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Abstract In this paper, we investigate properties of Gelfand–Tsetlin bases mainly
for spherical monogenics, that is, for spinor valued or Clifford algebra valued homo-
geneous solutions of the Dirac equation in the Euclidean space. Recently it has been
observed that in dimension 3 these bases form an Appell system. We show that Gelf-
and–Tsetlin bases of spherical monogenics form complete orthogonal Appell systems
in any dimension. Moreover, we study the corresponding Taylor series expansions for
monogenic functions. We obtain analogous results for spherical harmonics as well.
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1 Introduction

The main aim of this paper is to study properties of the so-called Gelfand–Tsetlin bases
for spherical harmonics and, above all, for spherical monogenics in the Euclidean space
R

m , that is, for spinor valued or Clifford algebra valued monogenic polynomials in
R

m . Monogenic functions are just solutions of the equation ∂ F = 0 where the Dirac
operator ∂ is defined as
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∂ = e1
∂

∂x1
+ · · · + em

∂

∂xm
. (1)

On the one hand, monogenic functions are a higher dimensional analogue of holo-
morphic functions of one complex variable. On the other hand, the Dirac operator
∂ factorizes the Laplace operator � in the sense that � = −∂2 and so the theory
of monogenic functions which is nowadays called Clifford analysis refines harmonic
analysis.

As is well-known, we can expand a given holomorphic function f on the unit disc
B2 into its Taylor series

f (z) =
∞∑

k=0

f (k)(0)

k! zk .

The coefficients of this Taylor series are expressed directly by the complex deriva-
tives of the function f at the origin due to the fact that (zk)′ = kzk−1. In general, we
say that basis elements possess the Appell property or form an Appell system if their
derivatives are equal to a multiple of another basis element. Moreover, the powers
zk form an orthogonal basis for holomorphic functions in L2(B2, C), the space of
square-integrable functions on B2.

In this paper, we suggest a proper analogue of the powers zk for monogenic func-
tions in any dimension. For a detailed account of history of this topic, we refer to [5].
Let us only remark that Bock and Gürlebeck described orthogonal Appell bases for
quaternion valued monogenic functions in R

3 and R
4 (see [2–4]). Moreover, in [21],

these bases in dimension 3 are constructed in another way. The first construction of
orthogonal bases for spherical monogenics even in any dimension was given by Som-
men, see [16,25]. In [16, pp. 254–264], orthogonal bases for spherical monogenics in
R

p+q are constructed when these orthogonal bases are known in R
p and R

q . The con-
struction is based on solving a Vekua-type system of partial differential equations. In
[23,26], these bases are interpreted as Spin(p)× Spin(q)-invariant orthogonal bases
and are obtained using extremal projections. It turns out that the Gelfand–Tsetlin bases
correspond to the case when p = 1. Moreover, in dimension 3, another constructions
of orthogonal bases of spherical monogenics using the standard bases of spherical
harmonics were done also by Cação, Bock, Gürlebeck and Malonek (see [9–12]). In
[5], it is observed that the complete orthogonal Appell system constructed in [4] can
be considered as a Gelfand–Tsetlin basis. Actually, the main aim of this paper is to
show that Gelfand–Tsetlin bases for spherical monogenics form complete orthogo-
nal Appell systems in any dimension. In [5], it was shown that, in dimension 3, ele-
ments of the Gelfand–Tsetlin bases for spinor valued spherical monogenics possess the
Appell property not only with respect to one (the last) variable but even with respect
to all three variables. Moreover, Gelfand–Tsetlin bases have been intensively studied
in other settings as well, see [7,8] for Hermitean Clifford analysis and [13–15,22] for
Hodge-de Rham systems.

In this paper, we show that Gelfand–Tsetlin bases form complete orthogonal App-
ell systems for spherical harmonics (see Sect. 2), for Clifford algebra valued spher-
ical monogenics (see Sect. 3) and, finally, for spinor valued spherical monogenics
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(see Sect. 4). In each of these cases, we recall the Gelfand–Tsetlin construction of
orthogonal bases and study the corresponding Taylor series expansions. At the end of
Sect. 2, an abstract definition of Gelfand–Tsetlin bases for spin modules is given.

2 Spherical Harmonics

In this section, we construct a complete orthogonal Appell system for spherical har-
monics. Let us recall a standard construction of orthogonal bases in this case. Denote
by Hk(R

m) the space of complex valued harmonic polynomials in R
m which are

k-homogeneous. Let (e1, . . . , em) be an orthonormal basis of the Euclidean space
R

m . Then the construction of an orthogonal basis for the space Hk(R
m) is based on

the following decomposition (see [18, p. 171])

Hk(R
m) =

k⊕

j=0

F (k− j)
m, j H j (R

m−1) (2)

which is orthogonal with respect to the L2-inner product, say, on the unit ball Bm in
R

m . Here the embedding factors F (k− j)
m, j are defined as the polynomials

F (k− j)
m, j (x) = ( j + 1)k− j

(m + 2 j − 2)k− j
|x |k− j Cm/2+ j−1

k− j (xm/|x |), x ∈ R
m (3)

where x = (x1, . . . , xm), |x | =
√

x2
1 + · · · + x2

m and Cν
k is the Gegenbauer polyno-

mial given by

Cν
k (z) =

[k/2]∑

i=0

(−1)i (ν)k−i

i !(k − 2i)! (2z)k−2i with (ν)k = ν(ν + 1) · · · (ν + k − 1). (4)

The decomposition (2) shows that spherical harmonics in R
m can be easily

expressed in terms of spherical harmonics in R
m−1. Indeed, for each P ∈ Hk(R

m),
we have that

P(x) = Pk(x) + F (1)
m,k−1(x)Pk−1(x) + · · · + F (k)

m,0(x)P0(x), x = (x, xm) ∈ R
m

for some uniquely determined polynomials Pj ∈ H j (R
m−1). Of course, here F (0)

m,k = 1
and x = (x1, . . . , xm−1).

Applying the decomposition (2), we easily construct an orthogonal basis of the space
Hk(R

m) by induction on the dimension m. Indeed, as the polynomials (x1∓i x2)
k form

an orthogonal basis of the space Hk(R
2) an orthogonal basis of the space Hk(R

m) is
formed by the polynomials

hk,μ(x) = (x1 ∓ i x2)
k2

m∏

r=3

F (kr −kr−1)

r,kr−1
(5)
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where μ is an arbitrary sequence of integers (km−1, . . . , k3,±k2) such that k = km ≥
km−1 ≥ · · · ≥ k3 ≥ k2 ≥ 0. Furthermore, we have taken the normalization of the
embedding factors F (k− j)

m, j so that the basis elements hk,μ possess the following Appell
property.

Theorem 1 Let m ≥ 3 and let hk,μ be the basis elements of the spaces Hk(R
m)

defined in (5) with μ = (km−1, . . . , k3,±k2). Then we have that

(i) ∂xm hk,μ = 0 for k = km−1;
(ii) ∂xm hk,μ = k hk−1,μ for k > km−1;

(iii) ∂
k2± ∂

k3−k2
x3 · · · ∂k−km−1

xm hk,μ = k! where ∂± = (1/2)(∂x1 ± i∂x2).

Proof The statement (i) follows from the fact that F (0)
m,k = 1. Using standard formulas

for Gegenbauer polynomials (see [1]), it is easy to verify that, for k > j, ∂xm F (k− j)
m, j =

k F (k−1− j)
m, j , which implies (ii). Finally, we get (iii) by applying (ii) and the fact that

∂± (x1 ∓ i x2)
k = k (x1 ∓ i x2)

k−1. ��
To summarize, we have constructed a complete orthogonal Appell system for the

complex Hilbert space L2(Bm, C) ∩ Ker � of L2-integrable harmonic functions g :
Bm → C. Here Bm is the unit ball in R

m . Indeed, we have the following result.

Theorem 2 Let m ≥ 3 and, for each k ∈ N0, denote by N m
k the set of sequences

(km−1, . . . , k3,±k2) of integers such that k ≥ km−1 ≥ · · · ≥ k3 ≥ k2 ≥ 0.

(a) Then an orthogonal basis of the space L2(Bm, C)∩Ker � is formed by the poly-
nomials hk,μ for k ∈ N0 and μ ∈ N m

k . Here the basis elements hk,μ are defined
in (5).

(b) Each function g ∈ L2(Bm, C)∩Ker � has a unique orthogonal series expansion

g =
∞∑

k=0

∑

μ∈N m
k

tk,μ(g) hk,μ (6)

for some complex coefficients tk,μ(g).
In addition, for μ = (km−1, . . . , k3,±k2) ∈ N m

k , we have that

tk,μ(g) = 1

k! ∂
k2± ∂k3−k2

x3
· · · ∂k−km−1

xm g(x)|x=0 (7)

with ∂± = (1/2)(∂x1 ± i∂x2).

Proof It is well-known that the closure of the orthogonal direct sum

∞⊕

k=0

Hk(R
m)

with respect to the L2-inner product is just the space L2(Bm, C) ∩ Ker �, which
gives (a). The formula (7) then follows directly from the Appell property of the basis
elements, namely, from the property (iii) of Theorem 1. ��
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For a function g ∈ L2(Bm, C)∩Ker �, we call the orthogonal series expansion (6)
its generalized Taylor series.

From the point of view of representation theory, the space Hk(R
m) forms naturally

an irreducible module over the group SO(m) of rotations in R
m when m ≥ 3. Under

the action of SO(2), the module Hk(R
2) decomposes as Hk(R

2) = 〈(x1 + i x2)
k〉 ⊕

〈(x1 − i x2)
k〉. Here 〈M〉 stands for the linear span of a set M. It is well known that

the so-called Spin group Spin(m) is a double cover of the group SO(m) and each
SO(m)-module can be considered as a special representation of the group Spin(m).
In particular, Hk(R

m) is an irreducible module under the action of the group Spin(m)

defined by

[h(s)(P)](x) = P(s−1xs), s ∈ Spin(m) and x ∈ R
m .

See [18, Chapter 3] for details. We show that the constructed basis (5) is actually a
Gelfand–Tsetlin basis of the Spin(m)-module Hk(R

m).

Gelfand–Tsetlin bases for spin modules Now we recall an abstract definition of a
Gelfand–Tsetlin basis for any given irreducible finite dimensional Spin(m)-module V
(see [17,24]). We assume that the space V is endowed with an invariant inner product.

The first step of the construction of a Gelfand–Tsetlin basis consists in reducing the
symmetry to the group Spin(m − 1), realized as the subgroup of Spin(m) describ-
ing rotations fixing the last vector em . It turns out that, under the action of the group
Spin(m −1), the module V is reducible and decomposes into a multiplicity free direct
sum of irreducible Spin(m − 1)-submodules

V =
⊕

μm−1

V (μm−1). (8)

This irreducible decomposition is multiplicity free and so it is orthogonal. Let us
remark that, in representation theory, the decomposition (8) is called the branching of
the module V .

Of course, we can further reduce the symmetry to the group Spin(m − 2), the
subgroup of Spin(m) describing rotations fixing the last two vectors em−1, em . Then
each piece V (μm−1) of (8) decomposes into irreducible Spin(m − 2)-submodules
V (μm−1, μm−2) and so on. Hence we end up with the decomposition of the given
Spin(m)-module V into irreducible Spin(2)-modules V (μ). Moreover, any such
module V (μ) is uniquely determined by the sequence of labels

μ = (μm−1, . . . , μ2). (9)

To summarize, the given module V is the direct sum of irreducible Spin(2)-modules

V =
⊕

μ

V (μ). (10)
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Moreover, the decomposition (10) is obviously orthogonal. Now it is easy to obtain
an orthogonal basis of the space V . Indeed, as each irreducible Spin(2)-module V (μ)

is one-dimensional we easily construct a basis of the space V by taking a non-zero
vector e(μ) from each piece V (μ). The obtained basis E = {e(μ)}μ is called a Gelf-
and–Tsetlin basis of the module V . By construction, the basis E is orthogonal with
respect to any invariant inner product given on the module V . Moreover, each vector
e(μ) ∈ E is uniquely determined by its index μ up to a scalar multiple. In other words,
for the given orthonormal basis (e1, . . . , em) of R

m , the Gelfand–Tsetlin basis E is
uniquely determined up to a normalization.

It is easily seen that, for the Spin(m)-module Hk(R
m), the decomposition (2) is

nothing else than its branching and, consequently, the basis (5) is obviously its Gelf-
and–Tsetlin basis, uniquely determined by the property (iii) of Theorem 1. Moreover,
the Appell property described in Theorem 1 is not a coincidence but the consequence of
the fact that ∂xm is an invariant operator under the action of the subgroup Spin(m −1).

3 Clifford Algebra Valued Spherical Monogenics

In this section, we construct a complete orthogonal Appell system for Clifford alge-
bra valued spherical monogenics. For an account of Clifford analysis, we refer to
[6,16,19,20]. Denote by C�m either the real Clifford algebra R0,m or the complex one
Cm , generated by the vectors e1, . . . , em such that e2

j = −1 for j = 1, . . . , m. As
usual, we identify a vector x = (x1, . . . , xm) ∈ R

m with the element x1e1+· · ·+xmem

of the Clifford algebra C�m .
First we construct an orthogonal basis for the space Mk(R

m, C�m) of k-homoge-
neous monogenic polynomials P : R

m → C�m , endowed with a C�m-valued inner
product

(P, Q)C�m =
∫

Bm

P̄ Q dλm . (11)

Here λm is the Lebesgue measure in R
m and a → ā is the conjugation on C�m (see [16,

p. 86]). We want to proceed as in the harmonic case so we need to express spherical
monogenics in R

m in terms of spherical monogenics in R
m−1, which is done in the

following theorem.

Theorem 3 The space Mk(R
m, C�m) has the orthogonal decomposition

Mk(R
m, C�m) =

k⊕

j=0

X (k− j)
m, j M j (R

m−1, C�m). (12)

Here the embedding factors X (k− j)
m, j are defined as the polynomials

X (k− j)
m, j (x) = F (k− j)

m, j (x) + j + 1

m + 2 j − 1
F (k− j−1)

m, j+1 (x) xem, x ∈ R
m (13)

where x = x1e1 + · · · + xm−1em−1, F (k− j)
m, j are given in (3) and F (−1)

m,k+1 = 0.
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Proof See [16, Theorem 2.2.3, p. 315] for a proof. Denote byPk(R
m−1, C�m) the space

of k-homogeneous polynomials P : R
m−1 → C�m . Then, in the proof, the decom-

position (12) is obtained by applying the Cauchy-Kovalevskaya extension operator
C K = exm em∂ to the Fischer decomposition of the space Pk(R

m−1, C�m), that is,

Pk(R
m−1, C�m) =

k⊕

j=0

(xem)k− jM j (R
m−1, C�m). (14)

Here ∂ = e1∂x1 + · · · + em−1∂xm−1 . Indeed, it holds that

C K (Pk(R
m−1, C�m)) = Mk(R

m, C�m)

and, for each P ∈ M j (R
m−1, C�m), we have that

C K ((xem)k− j P(x)) = μ
(k− j)
m, j X (k− j)

m, j (x)P(x)

where the non-zero constants μ
(k− j)
m, j are defined as μ

(2l)
m, j = (−1)l(Cm/2+ j−1

2l (0))−1

and μ
(2l+1)
m, j = (−1)l m+2 j+2l−1

m+2 j−2 (Cm/2+ j
2l (0))−1 (see [5, Lemma 1]). We want to have

a decomposition analogous to (12) also for spinor valued polynomials (see (19) below)
and therefore we have used the Fischer decomposition (14) given in terms of powers
of xem and not x as usual. Moreover, we have chosen a different normalization of
the embedding factors X (k− j)

m, j than in [5,20], namely, we have removed the constants

μ
(k− j)
m, j . ��
Using the decomposition (12), we easily construct an orthogonal basis of the space

Mk(R
m, C�m) by induction on the dimension m as explained in [16, pp. 262–264].

Indeed, as the polynomial (x1 −e12x2)
k2 forms a basis of Mk2(R

2, C�2) an orthogonal
basis of the space Mk(R

m, C�m) is formed by the polynomials

fk,μ = X (k−km−1)

m,km−1
X (km−1−km−2)

m−1,km−2
· · · X (k3−k2)

3,k2
(x1 − e12x2)

k2 (15)

where μ is an arbitrary sequence of integers (km−1, . . . , k2) such that k = km ≥
km−1 ≥ · · · ≥ k3 ≥ k2 ≥ 0. Here e12 = e1e2. Due to non-commutativity the order of
factors in the product (15) is important. It is easy to see that the basis elements fk,μ

possess again the Appell property.

Theorem 4 Let m ≥ 3 and let fk,μ be the basis elements of the spaces Mk(R
m, C�m)

defined in (15) with μ = (km−1, . . . , k2). Then we have that

(i) ∂xm fk,μ = 0 for k = km−1;
(ii) ∂xm fk,μ = k fk−1,μ for k > km−1;

(iii) ∂
k2
12 ∂

k3−k2
x3 · · · ∂k−km−1

xm fk,μ = k! where ∂12 = (1/2)(∂x1 + e12∂x2).

Proof It is obvious from the fact that, for k > j, ∂xm X (k− j)
m, j = k X (k− j−1)

m, j and

X (0)
m, j = 1. ��
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Actually, we have constructed a complete orthogonal Appell system for the right
C�m-linear Hilbert space L2(Bm, C�m)∩ Ker ∂ of L2-integrable monogenic functions
g : Bm → C�m . Indeed, it is easy to show the following result.

Theorem 5 Let m ≥ 3 and, for each k ∈ N0, denote by J m
k the set of sequences

(km−1, km−2, . . . , k2) of integers such that k ≥ km−1 ≥ · · · ≥ k3 ≥ k2 ≥ 0.

(a) Then an orthogonal basis of the space L2(Bm, C�m) ∩ Ker ∂ is formed by the
polynomials fk,μ for k ∈ N0 and μ ∈ J m

k . Here the basis elements fk,μ are
defined in (15).

(b) Each function g ∈ L2(Bm, C�m) ∩ Ker ∂ has a unique orthogonal series expan-
sion

g =
∞∑

k=0

∑

μ∈J m
k

fk,μ tk,μ(g) (16)

for some coefficients tk,μ(g) of C�m.
In addition, for μ = (km−1, . . . , k2) ∈ J m

k , we have that

tk,μ(g) = 1

k! ∂
k2
12∂

k3−k2
x3

· · · ∂k−km−1
xm g(x)|x=0

with ∂12 = (1/2)(∂x1 + e12∂x2).

For a function g ∈ L2(Bm, C�m) ∩ Ker ∂ , we call the orthogonal series expansion
(16) its generalized Taylor series.

In the next section, we show that the studied bases can be interpreted as Gelfand-
Tsetlin bases at least for spinor valued spherical monogenics.

4 Spinor Valued Spherical Monogenics

Now we adapt the results obtained in the previous section for spinor valued spherical
monogenics. Recall that the Spin group Spin(m) is defined as the set of finite products
of even number of unit vectors of R

m endowed with the Clifford multiplication. As
is well known, the Lie algebra spin(m) of the group Spin(m) can be realized as the
space of bivectors, that is, spin(m) = 〈e12, e13, . . . , em−1,m〉 with ei j = ei e j . Let S be
a basic spinor representation of the group Spin(m) and let Mk(R

m, S) be the space
of k-homogeneous monogenic polynomials P : R

m → S. Then it is well-known that,
in contrast with the space Mk(R

m, Cm), the space Mk(R
m, S) is an example of an

irreducible module under the so-called L-action, defined by

[L(s)(P)](x) = s P(s−1xs), s ∈ Spin(m) and x ∈ R
m .

Now we recall an explicit realization of the space S. For j = 1, . . . , n, put

w j = 1

2
(e2 j−1 + ie2 j ), w j = 1

2
(−e2 j−1 + ie2 j ) and I j = w jw j .
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Then I1, . . . , In are mutually commuting idempotent elements in C2n . Moreover,
I = I1 I2 · · · In is a primitive idempotent in C2n and S2n = C2n I is a minimal left
ideal in C2n . Putting W = 〈w1, . . . , wn〉, we have that

S2n = �(W )I, S
+
2n = �+(W )I and S

−
2n = �−(W )I (17)

where �(W ) is the exterior algebra over W with the even part �+(W ) and the odd
part �−(W ). Putting θ2n = (−i)ne1e2 · · · e2n, we have that

S
±
2n = {u ∈ S2n : θ2nu = ±u}. (18)

Let us recall that S
±
2n are just two inequivalent basic spinor representations of the group

Spin(2n). On the other hand, there exists only a unique basic spinor representation S

of the group Spin(2n − 1) and, as Spin(2n − 1)-modules, the modules S
±
2n are both

equivalent to S. See [16, pp. 114–118] for details.
Now we are going to construct explicitly a Gelfand–Tsetlin basis for the space

Mk(R
m, S). First we recall the branching for spherical monogenics described in [5].

When you adapt the decomposition (12) for spinor valued polynomials you get obvi-
ously

Mk(R
m, S) =

k⊕

j=0

X (k− j)
m, j M j (R

m−1, S). (19)

Indeed, it is easy to see that by multiplying S-valued polynomials in R
m−1 with

the embedding factors X (k− j)
m, j from the left you get S-valued polynomials in R

m . In
the even dimensional case m = 2n, the decomposition (19) describes the branching of
the module Mk(R

m, S), that is, its decomposition into Spin(m − 1)-irreducible sub-
modules. In the odd dimensional case m = 2n − 1, under the action of Spin(2n − 2),
the module S splits into two inequivalent submodules S

± � S
±
2n−2 and so each module

M j (R
2n−2, S) in (19) decomposes further as

M j (R
2n−2, S) = M j (R

2n−2, S
+) ⊕ M j (R

2n−2, S
−). (20)

See [5, Theorems 1 and 2] for details.
Using the decompositions (19) and (20), it is easy to construct Gelfand–Tsetlin

bases for the module Mk(R
m, S) by induction on the dimension m as is explained

already in [5]. Let m = 2n or m = 2n − 1. To do this we need to describe a Gelf-
and–Tsetlin basis of the space S itself. The space S is a basic spinor representation for
Spin(m). As Spin(2n − 2)-module, the space S has the irreducible decomposition
S = S

+ ⊕ S
−. By reducing the symmetry to Spin(2n − 4), the pieces S

± themselves
further decompose and so on. Indeed, for j = 0, . . . , n − 1, denote by S j the set
of sequences of the length j consisting of the signs ±. For each ν ∈ S j , define (by
induction on j) the subset S

ν of the set S such that S
∅ = S and, for ν = (ν,±), we

have that S
ν = (Sν)±. Put Sm = Sn−1. Then we get the following decomposition of

the space S into irreducible Spin(2)-submodules
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S =
⊕

ν∈Sm

S
ν with S

ν = 〈vν〉 (21)

where, in each 1-dimensional piece S
ν , we have chosen an arbitrary non-zero element

vν . The last ingredient for the construction is to describe Gelfand–Tsetlin bases for
spherical monogenics in dimension 2. Obviously, for a given ν ∈ Sm and k ∈ N0, the
polynomial (x1 − e12x2)

kvν forms a Gelfand–Tsetlin basis of Mk(R
2, S

ν). Now we
are ready to prove the following theorem.

Theorem 6 Let m ≥ 3 and let S be a basic spinor representation of Spin(m).

(i) Then a Gelfand–Tsetlin basis of the Spin(m)-module Mk(R
m, S) is formed by

the polynomials

f ν
k,μ = fk,μ vν (22)

where ν ∈ Sm and μ ∈ J m
k . Here fk,μ are as in Theorem 5, Sm and vν as in

(21).
In addition, the basis (22) is orthogonal with respect to any invariant inner
product on the module Mk(R

m, S), including the L2-inner product and the
Fischer inner product.

(ii) The Gelfand–Tsetlin basis (22) is uniquely determined by the property that, for
each ν = (ν,±) ∈ Sm and μ = (km−1, km−2, . . . , k2) ∈ J m

k ,

∂
k2± ∂k3−k2

x3
· · · ∂k−km−1

xm f ν
k,μ = k! vν. (23)

Here ∂± = (1/2)(∂x1 ± i∂x2).

Proof The statement (i) is obvious from the construction of the basis. Moreover, the
Appell property (23) follows directly from the statement (iii) of Theorem 4 and the
fact that, for ν = (ν,±), we have that e12v

ν = ±ivν and hence (x1 − e12x2)
kvν =

(x1 ∓ i x2)
kvν. ��

Remark 1 In (17) above, we realize the space S = S
±
2n inside the Clifford algebra C2n

as

S = �s(w1, . . . , wn)I with s = ±.

It is not difficult to find generators of 1-dimensional pieces S
ν of S. Indeed, we have

that

S
± = �±(w1, . . . , wn−1)I ±

where, for s = +, we put I + = I and I − = wn I and, for s = −, obviously I + = wn I
and I − = I. Hence, by induction on j , we deduce easily that, for s, t ∈ {±} and
ν = (ν, s, t) ∈ S j , we have that

S
ν = �t (w1, . . . , wn− j )I ν
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where we put I (ν,+,+) = I (ν,+), I (ν,+,−) = wn− j+1 I (ν,+), I (ν,−,+) = wn− j+1 I (ν,−)

and I (ν,−,−) = I (ν,−). In particular, we have that S
ν � S

t
2(n− j). Finally, for each

ν ∈ Sm = Sn−1, the 1-dimensional piece S
ν is generated by the element

vν =
{

I ν, ν = (ν,+);
w1 I ν, ν = (ν,−).

(24)

It is easy to see that
for S = S

+
4 , we have that v+ = I and v− = w1w2 I ;

for S = S
−
4 , we have that v+ = w2 I and v− = w1 I ;

for S = S
+
6 , v++ = I, v+− = w1w2 I, v−+ = w2w3 I, v−− = w1w3 I ;

for S = S
−
6 , v++ = w3 I, v+− = w1w2w3 I, v−+ = w2 I and v−− = w1 I .

In fact, we have constructed a complete orthogonal Appell system for the complex
Hilbert space L2(Bm, S) ∩ Ker ∂ of L2-integrable monogenic functions g : Bm → S.
Indeed, using Theorem 6, we easily obtain the following result.

Theorem 7 Let m ≥ 3 and let S be a basic spinor representation for Spin(m).

(a) Then an orthogonal basis of the space L2(Bm, S) ∩ Ker ∂ is formed by the poly-
nomials f ν

k,μ for k ∈ N0, μ ∈ J m
k and ν ∈ Sm. Here the basis elements f ν

k,μ are
defined in Theorem 6.

(b) Each function g ∈ L2(Bm, S) ∩ Ker ∂ has a unique orthogonal series expansion

g =
∞∑

k=0

∑

ν∈Sm

∑

μ∈J m
k

tνk,μ(g) f ν
k,μ (25)

for some complex coefficients tνk,μ(g).
In addition, let g = ∑

ν∈Sm gνvν for some complex functions gν on Bm. Then,
for μ = (km−1, . . . , k2) ∈ J m

k and ν = (ν,±) ∈ Sm, we have that

tνk,μ(g) = 1

k! ∂
k2± ∂k3−k2

x3
· · · ∂k−km−1

xm gν(x)|x=0

with ∂± = (1/2)(∂x1 ± i∂x2).

For a function g ∈ L2(Bm, S)∩Ker ∂ , we call the orthogonal series expansion (25)
its generalized Taylor series.

Remark 2 Of course, there is a close connection between the generalized Taylor series
expansions from Theorem 5 and Theorem 7. Indeed, we can always realize the spinor
space S inside the Clifford algebra Cm and then, for each g ∈ L2(Bm, S) ∩ Ker ∂ , we
have that

tk,μ(g) =
∑

ν∈Sm

tνk,μ(g) vν.
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