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Abstract We describe the (p, q) Fock–Carleson measures for weighted Fock–
Sobolev spaces in terms of the objects (s, t)-Berezin transforms, averaging func-
tions, and averaging sequences on the complex space C

n . The main results show
that while these objects may have growth not faster than polynomials to induce the
(p, q) measures for q ≥ p, they should be of L p/(p−q) integrable against a weight
of polynomial growth for q < p. As an application, we characterize the bounded
and compact weighted composition operators on the Fock–Sobolev spaces in terms
of certain Berezin type integral transforms on C

n . We also obtained estimation results
for the norms and essential norms of the operators in terms of the integral transforms.
The results obtained unify and extend a number of other results in the area.
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1 Introduction

The classical weighted Fock space F p
α consists of entire functions f on C

n for
which
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‖ f ‖p
p =

(αp

2π

)n
∫

Cn

| f (z)|pe− αp
2 |z|2 dV (z) < ∞

where dV denotes the usual Lebesgue measure on C
n, 0 < p < ∞, and α is a positive

parameter. For p = ∞, the corresponding space consists of all such f ’s for which

‖ f ‖∞ = sup
z∈Cn

| f (z)|e− α
2 |z|2 < ∞.

The space F2
α , in particular, is a reproducing kernel Hilbert space with kernel and

normalized reproducing kernel functions respectively given by Kw(z) = eα〈z,w〉 and
kw(z) = eα〈z,w〉−α|w|2/2 where

〈z, w〉 =
n∑

j=1

z jw j , |z| = √〈z, z〉, w = (w j ), z = (z j ) ∈ C
n .

For an n-tuple β = (β1, β2, . . . , βn) of nonnegative integers we also write ∂β =
∂
β1
1 ...∂

βn
n where ∂ j denotes partial differentiation with respect to the j-th component.

For any non-negative integer m and 0 < p ≤ ∞, the weighted Fock–Sobolev spaces
F p
(m,α) of order m consists of entire functions f on C

n such that

‖ f ‖(p,m) =
∑
βsn≤m

‖∂β f ‖p < ∞ (1.1)

where βsn = β1 + β2 + · · · + βn . These spaces have recently been introduced by
Cho and Zhu [9], and one of their main results provides the following useful Fourier
characterization of the spaces.

Lemma 1.1 Let 0 < p ≤ ∞. Then an entire function f on C
n belongs to F p

(m,α)

if and only if zβ f belongs to F p
α for all nonnegative multi-indices β with βsn = m

where zβ = zβ1
1 zβ2

2 zβ3
3 ...z

βn
n .

As a consequence of this lemma, it was proved that the norm in (1.1) is comparable to

‖ f ‖(p,m) =
⎛
⎝C(p,m,n)

∫

Cn

|z|mp| f (z)|pe− αp
2 |z|2 dV (z)

⎞
⎠

1/p

(1.2)

for 0 < p < ∞ and

C(p,m,n) =
(αp

2

)(mp/2)+n �(n)

πn�((mp)/2 + n)
,

where � denotes the Gamma function. For p = ∞, the corresponding norm is

‖ f ‖(∞,m) = sup
z∈Cn

|z|m | f (z)|e− α
2 |z|2 . (1.3)
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We find it more convenient to use this equivalent norm through out the rest of the paper.
We note in passing that the Fock–Sobolev spaces of order m can also be considered as
a weighted (generalized) Fock spaces F p

ϕm consisting of entire functions f for which

(αp

2π

)n
∫

Cn

| f (z)|pe−pϕm (z)dV (z) < ∞

for 0 < p < ∞ and supz∈Cn | f (z)|e−ϕm (z) < ∞ for p = ∞ where ϕm(z) =
−m log(1 + |z|)+ α|z|2/2.

We next recall the notion of lattice for the space C
n . For a positive r we denote by

D(z, r) the set {w ∈ C
n : |z − w| < r}. We say that a sequence of distinct points

(zk)k∈N ⊂ C
n is an r/2− lattice for C

n if the sequence of the balls D(zk, r), k ∈
N constitutes a covering of C

n and the balls D(zk, r/2) are mutually disjoint. The
sequence (zk), k ∈ N will refer to such r/2 lattice with a fixed r in the remaining part
of the paper. An interesting example of such a lattice can be found in [15].

Lemma 1.2 Let r > 0 and (zk)k∈N be an r/2− lattice for C
n. Then there exists a

positive integer Nmax such that every point in C
n belongs to at most Nmax of the balls

D(zk, 2r).

The proof of the lemma can be found in [24,33] where in [24] a more general setting
has been considered.

Letμ be a positive Borel measure on C
n .Then its average on D(z, r) is the quantity

μ(D(z, r))/V ol(D(z, r)) where V ol(D(z, r)) is the Euclidean volume of the ball
which is a constant for all z in C

n . In what follows, we simply refer μ(D(., r)) as an
averaging function of μ, and μ(D(zk, r)) as its averaging sequence.

A word on notation: The notation U (z) � V (z) (or equivalently V (z) � U (z))
means that there is a constant C such that U (z) ≤ CV (z) holds for all z in the set
in question, which may be a Hilbert space or a set of complex numbers. We write
U (z) 
 V (z) if both U (z) � V (z) and V (z) � U (z).

2 The ( p, q) Fock–Carleson Measures on Fock–Sobolev Spaces

Carleson measures were first introduced by Carleson [4] as a tool to study interpolating
sequences in the Hardy space H∞ of bounded analytic functions in the unit disc and
the corona problem. Since then the measures have found numerous applications and
extensions in the study of various spaces of functions: for example see [1–3,7,10,
11,18,23,27]. In this paper, we study one of its extensions namely the (p, q) Fock–
Carleson measures for weighted Fock–Sobolev spaces. In the next section, we will also
look at application of such measures in studying some mapping properties of weighted
composition operators acting between different weighted Fock–Sobolev spaces.
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Let 0 < p ≤ ∞ and 0 < q < ∞. Then we call a nonnegative measure μ on C
n a

(p, q) Fock–Carleson measure for Fock–Sobolev spaces if1

∫

Cn

| f (z)|qe
−αq

2 |z|2 dμ(z) � ‖ f ‖q
(p,m) (2.1)

for all f in F p
(m,α). In other words, μ is a (p, q) Fock–Carleson measure if and

only if the canonical embedding map Iμ : F p
(m,α) → Lq(σq) is bounded where

dσq(z) = e− qα
2 |z|2 dμ(z). We call μ a (p, q) vanishing Fock–Carleson measure if

lim
j→∞

∫

Cn

| f j (z)|qe
−qα

2 |z|2 dμ(z) = 0

whenever f j is a uniformly bounded sequence in F p
(m,α) that converges uniformly to

zero on compact subsets of C
n as j → ∞.We will write ‖μ‖ = ‖Iμ‖ for the smallest

admissible constant in inequality (2.1) which often is called the Carleson constant.
For s, t > 0, we may define the (t, s)-Berezin type transform of μ by

μ̃(t,s)(w) =
∫

Cn

(1 + |z|)|−se− tα
2 |z−w|2 dμ(z).

As will be seen, its role is analogous to that played by the Berezin transform for the
Bergman spaces. For convenience, we will also use the notations

μs(z) = μ(z)

(1 + |z|)s , μ(s,r,D)(z) = μ(D(z, r))

(1 + |z|)s , and L p = L p(Cn, dV ).

We may now state our first main result.

Theorem 2.1 Let 0 < p ≤ q < ∞ and μ ≥ 0. Then the following statements are
equivalent.

(i) μ is a (p, q) Fock–Carleson measure;
(ii) μ̃(t,mq) ∈ L∞ for some (or any) t > 0;

(iii) μ(mq,r,D) ∈ L∞ for some (or any) r > 0;
(iv) μ(mq,r,D)(zk) ∈ 	∞ for some (or any) r > 0. Moreover, we have

‖μ‖q 
 ‖μ̃(t,mq)‖L∞ 
 ‖μ(mq,r,D)‖L∞ 
 ‖μ(mq,r,D)(zk)‖	∞ . (2.2)

Vanishing Carleson measures appear naturally in the study of compact composition
operators, Toeplitz and Hankel operators, Volterra type integral operators, two weight
Hilbert transforms, and in several other contexts in various functional spaces. As far

1 We follow the approach to Carleson measures taken in [9].
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as their characterization is concerned, there exists a general “folk theorem”: once
the Carleson measures are described by a certain “big oh” condition, vanishing Car-
leson measures are then characterized by the corresponding “little oh” counterparts.
This does not however mean that such “ folk theorem” is always true. See [6] for a
counterexample. Our next result shows that it still holds on Fock–Sobolev spaces.

Theorem 2.2 Let 0 < p ≤ q < ∞ and μ ≥ 0. Then the following statements are
equivalent.

(i) μ is a (p, q) vanishing Fock–Carleson measure;
(ii) μ̃(t,mq)(z) → 0 as |z| → ∞ for some (or any) t > 0;

(iii) μ(mq,r,D)(z) → 0 as |z| → ∞ for some (or any) r > 0;
(iv) μ(mq,r,D)(zk) → 0 as k → ∞ for some (or any) r > 0.

Conditions (ii), (iii) and (iv) in the two theorems above are independent of the para-
meter α and exponent p ≤ q. It means that if μ is a (p, q) (vanishing) Fock–Carleson
measure for some p ≤ q and α > 0, then it is a (p1, q) (vanishing) Fock–Carleson
measure for any p1 ≤ q and every other parameter α.On the other hand, the conditions
are dependent on the size of the exponent q in the target space in the sense that if μ
constitutes a (p, q) Fock–Carleson measure for some q ≥ p, then it may fail to be a
(p, q1) Fock measures for any q1 ≥ p unless m = 0 or q1 ≥ q. This presents a clear
distinction with the corresponding conditions for the ordinary Fock spaces (m = 0).
Because, in the later, it holds thatμ is a (p, q) Fock–Carleson measure for some p ≤ q
if and only if it is a (p1, q1) Fock–Carleson measure for any pair of exponents (p1, q1)

for which p1 ≤ q1. If we take a different approach to the (p, q)measures and redefine
inequality (2.1) by replacing dμ(z) with (1 + |z|)mqdμ(z) the distinction mentioned
above would disappear and the (p, q) measure conditions will be exactly the same as
they are for ordinary Fock spaces.

As in the case of ordinary Fock spaces, the Fock–Sobolev spaces satisfy the inclu-
sion monotonicity property F p

(m,α) ⊆ Fq
(m,α) whenever 0 < p ≤ q ≤ ∞ [9]. Thus, for

p > q, the boundedness conditions on the averaging functions, averaging sequences
and (t,mq)-Berezin transforms will be replaced by the next stronger p/(p − q) inte-
grability against a weight of polynomial growth conditions.

Theorem 2.3 Let 0 < q < p < ∞ and μ ≥ 0. Then the following statements are
equivalent.

(i) μ is a (p, q) Fock–Carleson measure;
(ii) μ is a (p, q) vanishing Fock–Carleson measure;

(iii) μ̃(t,mq) ∈ L
p

p−q for some (any) t > 0;

(iv) μ(mq,r,D) ∈ L
p

p−q for some (or any) r > 0;
(v) μ(mq,r,D)(zk) ∈ 	 p

p−q for some (or any) r > 0. Moreover, we have

‖μ‖q 
 ‖μ(mq,r,D)‖
L

p
p−q


 ‖μ̃(t,mq)‖
L

p
p−q


 ‖μ(mq,r,D)(zk)‖
	

p
p−q
. (2.3)

Observe that the fraction p/(p − q) is the conjugate exponent of p/q whenever
0 < q ≤ p < ∞. In the limiting case, i.e., when p = ∞, the next yet stronger
condition holds.
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Theorem 2.4 Let 0 < q < ∞ and μ ≥ 0. Then the following statements are equiva-
lent.

(i) μ is an (∞, q) Fock–Carleson measure;
(ii) μ is an (∞, q) vanishing Fock–Carleson measure;

(iii) μ̃(t,mq) ∈ L1 for some(or any) t > 0;
(iv) μ(mq,r,D) ∈ L1 for some (or any) r > 0;
(v) μ(mq,r,D)(zk) ∈ 	1 for some (or any) r > 0;

(vi) μmq is a finite measure on C
n . Moreover, we have

‖μ‖q 
 ‖μ̃(t,mq)‖L1 
 ‖μ(mq,r,D)‖L1 
 μmq(C
n) 
 ‖μ(mq,r,D)(zk)‖	1 .

(2.4)

The four results above unify and extend a number of recent results in the area. For
example when m = 0, while the first three of the results simplify to results obtained
in [15], Theorem 2.4 simplifies to a result obtained in [22]. On the other hand, when
p = q the first two theorems give Theorem 21 and Theorem 22 of [9]. If m = 0 and
p = q = 2, then the first two theorems again simplify to results obtained in [16].

3 Weighted Composition Operators on Fock–Sobolev Spaces

Let H(Cn) denotes the space of entire functions on C
n . Each pair of entire functions

(ψ, u) induces a weighted composition operator uCψ f = u( f ◦ψ) on H(Cn). Ques-
tions about boundedness, compactness, and other operator theoretic properties of uCψ
expressed in terms of function theoretic conditions on u and ψ have been a subject
of high interest, and have been studied by several authors in various function spaces.
The Schatten class membership properties of uCψ on F2

(m,α) has recently been studied
in [21]. In this section, we will study the bounded and compact mapping properties
of uCψ when it acts between different weighted Fock–Sobolev spaces. We will also
estimate the norm and essential norm of uCψ in terms of certain Berezin type inte-
gral transforms. The approach we intend to follow links some of these properties of
uCψ with the (p, q) Fock–Carleson measures which allows us to apply the results
obtained in the previous section. Indeed, this offers a simple example where the (p, q)
Fock–Carleson measures find some applications in operator theory.

Our results on uCψ will be expressed in terms of the function

B∞
(m,ψ)(|u|)(z) = |z|m |u(z)|

(1 + |ψ(z)|)m e
α
2 (|ψ(z)|2−|z|2)

and a Berezin type integral transform

B(m,ψ)(|u|p)(w) =
∫

Cn

|kw(ψ(z))|p

(1 + |ψ(z)|)mp
|u(z)|p|z|pme− αp

2 |z|2 dV (z).



Carleson Type Measures for Fock–Sobolev Spaces 1231

3.1 Bounded and Compact uCψ

Theorem 3.1 Let 0 < p ≤ q < ∞ and (u, ψ) be a pair of entire functions. Then
uCψ : F p

(m,α) → Fq
(m,α) is

(i) bounded if and only if B(m,ψ)(|u|q) belongs to L∞. Moreover, we have

‖uCψ‖ 
 ‖B(m,ψ)(|u|q)‖1/q
L∞ . (3.1)

(ii) compact if and only if

lim|z|→∞ B(m,ψ)(|u|q)(z) = 0.

Note that like in Theorem 2.1, the conditions both in (i) and (ii) are independent of
the exponent p apart from the fact that p should not be exceeding q. In other words,
if there exists a p > 0 for which uCψ is bounded (compact) from F p

(m,α) to Fq
(m,α),

then it is also bounded (compact) from F p1
(m,α) to Fq

(m,α) for every other p1 ≤ q.
A natural question is whether there exists an interplay between the two symbols u

and ψ in inducing bounded and compact operators uCψ . We first observe that by the
classical Liouville’s theorem a nonconstant function u can not decay. The following
is a simple consequence of this fact.

Corollary 3.2 Let 0 < p ≤ q < ∞ and (u, ψ) be a pair of entire functions. If
u �= 0 and uCψ : F p

(m,α) → Fq
(m,α) is bounded, then ψ(z) = Az + B where A is an

n × n matrix, ‖A‖ ≤ 1 and B is an n × 1 matrix such that 〈Aw, B〉 = 0 whenever
|Aw| = |w| for some w ∈ C

n . Moreover, if uCψ is compact, then ‖A‖ < 1 where
‖A‖ refers to the operator norm of matrix A.

By setting u = 1 and simplifying the conditions in Theorem 3.1, one can easily see that
the linear forms forψ are both necessary and sufficient for Cψ : F p

(m,α) → Fq
(m,α) to be

bounded (compact). This fact together with Corollary 3.2 ensures that boundedness
of uCψ implies boundedness of Cψ while the converse in general fails. The same
conclusion holds for compactness. Particular cases of theses conclusions could be
also read in [5,8].

Proof Observe that

B(m,ψ)(|u|q)(z) ≥
∫

Cn

|kw(ψ(z))|q
(1 + |ψ(z)|)mq

|u(z)|q |z|qme− αq
2 |z|2 dV (z)

� |kw(ψ(z))|q
(1 + |ψ(z|)mq

|u(w)|q |z|qme− αq
2 |z|2

for all z, w ∈ C
n . Applying Theorem 3.1 and setting w = ψ(z) in particular gives

∞ > sup
w∈Cn

|kw(ψ(z))|q |u(z)|q |z|qm

(1 + |ψ(z|)mqe
αq
2 |w|2 ≥ |u(z)|q |z|qm

(1 + |ψ(z)|)mq
e
αq
2 |ψ(z)|−|z|2 . (3.2)
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Indeed, we claim that

lim sup
|z|→∞

|ψ(z)|
|z| ≤ 1. (3.3)

We argue by contradiction, and suppose (3.3) fails. Then there exists a sequence (z j )

such that |z j | → ∞ as j → ∞ and lim sup|z j |→∞ |ψ(z j )|/|z j | > 1. Since u is a
nonzero entire function, note that

lim
j→∞ |u(z j )| � 1.

For nobility, we set w j = |ψ(z j )|/|z j |, and compute

lim sup
j→∞

|u(z j )|q |z j |qm

(1 + |ψ(z j )|)mq
e
αq
2 (|ψ(z j )|2−|z j |2) = lim sup

j→∞
|u(z j )|q e

αq
2 |z j |2(w2

j −1)

|w j |mq
= ∞,

(3.4)

which contradicts (3.2). Thus, (3.3) implies ψ(z) = Az + B for some A an n × n
matrix with ‖A‖ < 1 and B ∈ C

n .

Let now η be a point in C
n such that |Aη| = |η|. We may further assume that |η| = 1

and Aη = η where the latter is due to unitary change of variables; see the proof of [5,
Theorem 1]. If z = tτη where |τ | = 1 is a constant for which τ 〈Aη, B〉 = |〈Aη, B〉|,
then

|u(z)|q |z|qm

(1 + |ψ(z)|)mq
e
αq
2 |ψ(z)|2−|z|2 = |u(tτη)|e αq

2 (|B|2+2t |〈Aη,B〉|)

1 + t−2|B|2 + 2t−1|〈Aη, B〉| . (3.5)

By (3.2), the fraction (3.5) has to be finite as t → ∞, and this holds only if 〈Aη, B〉 = 0
as desired.

If, in addition, uCψ is compact, then by part (ii) of Theorem 3.1,

lim|z|→∞
|u(z)|q |z|qm

(1 + |ψ(z)|)mq
e
αq
2 |ψ(z)|−|z|2 = 0. (3.6)

A simple modification of the above arguments show that (3.6) holds only if ψ(z) =
Az + B with ‖A‖ < 1. ��
We now consider the case where p > q. Mapping F p

(m,α) into Fq
(m,α) gives the fol-

lowing stronger integrability conditions as one would expect.

Theorem 3.3 Let 0 < q < p < ∞ and (u, ψ) be a pair of entire functions. Then the
following statements are equivalent.

(i) uCψ : F p
(m,α) → Fq

(m,α) is bounded;

(ii) uCψ : F p
(m,α) → Fq

(m,α) is compact;
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(iii) B(m,ψ)(|u|q) belongs to L
p

p−q . We further have the norm estimate

‖uCψ‖ 
 ‖B(m,ψ)(|u|q)‖
p−q

p

L
p

p−q
. (3.7)

Following a similar approach as in the proof of Corollary 3.2, we observe that the
L p/(p−q) integrability of B(m,ψ)(|u|q) restricts further ψ to have only the linear form
ψ(z) = Az + B with ‖A‖ < 1.

Theorem 3.4 Let 0 < q < ∞ and (u, ψ) be a pair of entire functions. Then the
following statements are equivalent.

(i) uCψ : F∞
(m,α) → Fq

(m,α) is bounded;

(ii) uCψ : F∞
(m,α) → Fq

(m,α) is compact;

(iii) B(m,ψ)(|u|q) belongs to L1. Furthermore, we have the asymptotic norm estimate

‖uCψ‖ 
 ‖B(m,ψ)(|u|q)‖1/q
L1 . (3.8)

As it will be seen in the proofs, the boundedness and compactness conditions for uCψ in
Theorems 3.1–3.4 can be equivalently expressed in terms of (p, q) (vanishing) Fock–
Carleson measures, averaging functions, and averaging sequences of appropriately
chosen positive measures μ on C

n .

Theorem 3.5 Let 0 < p ≤ ∞ and (u, ψ) be a pair of entire functions. Then uCψ :
F p
(m,α) → F∞

(m,α) is

(i) bounded if and only if B∞
(m,ψ)(|u|) belongs to L∞. Moreover, we have

‖uCψ‖ 
 ‖B∞
(m,ψ)(|u|)‖L∞ . (3.9)

(ii) compact if and only if it is bounded and

lim|ψ(z)|→∞ B∞
(m,ψ)(|u|)(z) = 0. (3.10)

An interesting observation is to replace F∞
(m,α) by a smaller space F∞

(0,m,α); consisting
of all analytic function f such that

lim|z|→∞ | f (z)||z|me− α
2 |z|2 = 0.

The space F∞
(0,m,α) constitutes a proper Banach subspace of F∞

(m,α) and contains the

spaces F p
(m,α) for all p < ∞. If we replace F p

(m,α) with a larger space F∞
(0,m,α) in part

(i) of the preceding theorem, the condition remains unchanged. On the other hand,
modifying the arguments used to prove part (ii) of the theorem shows that the following
stronger condition holds when we replace the target space with F∞

(0,m,α).
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Corollary 3.6 Let 0 < p < ∞ and (u, ψ) be a pair of entire functions. Then the map
uCψ : F p

(m,α)( or F∞
(0,m,α)) → F∞

(0,m,α) is compact if and only if

lim|z|→∞ B∞
(m,ψ)(|u|)(z) = 0. (3.11)

We may mention that for the special case m = 0, Theorem 3.5 and its corollary were
proved in [26].

3.2 Essential Norm of uCψ

Let H1 and H2 be Banach spaces. Then the essential norm ‖T ‖e of a bounded operator
T : H1 → H2 is defined as the distance from T to the space of compact operators
from H1 and H2.We refer readers to [12,13,20,25,26,29–31] for estimations of such
norms for different operators on Hardy space, Bergman space, L p and some Fock
spaces. We get the following estimate for uCψ when it acts on weighted Fock–Sobolev
spaces.

Theorem 3.7 Let 1 < p ≤ q ≤ ∞ and p �= ∞. If uCψ : F p
α → Fq

α is bounded,
then

‖uCψ‖e 

{
(lim sup|w|→∞ B(ψ,m)(|u|q)(w)) 1

q , q < ∞
lim sup|ψ(w)|→∞ B∞

(ψ,m)(|u|)(w), q = ∞.
(3.12)

For p > 1, the compactness conditions in Theorem 3.1 and Theorem 3.5 could be
easily drawn from this relation since the left-hand side expression in (3.12) in this case
vanishes for compact uCψ.

All the results obtained on uCψ again unify and generalize a number of recent
results in the area including from [5,8,20,22,26,29,30]. One may simply set m = 0
and simplify the conditions to get the classical known results on the ordinary Fock
spaces.

We also mention that we have not explicitly used the kernel function K(w,m) for
the space F2

(m,α),m �= 0 in dealing with any of the results presented here. Finding
an explicit expression for K(w,m) is still an open problem. By Corollary 13 of [9] we
have in moduli that

|K(w,m)(z)| � ‖Kz‖2‖Kw‖2

e
α
8 |z−w|2(1 + |z||w|)m .

It remains open whether the reverse estimate above holds. On the other hand, it was
proved in [8] that

‖K(w,m)‖2
(m,2) 
 ‖Kw‖2

2

(1 + |w|)2m
.
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4 Some Auxiliary Lemmas

In this section we prove some lemmas which play key roles in our next considerations.
The lemmas are also interest of their own. For a given measurable function f and a
Borel measure μ f on C

n such that dμ f (z) = f (z)dV (z), we prove the following.

Lemma 4.1 let 1 ≤ p ≤ ∞ and 0 < r, t, s < ∞. Then the maps f �→ f(r,s,D) and
f �→ f̃(t,s) are bounded on L p where f(r,s,D)(z) := (1 + |z|)−sμ f (D(z, r)) and

f̃(t,s)(z) :=
∫

Cn

(1 + |w|)−se− αt
2 |w−z|2 dμ f (w).

Proof We mention that for the case when s = 0, the lemma was first proved in [15].
Using the additional fact that

sup
w∈Cn

(1 + |w|)−s ≤ 1, (4.1)

for all nonnegative s and t , the arguments there can be easily adopted to work for
all positive s. We outline the proof as follows. We use interpolation argument on L p

Lebesgue spaces. Thus, it suffices to establish the statements for p = 1 and p = ∞.

We begin with the case p = 1. Using (4.1) and Fubini’s theorem, we have

‖ f̃(t,s)‖L1 =
∫

Cn

∣∣∣∣∣∣

∫

Cn

(1 + |w|)−se− αt
2 |w−z|2 dμ f (w)

∣∣∣∣∣∣
dV (z)

=
∫

Cn

⎛
⎝

∫

Cn

e− αt
2 |w−z|2 dV (z)

⎞
⎠ | f (w)|
(1 + |w|)s dV (w)



∫

Cn

| f (w)|
(1 + |w|)s dV (w) � ‖ f ‖L1 .

Applying again (4.1) for t = 1, Fubini’s theorem, and the fact that χD(ζ,r)(z) =
χD(z,r)(ζ ) for all ζ and z in C

n , we have

‖ f(r,s,D)‖L1 =
∫

Cn

(1 + |z|)−sμ f (D(z, r))dV (z) ≤
∫

Cn

∫

D(z,r)

| f (ζ )|dV (ζ )dV (z)

=
∫

Cn

| f (ζ )|
∫

Cn

χD(ζ,r)(z)dV (z)dV (ζ ) 
 ‖ f ‖L1 .
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On the other hand, for p = ∞ it easily follows that

‖ f(r,s,D)‖L∞ = sup
z∈Cn

∣∣(1 + |z|)−sμ f (D(z, r))
∣∣ ≤ sup

z∈Cn

∫

D(z,r)

| f (ζ )|dV (ζ )

≤ ‖ f ‖L∞ sup
z∈Cn

∫

D(z,r)

dV (ζ ) � ‖ f ‖L∞ .

Seemingly, for each f ∈ L∞, we also have

‖ f̃(t,s)‖L∞ = sup
z∈Cn

∫

Cn

e− tα
2 |w−z|2(1 + |w|)−s | f (w)|dV (ζ )

≤ sup
z∈Cn

∫

Cn

e− tα
2 |z−w|2 | f (ζ )|dV (w)

≤ ‖ f ‖L∞ sup
z∈Cn

∫

Cn

e− tα
2 |z−w|2 dV (w) � ‖ f ‖L∞ , (4.2)

and completes the proof. ��

Lemma 4.2 Let 1 ≤ p ≤ ∞, 0 < s < ∞ and μ ≥ 0 be a measure on C
n. Then if

μ(s,δ,D) belongs to L p for some δ > 0, then so does μ(s,r,D) for all r > 0.

Proof For each τ in C
n we may write

∫

D(τ,r)

(1 + |z|)−sμ(D(z, δ))dV (z) =
∫

D(τ,r)

∫

Cn

(1 + |z|)−sχD(z,δ)(ζ )dμ(ζ )dV (z).

Using again the simple fact that χD(z,δ)(ζ ) = χD(ζ,δ)(z), the double integral above is
easily seen to be equal to

∫

Cn

∫

D(ζ,δ)∩D(τ,r)

dV (z)dμ(ζ )

(1 + |z|)s 

∫

Cn

V ol (D(ζ, δ) ∩ D(τ, r))

(1 + |τ |)s dμ(ζ )

≥ 1

(1 + |τ |)s
∫

D(τ,r)

V ol (D(ζ, δ) ∩ D(τ, r)) dμ(ζ )

where V ol(E) refers to the Lebesque measure of set E ⊂ C
n . Clearly, the right hand

quantity is bounded from below by

(1 + |τ |)−sμ(D(τ, r)) inf
ζ∈D(τ,r)

V ol(D(ζ, δ) ∩ D(τ, r)) � (1 + |τ |)−sμ(D(τ, r))
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where the lower estimate follows here since ζ ∈ D(τ, r), there obviously exists a ball
D(τ0, r0) contained in D(ζ, δ) ∩ D(τ, r) with V ol(D(τ0, r0)) 
 rn

0 . From the above
analysis, we conclude

(1 + |τ |)−sμ(D(τ, r)) �
∫

D(τ,r)

(1 + |z|)−sμ(D(z, δ))dV (z). (4.3)

If we now set f (z) = (1 + |z|)−sμ(D(z, δ)), then the estimate above along with
Lemma 4.1 ensure that

‖μ(s,r,D)‖L p � ‖ f(s,δ)‖L p � ‖ f ‖L p = ‖μ(s,δ,D)‖L p < ∞ (4.4)

for each p ≥ 1 and any r > 0. ��

Our next lemma gives the link among averaging sequence, averaging functions and
Berezin type integral transform of a given measure.

Lemma 4.3 Let 1 ≤ p ≤ ∞ and 0 < s < ∞. Then

‖μ(s,r,D)‖L p 
 ‖μ̃(t,s)‖L p 
 ‖μ(s,r,D)(zk)‖	p (4.5)

for some (or any) r > 0 and t > 0.

Proof We begin by noting that since μ̃(t,s) is independent of r, if the estimate in
(4.5) holds for some r > 0, then it holds for every other positive r. The same holds
with t as μ(s,r,D) is independent of it. The proof of the lemma follows from a careful
modification of some arguments used in the proof of Theorem 13 in [16]. We may first
observe that for each w in the ball D(z, r), the estimate

1 + |z| 
 1 + |w| (4.6)

holds. We proceed to show the first estimate in (4.5). Using (4.6) we have

μ(D(z, r))

(1 + |z|)s = 1

(1 + |z|)s
∫

D(z,r)

dμ(w) ≤ e
αtr2

2

(1 + |z|)s
∫

D(z,r)

e− αt
2 |z−w|2 dμ(w)

� e
αtr2

2

∫

D(z,r)

e− αt
2 |z−w|2

(1 + |w|)s dμ(w) � μ̃(t,s))(z)

from which we get

‖μ(s,r,D)‖L p � ‖μ̃(t,s)‖L p (4.7)
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for each p ≥ 1. On the other hand, by Lemma 1 of [16], we note that the pointwise
estimate

| f (z)e− α
2 |z|2 |q �

∫

D(z,r)

| f (w)|qe− αq
2 |w|2 dV (w) (4.8)

holds for any f in H(Cn), q, r > 0 and z in C
n . From this and (4.6), we deduce

| f (z)e− α
2 |z|2 |q

(1 + |z|)s � 1

(1 + |z|)s
∫

D(z,r)

| f (w)e− α
2 |w|2 |qdV (w)



∫

D(z,r)

| f (w)e− α
2 |w|2 |q

|(1 + |w|)s dV (w)

Integrating the above against the measure μ, we find

∫

Cn

| f (z)e− α
2 |z|2 |q

(1 + |z|)s dμ(z) �
∫

Cn

∫

D(z,r)

| f (w)e− α
2 |w|2 |q

(1 + |w|)s dV (w)dμ(z)

=
∫

Cn

| f (w)e− α
2 |w|2 |q

(1 + |w|)s
∫

Cn

χD(w,r)(z)dV (w)dμ(z).

It follows from this estimate and Fubini’s theorem that

∫

Cn

| f (w)e− α
2 |w|2 |q

(1 + |w|)s dμ(w) �
∫

Cn

∣∣∣ f (w)e− α
2 |w|2

∣∣∣
q μ(D(w, r))

(1 + |w|)s dV (w) (4.9)

for all entire function f in C
n . upon setting f = kz and q = t in it, we see that the

left-hand side integral becomes μ̃(t,s) and

μ̃(t,s)(z) =
∫

Cn

(1 + |w|)−s |kz(w)|t e− αt
2 |w|2 dμ(w)

�
∫

Cn

(1 + |w|)−s |kz(w)|t e− αt
2 |w|2μ(D(w, r))dV (w) = g̃(t,s)(z)

where we set g(w) = μ(D(w, r)). This coupled with Lemma 4.1 yield the reverse
estimate in (4.7). That is

‖μ̃(t,s)‖L p � ‖g̃(t,s)‖L p � ‖g‖L p = ‖μ(s,r,D)‖L p (4.10)
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for all p. Since the case for p = ∞ is trivial, the proof will be complete once we show
that the first and the last quantities in (4.5) are comparable for 1 ≤ p < ∞. In doing
so,

∫

Cn

(
μ(D(z, r))

(1 + |z|)s
)p

dV (z) ≤
∞∑

k=1

∫

D(zk ,r)

(
μ(D(z, r))

(1 + |z|)s
)p

dV (z)

≤
∞∑

k=1

∫

D(zk ,r)

(
μ(D(zk, 2r))

(1 + |zk |)s
)p

dV (z)

�
∞∑

k=1

(
μ(D(zk, 2r))

(1 + |zk |)s
)p

.

Here the last inequality follows since r is fixed and V l(D(zk, r)) 
 rn independent
of k. From this and Lemma 4.2 we obtained one side of the required estimate in (4.5),
namely that

‖μ(s,r,D)‖L p � ‖μ(s,r,D)(zk)‖	p . (4.11)

It remains to prove the reverse estimate in (4.11). To this end, Observe that

Nmax

∫

Cn

(
μ(D(z, 2r))

1 + |z|s
)p

dV (z) ≥
∞∑

k=1

∫

D(zk ,r)

(
μ(D(z, 2r))

(1 + |z|)s
)p

dV (z).

Now for each z ∈ D(zk, r), we deduce from triangle inequality that μ(D(z, 2r)) ≥
μ(D(zk, r)) and hence

∞∑
k=1

∫

D(zk ,r)

(
μ(D(z, 2r))

(1 + |z|)s
)p

dV (z) ≥
∞∑

k=1

∫

D(zk ,r)

(
μ(D(zk, r))

(1 + |zk |)s
)p

dV (z)

�
∞∑

k=1

(
μ(D(zk, r))

(1 + |zk |)s
)p

from which and Lemma 4.2 again the required estimate follows. ��
We remark that the norm estimates in Lemma 4.3 are also valid for 0 < p < 1. Its
proof requires a bite different approach than the one outlined above. We decided not
to develop it here since we do not need such fact in our consideration.

Lemma 4.4 Let 0 < q, p ≤ ∞ and (g, ψ) be a pair of entire functions. Then
uCψ : F p

(α,m) → Fq
(α,m) is compact if and only if ‖uCψ fk‖(q,m) → 0 as k → ∞ for

each bounded sequence ( fk)k∈N in F p
(α,m) converging to zero uniformly on compact

subsets of C
n as k → ∞.
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The lemma can be proved following standard arguments; see also [26, Lemma 8]. The
lemma will be used repeatedly in the proofs of our compactness results.

5 Proof of the Main Results

Proof of Theorem 2.1 The equivalencies of (ii), (iii), and (iv) come from Lemma 4.3.
We now proceed to show that statements (iii) follows from (i) and (i) follows from
(iv). Assume that μ is a (p, q) Fock–Carleson measure and consider a test function
Kw(z) = eα〈z,w〉 in F(m,p). Note that this is the kernel function for F2

(0,α) at the point
w. Then

∫

Cn

|Kw(z)|q
e
αq
2 |z|2 dμ(z) ≤ ‖μ‖q

⎛
⎝

∫

Cn

|Kw(z)e− α
2 |z|2 |z|m |pdV (z)

⎞
⎠

q
p

� ‖μ‖q

⎛
⎝

∫

Cn

|Kw(z)e− α
2 |z|2(1 + |z|)m |pdV (z)

⎞
⎠

q
p

. (5.1)

By Lemma 20 of [9] or from a simple computation, the right-hand side integral is
estimated as

‖μ‖q

⎛
⎝

∫

Cn

|Kw(z)|p

(1 + |z|)−pm
e− αp

2 |z|2 dV (z)

⎞
⎠

q
p

� ‖μ‖q

(
e

pα
2 |w|2

(1 + |w|)−mp

) q
p

= ‖μ‖q(1 + |w|)mqe
qα
2 |w|2 . (5.2)

On the other hand, completing the square in the exponent on the left hand side of (5.1),
we obtain

∫

Cn

|eα〈z,w〉− α
2 |z|2 |qdμ(z) = e

qα
2 |w|2

∫

Cn

e− qα
2 |z−w|2 dμ(z)

≥ e
qα
2 |w|2

∫

D(w,r)

e− qα
2 |z−w|2 dμ(z)

≥ e
qα
2 (|w|2−r2)μ(D(w, r)) (5.3)

for all w ∈ C
n . Combining this with (5.2) leads to (iii) and

‖μ‖q � ‖μ(mq,r,D)‖L∞ . (5.4)

We next show statement that (i) follows from (iv). The covering property of the
sequence of balls (D(zk, r))k implies
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∫

Cn

| f (z)|qe− αq
2 |z|2 dμ(z) ≤

∞∑
k=1

∫

D(zk ,2r)

| f (z)|qe− αq
2 |z|2 dμ(z)

Using the estimate in (4.6), the sum is comparable to

∞∑
k=1

(1 + |zk |)−mq
∫

D(zk ,2r)

| f (z)(1 + |z|)m |qe− αq
2 |z|2 dμ(z)

which is bounded by

∞∑
k=1

μ(D(zk, 2r))

(1 + |zk |)mq

(
sup

z∈D(zk ,r))
| f (z)(1 + |z|)m |pe− αp

2 |z|2
) q

p

� sup
k≥1

μ(D(zk, 2r))

(1 + |zk |)mq

⎛
⎜⎝

∞∑
k=1

∫

D(zk ,3r)

| f (z)(1 + |z|)m |p

e
αp
2 |z|2 dV (z)

⎞
⎟⎠

q
p

=: S1.

Now we claim that for each f ∈ F p
(m,α),

∞∑
k=1

∫

D(zk ,3r)

| f (z)(1 + |z|)m |p

e
αp
2 |z|2 dV (z) �

∞∑
k=1

∫

D(zk ,3r)

| f (z)|z|m |p

e
αp
2 |z|2 dV (z).

Because of (4.6) the claim trivially follows if |zk | ≥ 1 for all k. On the other hand,
since (zk) assumed to be a fixed r/2 lattice for C

n, its covering property ensures that
the inequality |zk | < 1 can happen for only a finite number of indices k. Thus there
exists a positive constant M for which

∑
|zk |<1

∫

D(zk ,3r)

| f (z)|pe− αp
2 |z|2 dV (z) ≤ M

∑
|zk |<1

∫

D(zk ,3r)

| f (z)|p|z|mp

e
αp
2 |z|2 dV (z)

�
∞∑

k=1

∫

D(zk ,3r)

| f (z)|z|m |pe− αp
2 |z|2 dV (z).

Observe that the analysis above in general implies

∫

Cn

| f (z)(1 + |z|)m |pe− αp
2 |z|2 dV (z) 


∫

Cn

| f (z)|z|m |pe− αp
2 |z|2 dV (z). (5.5)

Making use of this estimate, we obtain

S1 � sup
k≥1

μ(D(zk, 2r))

(1 + |zk |)mq
‖ f ‖q

(p,m) (5.6)
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from which and Lemma 4.2, the statement in (i) and the estimate

‖μ‖q � ‖(1 + |zk |)−mqμ(D(zk, r))‖	∞ . (5.7)

follow. To this end, the series of norm estimates in (2.2) follows from (4.5), (5.4) and
(5.7).

Proof of Theorem 2.2 The equivalency of the statements in (ii), (iii) and (iv) follows
easily from a simple modification of the proof of Lemma 4.1. Thus, we shall prove
only (i) implies (iii) and (iv) implies (i). To prove the first, we consider a sequence of
test functions ξ(w,m) defined by

ξ(w,m)(z) = kw(z)

(1 + |w|)m = eα〈z,w〉− α
2 |w|2

(1 + |w|)m

for each w ∈ C
n . By Lemma 20 of [9] again, we have

sup
w∈Cn

‖ξ(w,m)‖(p,m) < ∞

for all p > 0. It is also easily seen that ξ(w,m) → 0 as |w| → ∞, and the convergence is
uniform on compact subsets of C

n . Ifμ is a (p, q) vanishing Fock–Carleson measure,
then

lim|w|→∞

∫

Cn

|ξ(w,m)|qe− αq
2 |z|2 dμ(z) = lim|w|→∞

∫

Cn

e− αq
2 |z−w|2

(1 + |w|)mq
dμ(z) = 0,

from which we have

0 ≥ lim|w|→∞

∫

D(w,r)

e− αq
2 |z−w|2

(1 + |w|)mq
dμ(z) ≥ e− αr2

2 lim|w|→∞
μ(D(w, r))

(1 + |w|)mq
.

Since the factor e−αr2/2 is independent of w, the desired conclusion follows.
We now prove (iv) implies (i). Let f j be a sequence in F p

(m,α) such that
sup j ‖ f j‖(p,m) < ∞ and f j converges to zero uniformly on each compact subset
of C

n as j → ∞. We aim to show that

∫

Cn

| f j (z)e
− α

2 |z|2 |qdμ(z) → 0

as j → ∞. By hypothesis, for each ε > 0, there exists a positive integer N0 such that
μ(mq,r,D)(zk) < ε whenever k ≥ N0. Let Uo denotes the union of the closure of the
balls D(zk, 3r), k = 1, ...N0. Then Uo is a compact subset of C

n . Since f j converges
to zero uniformly on compact subsets of C

n, there also exists N1 > N0 such that
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Q1 =
N0∑

k=1

μ(mq,r,D)(zk)

⎛
⎜⎝

∫

D(zk ,3r)

(1 + |z|)pm | f j (z)|pe− αp
2 |z|2

⎞
⎟⎠

q
p

≤ ε

⎛
⎜⎝

N0∑
k=1

∫

D(zk ,3r)

| f j (z)|p (1 + |z|)pm

e
αp
2 |z|2

⎞
⎟⎠

q
p

� ε( sup
z∈U0

| f j (z)|p)
q
p � ε (5.8)

for all j ≥ N1. On the other hand, for all k ≥ N0

Q2 =
∞∑

N0+1

μ(mq,r,D)(zk)

⎛
⎜⎝

∫

D(zk ,3r)

(1 + |z|)mp| f j (z)|pe− αp
2 |z|2

⎞
⎟⎠

q
p

≤ ε

⎛
⎜⎝

∞∑
N0+1

∫

D(zk ,3r)

(1 + |z|)mp| f j (z)|pe− αp
2 |z|2

⎞
⎟⎠

q
p

� ε‖ f j‖q
(p,m) � ε (5.9)

Thus, using (4.6), (5.8), (5.9), and sufficiently large j ≥ max{N0, N1},
∫

Cn

| f j (z)e
− α

2 |z|2 |qdμ(z) ≤
∞∑

k=1

∫

D(zk ,r)

| f j (z)|qe− αq
2 |z|2 dμ(z)

�
∞∑

k=1

μ(mq,r,D)(zk) sup
z∈D(zk ,r)

| f j (z)|q(1 + |z|)mq

e
αq
2 |z|2

≤ Q1 + Q2 � ε.

Proof of Theorem 2.3 Since p/(p − q) ≥ 1, by Lemma 4.3, (iii), (iv) and (v) are
again equivalent. To show that statement (v) follows from (i) we may follow the
classical Leuecking’s approach via Khinchine’s equality in [19]. Consider a function
f in F p

(m,α). Then by Lemma 1.1, zβ f belongs to F p
α for all multi-indices β such that

β1 + β2 + ...βn = m. Thus, there exists a sequence c j ∈ 	p, 0 < p ≤ ∞, for which

zβ f (z) =
∞∑
j=1

c j kz j (z) ∈ F p
(α) and ‖ f ‖(p,m) 
 ‖|z|mkz j ‖p � ‖(c j )‖	p . (5.10)

This was proved in [17] for p ≥ 1 and in [32] for 0 < p < 1. We first assume that
0 < q < ∞. Since μ is a (p, q) Fock–Carleson measure,

∫

Cn

| f (z)|qe− αq
2 |z|2 dμ(z) ≤ ‖μ‖q‖ fc‖q

(p,m) � ‖μ‖q‖(c j )‖q
	p .
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If (r j ) is the Rademacher sequence of functions on [0, 1] chosen as in [19], then
Khinchine’s inequality yields

⎛
⎝

∞∑
j=1

|c j |2|kz j (z)|z|−m |2
⎞
⎠

q/2

�
1∫

0

∣∣∣∣∣∣
∞∑
j=1

c jr j kz j (z)|z|−m

∣∣∣∣∣∣

q

dt. (5.11)

Note that here if the r j are chosen as refereed above, then (c jr j ) ∈ 	p with
‖(c jr j )‖	p = ‖(c j )‖	p and

∞∑
j=1

c jr j kz j (z)z
−β ∈ F p

(m,α), with

∥∥∥∥∥∥
∞∑
j=1

c jr j (t)k(z j ,α)(z)z
−β

∥∥∥∥∥∥
(p,m)

� ‖(c j )‖	p

for all multi-indices β such that βsn = m.Making use of first (5.11) and subsequently
Fubini’s theorem, we obtain

∫

Cn

(|c j |2|kz j )(z)|z|−m |2)q/2dμ(z)

�
∫

Cn

⎛
⎝

1∫

0

∣∣∣∣∣∣
∞∑
j=1

c jr j (t)kz j (z)|z|−m

∣∣∣∣∣∣

q

dt

⎞
⎠ dμ(z)

=
1∫

0

⎛
⎝

∫

Cn

∣∣∣∣∣∣
∞∑
j=1

c jr j (t)kz j (z)|z|−m

∣∣∣∣∣∣

q

dμ(z)

⎞
⎠ dt

� ‖μ‖q‖(c j )‖q
	p . (5.12)

Now if q ≥ 2, then using (4.6), we have

∞∑
j=1

|c j |q μ(D(z j , r))

(1 + |z j |)mq
=

∫

Cn

∞∑
j=1

|c j |q
χD(z j ,r)(z)

(1 + |z|)mq
dμ(z) (5.13)

≤
∫

Cn

⎛
⎝

∞∑
j=1

|c j |2
χD(z j ,r)(z)

(1 + |z|)2m

⎞
⎠

q/2

dμ(z) (5.14)

where the last inequality is since q/2 ≥ 1 and |c j | ≥ 0 for all j. On the other hand, if
q < 2, then applying Hölder’s inequality with exponent 2/q to the integral in (5.13)
gives
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∫

Cn

∞∑
j=1

|c j |q
χD(z j ,r)(z)

(1 + |z j |)mq
dμ(z) ≤ N

2−q
2

max

∫

Cn

⎛
⎝

∞∑
j=1

|c j |2
χD(z j ,r)(z)

(1 + |z|)2m

⎞
⎠

q/2

dμ(z)

�
∫

Cn

⎛
⎝

∞∑
j=1

|c j |2
χD(z j ,r)(z)

(1 + |z|)2m

⎞
⎠

q/2

dμ(z).

The last integral here and in (5.14) are bounded by

e
qα
2 r2

∫

Cn

⎛
⎝

∞∑
j=1

|c j |2 e−α|z−z j |2

(1 + |z|)2m

⎞
⎠

q/2

dμ(z) �
∫

Cn

(
|c j |2|kz j )(z)|z|−m |2

)q/2
dμ(z).

This combined with (5.12) gives

∞∑
j=1

|c j |q μ(D(z j , r))

(1 + |z j |)mq
� ‖μ‖q‖(c j )‖q

	p = ‖μ‖q

⎛
⎝

∞∑
j=1

|c j |p

⎞
⎠

q/p

. (5.15)

Then a duality argument gives that

μ(mq,r,D)(z j ) ∈ 	 p
p−q and ‖μ‖q � ‖μ(mq,r,D)(z j )‖

	
p

p−q
. (5.16)

We now prove (iv) implies (i). Integrating both side of (4.8) against the measure μ
and subsequently using χD(z,r)(w) = χD(w,r)(z), and Fubini’s theorem we get

∫

Cn

| f (w)e− α
2 |w|2 |qdμ(w) �

∫

Cn

| f (w)e− α
2 |w|2 |qμ(D(w, r))dV (w)

=
∫

Cn

| f (w)e− α
2 |w|2(1 + |w|)m |qμ(mq,r,D)dV (w)

(5.17)

Applying Hölder’s inequality with exponent p/q and (5.5)

∫

Cn

| f (w)e− α
2 |w|2(1 + |w|)m |qμ(mq,r,D)dV (w) � ‖ f ‖q

(p,m)‖μ(mq,r,D)‖
L

p
p−q
.

It follows from this that the estimate

‖μ‖q � ‖μ(mq,r,D)‖
L

p
p−q

which together with (5.16) and (4.5) yields the series of norm estimates in (2.3).



1246 T. Mengestie

Obviously, (ii) implies (i). We proceed to show its converse. Let f j be a sequence
of functions in F p

(m,α) such that sup j ‖ f j‖(p,m) < ∞ and f j converges uniformly to
zero on compact subsets of C

n as j → ∞. For a fixed R > δ > 0, we write

∫

Cn

| f j (z)|qe
−qα

2 |z|2 dμ(z) =
⎛
⎜⎝

∫

|z|≤R−δ
+

∫

|z|>R−δ

⎞
⎟⎠ | f j (z)|qe− qα

2 |z|2 dμ(z)

= I j1 + I j2.

We estimate the two pieces of integrals independently and consider first I j1. Since
f j → 0 uniformly on compact subsets of C

n as j → ∞, we find

lim sup
j→∞

I j1 = lim sup
j→∞

∫

|z|≤R−δ
| f j (z)|qe− qα

2 |z|2 dμ(z)

≤ lim sup
j→∞

sup
|z|≤R−δ

| f j (z)|q
∫

|z|≤R−δ
e− qα

2 |z|2 dμ(z)

� lim sup
j→∞

sup
|z|≤R−δ

| f j (z)|q → 0, as j → ∞.

If we denote by μR the truncation of μ on the set {z ∈ C
n : |z| > R − δ}, then

applying (5.17) we obtain,

lim sup
j→∞

I j2 = lim sup
j→∞

∫

|z|>R−δ
| f j (z)|qe− qα

2 |z|2 dμ(z)

= lim sup
j→∞

∫

Cn

| f j (z)|qe− qα
2 |z|2 dμR(z)

� lim sup
j→∞

∫

Cn

| f j (z)|q(1 + |z|)mqe− qα
2 |z|2μR

(mq,r,D)dV (z).

Applying Hölder’s inequality again, we obtain

lim sup
j→∞

∫

Cn

| f j (z)|q(1 + |z|)mqe− qα
2 |z|2μR

(mq,r,D)dV (z)

≤ lim sup
j→∞

‖ f j‖q
(p,m)

∫

Cn

|μR
(mq,r,D)|

p
p−q dV (z)

= lim sup
j→∞

‖ f j‖q
(p,m)

∫

|z|>R−r

|μR
(mq,r,D)|

p
p−q dV (z).
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Since sup j ‖ f j‖(p,m) < ∞ and μR
(mq,r,D) ∈ L

p
p−q , we let R → ∞ in the above rela-

tion to conclude that μ is a (p, q) vanishing Fock–Carelson measure, and completes
the proof of the theorem.

Proof of Theorem 2.4 The proof of the theorem closely follows the arguments used
in the proof of Theorem 2.3. We will sketch only some of the required modifications
below. The equivalencies of the statements in (iii), (iv) and (v) follow from Lemma 4.3
with s = mq. We observe that the global geometric condition (vi) follows from (iii)
when we in particular set t = 1. Because by Fubini’s theorem, we may have

∫

Cn

μ̃(1,mq)(z)dV (z) =
∫

Cn

∫

Cn

e
α
2 |〈w,z〉|2− α

2 |z|2− α
2 |w|2

(1 + |z|)mq
dμ(w)dV (z)

=
∫

Cn

⎛
⎝

∫

Cn

e− α
2 |z−w|2

(1 + |z|)mq
dV (z)

⎞
⎠ dμ(w). (5.18)

Since

(1 + |z|)−1 ≤ 1 + |z − w|
1 + |w| , z, w ∈ C

n,

the integral in (5.18) is bounded by

∫

Cn

(1 + |w|)−mq
∫

Cn

(1 + |z − w|)mq e− α
2 |z−w|2

(1 + |z|)mq
dV (z)dμ(w)

�
∫

Cn

1

(1 + |w|)mq
dμ(w) = μmq(C

n). (5.19)

On the other hand, an application of (4.6) gives

∫

Cn

⎛
⎝

∫

Cn

e− α
2 |z−w|2

(1 + |z|)mq
dV (z)

⎞
⎠ dμ(w) ≥

∫

Cn

∫

D(w,1)

e− α
2 |z−w|2

(1 + |z|)mq
dV (z)dμ(w)

� e−α/2
∫

Cn

1

(1 + |w|)mq
dμ(w)


 μmq(C
n). (5.20)

Combining (5.18), (5.19), and (5.20) we obtain

∫

Cn

μ̃(1,mq)(z)dV (z) 
 μmq(C
n). (5.21)

This shows that shows that (vi) holds if and only if (iii) holds for t = 1.
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We now prove (i) implies (v). For this, we simply modify the proof of (i) implies
(v) in the proof of Theorem 2.3. Thus, replace p by ∞ and follow the same arguments
until we get Eq. (5.15) which would be in this case

∞∑
j=1

|c j |qμ(mq,r,D)(z j ) � ‖μ‖q‖(c j )‖q
	∞ . (5.22)

Since (c j ) is an arbitrary sequence in 	∞, we may in particular set c j = 1 for all j in
the above relation to make the desired conclusion. Observe that this particular choice
in (5.22) also ensures

‖μ(mq,r,D)(z j )‖	1 � ‖μ‖q . (5.23)

To prove that (i) follows from (iii), observe that applying (5.17) to a function f in
F∞
(m,α) gives

∫

Cn

| f (w)e− α
2 |w|2 |qdμ(w) �

∫

Cn

| f (w)e− α
2 |w|2 |q(1 + |w|)mqμ(mq,r,D)(w)dV (w)

≤ ‖ f ‖q
(∞,m)

∫

Cn

μ(mq,r,D)(w)dV (w)

= ‖ f ‖q
(∞,m)‖μ(mp,r,D)‖L1 (5.24)

which completes the proof for (iii) implies (i). From (5.24), we also have

‖u‖ � ‖μ(mp,r,D)‖1/q
L1 (5.25)

from which, (5.23), (5.21) and (4.5), the series of norm estimates in (2.4) follow.
It remains to show (ii) follows from (i). But this can be easily done by simply

modifying a similar proof in Theorem 2.3. Thus, we omit the details.

Proof of Theorems 3.1, 3.2 and 3.3 The central idea in these proofs is to translate the
given problem into a (p, q) embedding map problem for the Fock–Sobolev spaces;
through which we may invoke the notion of (p, q) Fock–Carleson measures and apply
the results already proved in the preceding parts.

For each p > 0, we set θ(m,p) to be the positive pull back measure on C
n defined by

θ(m,p)(E) =
∫

ψ−1(E)

|u(z)|p|z|mpe− αp
2 |z|2 dV (z)
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for every Borel subset E of C
n . Then by substitution, we have

‖uCψ) f ‖q
(m,q) 


∫

Cn

| f (z)|qdθ(m,q)(z) =
∫

Cn

| f (z)e− α
2 |z|2 |qe

qα
2 |z|2 dθ(m,q)(z)

=
∫

Cn

| f (z)e− α
2 |z|2 |qdλ(m,q)(z)

where dλ(m,q)(z) = e
qα
2 |z|2 dθ(m,q)(z). This shows that uCψ : F p

(m,α) → Fq
(m,α) is

bounded if and only ifλ(m,q) is a (p, q)Fock–Carleson measure. We may now consider
three different cases depending on the size of the exponents.

Case 1 p ≤ q. In this case, by Theorem 2.1, the boundedness of uCψ holds if and
only if λ̃(m,q) belongs to L∞. But substituting back dλ(m,q) and dθ(m,q) in terms of
dV results in

λ̃(m,q)(z) =
∫

Cn

e− qα
2 |w−z|2

(1 + |w|)mq
dλ(m,q)(w)

=
∫

Cn

|kz(ψ(w))|qe− qα
2 |w|2

(1 + |ψ(w)|)mq
|u(w)|q |w|mqdV (w)

= B(m,ψ)(|u|q)(z).

The norm estimate in (3.1) easily follows from the series of norm estimates in
Theorem 2.1.

The proof of part (ii) of Theorem 3.1 is similar to the first part. This time we need
to argue with Theorem 2.2 instead of Theorem 2.1. Thus, we omit the trivial details.

Case 2 0 < q < p < ∞. By Theorem 2.3, λ(m,q) is a (p, q) Fock–Carleson measure
if and only if λ(m,q) is a (p, q) vanishing Fock–Carleson measure. This again holds
if and only if λ̃(m,q) = B(m,ψ)(|u|q) belongs to L p/(p−q). The norm estimate in (3.7)
also follows from the series of norm estimates in (2.3).

Case 3 0 < q < ∞ and p = ∞. As in the previous cases, by Theorem 2.4, λ(m,q) is
an (∞, q) Fock–Carleson measure if and only if λ(m,q) is an (∞, q) vanishing Fock–
Carleson measure which is equivalent to the fact that λ̃(m,q) = B(m,ψ)(|u|q) ∈ L1.
The norm estimate in (3.8) follows again from the estimates in (2.4).

Proof of Theorem 3.5 We first note if m = 0, the function

B∞
(m,ψ)(|u|)(z) = |z|m |u(z)|

(1 + |ψ(z)|)m e
α
2

(|ψ(z)|2−|z|2) = |u(z)|e α2
(|ψ(z)|2−|z|2),
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and for this particular case, the theorem was proved in [26]. We now generalize the
proof for any m. From a simple application of Lemma 3 of [9], we conclude

| f (z)| ≤ ‖ f ‖(p,m)

(1 + |z|)m e
α
2 |z|2 (5.26)

for each f in F p
(m,α) and 0 < p ≤ ∞. This implies

‖uCψ f ‖(∞,m) = sup
z∈Cn

|u(z)||z|m | f (ψ(z))|e −α
2 |z|2

≤ ‖ f ‖(p,m) sup
z∈Cn

|u(z)||z|m
(1 + |ψ(z)|)m e

α
2 |ψ(z)|2− α

2 |z|2

= ‖ f ‖(p,m) sup
z∈Cn

B∞
(m,ψ)(|u|)(z)

from which one side of the estimate in (3.9),

‖uCψ‖ ≤ ‖B∞
(m,ψ)(|u|)‖L∞, (5.27)

and the sufficiency of part (i) of the theorem follow.

To prove the necessity part of the theorem, for each point w ∈ C
n we use again the

sequence of test functions ξ(w,m)(z) = (1 + |w|)−mkw(z). Then

‖ξ(w,m)‖(p,m) � 1 (5.28)

independent of p and w which follows by Lemma 20 of [9] for p < ∞ and from a
simple argument for p = ∞. Applying uCψ to ξ(w,m) and completing the square on
the exponent yields

‖uCψ‖ � ‖uCψξ(w,m)‖(∞,m) ≥ |u(z)||z|m
(1 + |w|)m e

α
2

(|ψ(z)|2−|ψ(z)−w|2−|z|2)

for all points w and z in C
n . Setting w = ψ(z) in particular leads to

‖uCψ‖ � |u(z)||z|m
(1 + |ψ(z)|)m e

α
2 |ψ(z)|2− α

2 |z|2 = B∞
(m,ψ)(|u|)(z)

from which the necessity of the condition and the remaining side of the estimate in
(3.9) follow.

To prove the second part of the theorem, we first assume that uCψ is compact. The
sequence ξ(w,m) converges to zero as |w| → ∞, and the convergence is uniform on
compact subset of C

n .We further assume that there exists sequence of points z j ∈ C
n

such that |ψ(z j )| → ∞ as j → ∞. If such a sequence does not exist, then (3.10)
holds trivially. It follows from compactness of uCψ that

lim sup
j→∞

B∞
(m,ψ)(|u|)(z j ) ≤ lim sup

j→∞
‖uCψξ(ψ(z j )),m‖(∞,m) = 0 (5.29)

from which (3.10) follows.
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We next suppose that uCψ is bounded and condition (3.10) holds. We proceed to
show compactness of uCψ . The condition along with Theorem 3.1 implies that uCψ is
a bounded map. On the other hand, the function f (z) = 1 belongs to F(p,m) , in deed,
a computation along (1.2) results in ‖ f ‖(p,m) = 1. It follows that by boundedness, the
weight function u belongs to F∞

(m,α). Let f j be a sequence of functions in F p
(m,α) such

that sup j ‖ f j‖(p,m) < ∞ and f j converges uniformly to zero on compact subsets of
C

n as j → ∞. For each ε > 0 by (3.10) there exists a positive N1 such that

B∞
(m,ψ)(|u|)(z) < ε

for all |ψ(z)| > N1. From this together and (5.26), we obtain

|uCψ f j (z)||z|me− α
2 |z|2 = |u(z) f j (ψ(z))||z|me− α

2 |z|2

≤ ‖ f j‖(p,m)
|u(z)||z|m

(1 + |ψ(z)|)m e
α
2 |ψ(z)|2− α

2 |z|2 � ε

for all |ψ(z)| > N1 and all j. On the other hand if |ψ(z)| ≤ N1, then it easily seen
that

|u(z) f j (ψ(z))||z|me− α
2 |z|2 ≤ ‖u‖(∞,m) sup

z:|ψ(z)|≤N1

| f j (ψ(z))|
� sup

z:|ψ(z)|≤N1

| f j (ψ(z))| → 0

as j → ∞, and completes the proof.

Proof of Corollary 3.6 We first assume that uCψ : F p
(m,α)( or F∞

(0,m,α)) →
F∞
(0,m,α) is compact and aim to verify condition (3.11). It follows that uCψ :

F p
(m,α)( or F∞

(0,m,α)) → F∞
(m,α) is also compact. Then by part (ii) of Theorem 3.5,

for each ε, there exists a positive integer N1 such that

B∞
(m,ψ)(|u|)(z) < ε

for all |ψ(z)| > N1. On the other hand, setting f (z) = 1, by boundedness (which
follows from compactness) we have u ∈ F∞

(0,m,α). Thus, there exists a positive integer
N2 for which

|u(z)||z|me− α
2 |z|2 < εe− α

2 N 2
1

for all |z| > N2. Therefore, if |z| > N2 > N1 we have

B∞
(m,ψ)(|u|)(z) ≤ e

αN2
1

2 |u(z)|z|me
−α
2 |z|2 < ε

as desired.
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For the converse, let f j be a uniformly bounded sequence of functions in F p
(m,α)

( orF∞
(0,m,α))which converges uniformly to zero on compact subsets of C

n as j → ∞.

For each ε > 0, condition (3.11) implies that there exists a positive integer N3 for
which B∞

(m,ψ)(|u|)(z) < ε for all |z| > N3. From this and (5.26), we obtain

|uCψ f j (z)||z|me− α
2 |z|2 ≤ sup

j≥1
‖ f j‖(p,m)

|u(z)||z|m
(1 + |ψ(z)|)m e

α
2 |ψ(z)|2− α

2 |z|2 � ε

for all |z| > N3 and all exponents p. On the other hand, since the set {|ψ(z)| : |z| ≤ N3}
is compact, there exists a positive integer N4 for which sup|z|≤N3

|ψ(z)| ≤ N4. Thus,

|u(z) f j (ψ(z))||z|me− α
2 |z|2 ≤ ‖u‖(∞,m) sup

|w|≤N4

| f j (w)|
� sup

|w|≤N4

| f j (w)| → 0, j → ∞.

Proof of Theorem 3.7 The proof of the theorem follows a classical approach used to
prove similar results in [13,21,26,28–30]. Recall that each entire function f can be
expressed as f (z) = ∑∞

k=0 pk(z) where the function pk are polynomials of degree k.
We consider a sequence of operators R j defined by

(R j f )(z) =
∞∑

k= j

pk(z). (5.30)

It was proved in [14,28] that

lim
j→∞ ‖R j f ‖p = 0 (5.31)

for each f in the ordinary Fock spaces F p
α , and 1 < p < ∞. Thus by the uniform

boundedness principle

sup
j≥1

‖R j‖ < ∞. (5.32)

Now if h ∈ F p
(m,α), then by Lemma 1.1 and (5.31)

lim
j→∞ ‖R j h‖(p,m) 
 lim

j→∞ ‖R j (z
βh)‖p = 0 (5.33)

from which the same conclusion (5.32) follows when the sequence (Rn) is defined on
weighted Fock–Sobolev space.

Let 1 < p ≤ q ≤ ∞ and assume that uCψ : F p
(m,α) → Fq

(m,α) is bounded. Then
mimicking the proof of Lemma 2 in [30] yields

‖uCψ‖e ≤ lim inf
j→∞ ‖uCψ R j‖(q,m). (5.34)
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Having singled out this important inequality, we now proceed to prove the lower
estimates in the theorem. To this end, let Q be a compact operator acting between
F p
(m,α) and Fq

(m,α). We first suppose that q = ∞. Since ξ(w,m) converges to zero
uniformly on compact subset of C

n as |w| → ∞ and (5.28) holds, we have

‖uCψ − Q‖ ≥ lim sup
|w|→∞

‖uCψξ(w,m) − Qξ(w,m)‖(∞,m)

≥ lim sup
|w|→∞

‖uCψξ(w,m)‖(∞,m) − ‖Qξ(w,m)‖(∞,m)

= lim sup
|w|→∞

‖uCψξ(w,m)‖(∞,m)

≥ lim sup
|ψ(w)|→∞

B∞
(ψ,m)(|u|)(z)(w), (5.35)

where the first equality is due to compactness of Q.
For 0 < q < ∞, we consider a different sequence of test functions in F P

(m,α),

namely thatkw; the normalized reproducing kernel function in F2
(0,α). This sequence

replaces the role played by ξ(w,m) above and running the same procedure as in (5.35)
gives

‖uCψ − Q‖ ≥ lim sup
|w|→∞

‖uCψkw‖(q,m) − ‖Qϕw‖(q,m)
= lim sup

|w|→∞
‖uCψkw‖(q,m)

≥ lim sup
|w|→∞

∫

Cn

|u(z)|q |z|mq

(1 + |ψ |)mq
|kw(ψ(z))|qe− αq

2 |z|2 dV

= (lim sup
|w|→∞

B(ψ,m)(|u|q)(w)) 1
q .

From this and (5.35) the lower estimate in (3.12) follows.
To prove the upper estimate, we again consider the next two different cases.

Case 1 Suppose q < ∞. Then for each f of unit norm in F p
(m,α), we get

‖uCψ R j f ‖q
(m,q) 


∫

Cn

|R j f (z)|qdθ(m,q)(z)

=
⎛
⎜⎝

∫

Cn\D(0,δ)

+
∫

D(0,δ)

⎞
⎟⎠ |R j f (z)|qe− αq

2 |z|2 dλ(m,q)(z) (5.36)

where again dλ(m,q)(z) = e
qα
2 |z|2 dθ(m,q)(z) and for some fixed δ > 0. By Theorem 3.1,

the first integral in (5.36) is bounded by

‖R j f ‖q
(p,m)( sup

z∈Cn\D(0,δ)
B(ψ,m)(|u|q)(z)) � sup

z∈Cn\D(0,δ)
B(ψ,m)(|u|q)(z)
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where we used the fact that sup j ‖R j‖ < ∞. It remains to estimate the second integral
in (5.36). Again by Theorem 3.1 and followed by the n-variable version of Lemma 3
in [30], the integral is estimated as

∫

D(0,δ)

|R j f (z)|qe− αq
2 |z|2 dλ(m,q)(z)

� sup
z∈Cn

B(ψ,m)(|u|q)(z)
∫

D(0,δ)

|z|mp|R j f (z)|pe− αp
2 |z|2 dV (z)

� sup
z∈Cn

B(ψ,m)(|u|q)(z)I j

∫

Cn

e− pα
2 |z|2 dV (z) � sup

z∈Cn
B(ψ,m)(|u|q)(z)I j

where

I j 

⎛
⎝

∞∑
m= j

(δα)m
∑
βns=m

(β!)−1
n∏

l=1

(
2

αs

) βl
2 + 1

s
(
�

(
sβl

2
+ 1

)) 1
s

⎞
⎠

p

(5.37)

with s the conjugate exponent of p and β! = ∏n
l=1 βl !. Observe that by Stirling’s

approximation formula, we have

(
�

(
sβl

2
+ 1

)) 1
s 


(
βl s

2

) βl
2 + 1

s − 1
2s

e− βl
2 . (5.38)

Plugging this in (5.37) and applying the ration test it is easily seen that the series
converges and hence I j → 0 as j → ∞. Thus, the contribution from the second
integral in (5.36) goes to zero for large enough j . Therefore

lim
j→∞ sup

‖ f ‖(p,m)=1
‖uCψ R j f ‖q

(q,m) � sup
z∈Cn\D(0,δ)

B(ψ,m)(|g|q)(z).

By (5.34) we get

‖uCψ‖q
e � lim

δ→∞ sup
z∈Cn\D(0,δ)

B(ψ,m)(|u|q)(z) 
 lim sup
|z|→∞

B(ψ,m)(|u|q)(z)

and completes the proof for the first case.

Case 2 q = ∞. Not much effort is needed to prove this case since it follows by a
simple modification of the arguments used in the previous case. We shall sketch it out
for simplicity of the exposition. Acting similarly as above, for each f of unit norm in
F p
(m,α), we may invoke (5.26) to get
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|z|m |uCψ R j f (z)|e− α
2 |z|2 = |u(z)||z|m |R j f (ψ(z))|e −α

2 |z|2

≤ ‖R j f ‖(p,m)
|u(z)||z|m

(1 + |ψ(z)|)m e
α
2 |ψ(z)|2− α

2 |z|2

≤ sup
j≥1

‖R j‖B∞
(m,ψ)(|u|)(z) � B∞

(m,ψ)(|u|)(z)

from which we have that

sup
|ψ(z)|≥δ

|z|m |uCψ R j f (z)|e− α
2 |z|2 � sup

|ψ(z)|≥δ
B∞
(m,ψ)(|u|)(z).

On the other hand, since uCψ is bounded, the weight function u belongs to F∞
(m,α).

Thus by Lemma 3 in [30] again, we have

sup
|ψ(z)|<δ

|z|m |uCψ Rn f (z)e− α
2 |z|2 | ≤ ‖u‖(∞,m) I j

where I j and s are as in (5.37). But it is again easily seen that I j → 0 as j → ∞.

Therefore,

lim inf
j→∞ sup

‖ f ‖(p,m)=1
sup

|ψ(z)|≤δ
|uCψ R j f (z)||z|me− α

2 |z|2 = 0

and hence

‖uCψ‖e � sup
|ψ(z)|≥δ

B∞
(m,ψ)(|u|)(z)

from which we get

‖uCψ‖e � lim sup
|ψ(z)|→∞

B∞
(m,ψ)(|u|)(z)

after letting δ to ∞, and completes the proof.
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