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Abstract Let w = P[F]be aharmonic mapping of the unit disk D with the boundary
function F. By using Poisson formula, we obtain some better estimates on Bloch
constants for planar harmonic mappings.
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1 Introduction

Let H (D) denote the class of holomorphic functions in the unitdisk D = {z : |z| < 1}.
Given a function f € H(ID) define By to be the least upper bound of all numbers
b > 0 such that there exists a number zg € C and aregion 2 € D which is univalently
mapped onto {z € C : |z — z09| < b} by f. The Bloch’s constant B is defined as (cf.
(2D

B :=inf{B;: f € H[D) and f'(0) = 1}.
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The best known bounds for B at present are (cf. [1,3])

V3

2o 42x107%<B < V3-1 Ird/3)rdai1/i2)
4 =b=

2 T(1/4)

)

where I' is the Gamma function. However, the exact value of B is still unknown.

Let Hy;(ID) denote the class of functions f € H (D) with | f(z)| < M for z € D.
The classical Landau theorem states that if f € Hy (D) with £(0) = f/(0) — 1 =0,
then f is univalentin the disk |z| < po with pg = m and f(|z] < pp) contains
adisk |w| < o9 with 09 = Mpj. This result is sharp (cf. [8]).

Define complex derivatives of w(z) as follows:

1 , 1
w; == (wy —iwy) and w;:= 3

3 (wy +iwy) . (1.1)

where z = x + iy. A complex-valued function w on D is harmonic if it is twice
continuously differentiable and satisfies Laplace’s equation:

92 92
w+—w:0 for z € D.

Aw = 4U)zz = ﬁ 8y2

We refer to the book of Duren [5,6] for good setting of harmonic mappings. Let

Ap(@) = max e w.(2) + e wz(0)| = [we (@) + [wz )]

and

Jp(@) = min (e *w:(2) + ¢ wz ()] = flwe )] — w1

It is well known that w(z) is locally univalent and sense-preserving in D if and only
if its Jacobian satisfies the following condition.

Juw @) = w.(2)]> = lw=(2)|* >0 forz € D.

We know from Poisson formula that every bounded harmonic mapping w defined
in D has the representation

2
w(z) = P[F1(z) = / P(r,t —@)F()dt, z=re¥ eD, (1.2)
0

where F is the boundary function defined on the unit circle T := {z : |z|] = 1} and

1—r2

1
P(r,t — = — s
r ¢) 2w 1 —2rcos(t — ) + r2
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denote the Poisson kernel. In what follows we write F(¢) instead of F(e'’) for the
boundary function (cf. [9,10]).

For harmonic mappings in D, under suitable restriction we can obtain its Bloch and
Landau theorems. For r > 0, let D, = {z € C: |z| < r}. In [4], Chen et al. proved
the Landau theorem for harmonic mappings as follows.

Theorem A Let w be a harmonic mapping of D satisfies w(0) = wz(0) = w;(0) —
1 =0and |w(z)| < M for z € D. Then w is univalent in the disk D,,, where

2

T 1
re= A (1.3)
lemM  11.105M
and w(D,,) contains a schlicht disk Dg,, where
Ri="1~ ! (1.4)
T2 nam '

Here m ~ 6.85 is the minimum of the function (3 — r2)/(r(1 — rz))for O<r<l1.

By using sharp coefficients estimate, the authors in [7] improved a version of Landau
theorem for the class of bounded harmonic mappings.

Theorem B Let w be a harmonic mapping of D satisfies w(0) = wz(0) = w,(0)—1 =
0 and \w(z)| < M for z € D. Then w is close-to-convex (univalent) in the disk D,,,
where

1 M (1.5)
rmn=1-— .
2 AM + 1
and w(D,,) contains a schlicht disk Dg,, where
aM ;’22
Ry=rp— — . (1.6)
T 1—mr

By using Poisson formula, we obtain better estimates on Bloch constants for planar
harmonic mappings.

2 Auxiliary Results

Lemma 2.1 Let z = pe'? € D. Then

2 .
1 |z||2—e’”zldt_ 2p/2 = p?

T |e”—z|2 - 1—,02 ’
0

2.1

where 0 < p < 1land(0 <6 <2m.
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Proof Let ¢ = ¢!’ € T. According to the residue theorem, we see that

2 . 2
L[l —ee 1 / py/A—4pcos® —1) +p?
T leit — z|2 T 1 —2pcos(® —1t) + p?

0 0

_ L[ V@) 2 e g
omi (14 p2)¢ — pe=i¥(e%0 +¢2)
l¢|=1

_ 1 f Py (4 + p?) = 2pe=i0 (X% 4 ¢2) /¢ dr
B, _hp—i0ryF _ i0 _ i0

mm_l pe~'1¢ — pe'?1lE — (1/p)e'’]
_ 2py2—p?
=7

This completes the proof. O

Lemma 2.2 Let 0 < o < 27w and w = P[F] be a harmonic mapping in D with the
boundary function F. Then

e, (2) + e wz(z)

2
. . 1 L2y —it 2
- e’“wz(0)+e_’“wg(0)+—/Re de "¢l piyar, (22
T (e” _ Z)2
0

where 7 = re'? e .

Proof For each z = re'? e I, it follows from (1.2) that

o o
1 e'"F(t) 1 ZF (1)
w(z) = P[F](2) = —— : di + — [ = drt. (2.3)
2 et — z 2m ) el —z
0 0

St Let o € [0,27] be an

(el —2)?

arbitrary constant. Then

2 itp 2
Then w,(z) = % - W dt and w:(z) = % Ik
0 0

2 .
i _ ia e'” 3 e” 1
e“w (z) =e wz(0)+§ @ F(t)dt
0
2

. eia 27 — Z26—1't
= e”"wz(O) + E / wF(Z‘)dl‘.
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Similarly, we can obtain

2

_ A —ia [ oz _ 52,
e ws(z) = e ws (0) + C_*CF(dr.

2 (e7it —2)
0
Equality (2.2) holds directly from the above two equalities. O

3 Main Results

Theorem 3.1 Let w = P[F] be a harmonic mapping of D satisfies w(0) = wz(0) =
w;(0) — 1 = 0and |w(z)| < M for z € D, where M > 1 and F is the boundary
function. Then w is univalent in the disk D,,, where

= /1 M 3.1
N e oD
is the root of the equation 1 — ZMT_— vr227r2 = 0 and w(D,,) contains a schlicht disk

Drg,, where

J2-r5+1
RO:ro—log—o+2,/2—r§+2[1og(ﬁ+1)—JE]. (3.2)
J2-rd -1

Proof For0 <r < 1,take z1,z0 € D,.. Let £ : z(x) = z1 + (22 — z1)x = p(x)e
be the segment line of z; and z7, where 0 < x < 1. Then

i6(x)

lw(z1) — w(z2)]

/ (022002 () + w2227 | dx

14

1
21 = 22] / [, (@00) + e ws ) | .
0

s4/2—52

1—s2

where o = arg(z; — z2) € [0, 2r]. Since 0 < p(x) < r < 1 and the function
is an increasing function for 0 < s < 1, we see that

/lp(X)\/Z—pz(X)dx 2

1 —p2%(x) - 1—r2
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Applying w;(0) = w,(0) — 1 = 0 together with (2.2) and Lemma 2.1 we see that

1

/ [ei“wz(z(x)) + e_i“wz(Z(X))] dx

0
i 22(x) — e 122 (x)
. - 2z(x) —e M7 (x
ey R o 4 F)dt | d
¢tz /e[e (@ —z(0))? } (ndr | dx
0
>1 dt | dx

lei — z(x)[?

1 .
M / [ le@I2 - e 2]
T
0

_ _M/ 2p(x)v/2 — pz(x

1 —p%(x)
0
2Mr~2 —r?
- 1—r2
Hence,
MNP
lw(z1) — w(z2)| > |z1 — 22| (1 - T) 3.3)

2Mr/2—r2 _ _ 2M . . .
Let1— o= =0.Thenrg=_/1 NiEvTL This shows that w(z) is univalent

in the disk D,,. Let z = roe'? e dD,,. Then according to (2.2) and Lemma 2.1, we
have

ro

lw(rpe'?)| = / [wz(xei‘p)ei‘p + wz(xei“’)e_i‘p] dx

0
.
02x»\/2—x2
S B
0
J2—r2 41
0
—r—log¥—2 1o 2—r§+2[log(«/§+l)—«/§]
J2-r5—1
= Ryp.

We see that w(ID,,) contains the schlicht disk Dg,.
The proof is completed. O



Landau Theorem for Planar Harmonic Mappings 1825

Remark 3.2 For1 < M < 5.07, we see that rp < rg. Let
roif 1 <M <5.07
ry if M > 5.07.

Then w(z) is univalent in the disk D,g, where rg‘ > ro > rj. This shows that our
Theorem 3.1 has improved the former results.

Theorem 3.3 Let w = P[F] be a harmonic mapping of D satisfies w(0) = wz(0) =

w;(0) — 1 = 0 and |w(z)| < M for z € D, where M > 1 and F is the boundary
function. Then

. M2 =12 .
Aw(re'®y <1+ % for z=ré® €D (3.4)
—r
and
. M2 =72 .
h(re®) = 1= == for z=ré” €D, (3.5)
—r

Proof Let z = re? e D. According to (2.2) and Lemma 2.1, we have

27 — —it 2
e —/Re [e’“ (Z” ¢ )i ]F(t)dt

—ia

¢, (2) + e wi (2)|

M [ lzl[2 — e~itz]

<1

- + |ett_Z|2
0

s 2Mra/2 —r?

1—r2
This shows that A, < 1+ 242222 Similarly,

2 .
M [ z]]2—e"z]

(@) + e w0 21— = [ o B
b et — z|?
0
N
B 1—r2
This implies that
2Mry/2 —r?

It follows from (3.3) that 1 — 2MI2-r- V};ﬂ > 0 holds for 0 < r < ry.

The proof is completed. O
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