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Abstract The BMV conjecture states that for n x n Hermitian matrices A and B the
function f4 p(t) = trace ¢’A*5 is exponentially convex. Recently the BMV conjec-
ture was proved by Herbert Stahl. The proof of Herbert Stahl is based on ingenious
considerations related to Riemann surfaces of algebraic functions. In the present paper
we give a purely “matrix” proof of the BMV conjecture for 2 x 2 matrices. This proof
is based on the Lie product formula for the exponential of the sum of two matrices.
The proof also uses the commutation relations for the Pauli matrices and does not use
anything else.
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1 Herbert Stahl’s Theorem

In the paper [4] a conjecture was formulated which now is commonly known as the
BMV conjecture:
The BMV Conjecture Let A and B be Hermitian matrices of size n x n. Then the
function
fa,p(t) = trace {exp[tA + B]} (1.1)

Communicated by Dmitry Kaliuzhnyi-Verbovetskyi.

B Victor Katsnelson
victor.katsnelson @weizmann.ac.il; victorkatsnelson @ gmail.com

1 Department of Mathematics, The Weizmann Institute, 76100 Rehovot, Israel

® Birkhiuser


http://crossmark.crossref.org/dialog/?doi=10.1007/s11785-015-0513-4&domain=pdf

844 V. Katsnelson

of the variable ¢ is representable as a bilateral Laplace transform of a non-negative
measure do 4, g(A) compactly supported on the real axis:

faB() = / exp(ti)doa p(r), VYt € (—o00,00). (1.2)

AE(—00,00)

Definition 1.1 Let A, B be a pair of square matrices of the same size n x n. The func-
tion fa p(t) of the variable ¢+ € R defined by (1.1) is said to be the trace-exponential
function generated by the pair A, B.

Let us note that the function fa g(t), considered for ¢+ € C, is an entire function
of exponential type. The indicator diagram of the function f4 p is the closed interval
[Amin> Amax], Where Amin and Amax are the least and the greatest eigenvalues of the
matrix A respectively. Thus if the function f4 p(#) is representable in the form (1.2)
with a non-negative measure doa p()), then doa () is actually supported on the
interval [Amin, Amax] and the representation

fa.p() = / exp(tA) doa p(r), VteC, (1.3)

A€[Amin, Amax]

holds for every ¢t € C.

The representability of the function f4 g(t), (1.1), in the form (1.3) with a non-
negative do 4 p is evident if the matrices A and B commute. In this case do(A) is
an atomic measure supported on the spectrum of the matrix A. In general case, if the
matrices A and B do not commute, the BMV conjecture remained an open question
for longer than 35 years. In 2011, Herbert Stahl gave an affirmative answer to the
BMV conjecture.

Theorem (H. Stahl) Let A and B be n x n hermitian matrices. Then the function
fa.B(t) defined by (1.1) is representable as the bilateral Laplace transform (1.3) of a
non-negative measure do s g(\) supported on the closed interval [Amin, Amax]-

The first arXiv version of H.Stahl’s Theorem appeared in [10], the latest arXiv
version—in [11], the journal publication—in [12]. The proof of Herbert Stahl is based
on ingenious considerations related to Riemann surfaces of algebraic functions. In
[5,6] a simplified version of the Herbert Stahl proof is presented.

In the present paper we focus on the BMV conjecture for 2 x 2 matrices. In this
special case the BMV conjecture was proved in [9, section 2] using a perturbation
series. We give a purely “matrix” proof of the BMV conjecture for 2 x 2 matrices.

2 Exponentially Convex Functions

Definition 2.1 A function f on R, f : R — [0, 00), is said to be exponentially
convex if
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1. For every positive integer N, for every choice of real numbers #1, 2,. . ., ty, and
complex numbers &1, &, ..., &y, the inequality holds
N
Z S +1)6:86 = 0; 2.1

r,s=1
2. The function f is continuous on R.

The class of exponentially convex functions was introduced by S.N.Bernstein, [2], see

Sect. 15 there. The Russian translation of the paper [2] can be found in [3], pp. 370—425.
From (2.1) it follows that the inequality f(t; + t2) < +/fQ2t1) f(2t2) holds for

every f1 € R, o € R. Thus the alternative takes place:

If fis an exponentially convex function, then either f(t) = 0, or f(t) > O for every

teR.

2.1 Properties of the Class of Exponentially Convex Functions

P1. If f(¢) is an exponentially convex function and ¢ > 0 is a nonnegative constant,
then the function cf (¢) is exponentially convex.

P2. If f1(¢) and f>(¢) are exponentially convex functions, then their sum f(t)+ f>(¢)
is exponentially convex.

P3. If f1(¢) and f>(¢) are exponentially convex functions, then their product fi(¢) -
f>(t) is exponentially convex.

P4. If f(¢) is an exponentially convex function and a, b are real numbers, then the
function f(at + b) is exponentially convex.

P5. Let { f,(t)}1<n<co be a sequence of exponentially convex functions. We assume
that for each ¢ € R there exists the limit f(¢) = lim,_, o f,,(¢), and that f(t) <
oo Vt € R. Then the limiting function f(¢) is exponentially convex.

From the functional equation for the exponential function it follows that for each
real number u, for every choice of real numbers 1, #2, . . ., £y and complex numbers
£1, &, ..., En, the equality holds

N 2
D g E = > 0. 22)

r,s=1

N

2 ol
ertE,

p=1

The relation (2.2) can be formulated as

Lemma 2.2 For each real number i, the function e’ of the variable t is exponentially
convex.

For z € C, the function cosh z, which is called the hyperbolic cosine of z, is defined
as

1 _
coshz = E(ez +e7%). (2.3)

From Lemma 2.2 and property P2 we obtain
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Lemma 2.3 For each real i, the function cosh(t () of the variable t is exponentially
convex.

The following result is well known.

Theorem 2.4 (The representation theorem)

1. Let o(d) be a nonnegative measure on the real axis, and let the function f(t) be
defined as the two-sided Laplace transform of the measure o (djL):

f) = / eo(dw), (2.4)

neR

where the integral in the right hand side of (2.4) is finite for any t € R. Then the
function f is exponentially convex.

2. Let f(t) be an exponentially convex function. Then this function f can be rep-
resented on R as a two-sided Laplace transform (2.4) of a nonnegative measure
o (dw). (In particular, the integral in the right hand side of (2.4) is finite for any
t € R.) The representing measure o (d L) is unique.

The assertion 1 of the representation theorem is an evident consequence of
Lemma 2.2, of the properties P1, P2, P5, and of the definition of the integration
operation.

The proof of the assertion 2 can be found in [1, Theorem 5.5.4], and in [13, Theorem
21].

Of course, Lemma 2.3 is a special case of the representation theorem which corre-
sponds to the representing measure

o(dv) =1/2(6(v — ) +8(v + ) dv,

where 6 (v F u) are Dirak’s §-functions supported at the points .

Thus the Herbert Stahl theorem can be reformulated as follows: Let A and B be
Hermitian n xn matrices. Let the function f4 p(t)isdefined by (1.1) fort € (—oo, 00).
Then the function fa p(t), considered as a function of the variable t, is exponentially
convex.

3 Reduction the BMV Conjecture for General 2 x 2 Hermitian Matrices
A and B to the Case of Special A and B

Lemma 3.1 Let A and B be an arbitrary pair of 2 x 2 Hermitian matrices. Then there
exists a pair Ao, By of Hermitian 2 x 2 matrices possessing the properties:

1. The conditions
(a). trace Ag =0, (b). trace Bo =0, (c). trace AgBy = 0. 3.1

are satisfied.
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2. The trace-exponential functions fa p and fa, B, generated by these pairs are
related by the equality

fa () = ce™ fay B, (t + 1), (3.2)

where A and ty are some real numbers, c is a positive number.

Remark 3.2 From Lemma 3.1 it follows that in order to prove the BMV conjecture for
arbitrary pair A, B of Hermitian 2 x 2 matrices, it is sufficient to prove this conjecture
only for pairs Ag, By satisfying the conditions (3.1).

Proof of Lemma 3.1 Let A and B be Hermitian matrices of size 2 x 2 and [ be the
identity matrix of size 2 x 2. Let us define

Ag= A — L. (3.3)

Without loss of generality we can assume that
Ay #0. (3.4)

Otherwise

trace A

fa.p(t) =ce™, where A = S = trace e? > 0,

and (3.2) holds with Ay = 0, By = 0. Since the matrix Ag is Hermitian, from (3.4) it
follows that A3 > 0, A # 0. Thus

trace A3 > 0. (3.5)
Let us define
trace AgB
=—, 3.6)
trace Ay
trace B
Byp =B — ) I —1pAo. 3.7
Since trace/ = 2 and trace X depends on 2 x 2 matrix X linearly, the condi-

tions trace Ag = 0, trace By = 0 are fulfilled. According to (3.6), the condition
trace Ao By = 0 is fulfilled as well. Since

trace A __ trace B
2 ’ M - 2 ’

A=Ao+ X, B=Byg+unl+1tAy, where A=

the linear matrix pencils tA + B and tAg + By are related by the equality
At + B = (tA 4+ )l + ((t + t9) Ao + Bo).

Therefore ¢! 418 = ¢!+ (+10)A0+Bo _that is the equality (3.2) holds with ¢ = e#. O
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Lemma 3.3 Let Ao, By be Hermitian matrices of size 2 x 2 satisfying the condition
3.1), Ap # 0. Then there exists an unitary matrix U which reduces the matrices
Ao, Bo to the form

UAWU* =a0, UB)U* =BT, 3.8)

where a > 0, B > 0 are numbers and O, T are the Pauli matrices:

1 0 01
[0 0 =[] o9
Proof Let U be an unitary matrix which reduces the Hermitian matrix Ag to the
diagonal form: UA U* = [’XO1 )\02 ] Since trace Ag = 0, the equality A; = —A holds.

Since Ag # 0, also A1, A2 # 0. Thus for some unitary matrix U, the first of the
equalities (3.8) holds with some number o > 0. We fix this matrix U and define the
matrix [z; i Zz ] = UBoU*. Since trace By = 0 and the matrix trace of is an unitarily
invariant, the equality b1 + b2 = 0 holds. Since U AgBoU* = UAgU* - UBoU™* =

«01- [Z; 22] = [_"‘5,;;1 f‘fgiz] and trace Ag By = 0, also trace| _“0}[’,21 _"‘OI[’;ZZ] =0,

thatisa (b1 —b22) = 0.Sincea # 0, b11 —bry = 0. Finally, b11 = by = 0. Since the

matrix [Z; Z; ] is Hermitian, its entries b1, and by are conjugate complex numbers:

bi» = by. The additional unitary equivalence transformation X — [6’89 ?]X [ 330 ?]

does not change the matrix 0, but allows to reduce the matrix [}% b(l)z ] to the form

BT. o

Lemma 3.4 Let Ag and By be 2 x 2 Hermitian matrices satisfying the conditions
(3.1), (3.4), and U be the unitary matrix which reduces the pair Ay, By to the pair
a0, BT according to (3.8),(3.9). Then the trace-exponential functions generated by
the pairs Ao, By and a0, BT coincide:

Sa0.B0(1) = fao, pr(1). (3.10)
Proof

tAog+Bo — tAog+Bo U*

Sfao,By(t) = tracee trace Ue

— eU(tAo—i—BO)U* _ etaa—i—ﬁf — faa,ﬂr(t)‘

m}

Remark 3.5 From Lemmas 3.1, 3.3 and 3.4 it follows that in order to prove the BMV
conjecture for arbitrary pair A, B of Hermitian 2 x 2 matrices, it is enough to prove
this conjecture for any pair of the form A = a«0, B = BT witha > 0, 8 > 0.

4 The Formulation of the Main Theorem

Theorem 4.1 (The main theorem) Let o, B be arbitrary non-negative numbers and
O, T be the Pauli matrices defined by (3.9).
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Then the trace-exponential function fuo gr(t) generated by the pair of matrices
a0, BT is exponentially convex.

The trace-exponential function fy, g (¢) can be easily found explicitly:

fao,pe ) = 2cosh\/azt2—+ﬂ2, 4.1)

where cosh ¢ is the hyperbolic cosine function. However the exponential convexity of
the function cosh \/&2¢2 + B2 is not evident.

There are different ways to prove the exponential convexity of the function
fao,pz(t). One can forget the “matrix” origin of the function fyo g7 (f) and work
with its analytic expression cosh v/a2t2 4+ B2 only. The function cosh /a2 + B2
can be presented as a bilateral Laplace transform of some measure. The density of
this measure can be expressed in terms of the modified Bessel function /;. From this
expression it is evident that the representing measure is non-negative. However the
calculation of the representing measure is not so transparent.

In the present paper we give a purely “matrix” proof of the BMV conjecture for
2 x 2 matrices. This proof is based on the Lie product formula for the exponential of
the sum of two matrices. The proof also uses the commutation relations for the Pauli
matrices and does not use anything else.

5 The Proof of Theorem 4.1

Since the trace-exponential function fus g (¢) is even in B, the equality

faa,ﬂr(t) = fao,—ﬁr(t)

holds for any numbers «, 8. Therefore,

fao,pr(t) = trace E(t; a, B), (5.1)
where & (t; a, B) is the 2 x 2 matrix-function:
1
Eta, B) = E[ew“’ﬂ% + efeo—hT, (5.2)

Lemma 5.1 (A version of the Lie product formula) Let X and Y be square matrices
of the same size, say n x n. Then

XY lim (e%(l n %))N. (5.3)

N—o0

Proof Proof of the equality (5.3) can be modified from the proof which is presented
in [7, Theorem 2.10]. O
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Proof of Theorem 4.1 We apply the equality (5.3) in the cases X = ta0 and Y is one
in two matrices ¥ = T,Y = —pT.
The equality
=1 (5.4)

and the commutation relation
T0T =-0 (5.5)

play crucial role in the proof of Theorem 4.1.
For every number A, the matrix exponential ¢* is a diagonal 2 x 2 matrix:

A
A0 = [e 0 ] (5.6)

0 e ™

From (5.4) and (5.5) the commutation relation for the matrix exponentials ¢*?, fol-
lows:

TMT =, VieR. (5.7)

According to (5.2) and Lemma 5.1,

Et,a, B) = Nlim En(t; a, B), (5.8)
where
1
En(t;a, B) = E[gﬁ(t; a, B) + &y (t; a, B, (5.9

tao N a0 N
EX(ta. p) = (eT(I n %)) L Ev(tiap) = (eT(I - %)) . (5.10)

From (5.10) it follows that

tag

Sxwapy= > VMLV M. VML, (5.11a)
£1,82...6N

Sywapy= > VM VM, .. VM, (5.11b)
£1,82...6N

where eachof ¢, j = 1,2, ... N, takes value either 0, or 1, and the factors M;E are:

+ _ - _ + _ - _ _BT

My =1, My=1I1 M M = -5 (5.12)
The sums in (5.11) run over all possible combinations ¢, &3 ... ey with either ; =
0 or ¢; = 1. (There are 2V such combinations.) Grouping terms, we present the
sums (5.11) as iterated sums, where the summation index m in the external sum
runs over the set 0, 1,2, ..., N. Each term in the internal sum is a product1 which

' We omit the “trivial” factors M '(')' =IL,M;=1
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. 1
contains N factors of the form ¢*~? and m factors of the form :I:%. These factors

in general do not commute. So the generic term of the internal sum is the word”

W=F-F- --- -Fg- -+ -Fyim,consisting of two letters only: either F; = e’“N" or
F, = j:%. In the word W, the letters Fj, = :l:% occupy m, 0 <m < N, positions
enumerated by k = p1,k = pa, ...,k = py. Since each two neighbouring letters

1
of the form :I:% must be separated by at least one letter of the form ¢’*~7, the
subscripts pj, 1 < j < m enumerating positions of letters of the form :I:% must
satisfy the conditions

1<p11 p1+1 <P2» P2+1 <p3»-~,pm—1+1 <pm7 pmSN‘l‘m (513)

| . .
The letters Fy = e'*~7 occupy the remaining N position.

Thus
1
+ 4. _ +
Exap)= . (—Nm Z Wi o ) (5.14a)
0<m=<N P1:P2; - Pm
Ey o py= D ( Z e ) (5.14b)
0<m<N Pl p2,
where
pri—1 p2—p1—1 Pl L P3— Pz Ly
W;—l,m ..... . :‘Bm et(x N O T - IO{ T - t T
pa—r3—1 pm— pm 1-1 pm—m
ta ~ o, . . et o T - etot(l m )(7’ (5153)
va—1 S = (—B)" e ta—lo T tapzfﬁlfla eta7p37£2710 T
sssss m
p4—p3—1 Pm—pPp—1—1 l)m m
.gtaiN o, T oo. . etaiN o LT eta(l Yo (515b)

and the inner sums in (5.14) runs over all sets of m integers p1, pa, ... pp, satisfying

the conditions (5.13). There are (Z ) = m such sets of m integers.

By definition, the terms of the sums (5.14) corresponding to m = 0 are equal to

eIOlO'.

In the expressions (5.14), we should consider separately terms with even and odd
indices m.

If m is odd, then in the expressions (5.15) for the words W p| propm and

W ... pw the factors B and (—pB)™ are of opposed signs. All other factors in

these expressions coincide term by term. Therefore

+ -
Woriom T Woi oo p, =0 foreachoddm, foreach

set of subscripts p1, p2, ..., pm satisfying the conditions (5.13). (5.16)

If m is even, then the factors 8™ and (— )™ in the expressions (5.15) for the words

+ . . . . . .
Wi popw ad Wy o, coincide. All other factors in these expressions coincide
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term by term as well. Therefore

+ _ —
W piom = Wpi po...p, foreachevenm, foreach

set of subscripts p1, p2, ..., pm satisfying the conditions (5.13). (5.17)

For even m, say m = 2I, the expression (5.15) for the word W;hpz ’’’’’ .
w— can be simplified. Let us choose and fix the set p1, p2, ..., pa of sub-

P1:P25--s P2
scripts satisfying the conditions (5.13). The factors T-s in the expression in (5.14a)

and (5.14b) corresponding to this set of subscripts can be grouped by pairs of adjacent
factors:

—1 py—p1—1 —py—
W;ﬁ,pz,...pzz = ,321 'emmTU : (_[emlz W 1) em%ﬂa
- _r—1 ] — -1 -2l
_etdipﬂ 1 ]CZI 2" 5 . (‘L-etailﬂ p]%/l 1 O“L-) _eta(l—pZIN )O" (518)
Using (5.7), we obtain that
p2j—p2j—1-1 P2j—p2j—1—1
e e A (5.19)
Hence
le_l,m ,,,,, pr = Woipepu = 132lefaup,....p2,;1v<7’ (5:20)
where
Mpi..pyiN = %[2171 —2p2+2p3— -+ +2py—1 —2py+N+20]. (5.21)

The numbers ), p,: N satisfy the inequalities
—(1=2/N) = up,,.py:n = 1. (5.22)

From (5.9), (5.14), (5.16), and (5.20) it follows that

En(tio f) =€+ (ﬁ—/z 2 e“w) (5.23)

I:1<I<N/2 P1,P2s-, P21

where py, pa, ..., py run over the set of integers satisfying the conditions (5.13), the
numbers (i p, .. py; N are defined in (5.21).

The equality (5.23) expresses the matrix function &y (f; «, B) as a linear combina-
tion of the matrix functions e/**° with non-negative coefficients, which depend on

B:
En(tia, B) = / "M py(d ), (5.24)

nel—1,1]
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where
o) = D pnidp), (5.252)
0<I<N/2
pNoldu) =d8(n — 1 du, pni(dw)
21
=L > 8= tpy o pv) it (5.25b)
P1,P2,---s P21

8(w) is the Dirac §-function, the summation in (5.25b) runs over all sets of inte-
gers pi, p2, ..., py satisfying the conditions (5.13) with m = 2I, the numbers
Hpy,pa,...,pu;N are the same that in (5.21).

In view of (5.6), the matrix-function &y (¢; «, B) is diagonal:

. _lein(a, B) 0
é?v(t,a,ﬁ)—[ 0 ez’N(t;a’ﬂ)] (5.26)

The diagonal entries ey y(¢; o, B), e2 n(t; @, B) are representable as

ein(t;a, B) = / Moy, exn(t;a,p) = / e "Fondp). (5.27)
pel=1,1] pel=1,1]

According to Theorem 2.4, each of the functions e y(¢; «, B), ea n(t; e, B) 1S
exponentially convex. Their sum, which is the trace of the matrix &y (t; «, B8), is
exponentially convex. In view of (5.8), the function trace & (¢; «, B) is exponentially
convex. The reference to (5.1) completes the proof of Theorem 4.1. O

Remark 5.2 For each B > 0, the family of the measures {px(du)}n is uniformly
bounded with respect to N:

p(dp) < . (5.28)
nel—1,1]
Indeed, for each N, the cardinality of the set of integers p1, pa, ..., pn satisfying the
conditions (5.13) is equal to (Z )= #lm), According to (5.25b),
N IBZZ
du) = —, VI:0<2I<N.
pn.i(dp) (21) N7 =2<

nel—1,1]
Taking into account (5.25a), we obtain

v =3 (Z)% -y (Z)(%)k = (1+4)" <.

uel—1,1] [:0<2I<N 0<k<N
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6 A Theorem on the Integral Representation of a 2 x 2 Matrix Function

Theorem 6.1 Let B be a non-negative, 0 and T be the Pauli matrices which were
defined in (3.9). For each B > 0, let &(t; B) be the matrix function of the variable
t € R which is defined by the equality

eta+ﬂr + eta—ﬂr

&t p) = - (6.1)

(The value B is considered as a parameter.)
Then there exists a non-negative scalar measure p(djL) supported on the interval
[—1, 1] such that the integral representation

&, B) = / e pdp), YteR. (6.2)

pnel—1,1]

holds. The measure p admits the estimate

p(dp) < e (6.3)

nel—1,1]

Proof We start from the integral representation (5.24), where we can set « = 1. The
inequality (5.28) means that for each g, the family of measures {py} is bounded with
respect to N. Therefore the family of measures {py} is weakly compact. From (5.24)
and (5.8) it follows that representation (6.2) holds with every measure p which is a
weak limiting point of the family {py}. Actually such p is unique. O

Remark 6.2 The measure p(dp) which appears in the integral representation (6.2)
can be presented explicitly. The matrix-function &(¢; B) is diagonal:

o _[a@p) 0
&t B) = |: 0 e ,3)] . (6.4)

From (6.1) we find that

inh /12 4+ B2
;) = cosh /12 + B2 41 X I 6.5
e1(t; B) = cosh /1> + B> +1 Ny (6.5a)

ok /72 1 B2
ex(t; B) =cosh /12 + B2 —1t- % (6.5b)

The function cosh v/¢2 + B2 admits the integral representation

cosh /12 + B2 = cosht + / d(p, BeM du, (6.6)

pel—1,1]
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where

> p
d(p, B) = ———=1 1—p?), —-1<p=<l 6.7
0. ) = 7BV 1 =), —1=ps (6.7)

I (.) is the modified Bessel function. The appropriate calculation can be found in [8,
Section 3], in particular Lemma 3.2 there. From (6.5), (6.6) and (6.7) we obtain the
following expression for the measure dp () from (6.2):

p(dp) =8 — du + (1 + wd(w, B)du. (6.8)
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