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Abstract The BMV conjecture states that for n × n Hermitian matrices A and B the
function f A,B(t) = trace et A+B is exponentially convex. Recently the BMV conjec-
ture was proved by Herbert Stahl. The proof of Herbert Stahl is based on ingenious
considerations related to Riemann surfaces of algebraic functions. In the present paper
we give a purely “matrix” proof of the BMV conjecture for 2× 2 matrices. This proof
is based on the Lie product formula for the exponential of the sum of two matrices.
The proof also uses the commutation relations for the Pauli matrices and does not use
anything else.
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1 Herbert Stahl’s Theorem

In the paper [4] a conjecture was formulated which now is commonly known as the
BMV conjecture:

The BMV Conjecture Let A and B be Hermitian matrices of size n × n. Then the
function

f A,B(t) = trace {exp[t A + B]} (1.1)
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of the variable t is representable as a bilateral Laplace transform of a non-negative
measure dσA,B(λ) compactly supported on the real axis:

f A,B(t) =
∫

λ∈(−∞,∞)

exp(tλ) dσA,B(λ), ∀ t ∈ (−∞,∞). (1.2)

Definition 1.1 Let A, B be a pair of square matrices of the same size n×n. The func-
tion f A,B(t) of the variable t ∈ R defined by (1.1) is said to be the trace-exponential
function generated by the pair A, B.

Let us note that the function f A,B(t), considered for t ∈ C, is an entire function
of exponential type. The indicator diagram of the function f A,B is the closed interval
[λmin, λmax], where λmin and λmax are the least and the greatest eigenvalues of the
matrix A respectively. Thus if the function f A,B(t) is representable in the form (1.2)
with a non-negative measure dσA,B(λ), then dσA,B(λ) is actually supported on the
interval [λmin, λmax] and the representation

f A,B(t) =
∫

λ∈[λmin,λmax]
exp(tλ) dσA,B(λ), ∀ t ∈ C, (1.3)

holds for every t ∈ C.
The representability of the function f A,B(t), (1.1), in the form (1.3) with a non-

negative dσA,B is evident if the matrices A and B commute. In this case dσ(λ) is
an atomic measure supported on the spectrum of the matrix A. In general case, if the
matrices A and B do not commute, the BMV conjecture remained an open question
for longer than 35 years. In 2011, Herbert Stahl gave an affirmative answer to the
BMV conjecture.

Theorem (H. Stahl) Let A and B be n × n hermitian matrices. Then the function
fA,B(t) defined by (1.1) is representable as the bilateral Laplace transform (1.3) of a
non-negative measure dσA,B(λ) supported on the closed interval [λmin, λmax].

The first arXiv version of H.Stahl’s Theorem appeared in [10], the latest arXiv
version—in [11], the journal publication—in [12]. The proof of Herbert Stahl is based
on ingenious considerations related to Riemann surfaces of algebraic functions. In
[5,6] a simplified version of the Herbert Stahl proof is presented.

In the present paper we focus on the BMV conjecture for 2 × 2 matrices. In this
special case the BMV conjecture was proved in [9, section 2] using a perturbation
series. We give a purely “matrix” proof of the BMV conjecture for 2 × 2 matrices.

2 Exponentially Convex Functions

Definition 2.1 A function f on R, f : R → [0,∞), is said to be exponentially
convex if



On the BMV Conjecture for 2 × 2 Matrices and the Exponential... 845

1. For every positive integer N , for every choice of real numbers t1, t2,. . ., tN , and
complex numbers ξ1, ξ2, . . . , ξN , the inequality holds

N∑
r,s=1

f (tr + ts)ξrξs ≥ 0; (2.1)

2. The function f is continuous on R.

The class of exponentially convex functions was introduced by S.N.Bernstein, [2], see
Sect. 15 there. TheRussian translation of the paper [2] can be found in [3], pp. 370–425.

From (2.1) it follows that the inequality f (t1 + t2) ≤ √
f (2t1) f (2t2) holds for

every t1 ∈ R, t2 ∈ R. Thus the alternative takes place:
If f is an exponentially convex function, then either f (t) ≡ 0, or f (t) > 0 for every
t ∈ R.

2.1 Properties of the Class of Exponentially Convex Functions

P1. If f (t) is an exponentially convex function and c ≥ 0 is a nonnegative constant,
then the function c f (t) is exponentially convex.

P2. If f1(t) and f2(t) are exponentially convex functions, then their sum f1(t)+ f2(t)
is exponentially convex.

P3. If f1(t) and f2(t) are exponentially convex functions, then their product f1(t) ·
f2(t) is exponentially convex.

P4. If f (t) is an exponentially convex function and a, b are real numbers, then the
function f (at + b) is exponentially convex.

P5. Let { fn(t)}1≤n<∞ be a sequence of exponentially convex functions. We assume
that for each t ∈ R there exists the limit f (t) = limn→∞ fn(t), and that f (t) <

∞ ∀t ∈ R. Then the limiting function f (t) is exponentially convex.

From the functional equation for the exponential function it follows that for each
real number μ, for every choice of real numbers t1, t2, . . ., tN and complex numbers
ξ1, ξ2, . . . , ξN , the equality holds

N∑
r,s=1

e(tr+ts )μξrξs =
∣∣∣∣

N∑
p=1

etpμξp

∣∣∣∣
2

≥ 0. (2.2)

The relation (2.2) can be formulated as

Lemma 2.2 For each real numberμ, the function etμ of the variable t is exponentially
convex.

For z ∈ C, the function cosh z, which is called the hyperbolic cosine of z, is defined
as

cosh z = 1

2
(ez + e−z). (2.3)

From Lemma 2.2 and property P2 we obtain
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Lemma 2.3 For each real μ, the function cosh(t μ) of the variable t is exponentially
convex.

The following result is well known.

Theorem 2.4 (The representation theorem)

1. Let σ(dμ) be a nonnegative measure on the real axis, and let the function f (t) be
defined as the two-sided Laplace transform of the measure σ(dμ):

f (t) =
∫

μ∈R
etμ σ(dμ), (2.4)

where the integral in the right hand side of (2.4) is finite for any t ∈ R. Then the
function f is exponentially convex.

2. Let f (t) be an exponentially convex function. Then this function f can be rep-
resented on R as a two-sided Laplace transform (2.4) of a nonnegative measure
σ(dμ). (In particular, the integral in the right hand side of (2.4) is finite for any
t ∈ R.) The representing measure σ(dμ) is unique.

The assertion 1 of the representation theorem is an evident consequence of
Lemma 2.2, of the properties P1, P2, P5, and of the definition of the integration
operation.

The proof of the assertion 2 can be found in [1, Theorem 5.5.4], and in [13, Theorem
21].

Of course, Lemma 2.3 is a special case of the representation theorem which corre-
sponds to the representing measure

σ(dν) = 1/2(δ(ν − μ) + δ(ν + μ)) dν,

where δ(ν ∓ μ) are Dirak’s δ-functions supported at the points ±μ.
Thus the Herbert Stahl theorem can be reformulated as follows: Let A and B be

Hermitian n×n matrices. Let the function fA,B(t) is defined by (1.1) for t ∈ (−∞,∞).
Then the function fA,B(t), considered as a function of the variable t, is exponentially
convex.

3 Reduction the BMV Conjecture for General 2 × 2 Hermitian Matrices
A and B to the Case of Special A and B

Lemma 3.1 Let A and B be an arbitrary pair of 2×2Hermitian matrices. Then there
exists a pair A0, B0 of Hermitian 2 × 2 matrices possessing the properties:

1. The conditions

(a). trace A0 = 0, (b). trace B0 = 0, (c). trace A0B0 = 0. (3.1)

are satisfied.
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2. The trace-exponential functions fA,B and fA0,B0 generated by these pairs are
related by the equality

fA,B(t) = cetλ f A0,B0(t + t0), (3.2)

where λ and t0 are some real numbers, c is a positive number.

Remark 3.2 From Lemma 3.1 it follows that in order to prove the BMV conjecture for
arbitrary pair A, B of Hermitian 2×2 matrices, it is sufficient to prove this conjecture
only for pairs A0, B0 satisfying the conditions (3.1).

Proof of Lemma 3.1 Let A and B be Hermitian matrices of size 2 × 2 and I be the
identity matrix of size 2 × 2. Let us define

A0 = A − trace A

2
I. (3.3)

Without loss of generality we can assume that

A0 �= 0. (3.4)

Otherwise

f A,B(t) = cetλ, where λ = trace A

2
, c = trace eB > 0,

and (3.2) holds with A0 = 0, B0 = 0. Since the matrix A0 is Hermitian, from (3.4) it
follows that A2

0 ≥ 0, A2
0 �= 0. Thus

trace A2
0 > 0. (3.5)

Let us define

t0 = trace A0B

trace A2
0

, (3.6)

B0 = B − trace B

2
I − t0A0. (3.7)

Since trace I = 2 and trace X depends on 2 × 2 matrix X linearly, the condi-
tions trace A0 = 0, trace B0 = 0 are fulfilled. According to (3.6), the condition
trace A0B0 = 0 is fulfilled as well. Since

A = A0 + λI, B = B0 + μI + t0A0, where λ = trace A

2
, μ = trace B

2
,

the linear matrix pencils t A + B and t A0 + B0 are related by the equality

At + B = (tλ + μ)I + ((t + t0)A0 + B0).

Therefore et A+B = etλ+μe(t+t0)A0+B0 , that is the equality (3.2) holds with c = eμ. �
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Lemma 3.3 Let A0, B0 be Hermitian matrices of size 2 × 2 satisfying the condition
(3.1), A0 �= 0. Then there exists an unitary matrix U which reduces the matrices
A0, B0 to the form

U A0U
∗ = ασ , UB0U

∗ = βτ , (3.8)

where α > 0, β ≥ 0 are numbers and σ , τ are the Pauli matrices:

σ =
[
1 0
0 −1

]
, τ =

[
0 1
1 0

]
. (3.9)

Proof Let U be an unitary matrix which reduces the Hermitian matrix A0 to the
diagonal form: U A0U∗ = [

λ1 0
0 λ2

]
. Since trace A0 = 0, the equality λ1 = −λ2 holds.

Since A0 �= 0, also λ1, λ2 �= 0. Thus for some unitary matrix U , the first of the
equalities (3.8) holds with some number α > 0. We fix this matrix U and define the
matrix

[ b11 b12
b21 b22

] = UB0U∗. Since trace B0 = 0 and the matrix trace of is an unitarily
invariant, the equality b11 + b22 = 0 holds. Since U A0B0U∗ = U A0U∗ · UB0U∗ =[

α 0
0 −α

] · [ b11 b12
b21 b22

] = [
αb11 αb12−αb21 −αb22

]
and trace A0B0 = 0, also trace

[
αb11 αb12−αb21 −αb22

] = 0,
that is α(b11−b22) = 0. Since α �= 0, b11−b22 = 0. Finally, b11 = b22 = 0. Since the
matrix

[ b11 b12
b21 b22

]
is Hermitian, its entries b12 and b21 are conjugate complex numbers:

b12 = b21. The additional unitary equivalence transformation X →
[
eiϑ 0
0 1

]
X

[
e−iϑ 0
0 1

]

does not change the matrix σ , but allows to reduce the matrix
[ 0 b12
b12 0

]
to the form

βτ . �
Lemma 3.4 Let A0 and B0 be 2 × 2 Hermitian matrices satisfying the conditions
(3.1), (3.4), and U be the unitary matrix which reduces the pair A0, B0 to the pair
ασ , βτ according to (3.8), (3.9). Then the trace-exponential functions generated by
the pairs A0, B0 and ασ , βτ coincide:

fA0,B0(t) = fασ , βτ (t). (3.10)

Proof

fA0,B0(t) = trace et A0+B0 = traceUet A0+B0U∗

= eU (t A0+B0)U∗ = etασ+βτ = fασ ,βτ (t).

�
Remark 3.5 From Lemmas 3.1, 3.3 and 3.4 it follows that in order to prove the BMV
conjecture for arbitrary pair A, B of Hermitian 2 × 2 matrices, it is enough to prove
this conjecture for any pair of the form A = ασ , B = βτ with α > 0, β ≥ 0.

4 The Formulation of the Main Theorem

Theorem 4.1 (The main theorem) Let α, β be arbitrary non-negative numbers and
σ , τ be the Pauli matrices defined by (3.9).
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Then the trace-exponential function fασ ,βτ (t) generated by the pair of matrices
ασ , βτ is exponentially convex.

The trace-exponential function fασ ,βτ (t) can be easily found explicitly:

fασ,βτ (t) = 2 cosh
√

α2t2 + β2, (4.1)

where cosh ζ is the hyperbolic cosine function. However the exponential convexity of
the function cosh

√
α2t2 + β2 is not evident.

There are different ways to prove the exponential convexity of the function
fασ,βτ (t). One can forget the “matrix” origin of the function fασ ,βτ (t) and work
with its analytic expression cosh

√
α2t2 + β2 only. The function cosh

√
α2t2 + β2

can be presented as a bilateral Laplace transform of some measure. The density of
this measure can be expressed in terms of the modified Bessel function I1. From this
expression it is evident that the representing measure is non-negative. However the
calculation of the representing measure is not so transparent.

In the present paper we give a purely “matrix” proof of the BMV conjecture for
2 × 2 matrices. This proof is based on the Lie product formula for the exponential of
the sum of two matrices. The proof also uses the commutation relations for the Pauli
matrices and does not use anything else.

5 The Proof of Theorem 4.1

Since the trace-exponential function fασ ,βτ (t) is even in β, the equality

fασ ,βτ (t) = fασ ,−βτ (t)

holds for any numbers α, β. Therefore,

fασ ,βτ (t) = trace E (t;α, β), (5.1)

where E (t;α, β) is the 2 × 2 matrix-function:

E (t;α, β) = 1

2
[etασ+βτ + etασ−βτ ]. (5.2)

Lemma 5.1 (A version of the Lie product formula) Let X and Y be square matrices
of the same size, say n × n. Then

eX+Y = lim
N→∞

(
e

X
N
(
I + Y

N

))N
. (5.3)

Proof Proof of the equality (5.3) can be modified from the proof which is presented
in [7, Theorem 2.10]. �
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Proof of Theorem 4.1 We apply the equality (5.3) in the cases X = tασ and Y is one
in two matrices Y = βτ , Y = −βτ .

The equality
τ 2 = I (5.4)

and the commutation relation
τστ = −σ (5.5)

play crucial role in the proof of Theorem 4.1.
For every number λ, the matrix exponential eλσ is a diagonal 2 × 2 matrix:

eλσ =
[
eλ 0
0 e−λ

]
. (5.6)

From (5.4) and (5.5) the commutation relation for the matrix exponentials eλσ , fol-
lows:

τ eλσ τ = e−λσ , ∀ λ ∈ R. (5.7)

According to (5.2) and Lemma 5.1,

E (t;α, β) = lim
N→∞EN (t;α, β), (5.8)

where

EN (t;α, β) = 1

2
[E +

N (t;α, β) + E −
N (t;α, β)], (5.9)

E +
N (t;α, β) =

(
e
tασ
N

(
I + βτ

N

))N
, E −

N (t;α, β) =
(
e
tασ
N

(
I − βτ

N

))N
. (5.10)

From (5.10) it follows that

E +
N (t;α, β) =

∑
ε1,ε2...εN

e
tασ
N M+

ε1
e
tασ
N M+

ε2
. . . e

tασ
N M+

εN
, (5.11a)

E −
N (t;α, β) =

∑
ε1,ε2...εN

e
tασ
N M−

ε1
e
tασ
N M−

ε2
. . . e

tασ
N M−

εN
, (5.11b)

where each of ε j , j = 1, 2, . . . N , takes value either 0, or 1, and the factors M±
ε are:

M+
0 = I, M−

0 = I, M+
1 = βτ

N , M−
1 = −βτ

N . (5.12)

The sums in (5.11) run over all possible combinations ε1, ε2 . . . εN with either ε j =
0 or ε j = 1. (There are 2N such combinations.) Grouping terms, we present the
sums (5.11) as iterated sums, where the summation index m in the external sum
runs over the set 0, 1, 2, . . . , N . Each term in the internal sum is a product1 which

1 We omit the “trivial” factors M+
0 = I , M−

0 = I .



On the BMV Conjecture for 2 × 2 Matrices and the Exponential... 851

contains N factors of the form etα
1
N σ and m factors of the form ±βτ

N . These factors
in general do not commute. So the generic term of the internal sum is the “word”

W = F1 ·F2 · · · · ·Fk · · · · ·FN+m , consisting of two letters only: either Fk = etα
1
N σ or

Fk = ±βτ
N . In the word W , the letters Fk = ±βτ

N occupy m, 0 ≤ m ≤ N , positions
enumerated by k = p1, k = p2, . . . , k = pm . Since each two neighbouring letters

of the form ±βτ
N must be separated by at least one letter of the form etα

1
N σ , the

subscripts p j , 1 ≤ j ≤ m enumerating positions of letters of the form ±τ
N must

satisfy the conditions

1 < p1, p1 + 1 < p2, p2 + 1 < p3, . . . , pm−1 + 1 < pm, pm ≤ N + m. (5.13)

The letters Fk = etα
1
N σ occupy the remaining N position.

Thus

E +
N (t;α, β) =

∑
0≤m≤N

(
1

Nm

∑
p1,p2, ... pm

W+
p1,p2,...,pm

)
, (5.14a)

E −
N (t;α, β) =

∑
0≤m≤N

(
1

Nm

∑
p1,p2, ... pm

W−
p1,p2,...,pm

)
, (5.14b)

where

W+
p1,p2,...,pm = βm · etα p1−1

N σ · τ · etα p2−p1−1
N σ · τ · etα p3−p2−1

N σ · τ
·etα p4−p3−1

N σ · τ · · · · · etα pm−pm−1−1
N σ · τ · etα(1− pm−m

N )σ , (5.15a)

W−
p1,p2,...,pm = (−β)m · etα p1−1

N σ · τ · etα p2−p1−1
N σ · τ · etα p3−p2−1

N σ · τ
·etα p4−p3−1

N σ · τ · · · · · etα pm−pm−1−1
N σ · τ · etα(1− pm−m

N )σ , (5.15b)

and the inner sums in (5.14) runs over all sets of m integers p1, p2, . . . pm satisfying
the conditions (5.13). There are

(N
m

) = N !
m!(N−m)! such sets of m integers.

By definition, the terms of the sums (5.14) corresponding to m = 0 are equal to
etασ .

In the expressions (5.14), we should consider separately terms with even and odd
indices m.

If m is odd, then in the expressions (5.15) for the words W+
p1,p2,...,pm and

W−
p1,p2,...,pm , the factors βm and (−β)m are of opposed signs. All other factors in

these expressions coincide term by term. Therefore

W+
p1,p2,...,pm + W−

p1,p2,...,pm = 0 for each odd m, for each

set of subscripts p1, p2, . . . , pm satisfying the conditions (5.13). (5.16)

Ifm is even, then the factors βm and (−β)m in the expressions (5.15) for the words
W+

p1,p2,...,pm andW−
p1,p2,...,pm coincide. All other factors in these expressions coincide



852 V. Katsnelson

term by term as well. Therefore

W+
p1,p2,...,pm = W−

p1,p2,...,pm for each even m, for each

set of subscripts p1, p2, . . . , pm satisfying the conditions (5.13). (5.17)

For even m, say m = 2l, the expression (5.15) for the word W+
p1,p2,...,p2l =

W−
p1,p2,...,p2l can be simplified. Let us choose and fix the set p1, p2, . . . , p2l of sub-

scripts satisfying the conditions (5.13). The factors τ -s in the expression in (5.14a)
and (5.14b) corresponding to this set of subscripts can be grouped by pairs of adjacent
factors:

W±
p1,p2,...p2l = β2l · etα p1−1

N σ · (τ etα
p2−p1−1

N σ τ ) · etα p3−p2−1
N σ

· · · · · etα p2l−1−p2l−2−1
N σ · (τ etα

p2l−p2l−1−1
N σ τ ) · etα(1− p2l−2l

N )σ , (5.18)

Using (5.7), we obtain that

τ etα
p2 j−p2 j−1−1

N σ τ = e−tα
p2 j−p2 j−1−1

N σ , 1 ≤ j ≤ l. (5.19)

Hence
W+

p1,p2,...,p2l = W−
p1,p2,...,p2l = β2l etαμp1,...p2l ;Nσ , (5.20)

where

μp1,...p2l ;N = 1
N [2p1 − 2p2 + 2p3 − · · · + 2p2l−1 − 2p2l + N + 2l]. (5.21)

The numbers μp1,...p2l ;N satisfy the inequalities

− (1 − 2/N ) ≤ μp1,...p2l ;N ≤ 1. (5.22)

From (5.9), (5.14), (5.16), and (5.20) it follows that

EN (t;α, β) = etασ +
∑

l:1≤l≤N/2

(
β2l

N2l

∑
p1,p2,...,p2l

etαμp1,p2,...,p2l ;Nσ

)
, (5.23)

where p1, p2, . . . , p2l run over the set of integers satisfying the conditions (5.13), the
numbers μp1,...p2l ;N are defined in (5.21).

The equality (5.23) expresses the matrix function EN (t;α, β) as a linear combina-
tion of the matrix functions etαμσ with non-negative coefficients, which depend on
β:

EN (t;α, β) =
∫

μ∈[−1,1]
etαμσ ρN (dμ), (5.24)
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where

ρN (dμ) =
∑

0≤l≤N/2

ρN ,l(dμ), (5.25a)

ρN ,0(dμ) = δ(μ − 1) dμ, ρN ,l(dμ)

= β2l

N2l

∑
p1,p2,...,p2l

δ(μ − μp1,p2,...,p2l ;N ) dμ, (5.25b)

δ(μ) is the Dirac δ-function, the summation in (5.25b) runs over all sets of inte-
gers p1, p2, . . . , p2l satisfying the conditions (5.13) with m = 2l, the numbers
μp1,p2,...,p2l ;N are the same that in (5.21).

In view of (5.6), the matrix-function EN (t;α, β) is diagonal:

EN (t;α, β) =
[
e1,N (t;α, β) 0

0 e2,N (t;α, β)

]
. (5.26)

The diagonal entries e1,N (t;α, β), e2,N (t;α, β) are representable as

e1,N (t;α, β) =
∫

μ∈[−1,1]
etαμρN (dμ), e2,N (t;α, β) =

∫

μ∈[−1,1]
e−tαμρN (dμ). (5.27)

According to Theorem 2.4, each of the functions e1,N (t;α, β), e2,N (t;α, β) is
exponentially convex. Their sum, which is the trace of the matrix EN (t;α, β), is
exponentially convex. In view of (5.8), the function trace E (t;α, β) is exponentially
convex. The reference to (5.1) completes the proof of Theorem 4.1. �
Remark 5.2 For each β ≥ 0, the family of the measures {ρN (dμ)}N is uniformly
bounded with respect to N :

∫

μ∈[−1,1]
ρN (dμ) ≤ eβ. (5.28)

Indeed, for each N , the cardinality of the set of integers p1, p2, . . . , pm satisfying the
conditions (5.13) is equal to

(N
m

) = N !
m!(N−m)! · According to (5.25b),

∫

μ∈[−1,1]
ρN ,l(dμ) =

(
N

2l

)
β2l

N 2l , ∀l : 0 ≤ 2l ≤ N .

Taking into account (5.25a), we obtain

∫

μ∈[−1,1]
ρN (dμ) =

∑
l:0≤2l≤N

(
N

2l

)
β2l

N2l <
∑

0≤k≤N

(
N

k

)(
β

N

)k

=
(
1 + β

N

)N
< eβ.
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6 A Theorem on the Integral Representation of a 2× 2 Matrix Function

Theorem 6.1 Let β be a non-negative, σ and τ be the Pauli matrices which were
defined in (3.9). For each β ≥ 0, let E (t;β) be the matrix function of the variable
t ∈ R which is defined by the equality

E (t;β) = etσ+βτ + etσ−βτ

2
. (6.1)

(The value β is considered as a parameter.)
Then there exists a non-negative scalar measure ρ(dμ) supported on the interval

[−1, 1] such that the integral representation

E (t;β) =
∫

μ∈[−1,1]
etμσ ρ(dμ), ∀t ∈ R. (6.2)

holds. The measure ρ admits the estimate

∫

μ∈[−1,1]
ρ(dμ) ≤ eβ. (6.3)

Proof We start from the integral representation (5.24), where we can set α = 1. The
inequality (5.28) means that for each β, the family of measures {ρN } is bounded with
respect to N . Therefore the family of measures {ρN } is weakly compact. From (5.24)
and (5.8) it follows that representation (6.2) holds with every measure ρ which is a
weak limiting point of the family {ρN }. Actually such ρ is unique. �
Remark 6.2 The measure ρ(dμ) which appears in the integral representation (6.2)
can be presented explicitly. The matrix-function E (t;β) is diagonal:

E (t;β) =
[
e1(t;β) 0

0 e2(t;β)

]
. (6.4)

From (6.1) we find that

e1(t;β) = cosh
√
t2 + β2 + t · sinh

√
t2 + β2√

t2 + β2
, (6.5a)

e2(t;β) = cosh
√
t2 + β2 − t · sinh

√
t2 + β2√

t2 + β2
· (6.5b)

The function cosh
√
t2 + β2 admits the integral representation

cosh
√
t2 + β2 = cosh t +

∫

μ∈[−1,1]
d̂(μ, β)eμt dμ, (6.6)
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where

d̂(μ, β) = β

2
√
1 − μ2

I1(β
√
1 − μ2), −1 ≤ μ ≤ 1. (6.7)

I1( . ) is the modified Bessel function. The appropriate calculation can be found in [8,
Section 3], in particular Lemma 3.2 there. From (6.5), (6.6) and (6.7) we obtain the
following expression for the measure dρ(μ) from (6.2):

ρ(dμ) = δ(μ − 1) dμ + (1 + μ)d̂(μ, β) dμ. (6.8)
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