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Abstract We provide a streamlined construction of the Friedrichs extension of a
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certain sense. With the appropriate definitions of H1 and J in terms of A and H, we
show that (JJ�)−1 is the Friedrichs extension of A. Furthermore, we use related ideas
(including the notion of unbounded containment) to construct a generalization of the
construction of the Krein extension of A as laid out in a previous paper of the authors.
These results are applied to the study of the graph Laplacian on infinite networks, in
relation to the Hilbert spaces �2(G) and HE (the energy space).
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1 Introduction

Motivated by Laplace operators on infinite networks and their self-adjoint extensions,
we consider the situation in which a certain two different Hilbert spaces contain a
common linear subspace: V ⊆ H1 ∩H2. We study (possibly unbounded) fromHi to
H j in terms of whether or not V is dense in one or both Hilbert spaces. In particular,
we introduce the notion of a symmetric pair (see Definition 2.1) of operators: when
the densely defined operators A : H1 → H2 and B : H2 → H1 are compatible
(i.e., there exists a suitable relation with their adjoints), then we immediately obtain
that both are closable: see Lemma 2.2. In the present context, this can be applied
to the operator J : V → H2 defined by Jϕ = ϕ, which (as function on sets) is
the inclusion map. This provides for a very concise construction of the Friedrichs
extension of a semibounded operator A : dom(A) ⊆ H → H. We use A to define a
new and strictly finer topology on H so that J : V → H is a contractive (inclusion)
embedding, and then the key result Theorem 3.3 yields the Friedrichs extension as
AF = (JJ�)−1. Our next main results is Theorem 4.1, in which we leverage symmetric
pairs to prove a generalization of Krein’s extension results. In a forthcoming work,
we use these ideas to describe a construction of the Krein extension [20], applications
to reflection positivity in physics [22], construct a noncommutative analogue of the
Lebesgue–Radon–Nikodym decomposition [19] (see also [20] and [22]), and also to
verify closability and compute adjoints of unbounded operators arising in the context
of stochastic calculus (Malliavin derivative) and the study of von Neumann algebras
(Tomita-Takesaki theory) [21].

We further apply the results described above to discrete Laplace operators on infinite
networks. Here, a network is just an connected undirected weighted graph (G, c) (see
Definition 5.1), and the associated network Laplacian� acts on functions u : G → R;
see Definition 5.2. We restrict attention to the case when the network is transient,1 and
we are particularly interested in the case when � is unbounded, in which case some
care must be taken with the domains. We consider � separately as an operator onHE ,
theHilbert space of finite energy functions onG and as on operator on �2(G). Although
the two operators agree formally, their spectral theoretic properties are quite different.
The space HE is defined in terms of the quadratic form E , which gives the Dirichlet
energy of a function u; see Definition 5.4. By �2(G), we mean the unweighted space
of square-summable functions on G under counting measure; see Definition 5.17.

Neither of the two Hilbert spaces is contained in the other, and the two Hilbert
norms do not compare. It follows that the spectral theory is quite different for the
corresponding incarnations of the Laplacian: as an operator on �2(G) (Definition 5.18)
and as an operator on HE (Definition 5.19). We will use the respective notation �2
and �E to refer to these two very distinct incarnations of the Laplacian. Common to
the two is that each is defined on its natural dense domain in each of the Hilbert spaces
�2(G) andHE , and in each case it is a Hermitian and non-negative operator. However,
it is known from [15] (see also [24,25,34]) that � is essentially self-adjoint on its
natural domain in �2(G) but in [15] it is shown that � is not essentially self-adjoint

1 This is equivalent to assuming the existence of monopoles; see Definition 5.12 and Remark 5.13.
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on its natural domain in HE (see Definition 5.19). Nonetheless, we prove that the
Friedrich extension of the latter has a spectral theory that can be compared with the
former.

1.1 Historical Context and Motivation

The importance of the Friedrichs extension of an unbounded Hermitian operator on a
Hilbert space stems from its role in the classical theory. The network Laplace operator
considered in this article is a discrete analogue of the better known Laplace operator
associated to a manifold with boundary in harmonic analysis and PDE theory, see
for example [3,4] and the endnotes of [2, Chap. XII]. In classical applications from
mathematical physics, this Laplacian is an unbounded operator initially defined on a
domain of smooth functions vanishing on the boundary. To get a self-adjoint operator in
L2 (and an associated spectral resolution), one then assigns boundary conditions. Each
distinct choice yields a different self-adjoint extension (realized in a suitable L2-space).
The two most famous such boundary conditions are the Neumann and the Dirichlet
conditions. In the framework of unbounded Hermitian operators in Hilbert space, the
Dirichlet boundary conditions correspond to a semibounded self-adjoint extension of
� called the Friedrichs extension. For boundary value problems on manifolds with
boundaries, the Hermitian property comes from a choice of a minimal domain for the
given elliptic operator T under consideration, and the semiboundedness then amounts
to an a priori coercivity estimate placed as a condition on T .

Today, the notion of a Friedrichs extension is typically understood in amore general
operator theoretic context concerning semibounded Hermitian operators with dense
domain in Hilbert space, see e.g., [2, p. 1240]. In its abstract Hilbert space formulation,
it throws light on a number of classical questions in spectral theory, and in quantum
mechanics, for example in the study of Sturm–Liouville operators and Schrödinger
operators, see e.g., [23]. If a Hermitian operator is known to be semibounded, we know
by a theorem of von Neumann that it will automatically have self-adjoint extensions.2

The selection of appropriate boundary conditions for a given boundary value problem
corresponds to choosing a particular self-adjoint extension of the partial differen-
tial operator in question. In general, some self-adjoint extensions of a fixed minimal
operator T may be semibounded and others not. The Friedrichs extension is both self-
adjoint and semibounded, and with the same lower bound as the initial operator T (on
its minimal domain).

We are here concerned with a different context: analysis and spectral theory of
problems in discrete context, wherein � is the infinitesimal generator of the random
walk on (G, c). In this regard, we are motivated by a number of recent papers, some of
which are cited above. A desire to quantify the asymptotic behavior of such reversible
Markov chains leads to the need for precise and useful notions of boundaries of infinite
graphs. Different conductance functions lead to different Laplacians �, and also to
different boundaries. In the energy Hilbert space HE , this operator � will then have

2 The term “extension” here refers to containment of the respective graphs of the operators under consid-
eration.
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a natural dense domain turning it into a semibounded Hermitian operator, and as a
result, Friedrichs’ theory applies. As in classical Riemannian geometry, one expects
an intimate relationship between metrics and associated Laplace operators. This is
comparable to the use of the classical Laplace operator in the study of manifolds with
boundary, or even just boundaries of open domains in Euclidean space, see e.g., [5,6].

2 Symmetric Pairs

Self-adjoint extensions of unbounded operators may be studied via symmetric pairs.
See also [19–22] for further applications of symmetric pairs to the closability of
operators and computation of adjoints.

Definition 2.1 Suppose H1 and H2 are Hilbert spaces and A, B are operators with
dense domains dom A ⊆ H1 and dom B ⊆ H2 and

A : dom A ⊆ H1 → H2 and B : dom B ⊆ H2 → H1.

We say that (A, B) is a symmetric pair iff

〈Aϕ,ψ〉H2 = 〈ϕ, Bψ〉H1 , for all ϕ ∈ dom A, ψ ∈ dom B. (2.1)

In other words, (A, B) is a symmetric pair iff A ⊆ B� and B ⊆ A�.

Lemma 2.2 If (A, B) is a symmetric pair, then A and B are each closable operators.
Moreover,

(1) A�A is densely defined and self-adjoint with dom A�A ⊆ dom A ⊆ H1, and
(2) B�B is densely defined and self-adjoint with dom B�B ⊆ dom B ⊆ H2.

Proof Since A and B are densely defined and A ⊆ B� and B ⊆ A�, it is immediate
that A� and B� are densely defined; it follows by a theorem of von Neumann that A
and B are both closable. By another theorem of von Neumann, A�A is self-adjoint;
c.f. [30, Thm. 13.13]. �	
Remark 2.3 Observe that by Lemma 2.2, there is a partial isometry V : H1 → H2
such that A = V (A�A)1/2 = (B�B)1/2V . In particular,

specH1

(
A�A

) \{0} = specH2

(
B�B

) \{0}.

Remark 2.4 Whenever (A, B) is a symmetric pair, we may now assume (by
Lemma 2.2) that A and B are closed operators. In the sequel, we will thus refer
to the self-adjoint operators A�A and B�B.

The following example illustrates the relationship that can exist between the adjoint
of an operator between L2 spaces, and the Radon–Nikodym derivative of their respec-
tive measures. We return to this theme in Example 4.2 and in the forthcoming work
[19]; see also [8,9,27]
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Fig. 1 A sequence {ϕn} ⊆ C(X) for which ϕn |K = 1 and lim
∫
X ϕn dλ = 0 (see Example 2.5)

Example 2.5 Let X = [0, 1], and consider L2(X, λ) and L2(X, μ) for measures λ

and μ which are mutually singular. For concreteness, let λ be Lebesgue measure, and
letμ be the classical singular continuous Cantor measure. Then the support ofμ is the
middle-thirds Cantor set, which we denote by K , so that μ(K ) = 1 and λ(X\K ) = 1.
The continuous functions C(X) are a dense subspace of both L2(X, λ) and L2(X, μ)

(see, e.g., [29, Chap. 2]). Define the “inclusion” operator3 J to be the operator with
dense domain C(X) and

J : C(X) ⊆ L2(X, λ) → L2(X, μ) by Jϕ = ϕ. (2.2)

We will show that dom J � = {0}, so suppose f ∈ dom J �. Without loss of generality,
one can assume f ≥ 0 by replacing f with | f |, if necessary.Bydefinition, f ∈ dom J �

iff there exists g ∈ L2(X, λ) for which

〈Jϕ, f 〉μ =
∫

X
ϕ f dμ =

∫

X
ϕg dλ = 〈ϕ, g〉λ, for all ϕ ∈ C(X). (2.3)

One can choose (ϕn)
∞
n=1 ⊆ C(X) so that ϕn|K = 1 and limn→∞

∫
X ϕn dλ = 0 by

considering the appropriate piecewise linear modifications of the constant function 1.
For example, see Fig. 1.

Now we have

〈
ϕn, J

� f
〉
λ

= 〈ϕn, f 〉μ = 〈1, f 〉μ =
∫

X
| f | dμ, for any n, (2.4)

but limn→∞
∫
X ϕng dλ = 0 for any continuous g ∈ L2(X, λ). Thus

∫
X | f | dμ = 0,

so that f = 0 μ-a.e. In other words, f = 0 ∈ L2(X, μ) and hence dom J � = {0},
which is certainly not dense! Thus, one can interpret the adjoint of the inclusion
as multiplication by a Radon–Nikodym derivative (“J � f = f dμ

dλ
”), which must be

trivial when the measures are mutually singular. This comment is made more precise
in Example 4.2 and Corollary 4.3. As a consequence of this extreme situation, the
inclusion operator in (2.2) is not closable.

3 As a map between sets, J is the inclusion map C(X) ↪→ L2(X, μ). However, we are considering
C(X) ⊆ L2(X, λ) here, and so J is not an inclusion map between Hilbert spaces because the inner
products are different. Perhaps “pseudoinclusion” would be a better term.
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3 The Friedrichs Extension

For a large class of symmetric operators, there is a canonical choice for a self-adjoint
extension, the Friedrichs extension.

Remark 3.1 The importance of the Friedrichs extension of an unbounded Hermitian
operator on aHilbert space stems from its role in the classical theory (andmathematical
physics in particular). For example, consider theLaplace operator�defined initially on
C∞
0 (	), where	 is a regular open subset ofRn for which	 is compact. Thus, dom�

consists of smooth functions vanishing at the boundary of 	. To get a self-adjoint
operator in the Hilbert spaceH = L2(	) (and an associated spectral resolution), one
then assigns boundary conditions; each distinct choice yields a different self-adjoint
extension. The twomost famous choices of boundary conditions are the Neumann and
the Dirichlet conditions.

The Friedrichs extension procedure may be described abstractly, as the Hilbert
completion of dom�with respect to a quadratic form defined in terms of�; cf. [2,23].
Nonetheless, in the present example, the Friedrichs extension turns out to correspond
to Dirichlet boundary conditions. (The Krein extension may also be defined abstractly,
in terms of ker��, turns out to correspond to Neumann conditions.)

Consider an operator A : dom A ⊆ H → H, whose domain is dense in the Hilbert
space H, and assume A satisfies

〈ϕ, Aϕ〉 ≥ ‖ϕ‖2, for all ϕ ∈ dom A. (3.1)

Define HA to be the Hilbert completion of dom A with respect to the norm induced
by

〈ψ, ϕ〉A := 〈ψ, Aϕ〉, ψ, ϕ ∈ dom A, (3.2)

and define the inclusion operator

J : HA ↪→ H, by Jϕ = ϕ, for ϕ ∈ HA. (3.3)

Definition 3.2 If A is symmetric and nonnegative densely-defined operator, then the
Friedrichs extension of A is the operator AF with

dom AF := dom A� ∩ J (HA) , and AFϕ = Aϕ, for ϕ ∈ dom A. (3.4)

Here, as usual,

dom A� :=
{
ψ ∈ H ... ∃C < ∞ with |〈ψ, Aϕ〉| ≤ C‖ϕ‖, for all ϕ ∈ dom A

}
.

(3.5)

Theorem 3.3 The operator (JJ�)−1 is the Friedrichs extension of A.
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Proof (1) We first show that the operator (JJ�)−1 is a self-adjoint extension of A. The
inclusion operator J : HA ↪→ H is contractive because the estimate (3.1) implies

‖J f ‖ = ‖ f ‖ ≤ ‖ f ‖A, for all f ∈ H. (3.6)

From general theory, we know that ‖J �‖ = ‖J‖, so both J and J � are contractive
with respect to their respective norms, and hence JJ� : H → H is also contractive.
We deduce that JJ� is a contractive self-adjoint operator inH.

Using the self-adjointness of JJ� and Definitions (3.2) and (3.3), we have that the
following holds for any ψ, ϕ ∈ dom A:

〈
ψ, JJ�Aϕ

〉 = 〈
JJ�ψ, Aϕ

〉 = 〈
J �ψ, Aϕ

〉 = 〈
J �ψ, ϕ

〉
A = 〈ψ, Jϕ〉 = 〈ψ, ϕ〉. (3.7)

Since (3.7) holds on the dense subset dom A, we have

JJ�Aϕ = ϕ for any ϕ ∈ dom A. (3.8)

and it follows immediately that JJ� is invertible on ran A. A fortiori, the identity (3.8)
shows that (JJ�)−1 is an extension of A.

(2) Next, we must show that ran JJ� = dom A� ∩ J (HA). Let ψ ∈ ran JJ�. Then
ψ = JJ�ϕ for some ϕ ∈ HA, so y ∈ J (HA) is immediate. To see that ψ ∈ dom A�,
note that for any ϕ ∈ dom A, part (1) of this proof gives

|〈ψ, Aϕ〉| = ∣∣〈JJ�ξ, Aϕ〉∣∣ = ∣∣〈ξ, JJ�Aϕ〉∣∣ = |〈ξ, ϕ〉| ≤ ‖ξ‖‖ϕ‖, (3.9)

so the bound in (3.5) is satisfiedwithC = ‖ξ‖. This shows ran JJ� ⊆ dom A�∩J (HA).
Now for ψ ∈ dom A� ∩ J (HA), we will prove the reverse containment. Since

ψ ∈ dom A, we have ψ = JJ�Aψ by part (1), so ψ ∈ ran JJ�. �	
Definition 3.4 A symmetric operator A is semibounded iff there is some c > −∞
for which

〈ϕ, Aϕ〉 ≥ c〈ϕ, ϕ〉, for all ϕ ∈ dom A. (3.10)

Definition 3.5 If A is semibounded, then A + c + 1 is a symmetric and nonnegative
densely-defined operator satisfying (3.1), and the Friedrichs extension procedure may
be applied to construct (A+ c+ 1)F as in Definition 3.2. The Friedrichs extension of
A is thus defined

AF := (A + c + 1)F − c − 1. (3.11)

Remark 3.6 While there are already several constructions of Friedrichs’ extension
(and corresponding proofs), we feel that our Theorem 3.3 has attractive features,
both novelty and simplicity. For example, Kato’s approach [23, §2.3] depends on first
developing a rather elaborate theory of closable forms, while by contrast, our proof is
simple and direct. Additionally, the tools developed here are precisely those which we
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need in our analysis of the network Laplacian as a semibounded Hermitian operator
with dense domain in HE , the Hilbert space of functions of finite energy on a graph.
For readers interested in earlier approaches to Friedrichs’ extension, we refer to, for
example the books byDunford-Schwartz [2], Kato [23], andReed and Simon [28]. The
following corollary shows that part of Kato’s results can be recovered fromLemma 2.2
and Theorem 3.3.

Corollary 3.7 For a given Hilbert space H, there is a bijective correspondence
between the collection of densely-defined closed quadratic forms q which satisfy
q(ϕ, ϕ) ≥ ‖ϕ‖2, and the collection of self-adjoint operators A on H which satisfy
A ≥ 1. More precisely:

(1) Given A, let dom q := dom A1/2 and define

q(ϕ, ψ) :=
〈
A1/2ϕ, A1/2ϕ

〉
, ∀ϕ, ψ ∈ dom q.

(2) Given q, let J : dom q → H be the inclusion map Jϕ = ϕ and define A :=
(JJ�)−1.

Proof The proof of (1) is straightforward; the nontrivial direction of the correspon-
dence is (2), but this follows immediately from Theorem 3.3. �	

4 A Generalization of the Krein Construction

The following result is used to generalize some results of [20]. It also offers a more
streamlined proof; see Corollary 5.23 and Remark 5.24.

Theorem 4.1 Suppose that H1 and H2 are Hilbert spaces with D ⊆ H1 ∩ H2, and
that D is dense inH1 (but not necessarily inH2). Define D� ⊆ H2 by

D� :=
{
h ∈ H2

... ∃C ∈ (0,∞) for which
∣∣〈ϕ, h〉H2

∣∣ ≤ C‖ϕ‖H1 , ∀ϕ ∈ D
}

.

(4.1)

ThenD� is dense inH2 if and only if there exists a self-adjoint operator � inH1 with
D ⊆ dom� and

〈ϕ,�ϕ〉H1 = ‖ϕ‖22, for all ϕ ∈ D. (4.2)

Proof Consider the inclusion operator J : H1 → H2 given by

dom J = D, Jϕ = ϕ, ϕ ∈ D.

By the definition of dom J �, we know that h ∈ dom J � iff there is a finiteC = Ch such
that |〈Jϕ, h〉H2 | ≤ C‖ϕ‖H1 . By (4.1), this means h ∈ dom J � iff h ∈ D�, i.e., that
dom J � = D�. Consequently, the assumption that (4.1) is dense inH2 is equivalent to
J � being densely defined, and hence also equivalent to J being closable. By a theorem
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of von Neumann, the operator � := J � J is self-adjoint in H1. Now for ϕ ∈ D, we
have

〈ϕ,�ϕ〉H1 = 〈
ϕ, J � Jϕ

〉
H1

= 〈
Jϕ, Jϕ

〉
H2

= 〈Jϕ, Jϕ〉H2 = 〈ϕ, ϕ〉H2 = ‖ϕ‖22,

which verifies (4.2).
For the converse, we need to show that D� is dense in H2. To this end, we exhibit

a set V ⊆ D� ⊆ H2, with V dense in H2. Note that (4.2) implies the existence of
a well-defined partial isometry K : H1 → H2 given by K�1/2ϕ = ϕ, ∀ϕ ∈ D,
and satisfying dom K = K �K = ran(�1/2). We extend K by defining K = 0 on
(dom K )⊥, and then defining V := {ψ ∈ H2

... K �ψ ∈ dom(�1/2)}. For ψ ∈ V , the
definition of K and the Cauchy–Schwarz inequality now yield

|〈ψ, ϕ〉2| =
∣∣∣
〈
ψ, K�1/2ϕ

〉

2

∣∣∣ =
∣∣∣
〈
�1/2K �ψ, ϕ

〉

1

∣∣∣ ≤
∥∥∥�1/2K �ψ

∥∥∥
1
‖ϕ‖1 ,

for every ϕ ∈ D, whence V ⊆ D�. Since �1/2 is densely defined, V is dense inH2.
�	

Example 2.5 illustrates the relationship that can exist between the adjoint of an
operator between L2 spaces, and the Radon–Nikodym derivative of their respective
measures, and how mutual orthogonality of these measures can cause a catastrophic
failure of the adjoint. We return to this theme in the following example, which shows
how our main result Theorem 4.1 can be regarded as a noncommutative version of the
Lebesgue–Radon–Nikodym decomposition. We pursue this line of enquiry further in
the forthcoming work [19]; see also [8,9,27].

Example 4.2 Let (X,A) be a measure space on which two regular, positive, and σ -
finite measures μ1 and μ2 are defined. Let Hi := L2(X, μi ) for i = 1, 2, and let
D := Cc(X). Then the equivalent conditions in the conclusion of Theorem 4.1 hold
if and only if μ2 � μ1. In this case, � corresponds to multiplication by the Radon–
Nikodym derivative f := dμ2

dμ1
, and (4.2) can be written

〈ϕ, �ϕ〉1 =
∫

X
ϕϕ f dμ1 =

∫

X
|ϕ|2 dμ2

dμ1
dμ1 =

∫

X
|ϕ|2 dμ2 = ‖ϕ‖22, ∀ ϕ ∈ C(X).

The connection between is made precise in general by the spectral theorem, in the
following corollary of Theorem 4.1.

Corollary 4.3 Assume the hypotheses of Theorem 4.1. Then, for every ϕ ∈ D, there
is a Borel measure μϕ on [0,∞) such that

‖ϕ‖21 = μϕ([0,∞)) and ‖ϕ‖12 =
∫ ∞

0
λ dμϕ(λ). (4.3)
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Proof Following the proof of Theorem 4.1, we take J : D → H2 by Jϕ = ϕ and
obtain the self-adjoint operator � = J � J . The spectral theorem yields a spectral
resolution

� =
∫ ∞

0
λE�(dλ),

where E� is the associated projection-valued measure. If we define μϕ via

dμϕ := ‖E�( dλ)ϕ‖21 ,

then the conclusions in (4.3) follow from the spectral theorem. �	
For an additional application of Theorem 4.1, see the example of the Laplace

operator on the energy space given in Example 5.25.

5 Application: Laplace Operators on Infinite Networks

We now proceed to introduce the key notions used throughout this paper: resistance
networks, the energy form E , the Laplace operator �, and their elementary properties.
For further background, we refer to [10–18,24–26].

Definition 5.1 A (resistance) network (G, c) is a connected weighted undirected
graph with vertex set G and adjacency relation defined by a symmetric conductance
function c : G × G → [0,∞). More precisely, there is an edge connecting x and y
iff cxy > 0, in which case we write x ∼ y. The nonnegative number cxy = cyx is the
weight associated to this edge and it is interpreted as the conductance, or reciprocal
resistance of the edge.

Wemake the standing assumption that (G, c) is locally finite. This means that every
vertex has finite degree, i.e., for any fixed x ∈ G there are only finitely many y ∈ G
for which cxy > 0. We denote the net conductance at a vertex by

c(x) :=
∑

y∼x

cxy . (5.1)

Motivated by current flow in electrical networks, we also assume cxx = 0 for every
vertex x ∈ G.

In this paper, connected means simply that for any x, y ∈ G, there is a finite
sequence {xi }ni=0 with x = x0, y = xn , and cxi−1xi > 0, i = 1, . . . , n. For any
network, one can fix a reference vertex, which we shall denote by o (for “origin”). It
will always be apparent that our calculations depend in no way on the choice of o.

Definition 5.2 The Laplacian on G is the linear difference operator which acts on a
function u : G → R by

(�u)(x) :=
∑

y∼x

cxy(u(x) − u(y)). (5.2)
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A function u : G → R is harmonic iff �u(x) = 0 for each x ∈ G. Note that the
sum in (5.2) is finite by the local finiteness assumption above, and so the Laplacian is
well-defined.

The domain of �, considered as an operator on HE or �2(G), is given in Defini-
tions 5.19 and 5.18.

Definition 5.3 The energy form is the (closed, bilinear) Dirichlet form

E(u, v) := 1

2

∑

x,y∈G
cxy(u(x) − u(y))(v(x) − v(y)), (5.3)

which is defined whenever the functions u and v lie in the domain

dom E =
{
u : G → R

... E(u, u) < ∞
}

. (5.4)

Hereafter, we write the energy of u as E(u) := E(u, u). Note that E(u) is a sum of
nonnegative terms and hence converges iff it converges absolutely.

The energy form E is sesquilinear and conjugate symmetric on dom E and would
be an inner product if it were positive definite. Let 1 denote the constant function with
value 1 and observe that ker E = R1. One can show that dom E/R1 is complete and
that E is closed; see [7,10,16,23].

Definition 5.4 The energy (Hilbert) space is HE := dom E/R1. The inner product
and corresponding norm are denoted by

〈u, v〉E := E(u, v) and ‖u‖E := E(u, u)1/2. (5.5)

It is shown in [16, Lemma 2.5] that the evaluation functionals Lxu = u(x) − u(o)
are continuous, and hence correspond to elements of HE by Riesz duality (see also
[16, Cor. 2.6]). When considering C-valued functions, (5.5) is modified as follows:
〈u, v〉E := E(u, v).

Definition 5.5 Let vx be defined to be the unique element of HE for which

〈vx , u〉E = u(x) − u(o), for every u ∈ HE . (5.6)

Note that vo corresponds to a constant function, since 〈vo, u〉E = 0 for every u ∈ HE .
Therefore, vo may be safely omitted in some calculations.

As (5.6) means that the collection {vx }x∈G forms a reproducing kernel forHE , we
call {vx }x∈G the energy kernel. It follows that the energy kernel has dense span inHE ;
c.f. [1].4

4 To see this, note that a RKHS is a Hilbert space H of functions on some set X , such that point evaluation
by points in X is continuous in the norm of H . Consequently, every x ∈ X defines a vector kx ∈ H by
Riesz’s Theorem, and it is immediate from this that span{kx }x∈X is dense in H .
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Remark 5.6 (Differences and representatives) Equation (5.6) is independent of the
choice of representative of u because the right-hand side is a difference: if u and u′
are both representatives of the same element of HE , then u′ = u + k for some k ∈ R

and u′(x) − u′(o) = (u(x) + k) − (u(o) + k) = u(x) − u(o). By the same token, the
formula for � given in (5.2) describes unambiguously the action of � on equivalence
classes u ∈ HE . Indeed, formula (5.2) defines a function �u : G → R but we may
also interpret �u as the class containing this representative.

Definition 5.7 Let δx ∈ �2(G) denote the Dirac mass at x , i.e., the characteristic
function of the singleton {x} and let δx ∈ HE denote the element of HE which has
δx ∈ �2(G) as a representative. The context will make it clear which meaning is
intended.

Remark 5.8 Observe that E(δx ) = c(x) < ∞ is immediate from (5.3), and hence one
always has δx ∈ HE [recall that c(x) is the total conductance at x ; see (5.1)].

Definition 5.9 For v ∈ HE , one says that v has finite support iff there is a finite set
F ⊆ G such that v(x) = k ∈ C for all x /∈ F . Equivalently, the set of functions of
finite support is

span{δx } = {u ∈ dom E ... u is constant outside some finite set}. (5.7)

Define Fin to be the E-closure of span{δx }.
Definition 5.10 The set of harmonic functions of finite energy is denoted

Harm :=
{
v ∈ HE

... �v(x) = 0, for all x ∈ G
}

. (5.8)

The following result is well known; see [31, §VI], [26, §9.3], [16, Theorem 2.15],
or the original [35, Theorem 4.1].

Theorem 5.11 (Royden Decomposition) HE = Fin ⊕ Harm.

Definition 5.12 A monopole is any w ∈ HE satisfying the pointwise identity �w =
δx (in either sense of Remark 5.6) for some vertex x ∈ G. A dipole is any v ∈ HE
satisfying the pointwise identity �v = δx − δy for some x, y ∈ G.

Remark 5.13 It is easy to see from the definitions (or [16, Lemma 2.13]) that energy
kernel elements are dipoles, i.e., that�vx = δx −δo, and that one can therefore always
find a dipole for any given pair of vertices x, y ∈ G, namely, vx − vy . On the other
hand, monopoles exist if and only if the network is transient (see [32, Theorem 2.12]
or [16, Remark 3.5]).

Remark 5.14 Denote the unique energy-minimizing monopole at o by wo; the exis-
tence of such an object is explained in [16, §3.1]. We are interested in the family of
monopoles defined by

wv
x := wo + vx , x �= o. (5.9)
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We use the representatives specified by

wv
x (y) =

〈
wv
x , w

v
y

〉

E = wv
y(x), and vx (o) = 0. (5.10)

When Harm = 0, E(wv
x ) = 〈wv

x , w
v
x 〉E = wv

x (x) is the capacity of x ; see, e.g., [33,
§4.D].

Lemma 5.15 ([16, Lem. 2.11]) For x ∈ G and u ∈ HE , 〈δx , u〉E = �u(x).

Proof Compute 〈δx , u〉E = E(δx , u) directly from formula (5.3). �	
Lemma 5.16 For any x, y ∈ G,

�wv
x (y) = �wv

y(x) =
〈
wv
x ,�wv

y

〉

E =
〈
�wv

x , w
v
y

〉

E = δxy, (5.11)

where δxy is the Kronecker delta.

Proof First, note that �wv
x (y) = δxy = �wv

x (y) as functions, immediately from the
definition of monopole. Then the substitution �wv

y = δy gives

〈
wv
x ,�wv

y

〉

E = 〈
wv
x , δy

〉
E = �wv

x (y) (5.12)

by Lemma 5.15, and similarly for the other identity. �	

5.1 � as an Unbounded Operator

In this subsection, we consider closability and apply the results of the earlier sections.
As there are many uses of the notation �2(G), we provide the following elementary
definitions to clarify our conventions.

Definition 5.17 For functions u, v : G → R, define the inner product

〈u, v〉2 :=
∑

x∈G
u(x)v(x). (5.13)

Definition 5.18 The closed operator �2 on �2(G) is obtained by taking the graph
closure (see Remark 5.20) of the operator � which is defined pointwise by (5.2) on
span{δx }x∈G , the subspace of (finite) linear combinations of point masses.

Definition 5.19 The closed operator�E onHE is obtained by taking the graph closure
of the operator � defined on span{wv

x }x∈G pointwise by (5.2).

Remark 5.20 It is shown in [15, Lemma 2.7 and Theorem 2.8] states that � is semi-
bounded and essentially self-adjoint as an operator on span{δx }x∈G . It follows that �
is closable by the same arguments as in the end of the proof of Lemma 5.21, whence
�2 is closed, self-adjoint, and in particular, well-defined. However, closability will



1548 P. E. T. Jorgensen, E. P. J. Pearse

also follow in this context from the properties of symmetric pairs shown in Lemma 2.2.
Note that in sharp contrast, the analogous operator�E is not automatically self-adjoint
(see [15]) and hence some care is needed (for example, in the proof of Lemma 5.21).
See also [24,25,34].

The following lemma shows that Definition 5.19 makes sense.

Lemma 5.21 �E is a well-defined, non-negative, closed and Hermitian operator on
HE .

Proof Let ξ = ∑
x∈F ξxw

v
x , for some finite set F ⊆ G. By (5.11),

〈u,�u〉E =
∑

x,y∈F
ξxξy

〈
wv
x ,�wv

y

〉

E =
∑

x,y∈F
ξxξyδxy =

∑

x∈F
|ξx |2 ≥ 0. (5.14)

Since the conductance function c is R-valued, the Laplacian commutes with conju-
gation and therefore is also symmetric as an operator in the corresponding C-valued
Hilbert space. This implies � is Hermitian and hence contained in its adjoint. Since
every adjoint operator is closed, � is closable. Furthermore, the closure of any semi-
bounded operator is semibounded. To see that the image of � lies in HE , note from
Lemma 5.16 that �wv

x = δx ∈ HE by Remark 5.8. �	
In the following theorem, we apply Lemma 2.2 to the construction laid out in [20].

This shows how one can recover the closability results described in Remark 5.20 and
Lemma 5.21 in a manner which is both quicker and more elegant.

Theorem 5.22 Define K : span{δx }x∈G → HE by K δx = δx and define L :
span{vx }x∈G → �2(G) by L(vx ) = δx − δo. Then

〈Kϕ,ψ〉E = 〈ϕ, Lψ〉2, for all ϕ ∈ span{δx }x∈G, ψ ∈ span{vx }x∈G . (5.15)

It therefore follows immediately from Lemma 2.2 that both operators are closable.

Proof It suffices to establish (5.15) for every ϕ = δx and ψ = vy , and

〈
K δx , vy

〉
E = 〈

δx , vy
〉
E = δx (y) − δx (o) = 〈

δx , δy − δo
〉
2 = 〈

δx , Lvy
〉
2

follows from the reproducing property (5.6). �	
This provides a more effective way of proving a key result of [20], in the following

corollary.

Corollary 5.23 In the notation of Theorem 5.22, K �K is a self-adjoint extension of
�2 and L�L is a self-adjoint extension of �E .

Remark 5.24 In [15], it is shown that �2 is essentially self-adjoint, from which it
follows that K �K is the unique self-adjoint extension of �2. It is shown in [20] that
L�L is the Krein extension of �E .
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Proof of Corollary 5.23 Self-adjointness of these operators follows by a celebrated
theorem of von Neumann once closability is established (which is given by Theo-
rem 5.22). To establish that �E ⊆ L�L , note that the definitions give

〈
vy, L

�Lvx
〉
E = 〈

Lvy, Lvx
〉
2 = 〈

δy − δo, δx − δo
〉
2

= (δx − δo) (y) − (δx − δo) (o) = 〈vy, δx − δo〉E ,

for any vx . This shows that the action of L�L agrees with �E on dom�E . �	
Example 5.25 If we take H1 = �2(G), H2 = HE , and D = span{δ}x∈G , then the
hypotheses of Theorem4.1 are satisfied. The only detail requiring effort to check is that
span{vx }x∈G ⊆ D� (whenceD� is dense inH2). To see this, note that the reproducing
property of vx gives

∣∣〈ϕ, vx 〉HE
∣∣ = |ϕ(x) − ϕ(o)| = ∣∣〈ϕ, δx − δo〉�2

∣∣ ≤ ‖ϕ‖�2‖δx − δo‖�2 = √
2‖ϕ‖�2 ,

so one can take C = 2 in (4.1). In this case, the operator � is �
(Kr)
E , the Krein

extension of the energy Laplacian; see [20,25].
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7. Fukushima, M., Ōshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov processes, vol. 19

of de Gruyter Studies in Mathematics. Walter de Gruyter, Berlin (1994)
8. Hassi, S., Sebestyén, Z., de Snoo, H.S.V., Szafraniec, F.H.: A canonical decomposition for linear

operators and linear relations. Acta Math. Hung. 115, 281–307 (2007)
9. Jørgensen, P.E.T.: Unbounded operators: perturbations and commutativity problems. J. Funct. Anal.

39, 281–307 (1980)
10. Jorgensen, P.E.T., Pearse, E.P.J.: Operator Theory and Analysis of Infinite Resistance Networks. Uni-

versitext, pp. 1–247. Springer (2009) (to appear). arXiv:0806.3881
11. Jorgensen, P.E.T., Pearse, E.P.J.: Unbounded Containment in the Energy Space of a Network and the

Krein Extension of the Energy Laplacian, pp. 1–247 (2016) (in preparation). arXiv:1504.01332
12. Jorgensen, P.E.T., Pearse, E.P.J.: A Hilbert space approach to effective resistance metrics. Complex

Anal. Oper. Theory 4, 975–1030 (2010). arXiv:0906.2535
13. Jorgensen, P.E.T., Pearse, E.P.J.: Resistance boundaries of infinite networks. In: Progress in Probability:

Boundaries and Spectral Theory, vol. 64, pp. 113–143. Birkhauser (2010). arXiv:0909.1518
14. Jorgensen, P.E.T., Pearse, E.P.J.: Gel’fand triples and boundaries of infinite networks. N.Y. J. Math.

17, 745–781 (2011). arXiv:0906.2745
15. Jorgensen, P.E.T., Pearse, E.P.J.: Spectral reciprocity and matrix representations of unbounded opera-

tors. J. Funct. Anal. 261, 749–776 (2011). arXiv:0911.0185
16. Jorgensen, P.E.T., Pearse, E.P.J.: A discrete Gauss–Green identity for unbounded Laplace operators,

and the transience of random walks. Isr. J. Math. 196, 113–160 (2013). arXiv:0906.1586
17. Jorgensen, P.E.T., Pearse, E.P.J.: Multiplication operators on the energy space. J. Oper. Theory 69,

135–159 (2013). arXiv:1007.3516

http://arxiv.org/abs/0806.3881
http://arxiv.org/abs/1504.01332
http://arxiv.org/abs/0906.2535
http://arxiv.org/abs/0909.1518
http://arxiv.org/abs/0906.2745
http://arxiv.org/abs/0911.0185
http://arxiv.org/abs/0906.1586
http://arxiv.org/abs/1007.3516


1550 P. E. T. Jorgensen, E. P. J. Pearse

18. Jorgensen, P.E.T., Pearse, E.P.J.: Spectral comparisons between networks with different conductance
functions. J. Oper. Theory 72, 71–86 (2014). arXiv:1107.2786

19. Jorgensen, P.E.T., Pearse, E.P.J.: Characteristic Projections and a Noncommutative Lebesgue Decom-
position (2016) (in preparation)

20. Jorgensen, P.E.T., Pearse, E.P.J.: Unbounded Containment in the Energy Space of a Network and the
Krein Extension of the Energy Laplacian (2016) (in review). arXiv:1504.01332

21. Jorgensen, P.E.T., Pearse, E.P.J.: Applications of symmetric pairs to Gaussian fields and Tomita-
Takesaki theory (2015) (in preparation)

22. Jorgensen, P.E.T., Pearse, E.P.J., Tian, F.: Duality for Unbounded Operators, and Applications (2015)
(in review). arXiv:1509.08024

23. Kato, T.: Perturbation theory for linear operators. Classics in Mathematics. Springer, Berlin (1995)
(reprint of the 1980 edition)

24. Keller, M., Lenz, D.: Dirichlet Forms and Stochastic Completeness of Graphs and Subgraphs (2009)
(unpublished). arXiv:0904.2985

25. Keller, M., Lenz, D.: Unbounded Laplacians on graphs: basic spectral properties and the heat equation.
Math. Model. Nat. Phenom. 5, 198–224 (2010)

26. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press (2016). http://
pages.iu.edu/~rdlyons/
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