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Abstract We describe the C∗-algebra generated by the Toeplitz operators acting on
each poly-Bergman space of the upper half-plane � ⊂ C. We consider bounded
symbols depending only on y = Im z and having limit values at y = 0 and y = ∞.
This C∗ algebra is isomorphic to the C∗-algebra of all matrices of dimension n × n
whose entries are continuous functions over the positive reals, and are scalar multiples
of the identity matrix at y = 0 and y = ∞.
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1 Introduction

Recall that the spaceA2
n(D) of n-analytic functions is the subspace of L2(D) consist-

ing of all functions ϕ = ϕ(z, z) = ϕ(x, y) that satisfy the equation
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where D ⊂ C is a bounded domain with smooth boundary. We denote by A2
(n)(�)

the space of all true-n-analytic functions, that is,

A2
(n)(D) = A2

n(D) � A2
n−1(D),

for n ≥ 1, and A2
(0)(D) = {0}. Of course, A2

1(D) is the usual Bergman space of

D, which is simply denoted by A2(D). Similarly, we introduce the spaces Ã2
n(D)

and Ã2
(n)(D) of all n-anti-analytic and true-n-anti-analytic functions, respectively.

Actually, each n-anti-analytic function is just the complex conjugation of a n-analytic
function.

For the upper half-plane�, Vasilevski [10] proved that L2(�) has a decomposition
as a direct sum of the n-true-analytic and n-true-anti-analytic function spaces:

L2(�) =
∞⊕
k=1

A2
(k)(�) ⊕

∞⊕
k=1

Ã2
(k)(�).

The spaces A2
(n)(�) and Ã2

(n)(�) are isomorphic and isometric to

L2(R+) ⊗ Ln−1 and L2(R−) ⊗ Ln−1,

respectively, where Ln−1 is the one-dimensional space generated by Laguerre func-
tion of order n − 1. Moreover, N. Vasilevski found the explicit expressions for the
reproduction kernels of all these function spaces.

We introduce as well the following bounded singular integral operators on L2(D):

(SDϕ)(z) = − 1

π

∫
D

ϕ(ζ )

(ζ − z)2
dν(ζ ),

(S∗
Dϕ)(z) = − 1

π

∫
D

ϕ(ζ )

(ζ − z)2
dν(ζ ),

where dν = dxdy is the usual Lebesgue measure on D. Dzhuraev [1] showed that
the orthogonal projections BD,n and B̃D,n of L2(D) onto the spaces A2

(n)(D) and

Ã2
(n)(D), respectively, can be expressed in the form

BD,n = I − (SD)n(S∗
D)n + Kn

and

B̃D,n = I − (S∗
D)n(SD)n + K̃n,

where Kn and K̃n are compact operators.MoreoverRamírez andSpitkovsky [8] proved
that the compact summands Kn and K̃n are equal to zero for D = �. Vasilevski [11]
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described a direct connection between the poly-Bergman type spaces on the upper
half-plane and the operators S� and S∗

�, each of them is unitary equivalent to the
direct sum of two unilateral shift operators with infinite multiplicity.

On the other hand, consider the algebra of pseudodifferential operators R(C(D);
SD, S∗

D
), which is generated by SD, S∗

D
and the multiplication operators a(z)I , where

a(z) ∈ C(D) and D is the unit disk {z : |z| < 1}. Sánchez-Nungaray and Vasilevski
[9] studied the C∗ algebra Tn(R(C(D), SD, S∗

D
)) generated by the Toeplitz opera-

tors over the poly-Bergman spaces of D with defining symbols from the algebra
R(C(D); SD, S∗

D
). They proved that the algebra Tn(R(C(D), SD, S∗

D
)) is unitary

equivalent to the matrix algebra

T (C(D)) ⊗ Mn(C),

where T (C(D)) is the algebra generated by the Toeplitz operators over the Bergman
spacewith symbols inC(D). The Fredholm symbol algebra of Tn(C(D)) is isomorphic
and isometric to C(S1), where S1 is the unit circle {z : |z| = 1}; while the Fredholm
symbol algebra of Tn(R(C(D); SD, S∗

D
)) is isomorphic and isometric to the matrix

algebra

Mn(C(S1)) = C(S1) ⊗ Mn(C).

Grudsky et al. [3] characterized all the commutative C*-algebras of Toeplitz oper-
ators acting on the Bergman space of the unit disk. Every commutative C∗-algebra
of Toeplitz operators arises from a class of symbols invariant under the action of a
maximal abelian group of Möbius transformations on the unit disk. There exist three
types of such maximal abelian groups: 1) the group of elliptic transformations, 2) the
group of parabolic transformations, 3) the group of hyperbolic transformations. Since
D and � are diffeomorphic to each other, all the commutative C*-algebras of Toeplitz
operators on the Bergman space of � are automatically classified.

Lozano and Loaiza [6,7] used the three classes of symbols described in the pre-
vious paragraph and studied the corresponding Toeplitz operator algebras acting on
the harmonic Bergman space. An interesting and unexpected result is that two such
operator algebras are commutative whereas the last one (hyperbolic case) is not.

The main result of this work is the isomorphic description of the C∗-algebra gen-
erated by the Toeplitz operators with bounded vertical symbols and acting over each
poly-Bergman space A2

n(�). This paper is organized as follows. In Sect. 2 we intro-
duce preliminary results about then-polyanalytic function spaces and their relationship
with the Laguerre polynomials. In Sect. 3 we prove that every Toeplitz operator, with
bounded vertical symbol a(z) and acting on A2

n(�), is unitary equivalent to a mul-
tiplication operator γ n,a(x)I acting on (L2(R+))n , where γ n,a(x) is a continuous
matrix-valued function on (0,∞).

Finally, in Sect. 4 we consider bounded vertical symbols having limit values at
y = 0,∞ and prove that the C∗ algebra T (n)

0∞ generated by all the Toeplitz operator
acting on A2

n(�) is isomorphic and isometric to the C∗-algebra

D = {M ∈ Mn(C) ⊗ C[0,∞] : M(0), M(∞) ∈ CI }.
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To prove the above statement, we will use the non-commutative Stone-Weierstrass
conjecture: LetB be aC*-subalgebra of a C*-algebraA, and suppose thatB separates
all the pure states ofA (and 0 ifA is non-unital). Then A = B. For type I C*-algebras
this conjecture was proved by Kaplansky [4]. In our case, we have that D is a type I
C*-algebra, and we prove that the C*-algebra T (n)

0∞ separates the pure states of D.

2 Bergman and Poly-Bergman Spaces

Let� be the upper half-plane inC, and consider the space L2(�, dν), where dν(z) =
dxdy is the usual Lebesgue measure and z = x+ iy. LetA2(�) be the Bergman space
of �, and B� be the Bergman projection ofA2(�). The Bergman spaceA2(�) is the
closed subspace of L2(�), which consists of all functions satisfying the equation

2
∂

∂ z̄
ϕ =

(
∂

∂x
+ i

∂

∂y

)
ϕ = 0.

Introduce the unitary operator

U1 = F ⊗ I : L2(�) = L2(R) ⊗ L2(R+) → L2(R) ⊗ L2(R+), (2.1)

where F is the Fourier transform given by

(Fh)(x) = 1√
2π

∫ ∞

−∞
h(t)e−i xt dt.

The image space A2
1 = U1(A2(�)) is the subspace of L2(�) which consists of

all functions ϕ(x, y) = √
2x f (x) e−xy , where f ∈ L2(R+) and R+ is the set of

the positive reals. Let χ+ be the characteristic function of R+. Then the orthogonal
projection B1 from L2(�) onto A2

1 is given by B1 = U1B�U
−1
1 , and

(B1ϕ)(x, y) = χ+(x) 2xe−xy
∫
R+

ϕ(x, t) e−xt dt.

Introduce the unitary operator U2 on L2(�) by the rule

(U2ϕ)(x, y) = 1√
2|x |ϕ

(
x,

y

2|x |
)

. (2.2)

Then B2 = U2B1U
−1
2 is the orthogonal projection from L2(�) onto A2

2 = U2(A2
1),

and is given by

(B2ϕ)(x, y) = χ+(x)e−y/2
∫
R+

ϕ(x, t)e−t/2dt.
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Introducing l0(y) = e−y/2, we have l0 ∈ L2(R+) and ||l0|| = 1. Denote by L0 the
one-dimensional subspace of L2(R+) generated by l0(y). Then the one-dimensional
projection P0 from L2(R+) onto L0 has the form

(P0φ)(y) = 〈φ, l0〉 · l0 = e−y/2
∫
R+

φ(v)e−v/2dv.

Theorem 2.1 (Vasilevski [10]) The unitary operator U = U2U1 gives an isometric
isomorphism of the space L2(�) = L2(R) ⊗ L2(R+), under which

1. The Bergman space A2(�) is mapped onto L2(R+) ⊗ L0.
2. The Bergman projection B� is unitary equivalent to the following one:

B2 := UB�U
−1 = χ+(x)I ⊗ P0.

The poly-Bergman spaceA2
n(�) consists of all n-analytic functions in L2(�), that

is, it is the closed subspace of L2(�) consisting of all functions satisfying the equation

(
∂

∂ z̄

)n

ϕ = 1

2n

(
∂

∂x
+ i

∂

∂y

)n

ϕ = 0.

Similarly, the anti-poly-Bergman space Ã2
n(�) consists of all functions in L2(�)

satisfying the equation (∂/∂z)n ϕ = 0. Introduce the true-poly-Bergman and true-
anti-poly-Bergman spaces as follows:

A2
(n)(�) = A2

n(�) � A2
n−1(�),

Ã2
(n)(�) = Ã2

n(�) � Ã2
n−1(�),

where A2
0(�) = Ã2

0(�) = {0}. Of course A2
1(�) = A2

(1)(�) is the usual Bergman
space.

Poly-Bergman spaces are related to Laguerre functions as shown below. Recall that
the Laguerre polynomial Ln(y) of degree n and type 0 is defined by

Ln(y) = ey

n!
dn

dyn
(e−y yn), n = 0, 1, 2, . . .

The system of Laguerre functions

ln(y) = (−1)ne−y/2Ln(y), n = 0, 1, 2, . . .

form an orthonormal basis for L2(R+). For n = 0, 1, . . ., denote by Ln the one-
dimensional space generated by ln(y). Further, define

L⊕
n =

n⊕
k=0

Lk .
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The one-dimensional projection P(n) from L2(R+) onto Ln is given by (P(n)φ)(y) =
〈φ, ln〉 · ln(y). Thus, Pn = P(0) ⊕· · ·⊕ P(n) is the orthogonal projection from L2(R+)

onto L⊕
n , and

(Pnφ)(y) =
n∑

k=0

〈φ, lk〉 · lk(y) =
n∑

k=0

lk(y)
∫
R+

φ(v)lk(v)dv.

Let B�,(n) and B�,n be the orthogonal projections from L2(�) onto A2
(n)(�) and

A2
n(�), respectively.

Theorem 2.2 (Vasilevski [10]) The unitary operator U = U2U1 gives an isometric
isomorphism of the space L2(�), under which

1. The true-poly-Bergman space A2
(n)(�) is mapped onto L2(R+) ⊗ Ln−1.

2. The true-poly-Bergman projection B�,(n) is unitary equivalent to the following
one:

U B�,(n)U
−1 = χ+(x)I ⊗ P(n−1).

3. The poly-Bergman space A2
n(�) is mapped onto L2(R+) ⊗ L⊕

n−1.
4. The poly-Bergman projection B�,n is unitary equivalent to the following one:

U B�,nU
−1 = χ+(x)I ⊗ Pn−1.

Introduce the isometric embedding

R0,(n) : L2(R+) → L2(R) ⊗ L2(R+)

by the rule

(R0,(n) f )(x, y) = χ+(x) f (x)ln−1(y).

Of course the adjoint operator R∗
0,(n) : L2(�) → L2(R+) is given by

(R∗
0,(n)ϕ)(x) = χ+(x)

∫
R+

ϕ(x, v)ln−1(v)dv.

Since the image of R0,(n) is the space U (A2
(n)(�)) = L2(R+) ⊗ Ln−1, we have

R∗
0,(n)R0,(n) = I : L2(R+) → L2(R+)

and

R0,(n)R
∗
0,(n) = χ+(x)I ⊗ P(n−1) : L2(�) → L2(R+) ⊗ Ln−1.
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On the other hand, we introduce the operator

R(n) = R∗
0,(n)U

which maps L2(�) onto L2(R+), and its restriction to A2
(n)(�) is an isometric iso-

morphism. Thus, the adjoint operator R∗
(n) = U∗R0,(n) is an isometric isomorphism

from L2(R+) onto the subspace A2
(n)(�). The operator R∗

(n) plays the same role as
the Bargmann transform does in the Segal–Bargmann space [10]. Thus we have

R∗
(n)R(n) = B�,(n) : L2(�) → A2

(n)(�)

and

R(n)R
∗
(n) = I : L2(R+) → L2(R+).

Similarly, introduce the isometric embedding

R0,n : (L2(R+))n → L2(R) ⊗ L2(R+)

by the rule

(R0,n f )(x, y) =
n∑

k=1

χ+(x) fk(x)lk−1(y)

= χ+(x)[Nn(y)]T f (x),

where f = ( f1, . . . , fn)T ,

Nn(y) = (l0(y), . . . , ln−1(y))
T ,

and the super-script T means that we are taking the transpose matrix. Further, the
adjoint operator R∗

0,n : L2(�) → (L2(R+))n is given by

(R∗
0,nϕ)(x) =

(
χ+(x)

∫
R+

ϕ(x, y)l0(y)dy, . . . , χ+(x)
∫
R+

ϕ(x, y)ln−1(y)dy

)T

= χ+(x)
∫
R+

ϕ(x, y)Nn(y)dy.

Since the image of R0,n is the space U (A2
n(�)) = L2(R+) ⊗ L⊕

n−1, we have

R∗
0,n R0,n = I : (L2(R+))n → (L2(R+))n

and

R0,n R
∗
0,n = χ+ I ⊗ Pn−1 : L2(�) → L2(R+) ⊗ L⊕

n−1.
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Now the operator
Rn := R∗

0,nU (2.3)

maps L2(�)onto (L2(R+))n , and its restriction toA2
n(�) is an isometric isomorphism.

Furthermore, the adjoint operator R∗
n = U∗R0,n is an isometric isomorphism from

(L2(R+))n onto the space A2
n(�). Thus

R∗
n Rn = B�,n : L2(�) → A2

n(�)

and

RnR
∗
n = I : (L2(R+))n → (L2(R+))n .

3 Toeplitz Operators with Vertical Symbol

In this section we introduce a certain class of Toeplitz operators acting on the poly-
Bergman spaces, and we prove that they are unitarily equivalent to multiplication
operators by continuous matrix-valued functions on (0,∞). Let a(z) = a(y) be a
function in L∞(�) depending only on y = Im z. We shall say that a(z) = a(y) is
a vertical symbol. The Toeplitz operator acting on A2(�) with symbol a(y) is the
operator defined by

Ta : ϕ ∈ A2(�) �−→ B�(aϕ) ∈ A2(�).

Theorem 3.1 (Vasilevski [12]) For any a(y) ∈ L∞(�), the Toeplitz operator Ta act-
ing on A2(�) is unitary equivalent to the multiplication operator γa(x)I = R0Ta R∗

0
acting on L2(R+), where R0 is defined in (2.3). The function γa is given by

γa(x) =
∫
R+

a

(
y

2|x |
)
e−ydy.

Our aim is to generalize this known result for Toeplitz operators acting on the poly-
Bergman spaces. The Toeplitz operator acting on A2

(n)(�) with symbol a(z) = a(y)
is the operator

T(n),a : ϕ ∈ A2
(n)(�) �−→ B�,(n)(aϕ) ∈ A2

(n)(�).

Theorem 3.2 For any a(y) ∈ L∞(�), the Toeplitz operator T(n),a acting onA2
(n)(�)

is unitary equivalent to the multiplication operator γ(n),a I = R(n)T(n),a R∗
(n) acting

on L2(R+), where the function γ(n),a is given by

γ(n),a(x) =
∫
R+

a

(
y

2|x |
)

(ln−1(y))
2dy. (3.1)
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Proof We have
R(n)T(n),a R

∗
(n) = R(n)B�,(n)aB�,(n)R

∗
(n)

= R(n)R
∗
(n)R(n)aR

∗
(n)R(n)R

∗
(n)

= (R(n)R
∗
(n))R(n)aR

∗
(n)(R(n)R

∗
(n))

= R(n)aR
∗
(n)

= R∗
0,(n)U2U1a(y)U−1

1 U−1
2 R0,(n)

= R∗
0,(n)U2a(y)U−1

2 R0,(n)

= R∗
0,(n)a

(
y

2|x |
)
R0,(n).

Finally(
R∗
0,(n)a

(
y

2|x |
)
R0,(n) f

)
(x)=

∫
R+

a

(
y

2|x |
)

f (x)(ln−1(y))
2dy=γ(n),a(x) · f (x).

��
The Toeplitz operator acting on A2

n(�) with vertical symbol a(z) = a(y) is the
operator

Tn,a : ϕ ∈ A2
n(�) �−→ B�,n(aϕ) ∈ A2

n(�).

Theorem 3.3 For any a(y) ∈ L∞(�), the Toeplitz operator Tn,a acting onA2
n(�) is

unitary equivalent to the matrix multiplication operator γ n,a(x)I = RnTn,a R∗
n acting

on (L2(R+))n, where the matrix-valued function γ n,a = (γ
n,a
i j ) is given by

γ n,a(x) :=
∫
R+

a

(
y

2|x |
)
Nn(y)[Nn(y)]T dy, (3.2)

that is,

γ
n,a
i j (x) =

∫
R+

a

(
y

2|x |
)
li−1(y) l j−1(y) dy, (3.3)

for i, j = 1, . . . , n.

Proof We have

RnTn,a R
∗
n = RnB�,naB�,n R

∗
n

= RnR
∗
n RnaR

∗
n Rn R

∗
n

= (RnR
∗
n)RnaR

∗
n(RnR

∗
n)

= RnaR
∗
n

= R∗
0,nU2U1a(y)U−1

1 U−1
2 R0,n

= R∗
0,nU2a(y)U−1

2 R0,n

= R∗
0,na

(
y

2|x |
)
R0,n .
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For f = ( f1, . . . , fn)T ∈ (L2(R+))n ,

[
R∗
0,na

(
y

2|x |
)
R0,n f

]
(x) = R∗

0,n

(
a

(
y

2|x |
)

χ+(x)[Nn(y)]T f (x)

)

= χ+(x)
∫
R+

[
a

(
y

2|x |
)

[Nn(y)]T f (x)

]
Nn(y) dy

= χ+(x)
∫
R+

a

(
y

2|x |
)
Nn(y)[Nn(y)]T f (x) dy

= χ+(x) γ n,a(x) f (x).

Finally, it is easy to see that each component of γ n,a is given by (3.3). ��

The component function (3.3) is bounded because of the Cauchy–Schwarz inequal-
ity. Further

γ
n,a
i j (x) = 2|x |

∫
R+

a(y) li−1(2|x |y) l j−1(2|x |y) dy.

Thus, the continuity of li−1(2xy)l j−1(2xy) implies the continuity of γ
n,a
i j (x) on

(0,∞).

4 C∗-Algebra Generated by Toeplitz Operators

Denote by L{0,+∞}∞ (R+) the closed subspace of L∞(R+) which consists of all func-
tions having limit values at the “endpoints” 0 and +∞, i.e., for each a ∈ L{0,∞}∞ (R+)

the following limits exist

lim
y→0

a(y) = a(0) and lim
y→+∞ a(y) = a(+∞).

We will identify the functions a ∈ L{0,∞}∞ (R+) with their extensions a(z) = a(y)
to the upper half-plane �, where y = Im z. We shall say that a ∈ L{0,∞}∞ (R+) is a
vertical symbol.

In this section we study the C∗-algebra generated by all the Toeplitz operators on
A2

n(�) with such vertical symbols.

Lemma 4.1 Take a vertical function a(y) ∈ L{0,+∞}∞ (R+), and let

a0 = lim
y→0+ a(y),

a∞ = lim
y→+∞ a(y).
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Then the matrix-valued function γ n,a(x) satisfies

a∞ I = lim
x→0+ γ n,a(x),

a0 I = lim
x→+∞ γ n,a(x).

Proof We will calculate the limit value of each entry of γ n,a . Consider Ci j =∫ ∞
0 |li−1(y)l j−1(y)|dy. Take ε > 0. Then there exists y0 > 0 such that

∫ ∞
y0

|li−1(y)
l j−1(y)|dy < ε. Assume that a0 = 0. Let δ be a positive number such that |a(t)| < ε

for 0 < t < δ. Then

|γ n,a
i j (x)| ≤

∫ y0

0

∣∣∣a ( y

2x

)
li−1(y)l j−1(y)

∣∣∣ dy +
∫ ∞

y0

∣∣∣a ( y

2x

)
li−1(y)l j−1(y)

∣∣∣ dy
≤ Ci j max

0<y<y0

∣∣∣a ( y

2x

)∣∣∣ + ‖a‖∞ε.

Let N = y0/(2δ). We have |y/(2x)| < δ for x > N and y ∈ (0, y0). Thus |γ n,a
i j (x)| ≤

(Ci j + ‖a‖∞)ε for x > N . We have proved that lim
x→+∞ γ na

i j (x) = 0. If a0 �= 0, take

b(y) = a(y) − a0. Then

lim
x→+∞ γ

n,a
i j (x) = lim

x→+∞ γ
n,b
i j (x) + lim

x→+∞ γ
n,a0
i j (x)

= a0

∫ ∞

0
li−1(y)l j−1(y)dy

= a0δi j .

The proof of the equality lim
x→0

γ
n,a
i j (x) = a∞δi j is similar. ��

Let Mn(C) denote the algebra of all n × n matrices with complex entries. Let
C = Mn(C) ⊗ C[0,∞], and let D be the C∗-subalgebra of C given by

D = {M ∈ C : M(0), M(∞) ∈ CI }.

Let B be the C∗-subalgebra of D generated by all the matrix-valued functions
γ n,a(x), with a ∈ L{0,+∞}∞ (R+). Obviously B is isomorphic to the C∗-algebra gen-
erated by all the Toeplitz operators Tn,a . We will prove that B = D by using a
Stone–Weierstrass theorem [4]. Actually, we are going to prove that B separates all
the pure states of D. We know that D is a C*-bundle, and the set of its pure states is
given by the pure states on the fibersD(x0) = {M(x0) : M ∈ D}, where x0 ∈ [0,∞].
See [2] for more details. Thus, each pure state ofD has the form

f (M) = fx0(M(x0)), M ∈ D,

where x0 ∈ [0,∞], and fx0 is a pure state of D(x0). Of course D(x0) = Mn(C) for
x0 ∈ (0,∞), whereas D(x0) = CI for x0 = 0,∞.
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For a matrix A = (ai j ) ∈ Mn(C), let tr A denote the trace of A, that is, tr A =∑n
i=1 aii . Further, consider the following linear functional on Mn(C) associated to

A:

f A(Q) =
n∑

i, j=1

ai j qi j , Q = (qi j ) ∈ Mn(C).

Consider the set of all positive matrices of trace 1:

Mtr=1+ = {A = (ai j ) ∈ Mn(C)| A ≥ 0 and tr A = 1}.

Theorem 4.2 (Lee [5])Let Stn denote the set of all states of thematrix algebra Mn(C).
We have

1. The functional fA belongs to Stn if and only if A belongs to Mtr=1+ . The mapping
A �→ f A is a one-to-one correspondence from Mtr=1+ onto St (Mn).

2. The functional fA is a pure state of Mn(C) if and only if A ∈ Mtr=1+ is an
orthogonal projection with rank 1. In such a case, there exists an unit vector
v ∈ C

n such that A = vvT , and

fA(Q) = 〈Qv, v〉,

where 〈·, ·〉 denotes the usual inner product on C
n.

Thus, the set of pure states of D consists of all functionals having the form

fx0,v(M) = 〈M(x0)v, v〉, M ∈ D,

where x0 ∈ (0,∞) and v is a unit vector in C
n , or x0 = 0,∞ and v = (1, 0, . . . , 0)T .

That is,D(x0) has only one state for x0 = 0,∞.
Let F0, F∞ be the (pure) states of D(0) and D(∞), respectively. If a(z) is any

vertical symbol in L{0,+∞}∞ (R+) satisfying a0 �= a∞, then F0(γ n,a(x)) = a∞ and
F∞(γ n,a(x)) = a0. Thus, F0 and F∞ are separated by γ n,a(x). In the general case,
we will separate pure states using vertical symbols of the form c(z) = χ[α,β](y), for
which

γ n,c(x) =
∫
R+

c

(
y

2|x |
)
Nn(y)[Nn(y)]T dy

=
∫ 2βx

2αx
Nn(y)[Nn(y)]T dy.

Let v ∈ C
n be a unit vector. Consider the function hv(y) = |〈v, Nn(y)〉|2. We have

hv(y) = qv(y)e−y , where

qv(y) = |v0L0(y) + · · · + vn−1(−1)n−1Ln−1(y)|2
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is a polynomial of degree at most 2n − 2 taking non-negative values. Of course, there
exists Kv > 0 such that hv(y) is decreasing on [Kv,∞).

Lemma 4.3 Let v ∈ C
n be a unit vector, and γ n,c(x) be the symbol of the Toeplitz

operator Tn,c, where c = χ[α,β]. Let Kv be a positive real number such that hv(y)
is decreasing on [Kv,∞). If 0 < x0 < x1 < ∞ and α, β satisfy Kv < 2αx0 and
x0
x1

< α
β

< 1, then γ n,c(x) separates the pure state fx0,v from fx1,v .

Proof We have

fx0,v(γ
n,c(x)) = 〈γ n,c(x0)v, v〉,

=
〈∫ 2βx0

2αx0
Nn(y)[Nn(y)]T dy v, v

〉

=
∫ 2βx0

2αx0
〈Nn(y)[Nn(y)]T v, v〉 dy

=
∫ 2βx0

2αx0
〈v, Nn(y)〉〈Nn(y), v〉 dy

=
∫ 2βx0

2αx0
|〈v, Nn(y)〉|2 dy.

From x0
x1

< α
β

< 1 we get Kv < 2αx0 < 2βx0 < 2αx1 < 2βx1. Thus, the
matrix-valued function γ n,c(x) separates the pure states fx0,v, fx1,v:

fx0,v(γ
n,c(x)) =

∫ 2βx0

2αx0
hv(y) dy

>

∫ 2βx1

2αx1
hv(y) dy

= fx1,v(γ
n,c(x)).

��
Consider c(z) = χ[α,β](y) and x0 ∈ (0,∞). Then the function γ n,c(x) separates

fx0,v from F0 and F∞ because fx0,v(γ
n,c(x)) > 0 and F0(γ n,c(x)) = F∞(γ n,c(x)) =

0.
Lemma 4.4 below says that the functions γ n,c(x) separates the pure states

fx0,v, fx1,w from each other if x0 �= x1, with x0, x1 ∈ (0,∞).

Lemma 4.4 Let v,w ∈ C
n be unit vectors, and x0, x1 ∈ (0,∞). Let γ n,c(x) be the

symbol of the Toeplitz operator Tc,n, where c = χ[α,β]. Suppose that

fx0,v(γ
n,c(x)) = fx1,w(γ n,c(x)), f or all 0 < α < β < ∞.

Then x0 = x1 and

|〈v, Nn(y)〉|2 = |〈w, Nn(y)〉|2 f or all y ∈ (0,∞).
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Proof The assumption fx0,v(γ
n,c(x)) = fx1,w(γ n,c(x)) means

∫ 2βx0

2αx0
hv(y) dy =

∫ 2βx1

2αx1
hw(y) dy.

Take the derivative with respect to β in both sides of this equation:

2x0 hv(2βx0) = 2x1 hw(2βx1), ∀β

x0 qv(2βx0)e
−2βx0 = x1 qw(2βx1)e

−2βx1 , ∀β

x0 qv(2βx0) = x1 qw(2βx1)e
2β(x0−x1), ∀β.

Since qv, qw are polynomials, the exponential growth behavior in both sides of this
equation implies that x0 = x1. Therefore qv(2βx0) = qw(2βx0) for all β > 0, which
means that the polynomials qv, qw are equal to each other. Thus hv(y) = hw(y), that
is, |〈v, Nn(y)〉|2 = |〈w, Nn(y)〉|2 ∀y. ��
Lemma 4.5 Let y1, . . . , yn be positive real numbers different from each other. Then
the set {Nn(yk)}nk=1 is a basis for C

n. Actually, the determinant of the matrix N =
[Nn(y1), . . . , Nn(yn)]T is given by

det N = e−(y1+···+yn)/2∏n−1
k=1 k!

∏
1≤i< j≤n

(y j − yi ).

Proof Since Nn(y) = e−y/2(L0(y),−L1(y), . . . , (−1)n−1Ln−1(y))T we have

N = D

⎛
⎜⎜⎜⎜⎝

L0(y1) −L1(y1) · · · (−1)n−1Ln−1(y1)

L0(y2) −L1(y2) · · · (−1)n−1Ln−1(y2)
...

...
...

L0(yn) −L1(yn) · · · (−1)n−1Ln−1(yn)

⎞
⎟⎟⎟⎟⎠ ,

where D = diag{e−y1/2, . . . , e−yn/2}. Since 1/k! is the leading coefficient of
(−1)k Lk(y),

(−1)k Lk(y) = 1

k! (y
k + lower degree terms)

Therefore the determinant of N has the form

det N = det D∏n−1
k=0 k!

∣∣∣∣∣∣∣∣∣∣

1 y1 + a0 y21 + b1y1 + b0 · · · yn−1
1 + · · ·

1 y2 + a0 y22 + b1y2 + b0 · · · yn−1
2 + · · ·

...
...

...
...

1 yn + a0 y2n + b1yn + b0 · · · yn−1
n + · · ·

∣∣∣∣∣∣∣∣∣∣
.
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Applying the linearity of the determinant with respect to the second column, and then
with respect to the third column, and so on, we get

det N = det D∏n−1
k=0 k!

∣∣∣∣∣∣∣∣∣∣

1 y1 y21 · · · yn−1
1

1 y2 y22 · · · yn−1
2

...
...

...
...

1 yn y2n · · · yn−1
n

∣∣∣∣∣∣∣∣∣∣
.

We have here the Vandermonde determinant, it is well known its value. ��
Next lemma completes the separation of all pure states.

Lemma 4.6 Let v,w ∈ C
n be unit vectors, and x0 ∈ (0,∞). Let γ n,a(x) and γ n,b(x)

be the symbols of the Toeplitz operators Tn,a and Tn,b, respectively, where a = χ[0,α]
and b = χ[0,β]. Suppose that

fx0,v(γ
n,a(x)γ n,b(x)) = fx0,w(γ n,a(x)γ n,b(x)), ∀α, β ∈ [0,∞]. (4.1)

Then v = λw, where λ is a uni-modular complex number, that is, fx0,v = fx0,w.

Proof Note that γ n,b(x) = I if β = ∞. Thus fx0,v(γ
n,a(x)) = fx0,w(γ n,a(x))

∀α ∈ (0,∞). Since c = χ[α,β] = χ[0,β] − χ[0,α] for α < β we have
fx0,v(γ

n,c(x)) = fx0,w(γ n,c(x)). According to Lemma 4.4, we have |〈v, Nn(y)〉|2 =
|〈w, Nn(y)〉|2 ∀y. Therefore

〈v, Nn(y)〉 = eiθ(y)〈w, Nn(y)〉 ∀ y,

where θ(y) is a certain function. On the other hand, the assumption (4.1) means that

〈γ n,a(x0)γ
n,b(x0)v, v〉 = 〈γ n,a(x0)γ

n,b(x0)w,w〉. (4.2)

Since

γ n,a(x0) =
∫ 2αx0

0
Nn(y)[Nn(y)]T dy,

the left-hand side of (4.2) equals

vT
(∫ 2αx0

0
Nn(y)[Nn(y)]T dy

) (∫ 2βx0

0
Nn(t)[Nn(t)]T dt

)
v.

Without lost of generality we can assume that x0 = 1/2. By taking partial derivatives
with respect to α and β in the left-hand side of (4.2), we get

vT
(
Nn(α)[Nn(α)]T

) (
Nn(β)[Nn(β)]T

)
v.
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We have Nn(β) �= 0 for every positive number β according to Lemma 4.5. Thus,
eα/2Nn(α)T Nn(β) is a nonzero polynomial with respect α, and it could be the zero
scalar for at most n − 1 values of α. Therefore, if we take partial derivatives in both
sides of (4.2), we obtain

vT Nn(α)[Nn(β)]T v = wT Nn(α)[Nn(β)]Tw

or

〈v, Nn(α)〉〈v, Nn(β)〉 = 〈w, Nn(α)〉〈w, Nn(β)〉
〈w, Nn(α)〉〈w, Nn(β)〉eiθ(β)−iθ(α) = 〈w, Nn(α)〉〈w, Nn(β)〉

Thus eiθ(β)−iθ(α) = 1 for all α, β, which means 〈v, Nn(y)〉 = eiθ0〈w, Nn(y)〉 for all
y ∈ (0,∞) and some constant θ0. If u = v − eiθ0w, then 〈u, Nn(y)〉 = 0. Take now
n values for y in the last equation, then

〈u, Nn(yk)〉 = 0, k = 1, . . . , n.

Thus, u must be the zero vector because of {Nn(yk)}nk=1 is a basis for C
n . ��

We are going to describe now the C*-algebra generated by the Toeplitz operators.
The non-commutative Stone-Weierstrass conjecture Let B be a C*-subalgebra of a
C*-algebra A, and suppose that B separates all the pure states of A (and 0 if A is
non-unital). Then A = B.

Kaplansky [4] proved this conjecture for type I (or GCR) C*-algebras. Recall that
A is a type I C*-algebra if K ⊂ π(A) for every irreducible representation π of A on
a Hilbert space H , where K is the ideal of all compact operators. In our case, D is a
type I C*-algebra, and B separates the pure states ofD.

Let T n
0∞ be the C*-algebra generated by all the Toeplitz operators Tn,a acting on

the poly-Bergman space A2
n(�), with a ∈ L{0,∞}∞ (R+).

Theorem 4.7 The C*-algebra T n
0∞ is isomorphic and isometric to the C*-algebraD.

The isomorphism is given by

T n
0∞ : Tn,a �−→ (Sym Tn,a)(x) = γ n,a(x),

where γ n,a(x) is given in (3.2).

Let T (n)
0∞ be the C*-algebra generated by all the Toeplitz operators T(n),a acting on

the true-poly-Bergman space A2
(n)(�), with a ∈ L{0,∞}∞ (R+).

Theorem 4.8 The C*-algebra T (n)
0∞ is isomorphic and isometric to the commutative

C*-algebra C[0,∞]. The isomorphism is given by

T (n)
0∞ : T(n),a �−→ (Sym T(n),a)(x) = γ(n),a(x),

where γ(n),a(x) is given in (3.1).
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