since 2I −(�(I )+�(I )∗)�(I ) ∈ Z(B)

and Q = I , by Lemma 2.2 , we obtain that 2I − (�(I ) + �(I )∗)�(I ) = 0. This
together with Lemma 2.6 (3) implies that �(I ) = �(I )∗ and �(I )2 = I. �	

Now, defining a map φ : A → B by φ(A) = �(I )�(A) for all A ∈ A. Then φ

has the following properties.

Lemma 2.9 (1) φ is an additive bijection and satisfies

φ(A • B • C) = φ(A) • φ(B) • φ(C)

for all A, B,C ∈ A;
(2) φ(I ) = I and φ(Z(A)) = Z(B);
(3) φ(A∗) = φ(A)∗ for all A ∈ A;
(4) P is a projection in A if and only if φ(P) is a projection in B.

Proof (1) follows from Theorem 2.4 and Lemma 2.8 and (2) follows from Lemmas
2.8 and 2.6 (2). (3) For all A ∈ A, since

2(φ(A) + φ(A∗)) = 2φ(A + A∗) = φ(A • I • I ) = φ(A) • I • I

= 2(φ(A) + φ(A)∗),
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we have φ(A∗) = φ(A)∗. (4) If P be a projection in A, then by Lemma 2.7 (1),
we see that φ(P) = �(I )�(P) = �(I )2QP = QP . So φ(P) is a projection in B.
Conversely, if φ(P) is a projection in B, applying Lemma 2.7 to φ−1, we know that
P = 1

4φ
−1(I )(φ−1(I ) + φ−1(I )∗)(P + P∗) and 1

4 (φ
−1(I ) + φ−1(I )∗)(P + P∗) is

a projection. But φ−1(I ) = I by (2), it follows that P is a projection. �	
Since B has no central abelian projections, by Lemma 2.1, there exists a projection

Q1 in B such that Q1 = 0 and Q1 = I. Then by Lemma 2.9 (4), P1 = φ−1(Q1) is
a projection in A. Set P2 = I − P1 and Q2 = I − Q1. Denote Ai j = PiAPj and
Bi j = QiBQ j . Then A = ∑2

i, j=1Ai j and B = ∑2
i, j=1 Bi j .

Lemma 2.10 φ(Ai j ) = Bi j , φ(Ai i ) ⊆ Bi i , 1 ≤ i �= j ≤ 2.

Proof Let A12 be an arbitrary element in A12. Then

2φ(A12) = φ(I • P1 • A12)

= I • Q1 • φ(A12)

= 2Q1φ(A12) + 2φ(A12)Q1,

we get that Q1φ(A12)Q1 = Q2φ(A12)Q2 = 0.Hence φ(A12) = B12+ B21 for some
B12 ∈ B12 and B21 ∈ B21.

Now to show that φ(A12) ⊆ B12, we have to show that B21 = 0. This can be seen
from

0 = φ(I • A12 • P1)

= I • �(A12) • Q1

= 2(B21 + B∗
21).

So B21 = 0, which implies that φ(A12) ⊆ B12. Hence by considering φ−1, we have
φ(A12) = B12. Similarly, we have φ(A21) = B21.

Let Aii be an arbitrary element in Ai i . Then for j �= i , we have

0 = φ(I • Pj • Aii ) = I • Q j • φ(Aii ) = 2(Q jφ(Aii ) + φ(Aii )Q j ),

which implies that Qiφ(Aii )Q j = Q jφ(Aii )Qi = Q jφ(Aii )Q j = 0. So φ(Aii ) =
Qiφ(Aii )Qi ⊆ Bi i . �	
Lemma 2.11 φ is multiplicative.

Proof Let A and B be in A. Write A = ∑2
i, j=1 Ai j and B = ∑2

i, j=1 Bi j , where
Ai j , Bi j ∈ Ai j . To show φ(AB) = φ(A)φ(B), by the additivity of φ, it suffices to
show that φ(Ai j Bkl) = φ(Ai j )φ(Bkj ) for all i, j, k, l ∈ {1, 2}. Since if j �= k then
φ(Ai j Bkl) = φ(Ai j )φ(Bkj ) = 0 by Lemma 2.10, we only need to consider the cases
with j = k.
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First of all, since φ(B12)φ(A11)
∗ = 0, which implies that

φ(A11B12) + φ(B∗
12A

∗
11) = φ(A11 • B12 • I )

= φ(A11) • φ(B12) • I

= φ(A11)φ(B12) + φ(B12)
∗φ(A11)

∗.

Thus we have φ(A11B12) = φ(A11)φ(B12) by Lemma 2.10. Similarly, we can prove
that φ(A22B21) = φ(A22)φ(B21).

It is easy to compute that

φ(A12B21) + φ(B21A12) = φ(A12 • I • B21)

= φ(A12) • I • φ(B21)

= φ(A12)φ(B21) + φ(B21)φ(A12).

Thus φ(A12B21) = φ(A12)φ(B21) and φ(B21A12) = φ(B21)φ(A12) by Lemma 2.10.
For D12 ∈ B12, we have C12 = φ−1(D12) ∈ A12 by Lemma 2.10. Thus

φ(A11B11)D12 = φ(A11B11C12) = φ(A11)φ(B11C12) = φ(A11)φ(B11)D12

for all D12 ∈ B12. Since Q2 = I, by Lemma 2.2 and 2.10, φ(A11B11) =
φ(A11)φ(B11). Similarly, we can prove that φ(A22B22) = φ(A22)φ(B22).

For D21 ∈ B21, we have C21 = φ−1(D21) ∈ A12 by Lemma 2.10. Thus

φ(A12B22)D21 = φ(A12B22C21) = φ(A12)φ(B22C21) = φ(A12)φ(B22)D21

for all D21 ∈ B21. Since Q1 = I, by Lemmas 2.2 and 2.10, φ(A12B22) =
φ(A12)φ(B22). Similarly, we can prove that φ(A21B11) = φ(A21)φ(B11). �	

Now we come to the position to show Theorem 2.5.

Proof of Theorem 2.5. For every rational number q, we have φ(q I ) = q I . Indeed,
since q is rational number, there exist two integers r and s such that q = r

s . Since
φ(I ) = I and φ is additive, we get that

φ(q I ) = φ
(r

s
I
)

= rφ

(
1

s
I

)

= r

s
φ(I ) = q I.

Now we show that φ is real linear. Let A be a positive element inA. Then A = B2

for some self-adjoint element B ∈ A. It follows fromLemma2.11 thatφ(A) = φ(B)2.
By Lemma 2.9 (3), we get that φ(B) is self-adjoint. So φ(A) is positive. This shows
that φ preserves positive elements. Let λ ∈ R. Choose sequence {an} and {bn} of
rational numbers such that an ≤ λ ≤ bn for all n and limn→∞ an = limn→∞ bn = λ.

It follows from

an I ≤ λI ≤ bn I
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that

an I ≤ φ(λI ) ≤ bn I.

Taking the limit, we get that φ(λI ) = λI . Hence for all A ∈ A,

φ(λA) = φ((λI )A) = φ(λI )φ(A) = λφ(A).

Hence φ is real linear.
ByLemma2.11,φ(i I )2 = φ((i I )2) = −φ(I ) = −I.ByLemma2.9 (3),φ(i I )∗ =

φ((i I )∗) = −φ(i I ). Let F = I−iφ(i I )
2 . Then it is easy to verify that F is a central

projection in B. Let E = φ−1(F). Then by Lemma 2.9, E is a central projection in
A. Moreover, for A ∈ A, there hold

φ(i AE) = φ(A)φ(E)φ(i I ) = φ(A)φ(E)i(2F − I ) = iφ(A)F = iφ(AE),

and

φ(i A(I − E)) = φ(A)φ(I − E)φ(i I ) = −iφ(A)(I − F) = −iφ(A(I − E)).

That is, the restriction of φ to AE is linear and the restriction of φ to A(I − E) is
conjugate linear. This together with Lemmas 2.9 and 2.11 shows Theorem 2.5. �	
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