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Abstract In the Clifford algebra setting of a Euclidean space on the boundary of a
domain it is natural to define a monogenic (analytic) signal to be the boundary value
of a monogenic (analytic) function inside the domain. The question is how to define
a canonical phase and, correspondingly, a phase derivative. In this paper we give an
answer to these questions in the unit ball and in the upper-half space. Among the
possible candidates of phases and phase derivatives we decided that the right ones
are those that give rise to, as in the one dimensional signal case, the equal relations
between the mean of the Fourier frequency and the mean of the phase derivative, and
the positivity of the phase derivative of the shifted Cauchy kernel.
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1 Introduction

In time-frequency analysis the concept analytic signals is introduced (see [11,20]).
It is well-known that for a real-valued square integrable signal f in the whole time
range, the function f + iH f , where H is the Hilbert transformation on the line, is the
boundary value of an analytic function in the upper-half complex plane. The function
f + iH f is called the analytic signal associated with f. It is, in fact, two times of the
boundary value of the Cauchy integral of f in the upper-half complex plane. In the
periodic signals case, for a given function f ∈ L2(T ), written in the form

f (eit ) =
∞∑

k=−∞
ckeikt , t ∈ [0, 2π ],

where

ck = 1

2π

2π∫

0

f (eit )e−ikt dt,

the circular Hilbert transform H̃ is given by

H̃[ f ](eit ) = −i
∞∑

k=−∞
sgn(k)ckeikt, (1.1)

where sgn(k) = 1, if k > 0; 0, if k = 0; and − 1, if k < 0.
The integral form of the circular Hilbert transform is given by

H̃( f )(eit ) = 1

2π
lim
ε→0+

∫

|t−x |>0

cot

(
t − x

2

)
f (eix )dx .

The function

f + iH̃ f = c0 + 2
∞∑

k=1

ckeikt

is called the analytic signal associated with f . It is the boundary value of an analytic
function inside the unit disc. Unlike the upper-half plane case, however, it is not a
constant multiple of the boundary value of the Cauchy integral of f. In the upper-half
plan case the Cauchy kernel and the Schwarz kernel coincide. On the circle the circular
Hilbert transform does not correspond to the imaginary part of the Cauchy integral
of f. In fact, it corresponds to the imaginary part of the Schwarz integral of f, that
is the conjugate Poisson integral. In general, Hilbert transformation on the boundary
of a domain is defined to be the operator that maps the scalar part to its non-scalar
part of the boundary limit function of the analytic functions (usually the functions in
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the Hardy spaces) in the domain [3]. This concept is extended to higher dimensional
spaces in the Clifford algebra setting [2,27].

From the definition of circular Hilbert transform, it is easy to see that H̃(c0) = 0,
H̃[cos(kt)] = sin(kt), H̃[sin(kt)] = − cos(kt).

In the polar coordinate representation we have

f + iH̃ f = A(t)[cos θ(t)+ i sin θ(t)] = A(t)eiθ(t),

where A(t) =
√

f 2 + (H̃ f )2 is called instantaneous amplitude, and θ(t) = arctg H̃ f
f

is called the instantaneous phase. The derivative of the phase, θ ′(t), is usually defined
to be instantaneous frequency.

In order to make the above defined “instantaneous frequency” a qualified concept
complying with its physical meaning many researchers require the additional condi-
tion θ ′(t) ≥ 0 a.e. [22,23], while some do not [11]. In the present paper this point is
not insisted.

In higher dimensional spaces, Sommer and his collaborators, including Felsberg
and Bülow et al., defined monogenic signals by using the Hilbert transform in the
higher dimensional spaces, being as a-valued combination of the Riesz transforms.
By means of monogenic signals they defined various phases to analyze image signals
[7–9,15,16] with significant applications.

Our new contribution is two fold. One is to single out a canonical scalar-valued
phase function from the commonly used ones (see [16], for instance), and define two
different types of phase derivatives. Some properties of the defined derivatives are
proved, including the positivity of the phase derivatives of the functions in an ortho-
normal system generated by shifted Cauchy kernels. The second is that we prove
that the average of one of the two types of the defined phase derivatives against the
density function, the square of the norm of the original signal, is identical with the
average of Fourier frequency against, as the density function, the square of the norm
of the Fourier transform over the characteristic function inducing the Hardy spaces.
This second group of results are the counterpart ones of those for the one dimensional
cases [11–13], enhancing the sense of monogenicity.

Comparing with the work of Sommer et al., ours stresses on the theory aspect,
but not on the specific roles of the possible phase components. We do not only con-
cern phases, but also phase derivatives or instantaneous frequencies. We show the
actual connections of the monogenic signals with the Fourier transform, as well as
with the monogenic functions in the Hardy spaces of the upper half space or of the
interior of the ball. Phase derivative or instantaneous frequency is a crucial concept
in one dimensional signal analysis [13,20,22,23,25,26]. In higher dimensional signal
analysis, including image signal analysis, phase derivatives and function decompo-
sitions have similar applications, that however, will not be concerned in the present
paper.

2 Preliminary

Most of the basic knowledge and notation in relation to Clifford algebra hereby are
referred to [6,14].
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Let e1, . . . , em be basic elements satisfying ei e j + e j ei = −2δi j , where δi j = 1 if
i = j, and δi j = 0 otherwise, i, j = 1, 2, . . . ,m. Let

Rm
1 = {x0 + x, x ∈ Rm},

where

Rm = {x = x1e1 + · · · + xmem : x j ∈ R, j = 1, 2, . . . ,m}
be identical with the usual Euclidean space Rm .

An element in Rm is called a vector. The real (complex) Clifford algebra generated
by e1, e2, . . . , em , denoted by Rm (Cm), is the associative algebra over the real (com-
plex) field R (C).A general element in Rm , therefore, is of the form x = ∑

S xSeS and
eS = ei1 ei2 . . . eil , and S runs over all the ordered subsets of {1, 2, . . . ,m}, namely

S = {1 ≤ i1 < i2 < · · · < il ≤ m}, 1 ≤ l ≤ m.

The multiplication of two vectors x = ∑m
j=1 x j e j and y = ∑m

j=1 y j e j is given by

x y = x · y + x ∧ y

with

x · y = −
m∑

j=1

x j y j = 1

2
(x y + yx) = −〈x, y〉

x ∧ y =
∑

i< j

ei j (xi y j − x j yi ) = 1

2
(x y − yx)

being a scalar and a bi-vector, respectively. We denote by Sc(x y) and Bi(x y), respec-

tively. In particular, we have x2 = −〈x, x〉 = −|x |2 = −∑m
j=1 x2

j .

We define the conjugation and reversion of eS are eS = eil . . . ei1, e j = −e j and
ẽS = eil . . . ei1. So the Clifford conjugate of a vector x is x = −x . The Clifford
reversion of a vector x is x̃ = x . It is easy to verify that 0 �= x ∈ Rm implies

x−1 = x

|x |2 .

The open ball with center 0 and radius R in Rm is denoted by B(0, R) and the unit
sphere in Rm is denoted by Sm−1.

The natural inner product between x and y in Cm, denoted by< x, y >, is the com-
plex number

∑
S xS yS, where x = ∑

S xSeS and y = ∑
S ySeS . The norm associated

with this inner product is

|x | = 〈x, x〉 1
2 =

(
∑

S

|xS|2
) 1

2

.
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Below we will study functions defined in Rm taking values in Cm . So, they are of
the form f (x) = ∑

S fS(x)eS, where fS are complex-valued functions. We will use
the Dirac operator D, where D = ∂

∂x1
e1 + · · · + ∂

∂xm
em . We define the “left” and

“right” roles of the operators D by

D f =
m∑

i=1

∑

S

∂ fS

∂xi
ei eS

and

f D =
m∑

i=1

∑

S

∂ fS

∂xi
eSei .

If D f = 0 in a domain (open and connected) �, then we say that f is left-mono-
genic in �; and, if f D = 0 in �, we say that f is right-monogenic in �. If f is both
left- and right-monogenic, then we say that f is monogenic.

We call

E(x) = x

|x |m

the Cauchy kernel in Rm . It is easy to see that E(x) is a monogenic function in Rm\{0}.
For x = |x |ξ = rξ , there is the polar form of the Dirac operator

D = ξ∂r − 1

r
∂ξ = 1

r
ξ(r∂r + ξ∂ξ ) = 1

r
ξ(r∂r + 	ξ ),

where 	ξ is the bi-vector-valued spherical Dirac operator

	ξ = ξ∂ξ = −
∑

i< j

ei e j (x j∂x j − x j∂xi ).

Denoting 	̃ξ = (m − 1)I − 	ξ , where I is the identity operator, then 	̃ξ − I =
(m − 2)I − 	ξ .

Remark 2.1 When m = 2, let ξ = cos te1 + sin te2, then ξ = − cos te1 − sin te2.

∂ξ = [− sin te1 + cos te2] ∂
∂t
.

Therefore,

	ξ = ξ∂ξ

= [− cos te1 − sin te2][− sin te1 + cos te2] ∂
∂t
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= e2e1
∂

∂t

= ē1e2
∂

∂t
.

In the complex plane, Let ē1e2 = i, then ξ = cos te1 + sin te2 = e1(cos t + sin t ē1e2)

is isomorphic to cos t + i sin t, and −	ξ = 1
i
∂
∂t .

Remark 2.2 When m = 2,

	̃ξ − I = −	ξ .

3 Fourier Expansion and Spherical Hilbert Transforms

It is well-known that if f ∈ L2(Sm−1), then we have the Fourier–Laplace expansion

f (ξ) =
∞∑

k=0

Sk( f )(ξ), ξ ∈ Sm−1,

where Sk( f ) ∈ Hk are k-spherical harmonics given by

Sk( f )(ξ) = dim(Hk)
1

ωm−1

∫

Sm−1

Pk,m(〈ξ, y〉) f (y)d Sy,

where Pk,m(t) are Legendre polynomials of degree k in dimension m, and d S the
surface area element (see [28]).

Thanks to Clifford analysis, if we denote

Pk( f )(ξ) = m + k − 2 − 	ξ

2k + m − 2
[Sk( f )(ξ)]

and

Qk−1( f )(ξ) = k + 	ξ

2k + m − 2
[Sk( f )(ξ)], k ≥ 1,

then

f (ξ) =
∞∑

k=0

[
Pk( f )(ξ)+ Qk−1( f )(ξ)

]
, (3.1)

where P0( f ) = constant and Q−1 = {0},

Pk( f )(ξ) = 1

ωm−1

∫

Sm−1

C+
m,k(ξ , y) f (y)d Sy,
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and

Qk−1( f )(ξ) = 1

ωm−1

∫

Sm−1

C−
m,k−1(ξ , y) f (y)d Sy,

where

C+
m,k(ξ , y) = 1

2 − m
[−(m + k − 2)C (m−2)/2

k (〈ξ, y〉)
+(2 − m)C (m/2)

k−1 (〈ξ, y〉)(ξ ∧ y)],

and

C−
m,k−1(ξ , y) = 1

m − 2
[kC (m−2)/2

k (〈ξ, y〉)
+(2 − m)C (m/2)

k−1 (〈ξ, y〉)(ξ ∧ y)], k ≥ 1,

Cv
k is the Gegenbauer polynomial of degree k associated with v. We call (3.1) the

Fourier expansion of f ∈ L2(Sm−1).
The component Pk( f )(ξ) is called an inner spherical monogenics of degree k,

which is the restriction to the unit sphere of the k-homogeneous left-monogenic func-
tion Pk( f )(rξ) in the unit ball. The component Qk−1( f )(ξ) is called an outer spher-
ical monogenics of degree k − 1, which is the restriction to the unit sphere of the
−(m+k−2)-homogeneous left-monogenic function Qk−1( f )(rξ) in Rm\{0}. There-
fore, Pk( f )(ξ) ∈ H+

2 (S
m−1) and Qk−1( f )(ξ) ∈ H−

2 (S
m−1),where the Hardy spaces

H+
2 (S

m−1) and H−
2 (S

m−1) are Hilbert subspaces of the L2 on the sphere under the
inner product (6.1), and they are orthogonal complements to each other.

There hold the following relations (see [14]):

−	ξ [Pk(ξ)] = k Pk(ξ),

−	ξ [Qk−1(ξ)] = −(k + m − 2)Qk−1(ξ),

(	̃ξ − I )[Pk(ξ)] = (k + m − 2)Pk(ξ), and

(	̃ξ − I )[Qk−1(ξ)] = −k Qk−1(ξ).

For the boundary value of a left monogenic function in the ball, the non-scalar part
of it is defined to be the inner spherical Hilbert transform of the scalar part. For the
boundary value of a left monogenic function defined outside the unit ball, we similarly
define outer spherical Hilbert transform. In this paper, we only deal with the inner
spherical Hilbert transform, abbreviated as spherical Hilbert transform. The theory for
outer spherical Hilbert transform is similar.

The inner and outer spherical Hilbert transform of the function f ∈ L2(Sm−1) are
well studied in [4,5,10,27]. The first integral representation of the spherical Hilbert
transform is given by Brackx and Van Acker [10]. In [27], by using the Abelian sum
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of the inner spherical Hilbert transform of f , we obtain the singular integral represen-
tation, as follows.

H̃ [ f ](ξ) = lim
r→1−

∫

Sm−1

Qr (y, ξ) f (y)d Sy,

where

Qr (y, ξ) = 1

ωm−1

⎡

⎣ 2

|y − rξ |m − m − 2

rm−1

r∫

0

ρm−2

|y − ρξ |m dρ

⎤

⎦ rξ ∧ y.

Denoting

Im =
r∫

0

ρm−2

|y − ρξ |m dρ,

and t = 〈y, ξ 〉, we have

Im+2(r, t) = 1

m

[(
m − 1 + t

d

dt

)
Im − rm−1

|1 − 2r t + r2|m/2
]
,

while

I2(r, t) = 1√
1 − t2

arctg
r − t√
1 − t2

,

I3(r, t) = r t − 1

(1 − t2)
√

1 − 2r t + r2
.

The series form of the spherical Hilbert transform is (see [5,27]):

H̃ [ f ](ξ) =
∞∑

k=1

[
k

k + m − 2
Pk( f )(ξ)− Qk−1( f )(ξ)

]
.

From the definition of the spherical Hilbert transform, we have

H̃ [P0] = 0,

H̃ [Pk( f )+ Qk−1( f )] = k

k + m − 2
Pk( f )− Qk−1( f ).

Remark 3.1 It is shown in [5] that

H̃ [ f ](ξ) =
∞∑

k=1

−	ξ [Sk( f )(ξ)]
k + m − 2

. (3.2)
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Clearly, since f is real-valued, H̃ [ f ](ξ) is bi-vector-valued and has the form

ξ

∞∑

k=1

∂ξ [Sk( f )(ξ)]
k + m − 2

.

Remark 3.2 From Remark 2.1, in the complex plane, using the isomorphic form with
m = 2, the right hand side of (3.2) becomes

∞∑

k=1

1
i
∂
∂t [ckeikt + c−ke−ikt ]

k
=

∞∑

k=1

(ckeikt − c−ke−ikt )

= iH̃[ f ](eit ).

That means, up to the imaginary unit i, the spherical Hilbert transform H̃[ f ] on S1

coincides with the circular Hilbert transform defined in (1.1).

Example 3.3 Consider the spherical Hilbert transform of the spherical harmonics

C
m−2

2
k (〈ξ, y〉). Using the formula (3.2), we have

−	ξ
[

1

k + m − 2
C

m−2
2

k (〈ξ, y〉)
]

= − m − 2

k + m − 2
C

m
2

k (〈ξ, y〉)	ξ [〈ξ, y〉]

= − m − 2

k + m − 2
C

m
2

k (〈ξ, y〉)y ∧ ξ,

where we invoke the property d
dt Cv

k (t) = 2vCv+1
k−1 (t). This result can be found in [14].

Therefore,

Pk( f )(ξ) = Sc[Pk( f )(ξ)] + Bi[Pk( f )(ξ)] = Sc[Pk( f )(ξ)] + H̃{Sc[Pk( f )(ξ)]}.

4 Monogenic Signals and Phase Derivatives on the Unit Sphere

Let f be a real-valued square integrable signal on the unit sphere Sm−1. From the
definition of the spherical Hilbert transform, we have f (ξ)+ H̃ [ f ](ξ) ∈ H+

2 (S
m−1),

which is the boundary value of a left-monogenic function inside the unit ball. We call
f (ξ)+ H̃ [ f ](ξ) the monogenic signal associated with f.

For a monogenic signal f +(ξ) = f (ξ)+ H̃ [ f ](ξ), we can write it in the form:

f + H̃ [ f ] = A( f )

[
f

A( f )
+ H̃ [ f ]

A( f )

]

= A( f )

[
f

A( f )
+ H̃ [ f ]

|H̃ [ f ]|
|H̃ [ f ]|
A( f )

]
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= A( f )

[
cos θ(ξ)+ H [ f ]

|H [ f ]| sin θ(ξ)

]

= A( f )e
H [ f ]

|H [ f ]| θ(ξ),

where A( f ) =
√

f 2 + H̃2[ f ] is called the amplitude, θ(ξ) = arctan |H̃ [ f ]|
f the phase

that is between 0 and π
2 ,

H̃ [ f ]
|H̃ [ f ]|θ(ξ) the phase vector, and e

[ H̃ [ f ]
|H̃ [ f ]| θ(ξ)] the phase direc-

tion. We define the directional phase derivative by Sc
{
[−	ξθ(ξ)] H̃ [ f ]

|H̃ [ f ]|
}

.

Geometrical explanation of instantaneous phase direction
When m = 2, by definition a monogenic signal is of the form f0+ f1e1e2, the instanta-
neous phase is eθe1e2 , where θ = arctan f1

f0
. The product of a vector a = a1e1 +a2e2 ∈

R2 and the instantaneous phase eθe1e2 , that is

aeθe1e2 = e−(θ/2)e1e2ae(θ/2)e1e2 ,

is the rotation of a anticlockwise by the angle θ .
When m = 3, a monogenic signal is this form f0 + f1e2e3 + f2e3e1 + f3e1e2.

Using the Hodge dual, it can be written as f0 −( f1e1 + f2e2 + f3e3)e1e2e3. We denote

f1e1 + f2e2 + f3e3 by f . Then the instantaneous phase direction is e
−θ f

| f | e1e2e3 , where

θ = arctan
| f |
f0

. Let a be a vector. Then

e
−(θ/2) f

| f | e1e2e3ae
(θ/2)

f
| f | e1e2e3

is the rotation of a along the axis f by the angle θ in the clockwise looking from the
arrow-head position of f . For details, see [14,18].

A( f )e
−θ f

| f | e1e2e3 is a rotation of the real value A( f ) along the rotation axis
−i sin φ(ξ) + j cosφ(ξ) which is orthogonal to the plane spanned by the real axis
and the vector i cosφ(ξ)+ j sin φ(ξ) by the angle θ in the clockwise looking from the
arrow-head position of the rotation axis.

Remark 4.1 Particularly, for a monogenic signal of this form f0 + f1e2e3 + f2e3e1,
in [16], it is written in this form f0 + f1i + f2j. Then

f0 + f1i + f2j = A( f )

[
f0

A( f )
+ f1i + f2j

A( f )

]

= A( f )

[
f0

A( f )
+ f1i + f2j

| f1i + f2j|
| f1i + f2j|

A( f )

]

= A( f )[cos θ(ξ)+ i sin θ(ξ) cosφ(ξ)+ j sin θ(ξ) sin φ(ξ)]
= A( f )e[i cosφ(ξ)+j sin φ(ξ)]θ(ξ),



Phase Derivative of Monogenic Signals 997

where A( f )=√
( f0)2+( f1)2+( f2)2, θ(ξ)=arctan | f1i+ f2j|

f0
= arctan

√
( f1)2 + ( f2)2

f0
,

φ(ξ) = arctan f2
f1

. In [16], the geometrical explanation of A( f )e[i cosφ(ξ)+j sin φ(ξ)]θ(ξ)
is a rotation of the real value A( f ) along the rotation axis−i sin φ(ξ)+j cosφ(ξ)which
is orthogonal to the plane spanned by the real axis and the vector i cosφ(ξ)+j sin φ(ξ)
by the angle θ in the clockwise looking from the arrow-head position of the rotation
axis.

Next, we discuss how to define instantaneous frequency for monogenic signals.
First we consider instantaneous frequency for analytic signals on the circle.

For an analytic signal f + = f + iH̃ f , we have

f +(eit ) = A(t)[cos θ(t)+ i sin θ(t)] = A(t)eiθ(t).

In the complex plane, the instantaneous frequency for an analytic signal is defined to
be the derivative of the instantaneous phase θ ′(t). There are various ways to compute
θ ′(t):

(a) 1
i
∂
∂t [iθ(t)];

(b) 1
i
∂
∂t [cos θ(t)]/i sin θ(t);

(c) 1
i
∂
∂t [i sin θ(t)]/ cos θ(t);

(d) 1
i
∂
∂t [eiθ(t)]/eiθ(t);

(e) Re

[
1
i
∂
∂t f +(eit )

f +(eit )

]
.

As we know, the operator 1
i
∂
∂t corresponds to −	ξ = 	̃ξ − I in the dimension

m = 2. Therefore, in higher dimensions we may have two alternative methods to
define phase derivative or instantaneous frequency of a monogenic signal.

Method 1 Define instantaneous frequency by

Sc

{[
−	ξ f +(ξ)

] [
f +(ξ)

]−1
}
. (4.1)

We can show that

Sc

{[
−	ξ f +(ξ)

] [
f +(ξ)

]−1
}

= Sc

{[
−	ξ e

[ H̃ [ f ]
|H̃ [ f ]| θ(ξ)]

] [
e
[ H̃ [ f ]
|H̃ [ f ]| θ(ξ)]

]−1}

= Sc

{
−	ξ

(
H̃ [ f ]

|H̃ [ f ]|

)
sin θ(ξ)

[
e
[ H̃ [ f ]
|H̃ [ f ]| θ(ξ)]

]−1}
+ Sc

{
[−	ξθ(ξ)] H̃ [ f ]

|H̃ [ f ]|

}
.

(4.2)
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In the complex plane, the first part of Eq. (4.2) reduces to zero and the second part of
it is just the phase derivative.

To show (4.2), we have

−	ξ f +(ξ)

= −	ξ
{

A( f )

[
cos θ(ξ)+ H̃ [ f ]

|H̃ [ f ]| sin θ(ξ)

]}

= −	ξ A( f )

[
cos θ(ξ)+ H̃ [ f ]

|H̃ [ f ]| sin θ(ξ)

]

−A( f )	ξ

[
cos θ(ξ)+ H̃ [ f ]

|H̃ [ f ]| sin θ(ξ)

]
.

−	ξ
[

cos θ(ξ)+ H̃ [ f ]
|H̃ [ f ]| sin θ(ξ)

]
= sin θ	ξ θ − cos θ	ξ θ

H̃ [ f ]
|H̃ [ f ]|

−	ξ
(

H̃ [ f ]
|H̃ [ f ]|

)
sin θ.

Then

[−	ξ f +(ξ)][ f +(ξ)]−1

= [−	ξ f +(ξ)]
{

1

A( f )

[
cos θ(ξ)− H̃ [ f ]

|H̃ [ f ]| sin θ(ξ)

]}

= −	ξ A( f )

A( f )
+

[
−	ξ e[H̃ [ f ]|H̃ [ f ]|θ(ξ)]]

[
e
[ H̃ [ f ]
|H̃ [ f ]| θ(ξ)]

]−1

= −	ξ A( f )

A( f )
− 	ξ

[
cos θ(ξ)+ H̃ [ f ]

|H̃ [ f ]| sin θ(ξ)

][
cos θ(ξ)− H̃ [ f ]

|H̃ [ f ]| sin θ(ξ)

]

Therefore,

Sc

{[
−	ξ f +(ξ)

] [
f +(ξ)

]−1
}

= Sc

{[
−	ξ e

[ H̃ [ f ]
|H̃ [ f ]| θ(ξ)]

] [
e
[ H̃ [ f ]
|H̃ [ f ]| θ(ξ)]

]−1}

= Sc

{
−	ξ

(
H̃ [ f ]

|H̃ [ f ]|

)
sin θ(ξ)

[
e
[ H̃ [ f ]
|H̃ [ f ]| θ(ξ)]

]−1

− 	ξθ(ξ)

(
H̃ [ f ]

|H̃ [ f ]|

)}

= Sc

{
−	ξ

(
H̃ [ f ]

|H̃ [ f ]|

)
sin θ(ξ)

[
e
[ H̃ [ f ]
|H̃ [ f ]| θ(ξ)]

]−1}
+ Sc

{
[−	ξθ(ξ)] H̃ [ f ]

|H̃ [ f ]|

}
.
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Method 2 Define instantaneous frequency by

Sc

{[
(	̃ξ − I ) f +(ξ)

] [
f +(ξ)

]−1
}
.

Similarly, we can show that

Sc

{[
(	̃ξ − I ) f +(ξ)

] [
f +(ξ)

]−1
}

= (m − 2)+ Sc

{[
−	ξ f +(ξ)

] [
f +(ξ)

]−1
}

= (m − 2)+ Sc

{
−	ξ

(
H̃ [ f ]

|H̃ [ f ]|

)
sin θ(ξ)

[
e
[ H̃ [ f ]
|H̃ [ f ]| θ(ξ)]

]−1}

+Sc

{
[−	ξθ(ξ)] H̃ [ f ]

|H̃ [ f ]|

}
. (4.3)

Note that in higher dimensions, phase derivative or instantaneous frequency defined
through Method 1 or Method 2 are no longer qual to the directional derivative of the
instantaneous phase.

Remark 4.2 For Pk(ξ), by using the two methods, the instantaneous frequencies
obtained are, respectively, k and k + m − 2. When m = 2, Pk reduces to eikt , and
k + m − 2 reduces to k.

Remark 4.3 If f (x) is left-monogenic, then D f = 0. Using the polar form of the
Dirac operator

D = 1

r
ξ(r∂r + 	ξ ),

we have −	ξ f (x) = r∂r f (x). Therefore, −	ξ f (ξ) = limr→1− ∂r f (x). In many
occasions it is easier to compute with the operator ∂r than the operator 	ξ .

Now we justify the above given definitions of instantaneous frequency. The fol-
lowing relation plays an important role in one dimensional signal analysis: let s be an
analytic signal of finite energy and s(t) = |s(t)|eiϕ(t). Then in both the classical sense
[11] and the extended sense [12,13],

〈ω〉 =
∞∫

0

ω|ŝ(ω)|2dω =
∞∫

−∞

dϕ(t)

dt
|s(t)|2dt. (4.4)

For periodic analytic signals there exists an analogous relation [12]

〈ω〉 =
∞∑

k=0

k|ck |2 =
∞∫

−∞

dϕ(t)

dt
|s(t)|2dt, (4.5)

where ck’s are the Fourier coefficients of f.
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For a monogenic signal f +(ξ) = ∑∞
k=0 Pk(ξ), we have, correspondingly, two

methods to define the mean of the Fourier frequency as follows.

Method 1

〈k〉1 =
∞∑

k=0

k|Pk(ξ)|2.

In the case we can prove, similarly to (4.5),

〈k〉1 =
∫

Sm−1

Sc
{
[−	ξ f +(ξ)][ f +(ξ)]−1

}
| f +(ξ)|2d Sξ .

In fact,

〈k〉1 = 1

ωm−1

∫

Sm−1

∞∑

k=0

k|Pk(ξ)|2d Sξ

= 1

ωm−1

∫

Sm−1

∞∑

k=0

k Pk(ξ)Pk(ξ)d Sξ

= 1

ωm−1

∫

Sm−1

∞∑

k=0

(−	ξ )Pk(ξ)Pk(ξ)d Sξ

= 1

ωm−1

∫

Sm−1

(−	ξ ) f +(ξ) f +(ξ)d Sξ

= 1

ωm−1

∫

Sm−1

[(−	ξ ) f +(ξ)][ f +(ξ)]−1 f +(ξ) f +(ξ)d Sξ

= 1

ωm−1

∫

Sm−1

[(−	ξ ) f +(ξ)][ f +(ξ)]−1| f +(ξ)|2d Sξ

= 1

ωm−1

∫

Sm−1

Sc
{
[−	ξ f +(ξ)][ f +(ξ)]−1

}
| f +(ξ)|2d Sξ .

Method 2

〈k〉2 =
∞∑

k=0

(k + m − 2)|Pk(ξ)|2.

Using the same technique, we can prove, similarly to (4.5),
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〈k〉2 =
∫

Sm−1

Sc
{
[(	̃ξ − I ) f +(ξ)][ f +(ξ)]−1

}
| f +(ξ)|2d Sξ .

For some physical reasons, we need to expand a signal by those of positive analytic
instantaneous frequency. This aspect has recently been studied in a series papers of
Qian et al. [22–26]. In this complex plane, the study is based on the analytic signals,

the boundary values eiθa(t) = eit −a
1−aeit , |a| < 1, of the corresponding Möbius transforms

from the unit disc to the unit disc, called Fourier atoms. Observe that [17,22]

1

2π

dθa(t)

dt
= 1

2π

1 − |a|2
|eit − a|2

that is the Poisson kernel of the disc at a, and positive, we have non-trivial ana-
lytic signals of positive phase derivatives or instantaneous frequencies. Furthermore,{

1√
2π

1−aeit

|1−aeit |2 eikθa(t)
}∞

k=−∞ is a weighed trigonometric system.

In higher dimensions, it is natural to consider the functions Pk(τa(ξ)), where τa(ξ)

is the Möbius transformation from the unit ball to the unit ball. We first recall Möbius
transforms in higher dimensional spaces.

5 Möbius Transforms in Higher Dimensional Spaces

In this section, we will recall well known results of Möbius transformation in Rm .

Definition 5.1 [1] A Möbius transformation is a function M : Rm ∪ {∞} −→ Rm ∪
{∞}, which can be expressed as finite composition of translations, dilations, orthog-
onal transformations and inversions. In fact, each Möbius transformation is a homeo-
morphism from Rm ∪ {∞} to Rm ∪ {∞}.
In Rm , it is more difficult to describe the Möbius transformation. That is especially
because that multiplication in Rm is not closed. For example, ab may be not in Rm ,
although a and b are in Rm . In order to solve this problem, we need the following
Lemma, that is

Lemma 5.1 [1] If a, b, c, d ∈ 	m ∪ {0}, and satisfy

(1) ac−1, dc̃ ∈ Rm, when c �= 0;
(2) ad̃ − bc̃ = ±1;
(3) bd−1 ∈ Rm, when c = 0.

Then ψ(x) = (ax + b)(cx + d)−1 is a Möbius transformation from Rm ⋃{∞} to
Rm ⋃{∞} and this expression factorizes to equal ac−1 ± (cxc̃ + dc̃)−1 when c �= 0
and ±axã + bd−1 when c = 0.

This above extension was first worked out by Karl Theodor Vahlen in 1902, and was
re-studied by Ahlfors over 80 years later, in 1984.
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Note 5.1 The Jacobian of the transform on the sphere is given as [1]

Jψ(x) =
(

|ad̃ − bc̃|
|cx + d|2

)m

= |cx + d|−2m .

Example 5.1 ω = τa(x) = (x − a)(1 − āx)−1 is a Möbius transformation which
maps the unit ball onto itself and ω−1 = τ−a(x).

Unfortunately, the composition of a monogenic function and a Möbius transforma-
tion is, in general, no longer monogenic. Möbius transforms themselves, and products
of monogenic functions are usually not monogenic functions. In fact, transformations
of harmonic and monogenic functions are more rigid here than those in the complex
case.

Let ψ(x) = (ax + b)(cx + d)−1 be a Möbius transformation in Rm ∪ {∞}, then
(see [21], for instance)

(1) If f is monogenic, then so is

˜cx + d

|cx + d|m f (ψ(x));

and
(2) If h is harmonic, then so is

1

|cx + d|m−2 h(ψ(x)).

Next we consider the frequency of
˜1−aξ

|˜1−aξ |m Pk

(
(ξ − a)(1 − āξ)−1

)
.

Example 5.2
˜1−aξ

|˜1−aξ |m Pk

(
(ξ − a)(1 − āξ)−1

)
is the restriction to the unit sphere of

the left-monogenic function
˜1−āx

|˜1−āx |m Pk
(
(x − a)(1 − āx)−1

)
in the unit ball. Using

Method 1 and 2 we obtain the instantaneous frequencies
(m−1)(〈a,ξ 〉−|a|2)+k(1−|a|2)

|1−āξ |2

and
(1+k)(1−|a|2)+(m−3)(1−〈a,ξ 〉)

|1−āξ |2 (> 0 when m > 2), respectively. In fact, proceeding

with the computation given in (4.1), we have

−	ξ
⎡

⎣
˜1 − āξ

|1 − āξ |m Pk

(
(ξ − a)(1 − āξ)−1

)
⎤

⎦

= lim
r→1− r

∂

∂r

⎡

⎣
˜1 − ārξ

|1 − ārξ |m Pk

(
(rξ − a)(1 − ārξ)−1

)
⎤

⎦

= lim
r→1−

−ξa|1 − ārξ |2 − m(1 − rξa)(−〈ξ, a〉 + r |a|2)
|1 − ārξ |m+2

×Pk

(
(rξ − a)(1 − ārξ)−1

)
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+ lim
r→1−

˜1 − ārξ

|1 − ārξ |m r
∂

∂r

[
Pk

(
(rξ − a)(1 − ārξ)−1

)]

= −ξa|1 − āξ |2 − m(1 − ξa)(−〈ξ, a〉 + |a|2)
|1 − āξ |m+2 Pk

(
(ξ − a)(1 − āξ)−1

)

+
˜1 − āξ

|1 − āξ |m Pk

(
(ξ − a)(1 − āξ)−1

)
k

1 − |a|2
|1 − āξ |2

=
[−ξa + (1 − m)|a|2 + m〈ξ, a〉

|1 − āξ |2 + k
1 − |a|2
|1 − āξ |2

]
˜1 − āξ

|1 − āξ |m

×Pk

(
(ξ − a)(1 − āξ)−1

)

= Y (ξ)
˜1 − āξ

|1 − āξ |m Pk

(
(ξ − a)(1 − āξ)−1

)
.

The formula (4.1) implies that the instantaneous frequency is the scalar part of Y (ξ),

that is
(m−1)(〈ξ,a〉−|a|2)+k(1−|a|2)

|1−āξ |2 . Similarly, adopting Method 2, the instantaneous fre-

quency is
(m−3)(1−〈a,ξ 〉+(k+1)(1−|a|2)

|1−aξ |2 (> 0 when m > 2). The Cauchy kernel
˜1−āξ

|˜1−āξ |m
is the special cases of the above for k = 0 and Pk = 1. The instantaneous frequency

of it is
(m−1)(〈ξ,a〉−|a|2)

|1−āξ |2 and
(1−|a|2)+(m−3)(1−〈a,ξ 〉)

|1−aξ |2 (>0 when m > 2), respectively.

Conclusion From the above two examples, we prefer to choose Method 2 to define the
instantaneous frequency and the mean of the instantaneous frequency for monogenic
signals.

6 A System of L2(Sm−1)

Consider L2(Sm−1), the space of scalar-valued square integrable functions on Sm−1,
equipped with the inner product

( f, g) =
∫

Sm−1

f̄ (ξ)g(ξ)d Sξ . (6.1)

Next, we will give a monogenic orthogonal system for L2(Sm−1).

Theorem 6.1 Let a ∈ B(0, 1) ⊆ Rm. Denote

Fa =
⎧
⎨

⎩
˜1 + āξ

|1 + āξ |m Pk(τ−a(ξ)),
˜1 + āξ

|1 + āξ |m Ql(τ−a(ξ)), k, l ≥ 0

⎫
⎬

⎭ .

Then Fa is a complete monogenic orthogonal system for L2(Sm−1).
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Proof A shorter proof can be given but we provide a more detailed proof for the sake
of completeness.

We consider three cases.

Case 1. When k �= l,

⎛

⎝
˜1 + āξ

|1 + āξ |m Pk(τ−a(ξ)),
˜1 + āξ

|1 + āξ |m Pl(τ−a(ξ))

⎞

⎠ = 0.

Case 2. When k �= l,

⎛

⎝
˜1 + āξ

|1 + āξ |m Qk(τ−a(ξ)),
˜1 + āξ

|1 + āξ |m Ql(τ−a(ξ))

⎞

⎠ = 0.

Case 3. For any k, l,

⎛

⎝
˜1 + āξ

|1 + āξ |m Pk(τ−a(ξ)),
˜1 + āξ

|1 + āξ |m Ql(τ−a(ξ))

⎞

⎠ = 0.

To proceed the proof of Case 1, we have

⎛

⎝
˜1 + āξ

|1 + āξ |m Pk(τ−a(ξ)),
˜1 + āξ

|1 + āξ |m Pl(τ−a(ξ))

⎞

⎠

=
∫

Sm−1

1 + ξ̄a

|1 + āξ |m Pk(τ−a(ξ))
1 + ξ̄a

|1 + āξ |m Pl(τ−a(ξ))d Sξ

=
∫

Sm−1

1

|1 + āξ |2m−2 Pk(τ−a(ξ))Pl(τ−a(ξ))d Sξ

=
∫

Sm−1

|1 − āx |2m−2

|1 − |ā|2|2m−2 Pk(x)Pl(x)
d Sξ

d Sx
d Sx

=
∫

Sm−1

|1 − āx |2m−2

|1 − |ā|2|2m−2 Pk(x)Pl(x)
|1 − |ā|2|m−1

|1 − āx |2m−2 d Sx

= 1

(1 − |a|2)m−1

∫

Sm−1

Pk(x)Pl(x)d Sx

= 0.

Invoking the orthogonality between Pk and Ql and that between Qk and Ql , k �= l,
we can prove Case 2 and Case 3.
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Next, we will prove completeness of the system. For any f ∈ L2(Sm−1), we have[
˜1+āτa(ξ)

|1+āτa(ξ)|m
]−1

f (τa(ξ)) ∈ L2(Sm−1), then

⎡

⎣
˜1 + āτa(ξ)

|1 + āτa(ξ)|m

⎤

⎦
−1

f (τa(ξ)) =
∞∑

k=0

[Pk(ξ)+ Qk−1(ξ)],

therefore,

f (ω) =
∞∑

k=0

[
˜1 + āω

|1 + āω|m Pk(τ−a(ω))+ ˜1 + āω

|1 + āω|m Qk−1(τ−a(ω))

]
.

We complete the proof. ��
Remark 6.1 When a = 0, τa(x) = x, so F0 becomes the Fourier basis of L2(Sm−1).

Theorem 6.2 The system

Fa =
⎧
⎨

⎩(
√

1 − |a|2)m−1
˜1 + āξ

|1 + āξ |m Pk(τ−a(ξ)), k ≥ 0

⎫
⎬

⎭

is a complete orthonormal basis of H+
2 (S

m−1) and the instantaneous frequencies of
the basis functions are positive.

7 Monogenic Signals and Phase Derivatives in the Upper Half Spaces

If f ∈ L2(Rm), we define the Fourier transform of f by

f̂ (t) =
∫

Rm

e−i〈x,t〉 f (x)dx

and the inverse Fourier transform by

f (x) = 1

(2π)m

∫

Rm

ei〈x,t〉 f̂ (t)dt .

The Hilbert transform of f (x) has the following alternative representations

H [ f ](x) = 1

(2π)m

∫

Rm

Dx ei〈x,t〉

|t | f̂ (t)dt
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= 1

(2π)m

∫

Rm

it
|t |ei〈x,t〉 f̂ (t)dt

= lim
ε→0+

∫

|x−t |>ε

x − t

|x − t |m+1 f (t)dt

= −
m∑

j=1

R j ( f )(x)e j , (7.1)

where R j ( f )(x) = limε→0+
∫
|x−t |>ε

x j −t j

|x−t |m+1 f (t)dt is the jth-Riesz transform of f

[28]. Clearly, if f is real-valued, then H [ f ](x) is vector-valued.

Remark 7.1 It is easily to see that H2[ f ](x) = f (x).

Remark 7.2 When m = 1, letting e1 = −i, then we have D = 1
i
∂
∂x . The right hand

side of (7.1) becomes

1

(2π)

∞∫

−∞

1
i
∂
∂x ei〈x,t〉

|t | f̂ (t)dt

= 1

(2π)

∞∫

−∞

t

|t |ei〈x,t〉 f̂ (t)dt

= i
(2π)

∞∫

−∞
−isgn(t)ei〈x,t〉 f̂ (t)dt

= iH[ f ](x).

It is well known [19] that

1

2
f (x)+ 1

2
H [ f ](x) = 1

(2π)m

∫

Rm

ei〈x,t〉 1

2
(1 + i

t

|t | ) f̂ (t)dt

= lim
x0→0+

1

(2π)m

∫

Rm

e+(x0 + x, t) f̂ (t)dt

= f +(x),

where

e+(x0 + x, t) = e−x0|t |ei〈x,t〉 1

2

(
1 + i

t

|t |
)

is left monogenic in Rm
1 [19]. Therefore, f (x) + H [ f ](x) ∈ H+

2 (R
m), being the

boundary value of a left-monogenic functions in the upper half space Rm
1 .
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We call f (x) + H [ f ](x) the monogenic signal associated with f , where f is a
real-valued square integral signal on Rm .

For a monogenic signal f +(x) = f (x)+ H [ f ](x), we write it in the form:

f + H̃ [ f ] = A( f )

[
f

A( f )
+ H [ f ]

A( f )

]

= A( f )

[
f

A( f )
+ H [ f ]

|H [ f ]|
|H [ f ]|
A( f )

]

= A( f )

[
cos θ(x)+ H [ f ]

|H [ f ]| sin θ(x)

]

= A( f )e[ H [ f ]
|H [ f ]| θ(x)],

where A( f ) = √
f 2 + H2[ f ] is called the amplitude, θ(x) = arctan |H [ f ]|

f the phase

that is between 0 and π
2 ,

H [ f ]
|H [ f ]|θ(x) the phase vector, and e

[
H [ f ]

|H [ f ]| θ(x)
]

the phase direc-

tion. We define the directional phase derivative by Sc
{
[Dθ(x)] H [ f ]

|H [ f ]|
}

and define the

phase derivative or instantaneous frequency by

Sc
{
[D f +(x)][ f +(x)]−1

}
.

We can prove that

Sc{[D f +(x)][ f +(x)]−1}

= Sc

{[
De[ H [ f ]

|H [ f ]| θ(x)]
] [

e[ H [ f ]
|H [ f ]| θ(x)]

]−1
}

= Sc

{
[D

H [ f ]
|H [ f ]| ] sin θ(x) cos θ(x)

}
+ Sc

{
[Dθ(x)] H [ f ]

|H [ f ]|
}
.

In fact,

D f +(x)

= D

{
A( f )

[
cos θ(x)+ H [ f ]

|H [ f ]| sin θ(x)

]}

= D A( f )

[
cos θ(x)+ H [ f ]

|H [ f ]| sin θ(x)

]
+ A( f )D

[
cos θ(x)+ H [ f ]

|H [ f ]| sin θ(x)

]
.

D

[
cos θ(x)+ H [ f ]

|H [ f ]| sin θ(x)

]
=− sin θDθ+cos θDθ

H [ f ]
|H [ f ]| + D

(
H [ f ]

|H [ f ]|
)

sin θ.
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Then

D f +(x)[ f +(x)]−1

= D f +(x)
{

1

A( f )

[
cos θ(x)− H [ f ]

|H [ f ]| sin θ(x)

]}

= D A( f )

A( f )
+

[
De[ H [ f ]

|H [ f ]| θ(x)]
] [

e[ H [ f ]
|H [ f ]| θ(x)]

]−1

= D A( f )

A( f )
+ D

[
cos θ(x)+ H [ f ]

|H [ f ]| sin θ(x)

] [
cos θ(x)− H [ f ]

|H [ f ]| sin θ(x)

]
.

Therefore,

Sc{[D f +(x)][ f +(x)]−1}

= Sc

{[
De[ H [ f ]

|H [ f ]| θ(x)]
] [

e[ H [ f ]
|H [ f ]| θ(x)]

]−1
}

= Sc

{
[D

H [ f ]
|H [ f ]| ] sin θ(x) cos θ(x)+ [Dθ(x)] H [ f ]

|H [ f ]|
}

= Sc

{
[D

H [ f ]
|H [ f ]| ] sin θ(x) cos θ(x)

}
+ Sc

{
[Dθ(x)] H [ f ]

|H [ f ]|
}
.

For m = 1 the first term of the last expression becomes zero and the second
term reduces to the ordinary phase derivative. For a monogenic signal f +(x) =
f (x)+ H [ f ](x) we define the mean of the Fourier frequency to be

〈t〉 =
∫

Rm

|t || f̂ +(t)|2dt .

Now we show, analogously with (4.4),

〈t〉 =
∫

Rm

Sc
{
[D f +(x)][ f +(x)]−1

}
| f +(x)|2dx .

In fact,

〈t〉 =
∫

Rm

|t || f̂ +(t)|2dt

=
∫

Rm

|t | f̂ +(t) f̂ +(t)dt

=
∫

Rm

|t |
[

1

2

(
1 + i

t

|t |
)

f̂ (t)

]
1

2

(
1 + i

t

|t |
)

f̂ (t)dt
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=
∫

Rm

it
[

1

2

(
1 + i

t

|t |
)

f̂ (t)

]
1

2

(
1 + i

t

|t |
)

f̂ (t)dt

=
∫

Rm

̂D f +(t) f̂ +(t)dt

=
∫

Rm

D f +(x) f +(x)dx

=
∫

Rm

[D f +(x)][ f +(x)]−1 f +(x) f +(x)dx

=
∫

Rm

[D f +(x)][ f +(x)]−1| f +(x)|2dx

=
∫

Rm

Sc
{
[D f +(x)][ f +(x)]−1

}
| f +(x)|2dx .
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