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Abstract. The free convolution � is the binary operation on the set of prob-
ability measures on the real line which allows to deduce, from the individual
spectral distributions, the spectral distribution of a sum of independent uni-
tarily invariant square random matrices or of a sum of free operators in a non
commutative probability space. In the same way, the rectangular free con-
volution �λ allows to deduce, from the individual singular distributions, the
singular distribution of a sum of independent unitarily invariant rectangular
random matrices. In this paper, we consider the regularization properties of
these free convolutions on the whole real line. More specifically, we try to find
continuous semigroups (μt) of probability measures such that μ0 = δ0 and
such that for all t > 0 and all probability measure ν, μt�ν (or, in the rectan-
gular context, μt�λν) is absolutely continuous with respect to the Lebesgue
measure, with a positive analytic density on the whole real line. In the square
case, for �, we prove that in semigroups satisfying this property, no measure
can have a finite second moment, and we give a sufficient condition on semi-
groups to satisfy this property, with examples. In the rectangular case, we
prove that in most cases, for μ in a �λ-continuous semigroup, μ�λν either
has an atom at the origin or doesn’t put any mass in a neighborhood of the
origin, and thus the expected property does not hold. However, we give suffi-
cient conditions for analyticity of the density of μ�λν except on a negligible
set of points, as well as existence and continuity of a density everywhere.
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1. Introduction

It is a very natural question to study the spectrum of the sum of two matrices,
being given the spectrum of each of them. Such a question can of course have many
different answers depending on the relations between the eigenspaces of the two
matrices. If they are the same, but for instance the eigenvalues are independent
and say equidistributed inside each matrix, the spectrum will simply be given by
the classical convolution. If, on the contrary the eigenspaces are chosen as arbi-
trarily as possible with respect to each other, which corresponds to conjugating
one of the matrices with an independent unitary matrix following the Haar mea-
sure, Voiculescu [24] proved that in the limit where the size of the matrices goes to
infinity while the spectral measure of each of the two matrices converges weakly,
the outcome only depends on these limiting measures and is given by their free
convolution. More precisely, if we let AN , BN be two sequences of N ×N Hermit-
ian matrices with eigenvalues (aN

i )1≤i≤N and (bN
i )1≤i≤N respectively, such that

the spectral measures LN
A := 1

N

∑N
i=1 δaN

i
and LN

B := 1
N

∑N
i=1 δbN

i
converge to

probability measures μA and μB as N goes to infinity, and if UN follows the Haar
measure on the unitary group and is independent of AN and BN , then the spectral
measure of AN + UNBNU∗

N converges towards the free convolution μA�μB of μA

and μB .
One of the authors, F. Benaych-Georges [7], generalized this convergence to

the case of rectangular matrices. In this case, AN,M and BN,M are N×M matrices
and we assume that their singular values (for N ≤ M , the singular values of an
N×M matrix C are the eigenvalues of

√
CC∗) converge towards νA and νB. We let,

for C = A or B, μC be the symmetrization of νC : μC(A) = 1
2 (νC(A)+νC(−A)). We

consider UN and VM following the Haar measure on the N × N and the M × M
unitary matrices respectively. Then, F. Benaych-Georges proved that, if N/M
converges to some λ ∈ [0, 1], then the symmetrization of the empirical measure
of the singular values of AN,M + UNBN,MVM converges towards a probability
measure μA�λμB.

Free convolution naturally shows up in random matrix theory since impor-
tant matrices such as the Gaussian ensembles are invariant under conjuguation
under the unitary group and therefore can always be written as UNBNU∗

N for
some Haar distributed matrix UN , independent of BN , or have asymptotically the
same behaviour (for instance matrices with independent equidistributed entries,
see [16]).

Convolution is a standard tool in classical analysis for regularizing functions
or measures. In this article, we study the regularizing properties of free (square
and rectangular) additive convolution. Because we wish to be able to regularize
measures by perturbations as small as desired, it is natural to regularize them by
processes μt, t ≥ 0 such that μt tends to δ0 as t goes to zero. To simplify, we shall
consider more precisely processes corresponding to infinitely divisible laws μ�t, as
constructed by Bercovici and Voiculescu [9] (see also Nica and Speicher [20]).
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Such issues are naturally related with the possibility that the density vanishes,
since the density is then likely [2] to have some infinite derivative at the boundary
of the support.

Hence, we shall more precisely ask the following question: can we find μ (likely
a free infinitely divisible law) such that

(H) For any probability measure ν, μ�ν (or in the rectangular case μ�λν) is
absolutely continuous with respect to the Lebesgue measure, with a density which
is analytic and which does not vanish on R.

Such questions already showed up in several papers. In [25], D. Voiculescu
used the regularizing properties of free convolution by semi-circular laws to study
free entropy for one variable. In [13, 17], regularization by Cauchy laws is used to
smooth free diffusions in one case, and to study Wasserstein metric and derive large
deviations principles in the other. In fact, it was shown in [15] that free convolution
is the natural concept to regularize a free diffusion since the result will still be a free
diffusion, but with a different (and hopefully more regular) drift. Free convolution
by Cauchy laws is well understood since it coincides with standard convolution
with Cauchy laws. In particular, Cauchy laws satisfy (H). The drawback is that
Cauchy laws do not possess any moments, and thus do not allow a combinatorial
approach by moments. In Section 3.2, we show that it is in fact impossible to
find a �-infinitely divisible probability measure μ satisfying (H) and with finite
variance. In fact, we can then construct another probability measure ν such that
the density of μ�ν vanishes at a point where its derivative is infinite. As a positive
answer, we provide in Section 3.1 sufficient conditions for a probability measure μ
to satisfy (H). They require that μ has either none or infinite first moment.

In the rectangular case, we exhibit in Section 4.3 a sharp transition concerning
the behaviour of the free rectangular convolution of two measures at the origin. If
μ({0})+ν({0}) > 1, we prove that μ�λν({0}) is positive. This generalizes a similar
result of Bercovici and Voiculescu in the square case [10] . More surprisingly, when
μ({0}) + ν({0}) < 1, we show the existence of a nonempty open neighbourhood
of the origin which does not intersect the support of the density of μ�λν, for any
infinitely divisible law μ and any probability measure ν.

This phenomenon is related to the repulsion at the origin of the spectrum.
Such a repulsion was also shown to hold at the finite matrices level in the square
case by Haagerup [18] (by adding a form of Cauchy matrices) and by Sniady [22]
(by adding Gaussian matrices). Our result is less strong since it is clear that the
rectangular case carries naturally a repulsion of the origin (as can be seen on
the Pastur–Marchenko laws) and it holds only asymptotically. However, we find
rather amazing that it holds for any infinitely divisible law μ and any probability
measure ν.

This interesting phenomenon shows that (H) cannot hold in the rectangular
case. We thus show a weaker result in Corollary 4.6 and Proposition 4.10 by giving
sufficient conditions for analyticity of the density of μ�λν except on a discrete set
of points, as well as existence and continuity of a density everywhere.
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2. Prerequisites in complex analysis and free probability
background

2.1. Complex analysis

Let D := {z ∈ C : |z| < 1}. We denote by � limz→w f(z), �f(w), or

lim
z−→w�

f(z)

the limit of f at w ∈ ∂D along points inside any angle with vertex at w and
included in D, and name it the nontangential limit of f at w. Unconditionnal limit
at w corresponds to limit taken over any path in the domain D which ends at w.

We will denote C
+ = {z ∈ C : �(z) > 0}, C

− = {z ∈ C : �(z) < 0}
and R

+ = [0,+∞). The notion of nontangential limit extends naturally to maps
defined on a half-plane. Moreover, since the rational transformation z �→ z−i

z+i of the
extended complex plane C ∪ {∞} carries the upper half-plane onto the unit disc,
most properties of analytic functions defined in the unit disc transfer naturally to
functions defined on C

+.
We shall use in our paper several results describing the boundary behaviour

of analytic functions defined in the unit disc or the upper half-plane. Let us first
cite a theorem due to Lindelöf, (Theorem 2.20(i) in [14]).

Theorem 2.1 (Lindelöf ). Let f be a meromorphic function on the upper half plane
such that there are at least three points of C∪{∞} which are not attained by f on
the upper half plane. Consider a ∈ R ∪{∞} such that there is a path γ : [0, 1) → C

+

with limit a at 1 such that
l := lim

t→1
f
(
γ(t)
)

exists in C ∪ {∞}. Then the nontangential limit of f at a exists and equals l.

Recall that if f is a function from a subset D of C ∪ {∞} into C ∪ {∞}, for
all z in the boundary of D, the cluster set C(f, z) of f at z is the set of limits in
C ∪ {∞} of images, by f , of sequences of points in D which tend to z. For any
subset D′ of D, CD′(f, z) denotes the cluster set of the restriction of f to D′. For
the particular case when D = D or D = C

+, we define the nontangential cluster
set CΔ(f, x0) of f at x0 ∈ ∂D in the following way: let Γ(α) be the angle with
vertex at x0 bisected by the perpendicular on ∂D at x0, with opening α ∈ (0, π).
Then

CΔ(f, x0) = ∪α∈(0,π)CΓ(α)(f, x0) .

Thus, the existence of nontangential limit of f at x0 means that CΔ(f, x0) contains
only one point.

The following result (see e.g. Theorem 1.1 in [14]) concerns the connectivity
of a cluster set.

Lemma 2.2. Let D be a domain in C (i.e. an open connected set) and assume
that D is simply connected at the point x ∈ D (i.e. x has a basis of neighbourhoods
in C whose intersections with D are simply connected). If f : D → C ∪ {∞} is
continuous, then C(f, x) is connected.
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It is known from Fatou’s theorem (see [14]) that bounded analytic functions
on D have good boundary properties, namely the nontangential limit of such a
function exists at almost all points (in the sense of linear measure) of the boundary
of D. However, the set of points where the nontangential limit does not exist can
be also quite rich in some situations, as the following theorem shows (see e.g.
Theorem 4.8 in [14])

Recall that a subset of a metric space X is said to be residual, or of second
Baire category if it isn’t contained in the union of any sequence of closed subsets
of X with empty interior.

Theorem 2.3. If the real or complex function f(z) is continuous in |z| < 1, and
if for θ ∈ [0, 2π[, {Gθ} is a rotation by the angle θ of a continuum G0 such that
G0 ∩ {|z| = 1} = {1}, then CGθ

(f, eiθ) = C(f, eiθ) on a residual set of points eiθ

on {|z| = 1}.

This theorem says for us that for a function that has no unconditional limits
at the boundary, the nontangential limit must fail to exist sometimes.

We will use this result in connection with the following theorem of Seidel
(Theorem 5.4 in [14]).

Theorem 2.4. Assume that f : D → D is analytic, and has nontangential limits with
modulus one at almost all points θ in some given interval (θ1, θ2) ⊆ ∂D. Then for
any θ0 ∈ (θ1, θ2) either f extends analytically through θ0, or C(f, θ0) = D.

Another useful auxiliary result is Theorem 5.2.1 from the same [14]:

Theorem 2.5. Let f be meromorphic in the domain D bounded by a smooth curve γ.
Consider z0 ∈ γ and suppose also that f extends in a meromorphic function in
an open set containing γ\{z0}. Then we have ∂CD(f, z0) ⊆ Cγ(f, z0), where ∂A
denotes the boundary (in C ∪ {∞}) of A ⊆ C ∪ {∞}.

We shall also use the following theorem, which can be seen as a “nontangential
limit” version of the analytic continuation principle (see [14]).

Theorem 2.6 (Riesz–Privalov). Let f be an analytic function on D. Assume that
there exists a set A of nonzero linear measure in ∂D such that the nontangential
limit of f exists at each point of A, and equals zero. Then f(z) = 0 for all z ∈ D.

Consider now an analytic function f : D −→ D. The Denjoy–Wolff point of f
is characterized by the fact that it is the uniform limit on compact subsets of the
iterates f◦n = f ◦ f ◦ · · · ◦ f

︸ ︷︷ ︸
n times

of f . We state the following theorem of Denjoy and

Wolff as it appears in Milnor’s book [19], as Theorem 4.2. Recall that an hyperbolic
rotation around some point z0 ∈ D is a function of the form z �→ eiθ z−z0

1−z0z , θ ∈ R.

Theorem 2.7. Let f : D → D be an analytic function. Then either f is a hyperbolic
rotation around some point z0 ∈ D, or the sequence of functions f◦n converges
uniformly on compact subsets of D to a unique point w ∈ D, called the Denjoy–
Wolff point of f .
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Note that if the analytic function f : D → D is not a hyperbolic rotation and
has a fixed point c ∈ D, then c has to be the Denjoy–Wolff point of f . In fact,
the Denjoy–Wolff point w ∈ D can be equivalently characterized (see Chapter 5
of [21]) by being the unique point that satisfies exactly one of the following two
conditions:

(1) |w| < 1, f(w) = w and |f ′(w)| < 1;
(2) |w| = 1, � limz→w f(z) = w, and

lim
z−→w�

f(z) − w

z − w
≤ 1 .

Since the unit disc is conformally equivalent to the upper half-plane via the
conformal automorphism of the extended complex plane z �→ z−i

z+i , the above theo-
rem and equivalent characterization of the Denjoy–Wolff point applies to self-maps
of the upper half-plane C

+ := {z ∈ C : �z > 0}, with the difference that when
infinity is the Denjoy–Wolff of f , we have

� lim
z→∞

f(z)/z ≥ 1 .

2.2. Free convolution, related transforms

2.2.1. Cauchy transform and Voiculescu transform. We now recall some basic no-
tions about free convolution. Let us remind the reader that for a probability μ on
R, we denote Gμ its Cauchy–Stieljes transform

Gμ(z) =
∫

1
z − x

dμ(x) , z ∈ C\R

and Fμ(z) = 1/Gμ(z). Note that Fμ : C
+→C

+.
The following theorem characterizes functions which appear as reciprocals

(in the sense of multiplication) of Cauchy–Stieltjes transforms of probabilities on
the real line. For the proof and an in-depth analysis of the subject, we refer to [1],
Chapter 3.

Theorem 2.8. Let F : C
+ → C

+ be an analytic function. Then there exist a ∈ R,
b ≥ 0 and a positive finite measure ρ on R so that

F (z) = a + bz +
∫

R

1 + tz

t − z
dρ(t) , z ∈ C

+ .

Moreover, F is the reciprocal of a Cauchy–Stieltjes transform of a probability mea-
sure on the real line if and only if b = 1. The triple (a, b, ρ) satisfies a = �F (i), b =
limy→+∞ F (iy)/iy, and b + ρ(R) = �F (i).

Remark 2.9. An immediate consequence of Theorem 2.8 is that for any probability
measure σ on R, we have �Fσ(z) ≥ �z for all z ∈ C

+, with equality for any value
of z if and only if σ is a point mass. In this case, the measure ρ in the statement
of Theorem 2.8 is zero.
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The function Fμ can be seen to be invertible in a set of the form

Γα,M =
{
z ∈ C : |z| ≥ M, |�z| ≥ α|�z|

}

for some M,α > 0.
The Voiculescu transform of μ (see paragraph 5 of [9]) is then given on

Fμ(Γα,M ) by φμ(z) = F−1
μ (z) − z.

The free convolution of two probability measures μ and ν on the real line is
then characterized by the fact that

φμ�ν(z) = φμ(z) + φν(z) (2.1)

on the common component of their domain that contains i[s,+∞) for some large
enough s > 0 (for details, we refer again to [9].) Note here that Voiculescu’s
transform φμ and the so-called R-transform are related by Rμ(z) = φμ(1/z).

Another useful property of Cauchy–Stieltjes transforms of free convolutions
of probability measures is subordination: for any μ, ν, there exist unique analytic
functions ω1, ω2 : C

+ → C
+ so that Gν(ω1(z)) = Gμ(ω2(z)) = Gμ�ν(z) for all

z ∈ C
+ and limy→+∞ ωj(iy)/iy = 1, j = 1, 2. This has been proved by Biane

in [11].
In the following, we shall also need the following lemmas.

Lemma 2.10 (Fatou’s theorem). Let f : C
+ → C be an analytic function. If C \

f(C+) contains a half-line, then f admits finite nontangential limits at Lebesgue-
almost all points of the real line.

This lemma follows from Theorem 2.1 of [14], and conformal transformations.

Lemma 2.11. Let ν be a probability measure on the real line.
(i) For almost all (with respect to the Lebesgue measure) real numbers x, the

nontangential limit, at x, of − 1
π�Gν exists and is equal to the density, at x,

of the absolutely continuous part of ν (with respect to the Lebesgue measure).
(ii) Let I be an open interval of the real line. Then we have equivalence between:

(a) The restriction of Gν to C
+ extends analyticaly to an open set of C

containing C
+ ∪ I.

(b) The restriction of ν to I admits an analytic density.
Moreover, in this case, the density of the restriction of ν to I is x ∈ I �→
− 1

π�Gν(x), where Gν(x) is the value, at x, of the extension mentioned in (a)
of the restriction of Gν to C

+.

Proof. Part (i) is Theorem 3.16 from Chapter II of [23].
(ii) Suppose (a) to be true. Let us define, for t > 0, Ct = tdx

π(t2+x2) . It is the
law of tX when X is a C1-distributed random variable (hence a standard Cauchy
variable), and thus converges weakly to δ0 when t tends to zero. Let us also define,
for t ≥ 0,

ρt : x ∈ R �→
{
− 1

π�Gν(x + it) if t > 0 or x ∈ I ,
0 in the other case .
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Then for all t > 0, ρt is the density of ν ∗ Ct, and converges weakly (i.e. against
any continuous bounded function) to ν as t tends to zero. So it suffices to prove
that for all f compactly supported continuous function on I,

∫
f(x)ρt(x)dx tends

to
∫

f(x)ρ0(x)dx when t goes to zero, which is an easy application of dominated
convergence theorem.

Suppose (b) to be true. It suffices to prove that for all x ∈ I, there is εx > 0
such that the restriction of Gν to C

+ admits an analytic extension gx to C
+ ∪

B(x, εx). (We denote by B(x, εx) the open ball of center x and radius εx.) Indeed,
in this case, since for all x, x′ ∈ I, gx, gx′ coincide on B(x, εx) ∩ B(x′, εx′) ∩ C

+,
one can define an analytic function on

C
+ ∪
(
∪x∈I B(x, εx)

)

which coincides with Gν on C
+ and with gx on every B(x, εx). So let us fix x ∈ I.

Without loss of generality, we may assume that (1) x = 0, (2) the analytic
density function f of ν is defined analytic on [−c, c] for some c > 0, (3) this function
has radius of convergence > c with power series f(t) =

∑∞
n=0 antn, and (4) the

support of ν is contained in [−c, c] (since for all finite measures ν1, ν2, Gν1+ν2 =
Gν1 + Gν2 and Gν1 is analytic outside of the support of ν1). It will be enough to
show that Gν extends analytically through (−c, c). Let log be the analytic function
on C\{−it ; t ∈ [0,+∞)} whose derivative is 1

z . For any |z| ≤ c, z ∈ C
+, we have

the integral

Gν(z) =
∫

R

f(t)
z − t

dt =
∫

[−c,c]

∞∑

n=0

an
tn

z − t
dt =

∫

[−c,c]

∞∑

n=0

an
tn − zn + zn

z − t
dt

= −
∞∑

n=0

an

⎛

⎝
n−1∑

j=0

zn−j cj+1 − (−c)j+1

j + 1
+ zn

[
log(z − c) − log(z + c)

]
⎞

⎠

=

( ∞∑

n=0

anzn

)
[
log(z+c)−log(z−c)

]
−

∞∑

n=0

an

⎛

⎝
n−1∑

j=0

zn−j cj+1−(−c)j+1

j + 1

⎞

⎠ .

(We can commute integral with sum because the function of t → |f(t)/(z − t)| is
obviously bounded uniformly on (a neighbourhood of, even) [−c, c], for any z in a
compact subset of C

+ ∩ B(0, c) and the sum is absolutely convergent because of
the power series condition.) We claim that in fact this formula defines an extension
of Gν on B(0, c). Indeed, the first sum is obviously convergent, while for the second
we have |zn−j cj+1−(−c)j+1

j+1 | ≤ cn−j · 2|cj+1| 1
j+1 = 2 cn+1

j+1 , so, since
∞∑

n=0

ancn+1
n∑

j=0

1
j + 1

< ∞ ,

(recall the radius of convergence), so must be the second term in the sum above,
for all |z| ≤ c. Thus, the function Gν admits an analytic extension on an open set
containing C

+ ∪ (−c, c), and the formula is given above. �
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Lemma 2.12. Let ν be a probability measure on the real line with support equal to R

and which is concentrated on a set of null Lebesgue measure. Then the cluster set
of the restriction of its Cauchy transform to the upper half plane at any real point
is the closure, in C ∪ {∞}, of the lower half plane.

Proof. Let us apply the upper half-plane version of Theorem 2.4 to the oppo-
site of ν’s Cauchy transform. Since by (ii) of Lemma 2.11, for all real number
x,−Gν does not extend analytically to x, the theorem will imply what we want to
prove. Indeed, part (i) of Lemma 2.11 implies that the imaginary part of Gν has a
null nontangential limit at Lebesgue-almost all points x of the real line. Since by
Lemma 2.10 Gν admits a finite nontangential limit at Lebesgue-almost all x ∈ R,
it follows that −Gν satisfies the upper half-plane version of Theorem 2.4. This
completes the proof. �

Lemma 2.13. The set of symmetric probability measures on the real line with sup-
port R and which are concentrated on a set of null Lebesgue measure is dense in
the set of symmetric probability measures for the topology of weak convergence.

Proof. Let D be the set of symmetric probability measures on the real line with
support R and which are concentrated on a set of null Lebesgue measure. Since
the set of symmetric probability measures which are finite convex combination of
Dirac masses is dense in the set of symmetric probability measures, it suffices to
prove that for all real numbers a, 1

2 (δ−a + δa) is in the closure of D. This is clear,
since if ν ∈ D, then for all ε ∈ (0, 1), 1−ε

2 (δ−a + δa) + εν ∈ D. �

2.2.2. Free infinite divisibility. One can extend the notion of infinitely divisible
law from classical convolution to free convolution: a probability measure μ is said
to be �-infinitely divisible if for any n ∈ N there exists a probability μn so that
μ = μn�μn� · · · �μn︸ ︷︷ ︸

n times

. It can be shown that any such measure embeds naturally in

a semigroup of measures {μ�t : t ≥ 0} so that t �→ μ�t is continuous in the weak
topology, μ�1/n = μn for all n ∈ N, μ0 = δ0, and μ�s+t = μ�s�μ�t for all s, t ≥ 0.
It follows easily from (2.1) that for any t ≥ 0, we have φμ�t(z) = tφμ(z) for all
points z in the common domain of the two functions.

In [9], Bercovici and Voiculescu have completely described infinitely divisible
probability measures with respect to free additive convolution in terms of their
Voiculescu transforms.

Theorem 2.14.

(i) A probability measure μ on R is �-infinitely divisible if and only if φμ has an
analytic extension defined on C

+ with values in C
− ∪ R.

(ii) Let φ : C
+ → C

−∪R be an analytic function. Then φ is a continuation of φμ

for some �-infinitely divisible measure μ if and only if

lim
z−→∞�

φ(z)
z

= 0 .
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In the following lemma, we describe some properties of free convolutions with
�-infinitely divisible measures.

Lemma 2.15. Let μ be a probability which is not purely atomic, and ν an arbitrary
probability measure. We know that there exist two subordination functions ω1 and
ω2 from C

+ into C
+ so that Fν ◦ ω1 = Fμ ◦ ω2 = Fμ�ν . Moreover:

(1) ω1(z) + ω2(z) = Fμ�ν(z) + z, z ∈ C
+;

Assume in addition that μ is �-infinitely divisible. Then
(2) ω1 is the inverse function of H(w) = w+φμ(Fν(w)), w ∈ C

+, so in particular
it has a continuous extension to R ∪ {∞} and ω1(x) is finite for all x ∈ R.
Moreover, ω1(z) is the Denjoy–Wolff point of the function gz : C

+ → C
+,

gz(w) = w + z − H(w), for all z ∈ C
+ ∪ R;

(3) Fμ has a continuous extension to R∪ {∞}, analytic outside a discrete set in
R, and Fμ(x) is finite for all x ∈ R;

(4) ω2 and Fμ�ν extend continuously to R. Moreover, if Fμ�ν(x) ∈ R, then so
are ω1(x) and ω2(x);

(5) If all existing nontangential limits of φμ at points of R belong to C
−, then

Fμ(x) ∈ C
+ for all x ∈ R.

Remark 2.16. (4) already shows that at x ∈ R such that Fμ�ν(x) �= 0, μ�ν is
absolutely continuous with respect to Lebesgue measure, with density 	(Fμ�ν)

π|Fμ�ν |2
(x).

Note also that at a point x such that Fμ�ν(x) = 0, Lemma 2.15 (4) implies that
ω2(x) ∈ R, and by the definition of ω2, together with Lindelöf’s Theorem 2.1,

0 = Fμ�ν(x) = lim
z−→x�

Fμ

(
ω2(z)

)
= lim

z−→�ω2(0)
�

Fμ(z) .

Since μ is infinitely divisible, Proposition 5.1 (1) of [5] then guarantees that tω2(0)
is an atom of μ�t for all t < 1.

Proof. Item (1) has been proved in [10], and can be easily checked from (2.1) and
analytic continuation.

Item (2) is a direct consequence of the fact that H satisfies the conditions
imposed on the function denoted also H in Theorem 4.6 [5] (namely it is analytic in
C

+, it decreases the imaginary part, and its derivative has strictly positive limit at
infinity – in this case equal to one). Hence, by Theorem 4.6 [5] (2), H is invertible
from ω1(C+) onto C

+ and, since by (2.1), Fν = Fν�μ ◦ H, its inverse is exactly
ω1. Moreover, by Theorem 4.6, part (2) of [5], ω1 extends continuously to R with
image in C

+ ∪R, while part (3) of the same theorem guarantees that ω1(z) is the
Denjoy–Wolff point of gz for all z ∈ C

+ ∪ R.
Item (3) follows from Proposition 2.8 (a) in [3].
We prove now (4). Assume that there exists x0 ∈ R so that C(Fμ�ν , x0)

contains more than one point (and hence, by Lemma 2.2, is a continuum). Since
by (2) ω1(x0) is finite, Theorem 4.1 of [2] allows us to conclude that if C(Fμ�ν , x0)∩
C

+ �= ∅, then Fμ�ν extends analytically to x0, providing a contradiction. Thus,
C(Fμ�ν , x0) contains either an interval, or the complement of an interval, in R.
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By (2) ω1(x0) exists and then, by (1), ω1(x0) ∈ R. By definition, for any c ∈
C(Fμ�ν , x0) in such an interval there exists a sequence {zc

n}n ⊂ C
+ converging to

x0 so that limn→∞ Fμ�ν(zc
n) = c. Using (1) we obtain

lim
n→∞

ω2(zc
n) = lim

n→∞
Fμ�ν(zc

n) − ω1(zc
n) + zc

n = c − ω1(x0) + x0 .

Now part (3) of the lemma allows us to conclude that

c = lim
n→∞

Fμ�ν(zc
n) = lim

n→∞
Fμ

(
ω2(zc

n)
)

= Fμ

(
c − ω1(x0) + x0

)
,

for all c in an interval. The analyticity of Fμ outside a discrete subset of R implies
(by analytic continuation) that Fμ(z) = z − (x0 − ω1(x0)) for all z ∈ C

+, so
μ = δx0−ω1(x0), contradicting our hypothesis. The continuity of ω2 on the real line
follows now immediately from (1) and (2).

To prove item (5) assume that Fμ(x) ∈ R. We know that equality z = Fμ(z)+
φμ(Fμ(z)) extends to R. If φμ has no nontangential limit at the point Fμ(x), then,
since the continuity of Fμ guarantees the existence of limz→x φμ(Fμ(z)), Lindelöf’s
Theorem 2.1 provides a contradiction (φμ has limit along the path Fμ(x + iR+)
but not nontangential, at Fμ(x)). If φμ has nontangential limit at Fμ(x), then,
by hypothesis, it must be complex, so obviously �Fμ(x) = −��φμ(Fμ(x)) > 0.
Contradiction again. �

2.3. Rectangular free convolution, related transforms

2.3.1. Introduction to the rectangular free convolution and to the related trans-
forms. We recall [7] the construction of the rectangular R-transform with ratio λ,
and of the rectangular free convolution �λ with ratio λ, for λ ∈ [0, 1]: one can
summarize the different steps of the construction of the rectangular R-transform
with ratio λ in the following chain

μ
sym. prob.
measure

−→ Gμ
Cauchy
transf.

−→ Hμ(z) = λGμ

(
1√
z

)2

+ (1 − λ)
√

zGμ

(
1√
z

)
−→

Cμ(z) = U
(

z
H−1

μ (z)
− 1
)

,

rect. R-transf. with ratio λ

where for all z = ρeiθ, with ρ ∈ (0,+∞), θ ∈ [0, 2π),
√

z = ρ1/2eiθ/2 (note that√ · is analytic on C\R
+), and U is the inverse of T − 1, where

T (z) = (λz + 1)(z + 1) ,

i.e. U(z) =
−λ − 1 +

[
(λ + 1)2 + 4λz

]1/2

2λ

(
when λ = 0, U(z) = z

)
,

where z �→ z1/2 is the analytic version of the square root on the complement
of the real non positive half line such that 11/2 = 1 (i.e. for all z = ρeiθ, with
ρ > 0, θ ∈ (−π, π), z1/2 = ρ1/2eiθ/2).

Note that the rectangular R-transform with ratio 1 (resp. 0), for symmet-
ric distributions, is linked to the Voiculescu transform by the relation Cμ(z) =
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√
zϕμ(1/

√
z) (resp. Cμ(z) = zϕρ(z), where ρ is the push-forward of μ by the

function t → t2).
The rectangular free convolution of two symmetric probability measures μ, ν

on the real line is the unique symmetric probability measure whose rectangular R-
transform is the sum of the rectangular R-transforms of μ and ν, and it is denoted
by μ�λν. Then, we have

Cμ�λν = Cμ + Cν . (2.2)
If λ = 0, μ�λν is the symmetric law which push-forward by t → t2 is the free
convolution of the push-forwards by t → t2 of μ and ν, and if λ = 1, it is μ�ν.

Remark 2.17. [How to compute μ when we know Cμ ?] First, we have z/H−1
μ (z) =

T (Cμ(z)), for z ∈ C\R
+ small enough. From this, we can compute Hμ(z) for

z ∈ C\R
+ small enough. Then we can use the equation, for z ∈ C\R

+,

1
z
Hμ(z) = λ

(
1√
z
Gμ

(
1√
z

))2

+ (1 − λ)
1√
z
Gμ

(
1√
z

)

. (2.3)

Moreover, when z ∈ C\R
+ is small enough, 1/

√
z is large and in C

−, so 1√
z
Gμ( 1√

z
)

is close to 1. 1
z Hμ(z) is also close to 1, and for h, g complex numbers close to 1,

h = λg2 + (1 − λ)g ⇔ g = V (h) ,

with V (z) =
λ − 1 +

(
(λ − 1)2 + 4λz

) 1
2

2λ
= U(z − 1) + 1 .

So one has, for z ∈ C\R
+ small enough,

1√
z
Gμ

(
1√
z

)

= V

(
Hμ(z)

z

)

. (2.4)

2.3.2. A few remarks about Hμ. (a) One has, for z ∈ C\R
+ small enough,

1√
z
Gμ

(
1√
z

)

= V

(
Hμ(z)

z

)

.

Note that the function 1√
z
Gμ( 1√

z
) is analytic on C\R

+, hence

U

(
Hμ(z)

z
− 1
)

= V

(
Hμ(z)

z

)

− 1 =
1√
z
Gμ

(
1√
z

)

− 1

admits an analytic extension to C\R
+. Note that one cannot assert that this

extension is given by the same formula on the whole C\R
+, but we know, by

analytic continuation, that if one denotes this extension by Mμ, one has, for all
z ∈ C\R

+,
[
2λMμ(z)+1+λ

]2 = (λ−1)2+4λ
Hμ(z)

z
, or, equivalently, Hμ(z)=zT

(
Mμ(z)

)
.

Let us observe that Mμ(z) = ψμ(
√

z) = ψμ2(z), where ψμ(z) =
∫

zt
1−ztdμ(t) is the

so-called moment generating function of μ, and μ2 is the probability on [0,+∞)
given by

∫
f(t) dμ2(t) =

∫
f(t2) dμ(t) for all Borel bounded functions f . Hence, as
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noticed in Proposition 6.2 of [9], Mμ maps the upper half-plane into itself and the
left half-plane iC+ into the disc with diameter the interval (μ({0}) − 1, 0).

(b) Hμ maps C \ R
+ into itself and maps iC+ ∩ C

+ into iC+. Indeed, for
z ∈ C

+,

Hμ(z) = Gμ

(
1√
z

)

︸ ︷︷ ︸
∈C+

⎛

⎜
⎜
⎜
⎝

λGμ

(
1√
z

)

+ (1 − λ)
√

z

︸ ︷︷ ︸
∈C+

⎞

⎟
⎟
⎟
⎠

,

and the product of two elements of C
+ cannot belong to R

+. (As a consequence,
Lemma 2.10 guarantees that the restriction of H to the upper half-plane has
nontangential limits at almost all points of the positive half-line.) The second
statement follows from part (a) above and the definition of T : let z = x + iy be so
that x < 0 and y > 0. Then

z
(
Mμ(z) + 1

)
= z

(∫

[0,+∞)

tz

1 − tz
dμ2(t) + 1

)

=
∫

[0,+∞)

z

1 − tz
dμ2(t)

=
∫

[0,+∞)

x(1 − tx) − ty2

(1 − tx)2 + (ty)2
dμ2(t)

+ iy

∫

[0,+∞)

1
(1 − tx)2 + (ty)2

dμ2(t) .

Since x < 0, the real part of the above expression is negative, as, since y > 0, its
imaginary part is positive. From (a) above,

Hμ(z) = zT
(
Mμ(z)

)
= z
(
Mμ(z) + 1

)(
λMμ(z) + 1

)
.

Since Mμ(z) belongs to the upper half of the disc of diameter (μ({0}) − 1, 0),
λMμ(z) + 1 belongs to C

+ ∩ (−iC+), so that the product of λMμ(z) + 1 and
z(Mμ(z) + 1) must belong to iC+.

(c) Using the two previous remarks, we observe that if there exist r, c ∈
(0,+∞) and a sequence {zn}n ⊂ C

+ so that limn→∞ zn =r and limn→∞ Hμ(zn)=c,
then the set {Mμ(zn) : n ∈ N} has at most two limit points, either both negative
(if r > c) or one negative and one non-negative (if r ≤ c). Indeed, the formula
above guarantees that

lim
n→∞

Mμ(zn) ∈
{
−(1 + λ)

√
r ±
√

r(1 − λ)2 + 4λc

2λ
√

r

}

.

(d) Let us define two properties, for functions defined on C \ R
+.

(P1) ∀z ∈ C \ R
+ , f(z) = −f(z) .

(P2) ∀z ∈ C \ R
+ , f(z) = f(z) .

It is easy to see that
√ · has the property (P1) and that for μ symmetric prob-

ability measure Gμ(1/
√

z) has also property (P1), hence Hμ has property (P2).
As a consequence, in view of (b), Hμ(R−) ⊂ R

− and Hμ(iC+) ⊆ iC+. Similarly,
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H−1
μ also satisfies property (P2) and hence also Cμ satisfies property (P2), so, in

particular, Cμ((−a, 0)) ⊆ R for any a > 0 so that (−a, 0) is included in the domain
of Cμ.

(e) Let us denote by x0 the largest number in (−∞, 0) so that H ′
μ(x0)=0 (we

do not exclude the case x0 =−∞). Since Hμ(0)=0 and H ′
μ(0) = 1,H−1

μ and Cμ are
defined, and analytic, on the interval (Hμ(x0), 0), and moreover, Cμ((Hμ(x0), 0)) ⊆
R

−. Indeed, H−1
μ is obviously defined and analytic on (Hμ(x0), 0), and as

Hμ(R−) ⊆ R
− (by (b) and (d) above), we have x

H−1
μ (x)

> 0 for all x ∈ (Hμ(x0), 0).

Thus, Cμ(x) = U( x
H−1

μ (x)
− 1) is defined and analytic on (Hμ(x0), 0).

To show that Cμ((Hμ(x0), 0)) ⊆ R
− it is enough to prove that U(Hμ(x)

x −1) <
0 for any x ∈ (x0, 0). (As observed in Remark 2.17, the derivative of Hμ in zero is
one, so that Hμ is increasing on (x0, 0).) This statement is due to the inequality
Hμ(x)

x < 1, x ∈ (x0, 0). Now, 1/
√

x ∈ iR− and μ is symmetric, so Gμ(1/
√

x) ∈ iR+,
which implies that |Gμ(1/

√
x)| = �Gμ(1/

√
x) for all x < 0. Remark 2.9 implies

that
∣
∣
∣
∣

1√
x

∣
∣
∣
∣ = −� 1√

x
< −�Fμ

(
1√
x

)

=
1

�Gμ

(
1√
x

) ,

so | 1√
x
Gμ( 1√

x
)| < 1, for any μ �= δ0, x < 0. Thus, 0 < 1√

x
Gμ( 1√

x
) < 1, x < 0.

The definition of Hμ and the fact that 0 < λ < 1 imply now the desired result.
(f) We have

lim
x→−∞

Hμ(x) = −(1 − λ)
∫

t−2 dμ(t)
(

= −∞ if μ({0}) > 0
)
,

lim
x→−∞

Hμ(x)
x

= λμ({0})2 + (1 − λ)μ({0}) . (2.5)

This follows from the definition of Hμ together with the monotone convergence
theorem: recall that

Hμ(x) = λGμ(1/
√

x)2 + (1 − λ)
√

xGμ

(
1/
√

x
)

= λ

⎛

⎝
∫

1
−i√
|x|

− t
dμ(t)

⎞

⎠

2

+ (1 − λ)i
√

|x|
∫

1
−i√
|x|

− t
dμ(t)

= −λ

(∫ √
|x|

1 + t2|x| dμ(t)

)2

− (1 − λ)
∫ |x|

1 + t2|x| dμ(t) .

(We have used the fact that μ is symmetric in the last equality.) Since
limx→−∞

1
1+t2|x| = χ{0}(t) and the convergence is dominated by 1, (2.5) follows.

Now observe that the functions fx(t) = |x|
1+t2|x| , x < −1, t ∈ R, satisfy

fx1(t) > fx2(t) iff |x1| > |x2|, fx(t) < t−2 and limx→−∞ fx(t) = t−2, t ∈ R, with
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the convention 1/0 = +∞. So by the monotone convergence theorem,

lim
x→−∞

∫ |x|
1 + t2|x| dμ(t) =

∫

t−2 dμ(t) ∈ (0,+∞] .

If
∫

t−2 dμ(t) < +∞, we deduce that

lim
x→−∞

∫ √
|x|

1 + t2|x| dμ(t) = lim
x→−∞

|x|− 1
2 lim

x→−∞

∫ |x|
1 + t2|x| dμ(t) = 0

so that indeed limx→−∞ Hμ(x) = −(1 − λ)
∫

t−2 dμ(t). This is also true when∫
t−2 dμ(t) = +∞.

2.3.3. Free rectangular infinite divisibility. As for the free convolution, for any
λ ∈ [0, 1], one can extend the notion of infinitely divisible law to rectangular free
convolution with ratio λ: a symmetric probability measure μ is said to be �λ-
infinitely divisible if for any n ∈ N there exists a symmetric probability μn so that
μ = μn�λμn�λ · · · �λμn︸ ︷︷ ︸

n times

. It can be shown that any such measure embeds naturally in

a semigroup of measures {μ�λt : t ≥ 0} so that t �→ μ�λt is continuous in the weak
topology, μ�λ1/n = μn for all n ∈ N, μ0 = δ0, and μ�λ(s+t) = μ�λs�λμ�λt for all
s, t ≥ 0. It follows easily from (2.2) that for any t ≥ 0, we have Cμ�λt(z) = tCμ(z)
for all points z in the common domain of the two functions.

In [8], the infinitely divisible probability measures with respect to �λ are
completely described in terms of their rectangular R-transforms.

Theorem 2.18. A symmetric probability measure on the real line is �λ-infinitely
divisible if and only if there is a symmetric positive finite measure G on the real
line such that Cμ extends to C\R

+ and is given by the following formula:

∀z ∈ C\R
+ , Cμ(z) = z

∫

R

1 + t2

1 − zt2
dG(t) . (2.6)

In this case, G is unique and is called the Lévy measure of μ.

Remark 2.19. It would be useful, in order to know if the measures to which
Lemma 4.1 can be applied are all �λ-infinitely divisible, to know if, as for the
Voiculescu transform and �-infinite divisibility, any symmetric probability mea-
sure whose rectangular R-transform extends analytically to C\R

+ is actually �λ-
infinitely divisible. Unfortunately, the proof of the analogous result in the square
case involves the fact that the Voiculescu transform of any probability measure
takes its values in the closure of the lower half-plane, and we still did not find the
analogue of that fact in the rectangular context.

In the following we shall describe some more or less obvious consequences of
Theorem 2.18. First we record for future reference the geometry of the preimage
of the complex plane via T (z) = (λz + 1)(z + 1):
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Remark 2.20.
(i) T−1({0}) = {−1/λ,−1} and T ′(−(λ + 1)/2λ) = 0;
(ii) T ((−∞,−1/λ]) = T ([−1,+∞)) = R

+, and T is injective on each of these
two intervals;

(iii) T ((−1/λ,−(1 + λ)/2λ]) = T ([−(1 + λ)/2λ,−1)) = [−(1 − λ)2/4λ, 0) and T
is injective on each of these two intervals;

(iv) T (−(1 + λ)/2λ + iR+) = T (−(1 + λ)/2λ − iR+) = (−∞,−(1 − λ)2/4λ] and
T is injective on each of these two sets;

(v) �T (x + iy) = 0 iff λy2 = (λx + 1)(x + 1). In particular, the pre-image of the
imaginary axis is an equilateral hyperbola whose branches go through −1 and
−1/λ and the tangents at these points to the hyperbola are vertical. More
general, �T (x + iy)/�T (x + iy) = c ≥ 0 if and only if x2 − y2 − 2cxy + (1 +
1
λ )(x − cy) + 1

λ = 0. That is, the pre-image via T of any non-horizontal line
going through the origin is an equilateral hyperbola going through −1 and
−1/λ and whose tangents at these two points are parallel to the line cy = x.
Let us denote K1 = {z ∈ C

+ : �z > −(1 + λ)/2λ}, K2 = {z ∈ C
+ : �z <

−(1 + λ)/2λ}, K3 = {z ∈ C
− : �z > −(1 + λ)/2λ}, K4 = {z ∈ C

− : �z <
−(1 + λ)/2λ}.

Note that using the formula T (z) = λ[(z + λ+1
2λ )2 − (1−λ)2

4λ2 ], one easily sees
that K1 = T−1(C+) ∩ C

+,K2 = T−1(C−) ∩ C
+,K3 = T−1(C−) ∩ C

−,K4 =
T−1(C+) ∩ C

−.

Lemma 2.21. Let μ be a �λ-infinitely divisible probability measure. Then
1. Hμ is the right inverse of the analytic function C\R

+ � w �→ w
T (Cμ(w)) , hence

injective;
2. μ({0}) > 0 if and only if limw→−∞ Cμ(w) ∈ (−1, 0]. In that case,

μ({0}) =
−(1 − λ) +

√
(1 − λ)2 + 4λT

(
limw→−∞ Cμ(w)

)

2λ
= 1 + lim

w→−∞
Cμ(w) ,

(2.7)

or, equivalently, limw→−∞ Cμ(w) = μ({0}) − 1.
3. π > arg Hμ(z) ≥ arg z for all z ∈ C

+, with equality if and only if μ = δ0. In
particular, Cμ(Hμ(C+)) ⊂ K1;

4. Hμ is analytic around infinity whenever limx→−∞ Cμ(x) < −1.

Proof. By the definition of Cμ, Theorem 2.18, parts (d) and (e) of Subsection 2.3.2,
and Remark 2.17 we obtain that T (Cμ(Hμ(z))) = Hμ(z)/z for all z ∈ (−∞, 0),
and, by part (b) of Subsection 2.3.2 and analytic continuation, for all z ∈ C \R

+.
This proves item 1.

We prove now item 2. Since the case μ = δ0 is trivial, we exclude it from
our analysis. This allows us to assert that the Lévy measure of μ has a positive
mass, hence, by (2.6), that Cμ((−∞, 0)) ⊂ (−∞, 0). Note that (2.6) implies also
that limw→−∞ Cμ(w) exists in [−∞, 0). As Hμ((−∞, 0)) ⊆ (−∞, 0), (by (b), (d)
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of Subsection 2.3.2) we have Hμ(x)/x > 0 for all x ∈ (−∞, 0), and hence the
relation T (Cμ(Hμ(z))) = Hμ(z)/z implies that T (Cμ(Hμ((−∞, 0)))) ⊂ R

+∗ and
therefore Cμ(Hμ((−∞, 0)) ⊂ (−∞,− 1

λ ]∪ [−1, 0]. Since limx↑0 Cμ(Hμ(x)) = 0, the
continuity of x→Cμ(Hμ(x)) on R

− implies that Cμ(Hμ((−∞, 0))) ⊆ (−1, 0).
Using part (f) of Subsection 2.3.2 and part (1) of this lemma,

λμ({0})2 + (1 − λ)μ({0}) = lim
x→−∞

Hμ(x)/x = lim
x→−∞

T
(
Cμ

(
Hμ(x)

))
.

If μ({0}) > 0, then by (f) of Subsection 2.3.2, limx→−∞ Hμ(x) = −∞, hence

T
(

lim
w→−∞

Cμ(w)
)

= lim
w→−∞

T
(
Cμ(w)

)
= lim

x→−∞
T
(
Cμ

(
Hμ(x)

))

= λμ({0})2 + (1 − λ)μ({0}) ∈ (0, 1) ,

so, since Cμ(Hμ((−∞, 0))) ⊆ (−1, 0), we have limw→−∞ Cμ(w) = μ({0}) − 1 ∈
(−1, 0).

Conversely, assume that limw→−∞ Cμ(w) ∈ (−1, 0). We claim that
limx→−∞ Hμ(x) = −∞. Indeed, assume to the contrary that this limit is fi-
nite, and denote it by c ∈ (−∞, 0). Then we have 0 = limx→−∞ Hμ(x)/x =
limx→−∞ T (Cμ(Hμ(x))) = T (Cμ(c)), so that Cμ(c) = −1 or −1/λ. But Cμ is
increasing on (−∞, 0) (it follows easily from the differentiation of (2.6)), and we
have assumed that limx→−∞ Cμ(x) > −1. This is a contradiction. The statement
concerning the mass at the origin follows since by (2.5)

0 < λμ({0})2 + (1 − λ)μ({0}) = lim
x→−∞

Hμ(x)
x

= lim
x→−∞

T
(
Cμ

(
Hμ(z)

))

= lim
w→−∞

T
(
Cμ(w)

)
.

To conclude, one can easily deduce (2.7) from the previous equation.
To prove item 3, we claim first that Hμ(C+) ⊆ C

+. Assume this is not the
case: there exists a point z1 in the upper half-plane so that Hμ(z1) ∈ C

− ∪ R.
Observe that by the relations

∀α ∈ (0, π) , lim
z→0 | arg z−π|<α

Hμ(z)/z = 1 , (2.8)

there is a point z0 ∈ C
+ so that Hμ(z0) ∈ C

+. Consider a segment γ unit-
ing z0 and z1. Then there must be a point zr ∈ γ so that Hμ(zr) ∈ R and
Hμ([z0, zr)) ⊂ C

+. Since Hμ(C \ R
+) ⊆ C \ R

+, we must have Hμ(zr) < 0. But
then Cμ(Hμ(zr)) < 0, so T (Cμ(Hμ(zr))) ∈ R. Thus, we contradict the relation
Hμ(zr) = zrT (Cμ(Hμ(zr))). This assures us that Hμ(C+) ⊆ C

+.
To conclude the proof of item 3, we have to prove that Hμ(z)/z ∈ C

+ when-
ever z ∈ C

+. This is equivalent to T (Cμ(Hμ(z))) ∈ C
+ whenever z ∈ C

+, i.e.,
since by (2.6), Cμ(C+) ⊆ C

+, to Cμ(Hμ(C+)) ⊆ K1. Note first that by (2.8),
there are some points z ∈ C

+ for which Hμ(z)/z ∈ C
+, i.e. Cμ(Hμ(z)) ∈ K1.

Hence the inclusion Cμ(Hμ(C+)) ⊆ K1 can fail only if Cμ(Hμ(C+)) intersects the
line −(1+λ)/2λ+iR+, so that there exists a point w0 ∈ C

+ with the property that
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T (Cμ(Hμ(w0))) < 0. But then we obtain that Hμ(w0) = w0T (Cμ(Hμ(w0))) ∈ C
−,

a contradiction. This proves item 3.
We proceed now with proving item 4. As observed in the beginning

of the proof of item 2, we must have Cμ(Hμ((−∞, 0))) ⊆ (−1, 0), so that
limx→−∞ Cμ(Hμ(x)) ≥ −1, hence the hypothesis

lim
x→−∞

Cμ(x) < −1

implies limx→−∞ Hμ(x) = c ∈ (−∞, 0) (note here that the limit exists by (2.5)).
Thus, Hμ(z) is analytic around infinity if and only if

Wμ : z ∈ C\(0,+∞) �→
{

Hμ(1/z) if z �= 0 ,

c if z = 0 ,

extends analytically around zero. The relation Hμ(z) = zT (Cμ(Hμ(z))) allows us
to write

Wμ(z) =
1
z

(
λCμ

(
Wμ(z)

)
+ 1
)(

Cμ

(
Wμ(z)

)
+ 1
)

,

hence for z ∈ C\R
+ small enough so that (1 − λ)2 + 4λzWμ(z) /∈ R

−,

Cμ

(
Wμ(z)

)
− −λ − 1 + [(1 − λ)2 + 4λzWμ(z)]1/2

2λ
= 0 .

This relation holds for z in I ∩ (−∞, 0), where I ⊂ R is a small enough interval
centered at zero, as μ �= δ0. Thus, let us define f : I × (I + c) → R, by

f(z, w) = Cμ(w) − −λ − 1 + [(1 − λ)2 + 4λzw]1/2

2λ

(recall that c = limx→−∞ Hμ(x) < 0, hence if I is small enough, f is well defined).
This function satisfies f(z,Wμ(z)) = 0 for all z ∈ I ∩ (−∞, 0). Hence f(0, c) =
limz↑0 f(z,Wμ(z)) = 0. We observe that

∂wf(z, w) = C ′
μ(w) − z

[(1 − λ)2 + 4λzw]1/2
,

so that ∂wf(0, w) = C ′
μ(w) > 0 for all w ∈ (I + c)∩ (−∞, 0). Thus, the conditions

of the implicit function theorem are satisfied, so we conclude that there exists a
unique real map g, analytic on some subinterval J of I, centered at zero, so that
g(0) = c and f(x, g(x)) = 0 for all x ∈ J . The uniqueness guarantees that g(x) =
Wμ(x) on their common domain, and hence it is an analytic extension to the
interval J of Wμ(z) = Hμ(1/z). This concludes the proof. �

3. The square case

Below, we prove that free convolution is regularizing, namely that we can find a set
of probability measures (roughly �-infinitely divisible distribution whose Voicules-
cu transform is sufficiently nice) such that any probability measure, once convo-
luted by one of these measures, has a density with respect to Lebesgue measure
which is analytic and positive everywhere. The fact that we require the density to
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be analytic everywhere or positive everywhere will be seen in Proposition 3.4 to
impose that these regularizing measures have no finite second moment. We shall
give also some examples of such measures after the proof of the theorem.

3.1. A result of analyticity

Theorem 3.1. Let μ be a �-infinitely divisible distribution. Assume that the Voi-
culescu transform φμ satisfies the following conditions:

1. For any x ∈ R, either � limz→x φμ(z) ∈ C
−, or φμ has no nontangential limit

at x;
2. Either (i) � limz→∞ φμ(z) = ∞, or (ii) � limz→∞ φμ(z) ∈ C

−, or (iii)
CΔ(φμ,∞) contains more than one point.

Then μ�ν has a positive, everywhere analytic density for all probability measure ν.

Proof. We have, on a neighbourhood of infinity,

F−1
ν (z) + φμ(z) = z + φν(z) + φμ(z) = z + φμ�ν(z) = F−1

μ�ν(z) .

We replace z by Fμ�ν(z), for z in an appropriate truncated cone Γα,M – see
Section 2.2.1 above (possible since Fμ�ν(z) is defined on the whole upper half
plane and is equivalent to z as z goes to infinity in a nontangential way), and get

z − φμ

(
Fμ�ν(z)

)
= F−1

ν

(
Fμ�ν(z)

)
.

Applying Fν in both sides and using analytic continuation (recall that φμ extends
to C

+ by Theorem 2.11), we obtain

Fμ�ν(z) = Fν

(
z − φμ

(
Fμ�ν(z)

))
, z ∈ C

+ . (3.1)

We will show that Fμ�ν extends analytically to R, and Fμ�ν(x) ∈ C
+ for all

x ∈ R. This will imply the theorem according to Lemma 2.11. Let us fix a real
number x. Observe first that the existence of a continuous extension with values
in C

+ ∪ R ∪ {∞} of Fμ�ν at x is guaranteed by Lemma 2.15, (4).
We are first going to prove that we do not have limz→x Fμ�ν(z) = ∞ (i.e

limz→x |Fμ�ν(z)| = ∞). Suppose that this happens. Then we have

x − ω1(x) = lim
z→x

z − ω1(z) = lim
z→x

ω2(z) − Fμ

(
ω2(z)

)

= lim
z→x

φμ

(
Fμ

(
ω2(z)

))
= lim

z→x
φμ

(
Fμ�ν(z)

)

= lim
w−→∞�

φμ(w) . (3.2)

We have used part (2) of Lemma 2.15 in the first equality, (1) of Lemma 2.15 in
the second equality, definition of φμ and Theorem 2.14 in the third, and Lindelöf’s
Theorem 2.1 in the last equality. We next show that any of the three hypotheses
of Theorem 3.1 (2) are in contradiction with (3.2).

Indeed, if (i) holds, then (3.2) implies that x− ω1(x) = ∞ which contradicts
part (2) of Lemma 2.15. (iii) clearly cannot hold since (3.2) implies that CΔ(φμ,∞)
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contains only one point. Finally, assume that (ii) of item 2 of our theorem holds.
Then, (3.2) implies that ω1(x) ∈ C

+. Thus, we get the contradiction

∞ = lim
z→x

Fμ�ν(z) = lim
z→x

Fμ

(
ω1(z)

)
= Fμ

(
ω1(x)

)
∈ C

+ .

We next prove that c = limz→x Fμ�ν(z) cannot be real. So, we assume c ∈ R

and obtain a contradiction based on the fact that we then have

c = lim
z→x

Fμ�ν(z) = lim
z→x

Fν

(
z − φμ

(
Fμ�ν(z)

))
∈ R . (3.3)

We observe first that limz→x φμ(Fμ�ν(z)) exists. Indeed, we see as in (3.2),

lim
z→x

φμ

(
Fμ�ν(z)

)
= lim

z→x
ω2(z) − Fμ

(
ω2(z)

)
= lim

z→x
z − ω1(z) = x − ω1(x) .

If φμ has nontangential limit at c, then by our assumption from item 1, it must
belong to the lower half-plane. Lindelöf’s Theorem 2.1 guarantees that limz→x

φμ(Fμ�ν(z)) equals the nontangential limit of φμ at c, so

lim
z→x

Fν

(
z − φμ

(
Fμ�ν(z)

))
= Fν

(

x − lim
w−→c�

φμ(w)

)

∈ C
+ ,

contradicting equation (3.3).
If φμ has no nontangential limit at c, then it is obvious from the existence

of limz→x φμ(Fμ�ν(z)), of c = limz→x Fμ�ν(z), finiteness of c, and from Lindelöf’s
Theorem 2.1 that c must belong to the upper half-plane.

Hence, we have proved that, for any x ∈ R, c = Fμ�ν(x) = limz→x Fμ�ν(z) ∈
C

+. We finally prove that Fμ�ν extends analytically in the neighbourhood of
x ∈ R by using the implicit function theorem. Note that the hypothesis that
� limz→t φμ(z) ∈ C

− for all t ∈ R for which this limit exists implies that μ is
not a Dirac measure, hence that φμ(C+) ⊂ C

−. Let us introduce the function
f(v, w) = Fν(v − φμ(w)), defined on

{
(v, w) ∈ C × C

+ ; �v > �φμ(w)
}

,

which contains (C+ ∪ R) × C
+. One has

f(x, c) = Fν

(
x − φμ(c)

)
= lim

z→x
Fν

(
z − φμ

(
Fμ�ν(z)

))
= lim

z→x
Fμ�ν(z) = c .

In other words, c is the Denjoy–Wolff point of the function f(x, · ). Since f(x, · )
is not a conformal automorphism of C

+, we have
∣
∣
∣
∣

∂

∂w
f(x, c)

∣
∣
∣
∣ < 1

(and in particular �= 1). So with g(v, w) = w − f(v, w), we have

∂

∂w
g(x, c) �= 0 ,
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hence, by the implicit function theorem, there exists an analytic function L, defined
in a connected neighborhood V of x and a neighborhood W of c such that for all
(v, w) ∈ V × W ,

g(v, w) = 0 ⇔ w = L(v) .

By (3.1) the function L coincides with the function Fμ�ν on V ∩ C
+, so the function

Fμ�ν admits an analytic extension to V , with value c ∈ C
+ at x. Lemma 2.11 allows

us to conclude. �

Examples. In this series of examples, we provide explicit examples of measures
satisfying the hypotheses of Theorem 3.1.

1. We give here an example of a Voiculescu transform that satisfies condition
(i). Let

φμ(z) =
1

z + i
−
√

z , z ∈ C+ ,

where
√· is the natural continuous extension of the square root defined on

C \ [0,+∞) so that
√
−1 = i to R ∪ {∞}. Theorem 2.14 guarantees that

φμ is the Voiculescu transform of a �-infinitely divisible probability. Clearly
�φμ(z) < 0 for all z ∈ C

+ ∪ R, φμ(∞) = ∞, and φμ is obviously continuous
on C+, so φμ satisfies the condition (i) in the previous theorem. Moreover,
we have

inf
x∈R

|�φμ(x)| = lim
x→+∞

1
x2 + 1

= 0 .

This also shows that μ is not a convolution with a Cauchy law. It is an
easy exercise to observe, based on (2.1), that μ = λ1�λ2, where λj are both
infinitely divisible, λ2 is a �-stable distribution (see [9]) whose density is
given by x �→

√
4x−1
2πx , x ∈ [1/4,∞), and Fλ1(z) = (z − i +

√
(z + i)2 − 4)/2,

z ∈ C
+.

2. We observe that, if φμ extends continuously to R∪{∞}, condition (ii) in the
above theorem can be reduced to requiring that μ is the free convolution of
some probability measure by a Cauchy law. Indeed, since φμ is continuous on
R ∪ {∞}, if �φμ(x) < 0 for all x ∈ R and φμ(∞) ∈ −C

+, then �φμ(x) must
actually be bounded away from zero (by continuity). By Theorem 2.14, there
exists c > 0 so that φμ(z) + ci = φμ(z)− (−ci) is still a Voiculescu transform
of an infinitely divisible distribution, say η. Then φμ(z) = φη(z)+ (−ci), and
C(z) := −ci is the Voiculescu transform of a Cauchy distribution.

3. The example of probability measure that satisfies condition (iii) will be con-
structed in terms of the Voiculescu transform, as an explicit limit of com-
pactly supported probabilities, each whose density is an algebraic function.
Specifically, we will construct two sequences {an}n and {tn}n of real num-
bers and functions fn(z) = an

1+tnz
tn−z , z ∈ C \ {tn}, so that gn =

∑n
j=1 fj

converges on the upper half-plane to the nonconstant analytic function g and
CiR+(g,∞) = iCiR+(�g,∞) ⊃ i[7,+∞].
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Let us recall that the R-transform of the free Poisson law with parameter
k is Rp(z) = k

1−z , so that its dilation by t has an R-transform given by
1
t Rp( z

t ) = k
t−z . Since φμ(z) = Rμ(1/z), we can write

a
1 + t

z
1
z − t

=
a

t
· z + t

1
t − z

=
a

t

[ 1
t + t
1
t − z

− 1
]

=
a
t2 + a
1
t − z

− a

t
,

so we conclude that fn is just minus the Voiculescu transform of the transla-
tion with an/tn of the dilation with 1/tn of the free Poisson law of parameter
an

t2n
+ an.

First let us enumerate some properties of the functions fn.
(j) y �→ �fn(iy) is a smooth function from [0,+∞) into itself and �fn(iy) =

an
y(1+t2n)
t2n+y2 ;

(jj) maxy∈[0,+∞) �fn(iy) = �fn(itn) = an(1 + t2n)/2tn. Moreover, the func-
tion y �→ �fn(iy) increases from zero to an(1 + t2n)/2tn on the interval
[0, tn], after which it decreases back to zero;

(jjj) There are exactly two points y+
n and y−

n , right and left, respectively,
from tn, so that �fn(iy+

n ) = �fn(iy−
n ) = 1. We have

y−
n =

an(1 + t2n) −
√

a2
n(1 + t2n)2 − 4t2n

2
,

so that lim|tn|→∞ y−
n = 1/an. Moreover, for any an > 0, y−

n < 2/an,

and if 0 < an < 1, then we also have 1/an < y−
n .

Let us observe also that if we replace fn by the sum

fn(z) =
an

2
1 + ztn
tn − z

+
an

2
1 − ztn
−tn − z

,

then we do not change the imaginary part of fn(iy), while we insure that
�fn(iy) = 0 for all y ≥ 0, so from now on we will replace fn with this new
function. (This will correspond to the free additive convolution of two free
Poisson laws as above.)

Let a1 = 1, t1 = 2. Choose 0 < a2 < a1/2 so that �f1(i 1
2a2

) < 1/10
and 1

2a2
> t1. Item (jj) guarantees that we can make such a choice. Choose

t2 > t1 so that �f2(it2) = a2(1 + t22)/2t2 > 2. This condition can be fulfilled
because of item (jj). Observe that the monotonicity of �fn(i · ) on [tn + ∞)
implies that �f1(iy−

2 ) < �f1(i 1
2a2

) < 1/10.
Assume now that we have constructed aj , tj , 1 ≤ j ≤ n − 1 so that

0 < aj < aj−1/2, fj−1(i 1
2aj

) < 1/10j−1, 1
2aj

> tj−1, tj > tj−1,�fj(itj) =
aj(1 + t2j )/2tj > j, and y−

j > 1
2aj

, for all j between 1 and n − 1. We choose
0 < an < an−1/2 small enough so that �fn−1(i 1

2an
) < 1/10n−1, 1

2an
> tn−1,

(using item (jj) above), and tn > tn−1 large enough so that �fn(itn) =
an(1 + t2n)/2tn > n. As before, construction is permitted by using item (jj).

Observe now that the sequence {an}n constructed this way is positive,
decreasing, and satisfies 1 <

∑∞
n=1 an < 2. Moreover, {y−

n }n is, by item (jjj),
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in its own turn an increasing sequence, and y−
n > tj for all j < n so that

�fj(iy−
n ) ≤ �fj(iy−

j+1) < �fj(i 1
2aj+1

) < 1/10j , by monotonicity of �fj on
[tn,+∞). Thus,

�(f1 + f2 + · · · + fn−1 + fn)(iy−
n ) <

1
10

+
1

102
+ · · · 1

10n−1
+ 1 <

10
9

.

On the other hand, for any m > n, we have

�fm(iy−
n ) = am

y−
n (1 + t2m)

t2m + (y−
n )2

= an
y−

n (1 + t2n)
t2n + (y−

n )2
︸ ︷︷ ︸

	fn(iy−
n )=1

· am

an
· (1 + t2m)(t2n + (y−

n )2)
(1 + t2n)(t2m + (y−

n )2)

≤ am

an
·
(1 + t2m)

(

t2n +
(

2
an

)2
)

(1 + t2n)t2m

< 2
am

an

(

1 +
4

a2
nt2n

)

<
1

2m−n−1
+

1
2m−n−3n2

,

so that �(fn+1 + fn+2 + · · · + fm)(iy−
n ) < 4 for all m > n, when n >

1 is large enough. (We have used in the last inequality the fact that the
choice of tn so that �fn(itn) > n implies that an > (2ntn)/(1 + t2n) > n/tn,
so that 1/n > 1/(antn), and our choice that an < an−1/2, n ≥ 1). Also,
�(f1 + f2 + · · · + fn−1 + fn)(tn) > �fn(itn) > n, for all n ∈ N. As seen
before, �fn(iy) = 0 for all y ≥ 0.

Now, it is easy to verify that (1 + tnz)/(tn − z) are uniformly bounded
on, say, i[0, 1], so that

∑∞
n=1 fn is convergent and the limit g is an analytic

self-map of the upper half-plane. We observe that �g(iy−
n ) ≤ 4 + 10/9 < 7,

�g(itn) ≥ n, and �g(i[0,+∞)) = {0} for all n ∈ N, while limn→∞ tn =
limn→∞ y−

n = ∞. Thus, g has no radial, hence no nontangential, limit at
infinity.

At the same time, since all −fns are Voiculecu transforms, so is −g.
We next consider the case where we do not restrict ourselves to regularizing

measures which are infinitely divisible.

Theorem 3.2. Let μ be a Borel probability measure on R so that the function
hμ(z) = Fμ(z) − z satisfies the following property:
(H) For any x ∈ R ∪ {∞}, either �hμ(x) does not exist, or �hμ(x) ∈ C

+;
Then for any Borel probability measure ν on R which is not a point mass, μ�ν
is absolutely continuous with respect to the Lebesgue measure and has a positive
analytic density with respect to the Lebesgue measure.

Remark 3.3. For x = ∞, (H) is in fact equivalent to the fact that either �φμ(∞)
does not exist or �φμ(∞) belongs to C

+. Indeed, as observed in [9], z + φμ(z)
belongs to a neighbourhood of infinity for sufficiently large z in some truncated
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cone Γα,M . Thus, by the definition of φ and h, hμ(z + φμ(z)) = −φμ(z) for suf-
ficiently large z in such a cone. Since z + φμ(z) tends nontangentially to infinity
when z tends nontangentially to infinity, �φμ(∞) exists iff �hμ(∞) exists, and
they are equal. The significance of this fact for our problem will be seen in the
next subsection.

Proof. We claim first that �Fμ�ν(x) exists and belongs to the upper half-plane
for all x ∈ R. Indeed, with the notations from Lemma 2.15, by Theorem 3.3
of [2], the nontangential limits of ω1 and ω2 at x exist. As observed in part (1)
of Theorem 3.3 in [2], if �ω2(x) ∈ C

+, then the result is true. Assume first that
�ω2(x) ∈ R. Theorem 2.1 guarantees that if �Fμ�ν(x) = �(Fμ ◦ ω2)(x) exists, it
must equal the nontangential limit of Fμ in �ω2(x), so the nontangential limit of
hμ in �ω2(x) exists, and hence, by (H), belongs to the upper half-plane.

Suppose the nontangential limit of Fμ, and hence of hμ, in �ω2(x) does not
exist. Then by Theorem 2.1, hμ◦ω2 has no nontangential limit at x. But by part (1)
of Lemma 2.15 and definition of hμ, we have

�ω1(x) = x + lim
z−→x�

hμ

(
ω2(z)

)
,

which implies that �ω1(x) does not exist, contradicting Theorem 3.3 of [2].
The last possible case is when �ω2(x) = ∞. As before, if �(hμ◦ω2)(x) exists,

then by Theorem 2.1 it must coincide with �hμ(�ω2(x)) = �hμ(∞), so, by our
hypothesis (H), it must belong to the upper half-plane. Thus, �ω1(x) ∈ C

+, so
that, by Theorem 3.3 in [2], �Fμ�ν(x) ∈ C

+. Assume now that �(hμ ◦ω2)(x) does
not exist, so that there exists an infinite set W of points c ∈ C

+ ∪ mathbbR
for which there is a sequence {zc

n}n converging to x nontangentially so that
limn→∞(hμ ◦ ω2)(zc

n) = c. But then

�ω1(x) = lim
z−→x�

ω1(z) = lim
n→∞

ω1(zc
n) = lim

n→∞
zc

n + hμ

(
ω2(zc

n)
)

= x + c

for any c ∈ W. This contradicts the existence of the nontangential limit of ω1 at x.
This establishes the existence of nontangential limits of Fμ�ν at all points

x ∈ R and the fact that �Fμ�ν(x) ∈ C
+ for all x ∈ R. We claim that �ω2(x) ∈

C
+. Indeed, it is easy to see that �ω2(x) is finite, since otherwise we would

have, by Lemma 2.15, Theorem 2.1 and Theorem 2.8, that �Fμ�ν(x) = �(Fμ ◦
ω2)(x) = �Fμ(�ω2(x)) = �Fμ(∞) = ∞, which is a contradiction. Thus, by
Lemma 2.15, part (1), we have that �ω1(x) is also finite. Moreover, at least one
of �ω1(x),�ω2(x) must then belong to the upper half-plane. Remark 2.9 guar-
antees that in fact both must be in the upper half-plane. Theorem 3.3 of [2] and
Lemma 2.11 concludes the proof. �

3.2. A result of non existence of analytic densities

Proposition 3.4. Assume that μ, a �-infinitely divisible probability so that μ�t has
no atoms for some t < 1 (the existence of μ�t for t < 1 is guaranteed by the
infinite divisibility of μ), has finite second moment. Then there exists a probability
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measure ν on R so that the density of μ�ν is not analytic everywhere. Moreover,
the density of μ�ν vanishes at a point.

Remark 3.5.
• Note that the fact that the density of μ�ν may easily vanish inside the support

of the measure was already foreseen by P. Biane in [12], Proposition 6, where
he proved that if ν is a probability measure with continuous strictly positive
density on ] − ε, 0[∪]0, ε[ for some ε > 0 such that

∫

x−2dν(x) < ∞

and μ = σt is the semicircular variable with covariance t, then dμ�σt

dx (0) =
0 for t > 0 small enough. Our proof extends this phenomenon to any �-
infinitely divisible probability measure μ with finite second moment, under
the (technical) hypothesis that μ�t has no atoms for some t < 1.

• In the case where the probability measure μ has a finite second moment, by
Theorem 1.3 and Remark 1.1 of [6], if m, v denote respectively the mean and
the variance of μ, one has, as z goes to infinity non tangentially, φμ(z) = m+
v/z+o(1/z), hence the second hypothesis of Theorem 3.1 cannot be satisfied.
However, the existence of a finite second moment for μ has no incidence on
the first hypothesis of Theorem 3.1. Indeed, as it will be explained in the proof
of Proposition 3.4, up to a translation, φμ can be expressed as the Cauchy
transform of the finite positive measure dσ(t) = (1 + t2)dG(t), where G is
the Lévy measure of μ. Hence up to the addition of a real number, the non
tangential limit of φμ at any real number x only depends on the restriction
of G to a neighborhood of x, which, by Proposition 2.3 of [6], is independent
of the existence of a finite second moment for μ.

Proof. First note that by Theorem 3.1 of [4], the hypothesis that μ�t has no atoms
for some t < 1 implies that μ has no atoms. Hence by Remark 2.16 or Theorem 7.4
of [10], for any ν which is not a point mass, μ�ν has a density.

Observe that if the density of μ�ν has a hole in the support (meaning a
nontrivial interval on which it is zero), it cannot be analytic on R by the identity
principle. Similarly, the set of zeros of the density must be discrete in R. Thus, we
may assume that μ satisfies these two conditions, since otherwise we would readily
obtain the probability measure ν of the proposition by taking ν = δa for some
a ∈ R.

The strategy of the proof is as follows; we first show that g : z ∈ C
+→

Fν(−φμ(z)) has infinity as Denjoy–Wolff point under a certain condition. Regard-
ing Fμ�ν(0) as a fixed point of this map will guarantee that either Fμ�ν(0) is
infinite or belongs to R. We will show that under some hypothesis on ν, it has to
be infinite, which will prove that dμ�ν

dx (0) = 0 and also that dμ�ν
dx is not analytic

at the origin.
To study the Denjoy–Wolff point of g, we first shall write both φμ and Fν as

(roughly speaking) Cauchy–Stieljes transforms of some measures σ and ρ on R.
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Recall [9] that there exists a real number γ and a positive finite measure G
on the real line, called the Lévy measure of μ such that for all z ∈ C

+,

φμ(z) = γ +
∫

R

1 + tz

z − t
dG(t) .

By Proposition 2.3 of [6], the finiteness of the second moment of μ is equivalent to
the finiteness of the second moment of its Lévy measure G. Thus, we can represent
the Voiculescu transform of μ as

φμ(z) = γ+
∫

R

1 + tz

z − t
dG(t) = γ+

∫

R

(

t +
1 + t2

z − t

)

dG(t) = γ′+
∫

R

dσ(t)
z − t

, z∈C
+ ,

where γ′ ∈ R, dσ(t) = (1 + t2) × dG(t). Because G has finite second moment, σ
has finite mass. By a translation of μ, we may assume that γ′ = 0, so that φμ is
simply the Cauchy transform of the positive finite measure σ.

Let ν be a Borel probability on R. By Theorem 2.8, we can write the reciprocal
of its Cauchy transform as

Fν(z) = a + z +
∫

R

1 + tz

t − z
dρ(t) = a + z +

∫

R

dρ(t)
t − z

+
∫

R

zt

t − z
dρ(t) ,

for all z ∈ C
+, where a ∈ R, and ρ is a positive finite measure. We will show that

if ν is so that ρ({0}) ≥ σ(R), then the density of μ�ν vanishes at the origin. So
let ν satisfy this condition. We have by Theorem 2.14(ii)

lim
y→+∞

Fν(−φμ(iy))
iy

= lim
y→+∞

∫

R

dρ(t)
iy(t + φμ(iy))

+ lim
y→+∞

−φμ(iy)
iy

∫

R

t dρ(t)
t + φμ(iy)

.

(3.4)

Observe that φμ(iy) approaches zero nontangentially when y tends to infin-
ity. Indeed, since limy→+∞ iyφ(iy) = σ(R) > 0, we have limy→+∞ y�φμ(iy) =
0, limy→+∞ y�φμ(iy) = −σ(R), so, given 0 < ε < σ(R)/2, there exists yε > 1 so
that for all y ≥ yε, we have |y�φμ(iy)| < ε, |σ(R) + y�φμ(iy)| < ε. Thus,

|�φμ(iy)|
|�φμ(iy)| =

|y�φμ(iy)|
|y�φμ(iy)| >

σ(R) − ε

ε
> 1 ,

for all y ≥ yε. Now,

lim
y→+∞

∫

R

t dρ(t)
t + φμ(iy)

= lim
y→+∞

∫

R

(

1 − φμ(iy)
t + φμ(iy)

)

dρ(t) = ρ(R) − ρ({0}).

Since, by Theorem 2.14 above, limy→+∞ φμ(iy)/iy = 0, we conclude that the
second limit in the equation (3.4) vanishes.

On the other hand, if we denote fy(t) = 1
iy(t+φμ(iy)) , t ∈ R, y > 1, then

limy→+∞ fy(t) = 1
σ(R)χ{0}(t) pointwise, where χA is the characteristic function

of A. Also,

|fy(t)|2 =
1

y2(t + �φμ(iy))2 + y2(�φμ(iy))2
≤ 1

y2(�φμ(iy))2
<

4
σ(R)2

,
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for all y > yε. So by the dominated convergence theorem,

lim
y→+∞

∫

R

dρ(t)
iy(t + φμ(iy))

=
ρ({0})
σ(R)

.

By (3.4), we conclude that

lim
y→+∞

Fν

(
− φμ(iy)

)
/iy =

ρ({0})
σ(R)

≥ 1 ,

which insures that the analytic function g : C
+→C

+ defined by g(z)=Fν(−φμ(z)),
has infinity as its Denjoy–Wolff point.

We next show that this implies that Fμ�ν(0) belongs to R ∪ {∞}. So, we
suppose that Fμ�ν(0) ∈ C

+ to get a contradiction (Fμ�ν extends continuously
to R by Lemma 2.15 (4)). Note that by (3.1), the relation Fν(z − φμ(Fμ�ν(z))) =
Fμ�ν(z), gives, by letting z going to zero nontangentially,

Fν

(
− φμ

(
Fμ�ν(0)

))
= Fμ�ν(0) . (3.5)

Thus, Fμ�ν(0) should be a fixed point of g in C
+, and thus its Denjoy–Wolff point;

this is in contradiction with the previous statment that the Denjoy–Wolff point of
g is infinity. Hence one has Fμ�ν(0) ∈ R ∪ {∞}.

Observe that Fμ�ν(0) �= 0. Indeed, by Remark 2.16, this equality would imply
that tω2(0) is an atom of μ�t for all t < 1, contradicting the hypothesis.

Thus, �Fμ�ν(0) = 0 and Fμ�ν(0) �= 0, so that �Gμ�ν(0) = 0. Part (4) of
Lemma 2.15 tells us that Fμ�ν is continuous on R. In particular, since Fμ�ν(0) �=
0, Gμ�ν(x) will be continuous and finite for x in some open interval I around zero.
Lemma 2.11 (i) guarantees that μ�ν will have a continuous density on I which
vanishes at zero.

We show below a more precise statment to prove the breaking of analyticity
at the origin when ρ({0}) = σ(R), namely that Fμ�ν(0) = ∞.

So, assume now that ρ({0}) = σ(R). Then we claim that in fact Fμ�ν(0) =
∞. Indeed, by Lemma 2.15 (2), ω1(0) is the Denjoy–Wolff point of the function
g0(w) = −φμ(Fν(w)). We next show that this point must be the origin.

Indeed, observe that Fν(iy)/iy goes to one as y ∈ R
+ goes to infinity. Hence,

Fν(iy) approaches infinity nontangentially when y → +∞. Thus, since φμ ap-
proaches zero nontangentially at infinity, g0(y) = −φμ(Fν(iy)) converges to zero
as y goes to zero yielding g0(0) = 0. Also,

lim
y→0

g0(y)
iy

= lim
y→0

−φμ(Fν(iy))
iy

=
limy→0 φμ(Fν(iy))Fν(iy)

limy→0 −iyFν(iy)
=

σ(R)
ρ({0}) = 1 .

The Denjoy–Wolff theorem and the remarks following it imply that zero is the
Denjoy–Wolff point for g0, so by uniqueness of the Denjoy–Wolff point, ω1(0) = 0.

We know that Fν has infinite nontangential limit at zero (because we sup-
posed that ρ has an atom at zero), so this, coupled with the equation Fμ�ν(z) =
Fν(ω1(z)), with the existence of the limit of Fμ�ν at zero and Lindelöf’s Theo-
rem 2.1, implies that Fμ�ν(0) = ∞.
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Observe that ω1 is not analytic in zero. Indeed, if it were analytic, it would
have a finite derivative in zero. However, with H the function given in Lem-
ma 2.15 (2), the previous estimates show that H(0) = 0 and

H ′(0) = lim
y→0

H(iy)
iy

= 1 − lim
y→0

−φμ(Fν(iy))
iy

= 0

implies, by Proposition 4.7 (5) in [5], that limy→0 ω1(iy)/iy = ω′
1(0) = 1/H ′(0) =

∞. As a consequence, Gμ�ν is not differentiable at the origin, since if it were

lim
y→0

−Gμ�ν(iy) − Gμ�ν(0)
iy − 0

= − lim
y→0

1
iyFν(ω1(iy))

= lim
y→0

− 1
ω1(iy)Fν(ω1(iy))

· ω1(iy)
iy

.

The second factor above has just been shown to converge to infinity. For the first
factor, observe that � limz→0 zFν(z) = ρ({0}). Since y �→ ω1(iy) is a smooth path
in the upper half-plane ending at zero, Theorem 2.5 guarantees that there exists a
subsequence yn → 0 so that limn→∞ ω1(iyn)Fν(ω1(iyn)) = ρ({0}). So the limit
above either does not exist, or is infinite. In both cases, we conclude that Gμ�ν is
not differentiable at zero. Thus by Lemma 2.11, the density of μ�ν is not analytic
in zero. �

The above proposition provides a large class of examples of free convolutions
whose densities have cusps in their support (points where the density vanishes and
is not analytic), and relates this phenomenon to the finiteness of second moments.
We show below that it is possible that the density of μ�ν vanishes at a point, but
is still analytic.

Proposition 3.6. Let μ be the semicircular distribution. Then, there exists a prob-
ability measure ν on R so that the density ρ(x) = dμ�ν

dx (x) vanishes at the origin,
is strictly positive on ] − ε, 0[∪]0, ε[ for some ε > 0 but is analytic at the origin.

Proof. Let μ be the semicircular distribution, so that φμ(z) = 1/2z, z ∈ C+. We
claim that ν given by its reciprocal Cauchy–Stieljes

Fν(z) = z + i − 1 +
z − i

z + i
− 1

z
, z ∈ C

+ ,

will satisfy the properties of the proposition.
Indeed, with the notations from the proof of the previous proposition,

g0(w) = −φμ

(
Fν(w)

)
= − 1

2
(
w + i − 1 + w−i

w+i −
1
w

)

= − w(w + i)
2w3 + 4iw2 − 4(1 + i)w − 2i

,

for all w ∈ C
+, so in fact g0 extends analytically around zero, and moreover

g′0(0) = lim
w→0

g0(w)/w = 1/2 < 1 ⇒ |g′0(0)| < 1 and g0(0) = 0 .
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Thus, zero is the Denjoy–Wolff point of g0, and, by Lemma 2.15 (2), we conclude
that ω1(0) = 0.

We next show that ω1 extends analytically around the origin. In fact, the
function H(w) = w + φμ(Fν(w)) has, by Lemma 2.15 (2), ω1 as right inverse. At
the same time, H extends analytically around zero, and H ′(0) = 1 − 1

2 = 1
2 �= 0,

so H is locally invertible around zero. The analyticity of ω1 around the origin
follows from the implicit function theorem.

We now conclude that Gμ�ν vanishes at the origin, is analytic in a neighbor-
hood of the origin and has negative imaginary part in a neighborhood of the origin
(except at the origin itself); this will prove the lemma according to Lemma 2.11.
Now, Fν is meromorphic around zero, with a simple pole at zero, so Gν(0) = 0 and
Gν is analytic around zero. By Lemma 2.15, we have 0 = Gν(0) = Gν(ω1(0)) =
Gμ�ν(0), and Gμ�ν(z) = Gν(ω1(z)) is analytic on a neighbourhood of zero in C.
We finally show that Gν�μ has positive imaginary part in ] − ε, 0[∪]0, ε[ for some
ε > 0. For that, since Gν�μ(z) = Gν(ω1(z)), it is enough to show that Gν(z) has
negative imaginary part for z so that 0 < |z| < ε′ (since ω1 is analytic and null at
the origin).

But, a straightforward computation gives

Gν(r) =
1

Fν(r)
=

r(r + i)
r3 + 2ir2 − 2(i + 1)r − i

=
r(r + i)

(r3 − 2r) + i(2r2 − 2r − 1)
,

so

�Gν(r) = − r2(r − 1)2

r2(r2 − 2)2 + (2r2 − 2r − 1)2
< 0 ,

for all r ∈ R \ {0, 1}.
We notice that in fact we have only used, with the notations from the previous

proposition, the facts that ρ({0}) > σ(R), that Gν is analytic around zero, and φμ

around infinity. Thus, a much larger class of such pairs of measures μ, ν provide
an analytic density around zero which is zero in zero. �

Remark 3.7. Note that our construction of the example in the proposition above
were based on the fact that ρ({0}) > 0. In that case, Fν(z) ≈z→0 − 1

z ρ({0}). This
is equivalent to the fact that

∫
t−1dν(t) = 0 and
∫

1
t2

dν(t) =
1

ρ({0}) .

Therefore, if μ is an infinitely divisible measure with finite second moment and
positive density, and if we denote again by σ the finite measure on R given by

φμ(z) = γ+
∫

R

1 + tz

z − t
dG(t) = γ+

∫

R

(

t+
1 + t2

z − t

)

dG(t) = γ′+
∫

R

dσ(t)
z − t

, z ∈ C
+ ,

where γ′ ∈ R, dσ(t) = (1 + t2) × dG(t), we have shown that we have three possi-
bilities, which follow the intuition
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1. If
∫

1
t2 dν(t) < 1/σ(R), so ν does not put much mass in the neighborhhood

of the origin, μ�ν has a density which vanishes at the origin but has a finite
derivative at the origin. The proof was detailed above in a specific example
in the last proposition but could be generalized.

2. If
∫

1
t2 dν(t) = 1/σ(R), which corresponds to a critical amount of mass around

the origin, the density has a cusp at the origin (at least under the asumptions
that μ�t has no atoms for t < 1).

3. If ν({0}) > 0, we have an analytic strictly positive density in zero whenever
μ�t lacks atoms for all t > 0. Indeed, if one assumes ν({0}) > 0, then
limz→0 |Fν(z)

z | = ∞ would imply limz→0 zGν(z) = 0, which is obviously false,
by (2) of Lemma 2.17 of [2]. Thus if Fμ�ν(0) ∈ R, then ω1(0) ∈ C

+ (by
Lemma 2.15), which is impossible, and if Fμ�ν(0) = ∞, then Fμ�ν(0) is the
Denjoy–Wolff point of g (equation (3.3)), which is also impossible because
−φμ(∞) = 0 and Fν(0) = 0. Thus, Fμ�ν(0) must belong to C

+.

4. The rectangular case

4.1. Main result

We shall fix λ ∈ (0, 1), and assume that all probability measures are symmetric. We
prove here an analogue to Theorem 3.1 for the rectangular convolution, which says
that the restriction to the upper half-plane of the function H extends continuously
to R

+, analytically outside a closed set of Lebesgue measure zero. We shall see
that this implies that μ�λν admits an analytic density on the complement of
that set. Unlike for the square case, we did not succeed to get rid of this closed
negligible set where the density could stop being analytic. We however can give
sufficient conditions so that the density is continuous everywhere (Corollary 4.6).
Examples which satisfy our conditions are provided in Section 4.2. Moreover, as
we shall discuss later, the density often vanishes around the origin, which is, in
the rectangular setting, a very specific point. A consequence of this fact is that the
full strength of Theorem 3.1 cannot be achieved in the rectangular case: given a
�λ-infinitely divisible probability μ, there exists a symmetric probability measure
ν �= δ0 so that the density of μ�λν is not everywhere analytic. We shall study this
phenomenon in the last paragraph.

Our main tool will be an ad-hoc subordination result for the functions H:

Lemma 4.1. Let μ, ν be two symmetric probability measures on R. Assume that the
rectangular R-transform Cμ of μ extends analytically to C \ R

+ (this happens for
example if μ is �λ-infinitely divisible – see Theorem 2.18). Then there exist two
unique meromorphic functions ω1, ω2 on C\R

+ so that Hμ(ω1(z)) = Hν(ω2(z)) =
Hμ�λν(z), ωj(z̄) = ωj(z), z ∈ C \ R

+, and limx↑0 ωj(x) = 0, j ∈ {1, 2}. Moreover,
(i) ω2 is injective and analytic on C\R

+; it is the right inverse of the meromor-
phic function k(w) = Hν(w)

T [Cμ(Hν(w))+Mν(w)] , w ∈ C \ R
+;

(ii) arg z ≤ arg ω2(z) < π, z ∈ C
+.
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Proof. There exists an ε > 0 so that for z ∈ (−ε, 0), by taking w = Hμ�λν(z) in
relation Cμ�λν(w) = Cμ(w) + Cν(w), we have

U

(
Hμ�λν(z)

z
− 1
)

− Cμ

(
Hμ�λν(z)

)
= U

(
Hμ�λν(z)

H−1
ν (Hμ�λν(z))

− 1

)

.

Applying T in both sides gives

T

[

U

(
Hμ�λν(z)

z
− 1
)

− Cμ

(
Hμ�λν(z)

)
]

=
Hμ�λν(z)

H−1
ν (Hμ�λν(z))

.

By part (b) of Section 2.3.2, Hμ�λν(z) doesn’t vanish on C\R
+, hence in the

interval (−ε, 0) where the previous equation is valid, its left hand term doesn’t
vanish. So on (−ε, 0) we have

Hμ�λν(z) = Hν

⎛

⎝
Hν�λμ(z)

T
[
U
(

Hμ�λν(z)

z − 1
)
− Cμ(Hμ�λν(z))

]

⎞

⎠ . (4.1)

This equation holds for z ∈ (−ε, 0), and, by analytic continuity, in all points of
the connected component of the domain of analyticity of the right hand term
which contains (−ε, 0). Thus, if we denote f(z, w) = w

T (U( w
z −1)−Cμ(w)) , and let

ω2(z) = f(z,Hμ�λν(z)), we have proved that Hμ�λν(z) = Hν(ω2(z)) for z in some
domain containing the interval (−ε, 0). We shall argue in the following that this
equation can be extended to all points of C \ R

+.
Note that since Cμ is analytic on C\R

+, by (b) of the Section 2.3.2,
Cμ(Hμ�λν(z)) is defined on C\R

+. Moreover, by (a) of the Section 2.3.2, z �→
U(

Hμ�λν(z)

z − 1) admits an analytic extension to C\R
+, denoted by Mμ�λν . So

any point z of C\R
+ which is in the boundary of the domain of the right hand

term of (4.1) satisfies either

ω2(z) :=
Hν�λμ(z)

T
[
Mμ�λν(z) − Cμ(Hμ�λν(z))

] ∈ R
+

or T
[
Mμ�λν(z) − Cμ

(
Hμ�λν(z)

)]
= 0 .

• We first discuss the case when ν has the property that for any x in R,
the Cauchy transform of ν does not extend continuously to x. This happens for
example if ν is concentrated on a set of Lebesgue measure zero and has support
equal to R, according to Lemma 2.12.

Consider the connected component of the domain of the right hand side
of (4.1) that contains (−ε, 0). Assume first that z0 ∈ C \ R

+, and yet z0 is in the
boundary of this component, which implies that either ω2(z0) ∈ [0,+∞) (because
of part (b) of Section 2.3.2), or T

[
Mμ�λν(z0) − Cμ(Hμ�λν(z0))

]
= 0. The functions

Hμ�λν and ω2 are analytic and, respectively, meromorphic, in z0 and Hμ�λν(z0) ∈
C \ R

+.
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Observe that if the first situation occurs, there must exist a whole (1-dimen-
sional) analytic connected variety V given by the relation ω2(.) ∈ (0,+∞) to which
z0 belongs because ω2 is open as a meromorphic function. But now for any point
ζ ∈ V , we will have that

lim
z→ζ

Hμ�λν(z) = lim
z→ζ

Hν

(
Hν�λμ(z)

T
[
Mμ�λν(z) − Cμ(Hμ�λν(z))

]

)

= lim
z→ζ

Hν

(
ω2(z)

)
.

The left hand-side exists always and equals Hν�λμ(ζ), while the right hand side
cannot exist at least for a set of second Baire category – Theorem 2.3. Specifically,
ω2(V ) must be (by the identity theorem for analytic functions) a nontrivial interval
in (0,+∞); for any r ∈ ω2(V ), we have a ζ ∈ V ⊂ C \ R+ so that ω2(ζ) = r, and
so, by Lindelöf’s Theorem 2.1, since Hμ�λν(ζ) = limz→ζ Hν(ω2(z)), we have

Hμ�λν(ζ) = lim
z→ζ

Hν

(
ω2(z)

)
= lim

w−→r�
Hν(w) .

Theorem 2.3, together with the equation above, implies that there is a point of
ω2(V ) where the cluster set of Hν is a single point. Hence by (2.4), we have a
contradiction with the fact that for any x in R, the Cauchy transform of ν does
not extend continuously to x.

Assume now that z0 is so that T
[
Mμ�λν(z0) − Cμ(Hμ�λν(z0))

]
= 0. Observe

that since z0 is assumed to be in C \R
+,Hμ�λν(z0) ∈ C \R

+ by the Section 2.3.2,
(b). Hence the function ω2 is meromorphic on a neighbourhood of z0, with a pole

at z0. We conclude that limz→z0

Hν�λμ(z)

T [Mμ�λν(z)−Cμ(Hμ�λν(z))] = ∞. Consider now a

small enough ball W ⊂ C\R
+ around z0 so that z0 is the only pole of ω2 in W , and

consider a connected component of the intersection of this ball with the domain
of the function in the right hand side of (4.1). Clearly ω2(W ) is a neighbourhood
of infinity and W will contain p ≥ 1 analytic varieties that are mapped by ω2 onto
(−∞,−M)∪ (N,+∞), for some large enough M,N > 0 (p is the order of the pole
at z0). The preimages of (N,+∞) divide W into p sectors. By (4.1), if a point
in one of these sectors belongs to the connected component of the domain of the
right hand term of (4.1) which contains (−ε, 0) then all that sector will belong to
it, and the two (distinct or not! – it might be a slit circle, if p = 1) boundaries of
the sector are mapped inside R

+. Thus, we are reduced to the previous case.
We conclude that ω2(z) = f(z,Hμ�λν(z)) maps C \ R

+ into itself.
• We now generalize the previous result to any probability measure ν. To this

end, we can approximate in the weak topology arbitrary symmetric probabilities ν
with probabilities concentrated on a set of zero Lebesgue measure and which have
total support, according to Lemma 2.13. Since �λ is continuous, Hμ�λνn

converges
to Hμ�λν , and hence f(z,Hμ�λνn

(z)) : C\R
+→C\R

+ converges to f(z,Hμ�λν(z)).
This implies that either f(z,Hμ�λν(z)) takes values also in C \ R

+, or it is con-
stant. But it cannot be constant, by equation (4.1) and by the fact that Hμ�λν(z)
is equivalent to z as z tends to zero in C\R

+ (see [7], Proposition 4.1). Hence
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f(z,Hμ�λν(z)) takes values in C\R
+. This proves that ω2 maps C\R

+ into itself,
and thus the equation Hν ◦ ω2 = Hμ�λν holds on C \ R

+.
• We finally show that ω2 satisfies the announced properties.
First, it follows immediately from the definition of ω2 and part (d) of Subsec-

tion 2.3.2 that ω2(z̄) = ω2(z) for all z ∈ C \ R
+. The uniqueness of ω2 on (−ε, 0)

and the analyticity of ω2 in C\R
+ proved above shows that ω2 is uniquely defined

on all C \ R
+.

We prove next properties (i) and (ii). As shown above, Hν ◦ ω2 = Hμ�λν ,
so that for ε > 0 small enough, by Subsection 2.3.2 (a), Mν(ω2(x)) =
Cν(Hν(ω2(x))) = Cν(Hμ�λν(x)), x ∈ (−ε, 0). Thus, T [Cμ(Hν(ω2(x))) +
Mν(ω2(x))] = T [Cμ(Hμ�λν(x)) + Cν(Hμ�λν(x))] = T [Cμ�λν(Hμ�λν(x))] =
T [Mμ�λν(x)]. Now it follows immediately from the definition of k in Lemma 4.1
and Subsection 2.3.2 (a) that k(ω2(z)) = z for z ∈ (−ε, 0), ε > 0 small enough,
and by analytic continuation, for z ∈ C \ R

+. This proves (i).
Let us recall that limx↑0 ω2(x) = 0 and, by the definition of T and properties

of the function H, limx↑0
ω2(x)

x = [T (0)]−1 limx↑0
Hμ�λν(x)

x = 1. Also, for ε > 0
small enough, ω2((−ε, 0)) ⊆ (−∞, 0). Thus, the derivative of the analytic function
ω2 on the interval (−ε, 0) is positive for ε > 0 small enough, and so there is
a small enough cone K with vertex at zero and bisected by the negative half-
line so that ω2(K ∩ C

+) ⊆ C
+ and ω2(K ∩ C

−) ⊆ C
−. Clearly, since ω2(C \

R
+) ⊆ C \ R

+, ω2(C+) �⊆ C
+ implies that there exists a point z0 ∈ C

+ with
the property that ω2(z0) ∈ (−∞, 0). Assume such a point exists. Then from the
equation (4.1) and Subsection 2.3.2 (d) we obtain that Hμ�λν(z0) ∈ (−∞, 0), so
that T (Mμ�λν(z0)−Cμ(Hμ�λν(z0))) > 0. As observed in Remark 2.20, this requires
that Mμ�λν(z0) − Cμ(Hμ�λν(z0)) ∈ R. Since, by the same Subsection 2.3.2 (d),
we have Cμ(R−) ⊆ R, it follows that Mμ�λν(z0) ∈ R. But then, according to
Subsection 2.3.2 (a), Hμ�λν(z0) = z0T (Mμ�λν(z0)) �∈ R, a contradiction. We have
now proved that ω2 preserves half-planes, and thus arg ω2(z) < π for z ∈ C

+.
Next we show that ω2 increases the argument. It is known from Theorem 2.8

that

ω2(z) = a + bz +
∫

R

1 + tz

t − z
dρ(t) , z ∈ C

+

for some a ∈ R, b ≥ 0 and positive finite measure ρ on the real line. Since
ω2((−∞, 0)) ⊆ (−∞, 0) and ω2 is analytic on the negative half-line, ρ must
be supported on R

+. Moreover, 0 = limx↑0 ω2(x) = a + limx↑0
∫

R

1+tx
t−x dρ(t) =

∫
R

1
t dρ(t) + a. Thus, a = −

∫
R

1
t dρ(t). We conclude that

ω2(z) = a + bz +
∫

R

1 + tz

t − z
dρ(t) = bz +

∫

R+

(
1 + tz

t − z
− 1

t

)

dρ(t)

= z

(

b +
∫

R+

t2 + 1
t(t − z)

dρ(t)
)

.
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It is trivial to see that the factor in the parenthesis above maps C
+ into itself.

Thus, arg ω2(z) ≥ arg z. This proves (ii). Let us define

ω1(z) =
Hμ�λν(z)

T [Mμ�λν(z) − Mν(ω2(z))]
, z ∈ C \ R

+ .

This function is obviously defined and meromorphic on C \ R
+ and analytic

continuation shows immediately that for z ∈ (−ε, 0)

ω1(z) =
Hμ�λν(z)

T [Mμ�λν(z) − Cν(Hμ�λν(z))]
,

so that, as for ω2, Hμ(ω1(z)) = Hμ�λν(z). This equality obviously extends by
analytic continuation to C\R

+. However, we do not exclude the possibility that Hμ

has an analytic continuation through the positive half-line that does not coincide
with the one provided by the formula in the Subsection 2.3.1.

It follows easily from the definition of ω1 and Subsection 2.3.2 that ω1(z) =
ω1(z̄) for all z ∈ C \R

+ and limx↑0 ω1(x) = 0. The uniqueness of ω1 is determined
by the same argument as in the case of ω2. �

Next, we study the boundary behaviour of the restriction of the subordination
function ω2 to the upper half-plane.

Lemma 4.2. Let μ, ν and ω2 be as in the Lemma 4.1. Then ω2|C+ extends contin-
uously to (0,+∞).

Proof. Throughout the proof we will consider only ω2|C+ and we will denote it
as ω2. Assume that r ∈ (0,+∞) is so that the cluster set C(ω2, r) of ω2 at r
is nontrivial, and hence, by Lemma 2.2 an uncountably infinite closed connected
subset of C

+ ∪ R ∪ {∞}. Consider first the case when there exists at least one
element c ∈ C(ω2, r) ∩ (C+ ∪ (−∞, 0)), and thus, by connectivity of C(ω2, r),
infinitely many. Fix such a point c, and let {z(c)

n }n∈N ⊆ C
+ be a sequence with the

property that limn→∞ z
(c)
n = r and limn→∞ ω2(z

(c)
n ) = c. Passing to the limit in

the equation k(ω2(z
(c)
n )) = z

(c)
n , where k is the function from Lemma 4.1, provides

k(c) = r for all c ∈ C(ω2, r)∩(C+∪(−∞, 0)), and hence, by analytic continuation,
for all c ∈ C \ R

+. This implies that k is the constant function r, an obvious
contradiction to Lemma 4.1.

If C(ω2, r) ⊆ R
+ ∪ {∞}, then C(ω2, r) ∩ R

+ must be a nontrivial closed
interval, by Lemma 2.2. As ω2 maps C

+ into itself, for all c ∈ C(ω2, r), with
the possible exception of two points, there exists a sequence {z(c)

n }n∈N ⊆ C
+

so that limn→∞ z
(c)
n = r, limn→∞ ω2(z

(c)
n ) = c and �ω2(z

(c)
n ) = c. As shown in

Subsection 2.3.2 (b), Hν has nontangential limits at almost all points of R
+, and

by Lemma 2.10, so do Mν and Cμ. Thus, k must have nontangential limits at
almost all points of R

+. We have obtained that for Lebesgue-almost all points
c ∈ C(ω2, r),

r = lim
n→∞

z(c)
n = lim

n→∞
k
(
ω2(z(c)

n )
)

= lim
w−→c�

k(w) ,
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so that k has constant nontangential limit r on a set of nonzero Lebesgue measure.
This, according to Theorem 2.6, implies that k is the constant function r, providing
the same contradiction as before.

Thus, ω2|C+ extends continuously to (0,+∞). �
Now we are ready to prove our first continuity result.

Proposition 4.3. Let μ, ν be two symmetric probability measures on R, μ �= δ0.
Assume that μ is �λ-infinitely divisible. Then for any x ∈ (0,+∞), the limits

lim
z→x,z∈C+

Mμ�λν(x) and lim
z→x,z∈C+

Hμ�λν(x)

exist in C ∪ {∞}. The first limit belongs to C
+ ∪ R ∪ {∞}.

Proof. We will follow idea from the proof of the Theorem 3.1. Assume that
r ∈ (0,+∞) is so that C(Mμ�λν , r) is nontrivial. Consider first the case when
C(Mμ�λν , r) ∩ C

+ �= ∅, and thus, by Lemma 2.2, is uncountably infinite. Let
c ∈ C(Mμ�λν , r) ∩ C

+ and {z(c)
n }n∈N ⊂ C

+ be so that limn→∞ z
(c)
n = r and

limn→∞ Mμ�λν(z(c)
n ) = c. We know from Lemma 4.2 that ω2(r) := limz→r ω2|C+(z)

exists in C+. Using the definition of ω2 and Subsection 2.3.2 (a), we have:

ω2(r) = lim
n→∞

ω2(z(c)
n ) = lim

n→∞

Hμ�λν(z(c)
n )

T
[
Mμ�λν(z(c)

n ) − Cμ(Hμ�λν(z(c)
n ))
]

= lim
n→∞

z
(c)
n T (Mμ�λν(z(c)

n ))

T
[
Mμ�λν(z(c)

n ) − Cμ(z(c)
n T (Mμ�λν(z(c)

n )))
]

=
rT (c)

T [c − Cμ(rT (c))]
, c ∈ C(Mμ�λν , r) ∩ C

+ .

Thus, the meromorphic function gr : C
+ ∪ (−1/λ,−1) ∪ C

− → C ∪ {∞}, given by
gr(c) = T (c)

T [c−Cμ(rT (c))] is, by analytic continuation, constant, equal to ω2(r)/r. It
is trivial to observe that this implies ω2(r) �∈ {0,∞}.

We shall express Cμ as a function of s = T (c) to obtain a contradic-
tion. Indeed, consider c ∈ (− 1

2λ − 1
2 ,−1). Then s = T (c) if and only if c =

−1−λ+[(1−λ)2+4λs]1/2

2λ , s ∈ ( 1
4 (2 − λ − λ−1), 0) (recall the notations from Sec-

tion 2.3.1.) Thus,

rs

ω2(r)
= T

[
−1 − λ +

[
(1 − λ)2 + 4λs

]1/2

2λ
− Cμ(rs)

]

. (4.2)

As it is known that Cμ((−∞, 0)) ⊆ (−∞, 0) and limx↑0 Cμ(x) = 0, we conclude
that for s ∈ (− (1−λ)2

4λ , 0) close enough to zero,

T

[
−1 − λ +

[
(1 − λ)2 + 4λs

]1/2

2λ
− Cμ(rs)

]

∈ R ,
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so that ω2(r) ∈ R\{0}. Thus, since limx↑0 Cμ(x) = 0, (4.2) is equivalent to

Cμ(rs) =
−1 − λ +

[
(1 − λ)2 + 4λs

]1/2

2λ
−

−1 − λ +
[
(1 − λ)2 + 4λ rs

ω2(r)

]1/2

2λ
.

But this implies either that ω2(r) = r, so that Cμ(s) = 0 and thus μ = δ0, or that
Cμ is not analytic in the point − r(1−λ)2

4λ ∈ (−∞, 0), an obvious contradiction.
Now consider the case when C(Mμ�λν , r) ⊆ R∪{∞}. By Subsection 2.3.2 (a)

and Remark 2.20, in this case C(Hμ�λν , r) ⊆ [− r(1−λ)2

4λ ,+∞] is a nontrivial inter-

val. As in the proof of Lemma 4.2, for any d ∈ C(Hμ�λν , r) \ {− r(1−λ)2

4λ ,∞}, with
the possible exception of two points, there exists a sequence {z(d)

n }n∈N ⊂ C
+ so

that limn→∞ z
(d)
n = r, limn→∞ Hμ�λν(z(d)

n ) = d and �Hμ�λν(z(d)
n ) = d, n ∈ N.

Let us observe that, by Subsection 2.3.2 (a) and (c), we have

lim
n→∞

Mμ�λν(z(d)
n ) ∈

{
−1 − λ ±

[
(1 − λ)2 + 4λd

r

]1/2

2λ

}

,

where we have the sign plus when Hμ�λν(z(d)
n ) tends to d from C

+, and the
sign minus when Hμ�λν(z(d)

n ) tends to d from C
−. By dropping if necessary to a

subsequence, we may assume that limn→∞ Mμ�λν(z(d)
n ) exists. It is clear from

the definition of the cluster set and the above considerations that C(Hμ�λν , r) \
{− r(1−λ)2

4λ ,∞} ⊆ A+ ∪ A−, where

A+ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d ∈R \
{

r(1 − λ)2

−4λ
,∞
}

: ∃{z(d)
n }n∈N ⊆ C

+ so that
lim

n→∞
z(d)

n = r,�Hμ�λν(z(d)
n ) = d,

lim
n→∞

Hμ�λν(z(d)
n ) = d,Hμ�λν(z(d)

n ) ∈ C
+

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

A− =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d ∈R \
{

r(1 − λ)2

−4λ
,∞
}

: ∃{z(d)
n }n∈N ⊆ C

+ so that
lim

n→∞
z(d)

n = r,�Hμ�λν(z(d)
n ) = d,

lim
n→∞

Hμ�λν(z(d)
n ) = d,Hμ�λν(z(d)

n ) ∈ C
−

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

are two (not necessarily disjoint) sets. Thus, at least one of A+, A− has nonzero
Lebesgue measure. Denote C+

μ the restriction of Cμ to the upper half-plane and
C−

μ the restriction of Cμ to the lower half-plane.
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Assume first that A+ has nonzero Lebesgue measure. Then again

ω2(r) = lim
n→∞

ω2(z(d)
n ) = lim

n→∞

Hμ�λν(z(d)
n )

T
[
Mμ�λν(z(d)

n ) − Cμ(Hμ�λν(z(d)
n ))
]

=
d

T

[
−1−λ+[(1−λ)2+4λ d

r ]1/2

2λ − limw−→d�
C+

μ (w)
] , d ∈ A+ .

By the Riesz–Privalov theorem we obtain again that

ω2(r)T

[
−1 − λ +

[
(1 − λ)2 + 4λd

r

]1/2

2λ
− C+

μ (d)

]

= d , d ∈ C
+ .

Recalling that Cμ extends analytically to the negative half-line and considering
values of d ∈ (−∞, 0) close enough to zero, we observe as before that ω2(r) ∈ R\{0}
and by analytic continuation

Cμ(d) =

[
(1 − λ)2 + 4λd

r

]1/2

2λ
−

[
(1 − λ)2 + 4λ d

ω2(r)

]1/2

2λ
,

providing the same contradiction as in the previous case.
Assume next that A− has nonzero Lebesgue measure, so that

ω2(r) = lim
n→∞

ω2(z(d)
n ) = lim

n→∞

Hμ�λν(z(d)
n )

T
[
Mμ�λν(z(d)

n ) − Cμ(Hμ�λν(z(d)
n ))
]

=
d

T

[
−1−λ−[(1−λ)2+4λ d

r ]1/2

2λ − limw−→d�
C−

μ (w)
] , d ∈ A− .

Exactly as for A+, we obtain that ω2(r) ∈ R\{0}, and, from the Riesz–Privalov

theorem, the formula Cμ(d) =
−[(1−λ)2+4 λ

r ]1/2+[(1−λ)2+4 λ
ω2(r) ]

1/2

2λ , which provides
again the same contradiction.

Thus, we have established that the limit

Mμ�λν(x) = lim
z→x,z∈C+

Mμ�λν(z)

exists for any x ∈ (0,+∞). The existence of the similar limit for Hμ�λν follows
immediately from Subsection 2.3.2 (a), and since Mμ�λν(C+) ⊆ C

+∪{0}, it follows
that Mμ�λν(x) ∈ C

+ ∪ R ∪ {∞}. �

Corollary 4.4. Under the assumptions of Proposition 4.3, the absolutely continuous
part (with respect to the Lebesgue measure) of μ�λν is continuous outside a closed
set of zero Lebesgue measure, and its singular part, if it exists, is supported on a
closed subset of R of zero Lebesgue measure.
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Proof. Recall that, by part (1) of Lemma 2.17 in [2], the nontangential limit of
the Cauchy transform of μ�λν is infinite for almost all points in the support of the
singular part of μ�λν. Thus, using Proposition 4.3 and the equality Mμ�λν(z) =
1√
z
Gμ�λν( 1√

z
)− 1 from Subsection 2.3.2 (a), we can state that the support of the

singular part of μ�λν is concentrated on S = S+ ∪ S− ∪ {0}, where S+ = {x ∈
(0,+∞) : Mμ�λν(1/x2) = ∞} and S− = −S+.

By the Riesz–Privalov theorem (Theorem 2.6) it follows that the set S+ must
be of zero Lebesgue measure, and by Proposition 4.3, it follows that S+, being the
preimage of a point via a continuous map, must be closed in (0,+∞). This proves
the second statement of the corollary.

The first statement follows from Lemma 2.11 (i): the Cauchy transform Gμ�λν

extends continuously and with finite values to R \ S, so that the density of μ�λν
with respect to the Lebesgue measure is continuous on this set. �

Next, we show that, under some stricter conditions imposed on the rectan-
gular R-transform of μ, we can guarantee that μ�λν has much better regularity
properties. This will follow as a corollary of the proposition below.

Proposition 4.5. We assume, in addition to the hypotheses of Proposition 4.3, that

lim
x→−∞

[
Cμ(x)

]2
/x �= 0 .

Then for any x ∈ (0,+∞),

Mμ�λν(x) = lim
z→x,z∈C+

Mμ�λν(x) and Hμ�λν(x) = lim
z→x,z∈C+

Hμ�λν(z)

are finite.

Proof. Fix x ∈ (0,+∞). The existence of the limits has been established in Propo-
sition 4.3. We shall prove the statement for Hμ�λν , and the statement for Mμ�λν

will follow from Subsection 2.3.2 (a). We shall prove that this limit is finite by
exploiting the asymptotic behaviour of Cμ ◦Hμ�λν and Mμ�λν as Hμ�λν tends to
infinity in order to obtain a contradiction.

Let c = Hμ�λν(x). Assume towards contradiction that c = ∞. Let � =
limz→x ω2(z), where the limit is considered from the upper half-plane (the limit
exists by Lemma 4.2). By Theorem 2.1, together with the above, this implies that

lim
z−→��

Hν(z) = ∞ .

Subsection 2.3.2 (a) guarantees that if Hμ�λν(z) tends to infinity as z tends to x,
then so does Mμ�λν(z) and moreover Hμ�λν(z)/Mμ�λν(z)2 tends to λx as z → x.
Also, since T (Mμ�λν(z)) and Hμ�λν(z) = zT (Mμ�λν(z)) belong to C \ R

+ for

z ∈ C
+, we have limz→x

√
Hμ�λν(z)

Mμ�λν(z) =
√

λx. We will use this fact to determine the
possible values of �.
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Let us observe that the existence of � guarantees the existence of k :=
limt→−∞ Cμ(t)/

√
t. Indeed, as the limit of Hμ�λν at t is infinite, and

� = lim
z→x,z∈C+

Hμ�λν(z)
λ(Mμ�λν(z)−Cμ(Hμ�λν(z)))2+(1+λ)(Mμ�λν(z)−Cμ(Hμ�λν(z)))+1

=
1
λ

(
1√
λx

− lim
z→x,z∈C+

Cμ(Hμ�λν(z))
√

Hμ�λν(z)

)−2

. (4.3)

On the other hand, as Cμ satisfies arg Cμ(z) ∈ (arg z, π), (by (2.6)) Cμ(z̄) = Cμ(z)
for z ∈ C

+, and Cμ(R−) ⊆ R
−, it follows that Theorem 2.1 applies to the map

w �→ Cμ(w)√
w

. Thus, k := limx→−∞
Cμ(x)√

x
exists and is purely imaginary (k = i|k|)

since Cμ(x) is negative for x negative. Thus, (4.3) gives

λ� =
1

((λx)−
1
2 − i|k|)2

.

It follows immediately from equation (4.1) and analyticity of Hν on C
+ that

when |k| ∈ (0,+∞), � ∈ C
+ and we obtain the contradiction with the fact that

∞ = Hν(�).
Assume that k is infinite. Then � = 0. But this contradicts Theorem 2.1

and Remark 2.17: indeed, we obtain that the limit at zero of Hν along ω2(z) =
Hμ�λν(z)

T [Mμ�λν(z)−Cμ(Hμ�λν(z))] (as z → x from the upper half-plane) is infinite (by (4.1)),
while the limit at zero of Hν along the negative half-line is zero.

This completes the proof of the proposition since k is not zero if and only if
we have limx→−∞[Cμ(x)]2/x �= 0. �
Corollary 4.6. Under the assumptions of Proposition 4.5, μ�λν is absolutely con-
tinuous with respect to the Lebesgue measure and its density is continuous.

Proof. Since by Proposition 4.5 Mμ�λν(x) exists and is finite for all x ∈ (0,+∞),
the corollary is a consequence of a variant of Lemma 2.11 (which states the exis-
tence of a continuous density of a measure with Cauchy transform which extends
continuously to the real line) and the following Propositions 4.12 and 4.13 (which,
with Lemma 2.21 (b), allow us to claim that μ�λν has no atom at the origin). �

In the following we discuss the issue of analyticity for the density of μ�λν.

Lemma 4.7. Under the hypotheses of Proposition 4.3, if ω2(x) ∈ C
+, then there

exists an ε > 0 so that Mμ�λν extends analytically to (x − ε, x) ∪ (x, x + ε).

Proof. By continuity of ω2, guaranteed in Lemma 4.2, there exists η > 0 so that
ω2([x − η, x + η]) ⊆ C

+ is a nontrivial curve in the upper half-plane. We claim
that in fact ω2 is injective on [x − η, x + η]. Indeed, if we assume that v1, v2 ∈
[x− η, x + η] satisfy ω2(v1) = ω2(v2), then, since k is meromorphic on C \ R

+, we
obtain v1 = k(ω2(v1)) = k(ω2(v2)) = v2.

Let us observe that again since k(ω2(z)) = z and k is meromorphic on C\R
+,

the set {w ∈ ω2([x − η, x + η]) : k(w) = ∞ or k′(w) = 0} is discrete in ω2([x −
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η, x + η]). If ω2(x) belongs to this set, then there exists an 0 < ε ≤ η so that
ω2((x − ε, x)) ∪ ω2((x, x + ε)) does not intersect this set. Thus by the inverse
function theorem ω2 extends analytically through (x−ε, x)∪ (x, x+ε). Otherwise,
we apply the inverse function theorem to a neighbourhood of ω2(x) to obtain the
same result.

Since Hμ�λν = Hν ◦ ω2 and Hν is analytic on C \ R
+, the statement of the

lemma follows directly from Subsection 2.3.2 (a). �

Lemma 4.8. Under the hypotheses of Proposition 4.3, assume that

Hμ�λν(x) = lim
z→x,z∈C+

Hμ�λν(z) ∈ C \ R

for some x ∈ (0,+∞). Then ω2(x) := limz→x ω2|C+(z) ∈ C
+.

Proof. The equality ω2(x) =
Hμ�λν(x)

T [Mμ�λν(x)−Cμ(Hμ�λν(x))] assures us that ω2(x) can-

not be infinite. Indeed, assume to the contrary that ω2(x) = ∞. Then, by Theo-
rem 2.1 and Subsection 2.3.2 (f)

Hμ�λν(x) = lim
z→x

Hμ�λν(z) = lim
z→x

Hν

(
ω2(z)

)
= lim

x→−∞
Hν(x) ∈ [−∞, 0) ,

a contradiction to our assumption on Hμ�λν(x).
Assume first that Hμ�λν(x) ∈ C

+. We show next that ω2(x) �∈ R. Clearly by
Subsection 2.3.2 (d), ω2(x) �∈ (−∞, 0]. Assume again towards contradiction that
ω2(x) ∈ R

+.

Then
Hμ�λν(x)

x = T (Mμ�λν(x)) and T [Mμ�λν(x)−Cμ(Hμ�λν(x))] belong to
the same half-line χ originating at zero and passing through the point Hμ�λν(x) ∈
C

+. Thus both points Mμ�λν(x) and Mν(ω2(x)) = Mμ�λν(x) − Cμ(Hμ�λν(x))
belong to the same hyperbola H described in Remark 2.20 (v) whose tangents at
the intersection with −1/λ and −1 are parallel to χ. Call these tangents T1/λ and
T1. In particular, since Hμ�λν(x) ∈ C

+, we have that Mμ�λν(x) ∈ H ∩ K1 (recall
the notations from Remark 2.20), and since ω2(C+) ⊆ C

+, we have Mν(ω2(x)) ∈
C

+ ∪ R, and so Mν(ω2(x)) = Mμ�λν(x) − Cμ(Hμ�λν(x)) ∈ H ∩ K1.
Now let us recall that π > arg Cμ(Hμ�λν(x)) ≥ arg Hμ�λν(x) > 0, so that

Mμ�λν(x) − Cμ(Hμ�λν(x)) has imaginary part strictly less that the imaginary
part of Mμ�λν(x), so on H∩K1 it must be below Mμ�λν(x). But at the same time
−Cμ(Hμ�λν(x)) is in C

− and to the right of the line χ ∪ −χ. Since the tangent
T1 is parallel to χ ∪ −χ, adding this number to Mμ�λν(x) will give a point in the
upper half-plane that is necessarily at a greater distance from T1 than Mμ�λν(x),
and thus it cannot be on H ∩ K1 in between −1 and Mμ�λν(x) (as this part of
the hyperbola is closer to T1 than Mμ�λν(x) is), which provides a contradiction.
Thus, if Hμ�λν(x) ∈ C

+, then ω2(x) ∈ C
+.

The case when Hμ�λν(x) ∈ C
− is similar, and we will only sketch the proof.

Indeed, then it is clear that, since Mμ�λν(x) ∈ C
+ (it cannot be in R because

of Section 2.3.2 (a)), we must have, with the notations from the previous case,
Mμ�λν(x) ∈ H ∩ K2. Now, −π < arg Cμ(Hμ�λν(x)) ≤ arg Hμ�λν(x) < 0, and so,
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as above, �Mμ�λν(x) < �[Mμ�λν(x) − Cμ(Hμ�λν(x))]. This time, however, we
obtain that −Cμ(Hμ�λν(x)) ∈ C

+, and to the right of χ ∪ −χ. Thus, since T1/λ

is parallel to χ ∪−χ, the point Mμ�λν(x)−Cμ(Hμ�λν(x)) will either be closer to
T1/λ and on its left side, or it will be on its right side. But the part of H ∩ K2

which has an imaginary part greater than the imaginary part of Mμ�λν(x) is on
the left side of T1/λ and farther away from T1/λ than Mμ�λν(x) is. Contradiction
again. Thus, if Hμ�λν(x) ∈ C

−, then ω2(x) ∈ C
+. �

Lemma 4.9. Under the hypotheses of Proposition 4.3, assume that x ∈ (0,+∞) is
so that

Mμ�λν(x) := lim
z→x,z∈C+

Mμ�λν(z) ∈ i
(
R

+ \ {0}
)
− 1 + λ

2λ
.

Then ω2(x) ∈ C
+.

Proof. The proof of this lemma is immediate. Indeed, by Remark 2.20 and Subsec-
tion 2.3.2 (a), we have Hμ�λν(x) ∈ (−∞,−(1−λ)2/4λ], so that Cμ(Hμ�λν(x)) < 0.
But

ω2(x) =
Hμ�λν(x)

T
[
Mμ�λν(x) − Cμ(Hμ�λν(x))

] ,

so by Remark 2.20, ω2(x) ∈ C
+. �

We can now prove the analogue of Theorem 3.1 for the rectangular case.

Proposition 4.10. Let μ and ν be as in Proposition 4.5. Assume in addition that
the restriction of Cμ to the upper half-plane extends continuously to (0,+∞) and
Cμ|C+(x) ∈ C

+ for all x ∈ (0,+∞). Then μ�λν is absolutely continuous with
respect to the Lebesgue measure, and there exists an open set U ⊂ R so that
(μ�λν)(U) = 1 and the density h(x) = d(μ�λν)(x)

dx is analytic on U .

Proof. We shall use the notations from Proposition 4.5. We know from Proposi-
tion 4.5 that Hμ�λν(x) is finite for any x ∈ (0,+∞). Fix such an x. We show first
that Hμ�λν(x) �∈ (0,+∞). Assume towards contradiction that Hμ�λν(x) > 0. By
Proposition 4.5 m := Mμ�λν(x) exists and by Subsection 2.3.2 (a), is real. We
know that Cμ(Hμ�λν(x)) ∈ C

+ by hypothesis. Thus, using (4.1), we get that

Hμ�λν(x) = lim
z→x

Hν

(
ω2(z)

)
= lim

z→x
Hν

(
Hν�λμ(z)

T
[
Mμ�λν(z) − Cμ(Hμ�λν(z))

]

)

= Hν

(
Hμ�λν(x)

T
[
m − Cμ(Hμ�λν(x))

]

)

.

Now, by our hypothesis on Cμ, we have m−Cμ(Hμ�λν(x)) ∈ C
−. Thus, from the

definition of T , T (m−Cμ(Hμ�λν(x))) �∈ [−(1− λ)2/4λ,+∞) ⊃ [0,+∞). We have
reached a contradiction since Hν(C\R

+) ⊂ C\R
+ by Section 2.3.2, (b).

Thus, Hμ�λν((0,+∞)) ⊂ C \ (0,+∞). In particular, Mμ�λν(x) ∈ C
+ ∪

[−1/λ,−1].
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Since [−1/λ,−1] is a closed set and Mμ�λν is continuous on (0,+∞), the
set S = {x ∈ (0,+∞) : Mμ�λν(1/x2) ∈ [−1/λ,−1]} is closed in (0,+∞). We
claim that the set S satisfies (μ�λν)(S) = 0. Indeed, the equality Mμ�λν(1/x2) =
xGμ�λν(x) − 1, Lemma 2.11 (i) and the closeness of S make the claim obvious.

We claim next that for any x �∈ S, ω2(1/x2) ∈ C
+. Indeed, x �∈ S implies

that either Mμ�λν(1/x2) ∈ i(R+ \ {0}) − 1+λ
2λ , and then the statement follows

from Lemma 4.9, or Mμ�λν(1/x2) ∈ K1 ∪K2 and then the statement follows from
Remark 2.20 and Lemma 4.8.

Now by Lemma 2.11 (ii), Proposition 4.5 and Lemma 4.7 the statement of
the proposition follows. The possibility of the existence of an atom at zero will be
discarded in the next section. �

4.2. Examples

We have a whole family of measures satisfying the previous proposition and corol-
lary. In particular, we are going to see that all �λ-stable distributions with index
strictly smaller than 2 work. Recall that �λ-infinitely divisible measures and their
Lévy measures where introduced in Section 2.3.3.

Proposition 4.11. Let G �= δ0 be a symmetric positive finite measure on the real
line, whose restriction to (0,+∞) admits an analytic positive density. Let μ be the
�λ-infinitely divisible measure μ with Lévy measure G.

Then the restriction of Cμ to the upper half-plane extends analytically at any
point x of (0,+∞) and satisfies �(Cμ(x)) > 0.

Proof. Let ρ be the density of the restriction of the positive measure G to (0,+∞).
By Theorem 2.18, Cμ extends analytically to C\R

+ by the formula

Cμ(z) = z

(

G({0}) + 2
∫ +∞

0

(1 + t2)ρ(t)
1 − zt2

dt

)

= Gτ (1/z) ,

where τ is push-forward of the measure (1 + t2)dG(t) by the function t → t2, and
Gτ denotes the Cauchy transform of τ . Note that τ is a positive Radon measure,

and that its restriction to (0,+∞) admits the density u → (1+u)ρ(u
1
2 )

u
1
2

on (0,+∞).
This density is analytic, hence by (ii) of Lemma 2.11 (which extends easily to
positive measures on the real line which integrate 1

1+|u| , as τ does) and by the fact
that the behavior of Gτ on the lower half-plane can be deduced from its behaviour
on the upper half-plane by the formula Gτ ( · ) = Gτ ( · ), the restriction of Cμ to
the upper half-plane extends analytically at any point x of (0,+∞) and satisfies,
by (i) of Lemma 2.11,

�
(
Cμ(x)

)
= π

(1 + x)ρ(x
1
2 )

x
1
2

> 0 . �

It is proved in [8] that there is a bijection between the set of symmetric ∗-
infinitely divisible distributions and the set of �λ-infinitely divisible distributions,
which preserves many properties, as limit theorems and the fact of being stable.
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Hence, for all α ∈ (0, 2), the set of �λ-stable laws μα with index α is the set of �λ-
infinitely divisible laws which Lévy measure is of the type t |x|

1−α

1+x2 dx, where t can
be any positive constant, so Proposition 4.11 can be applied to them. In fact, an
application of the residue formula gives the rectangular R-transform with ratio λ

of the �λ-infinitely divisible law μα with Lévy measure |x|1−α

1+x2 dx: for all z ∈ C\R
+,

Cμα
(z) = − π

2 sin(πα/2)
(−z)α/2 ,

where the power is defined on C\R
− in relation with the argument with value 0 on

the positive half line. For α ∈ [1, 2), μα satisfies the hypothesis of Proposition 4.10.
As a consequence, for any positive number t, the same holds for the t-th power,
with respect to �λ, of μα. In deed, if one denotes this measure by μt

α (it should
be denoted by μ

�λt
α , but this notation is a bit hard to swallow), one has Cμt

α
(z) =

tCμα
(z).
A matricial model for the measures μt

α was given in [8], Section 5.
Moreover, for any positive t, the density of μt

1 has been computed in Sec-
tion 4.2 of [8]:

dμt
1

dx
(x) =

t

π(λt2 + x2)

(

1 − t2(λ − 1)2

4x2

) 1
2

on its support Supp(μt
1) = R\(− t(1−λ)

2 , t(1−λ)
2 ).

Remark however that the “rectangular Gaussian laws”, i.e. the �λ-stable laws
with index 2, which are symmetric square roots of dilations of Pastur–Marchenko
laws, which are the laws μt

2, t > 0, satisfying Cμt
2
(z) = tz, do not satisfy the

hypotheses of Proposition 4.3 since Cμt
2
((0,∞)) ⊂ (0,∞).

4.3. Study of the density around the origin

In this section, we study the existence of a hole around the origin in the support of
the free convolution μ�λν. Since in our approach the origin itself is a very specific
point, we shall study separately the existence of an atom at the origin and then
existence of a set [−ε, ε] which does not intersect the support of μ�λν.

Some of the considerations of this section do not require the assumptions of
Proposition 4.3.

Proposition 4.12.

1. For all symmetric probability measures μ, ν, (μ�λν)({0})≥μ({0})+ν({0})−1.
2. Assume that μ is �λ-infinitely divisible (ν is still an arbitrary symmetric

probability measure). If (μ�λν)({0}) > 0, then μ({0}) + ν({0}) > 1 and
(μ�λν)({0}) = μ({0}) + ν({0}) − 1.

Proof. We prove item 1. Consider a sequence pn ≥ n of positive integers such that

n/pn −→
n→∞

λ

and, on a probability space Ω, an independent set of random variables

(Xi)i≥1, (Yi)i≥1, (Un)n≥1, (Vn)n≥1
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such that
- each Xi is distributed according to μ,
- each Yi is distributed according to ν,
- for all n, Un is an n by n Haar-distributed unitary random matrix,
- for all n, Vn is a pn by pn Haar-distributed unitary random matrix.

Let us define, for all n,
a) Mn to be the n by pn random matrix with |X1|, . . . , |Xn| on the diagonal,

and zeros everywhere else,
b) Nn to be Un times the n by pn random matrix with |Y1|, . . . , |Yn| on the

diagonal, and zeros everywhere else times Vn.
Let, for all n, dn (resp. d′n, d′′n) be the random variable equal to the number

of null singular values of Mn (resp. Nn,Mn + Nn). Note that dn + (pn − n) =
dim kerMn, d′n + (pn − n) = dim ker Nn, d′′n + (pn − n) = dim kerMn + Nn. Note
also that since kerMn ∩ ker Nn ⊂ ker(Mn + Nn), one has

dim ker Mn + Nn ≥ dim kerMn ∩ ker Nn ≥ dim ker Mn + dim kerNn − pn ,

hence
d′′n + (pn − n) ≥ dn + (pn − n) + d′n + (pn − n) − pn ,

i.e.
d′′n ≥ dn + d′n − n . (4.4)

Note that the singular values of Mn (resp. of Nn) are |X1|, . . . , |Xn| (resp.
|Y1|, . . . , |Yn|), hence by the law of large numbers, the symmetrization of the sin-
gular law of Mn (resp. of Nn) converges almost surely weakly to μ (resp. ν). Thus
by Theorem 4.8 of [7], the singular law SL(Mn + Nn) of Mn + Nn converges in
probability to μ�λν in the metric space of the set of probability measures on the
real line endowed with a distance which defines the weak convergence. So for al-
most all ω ∈ Ω, there is a subsequence ϕ(n) of the sequence SL(Mn + Nn)(ω)
which converges weakly to μ�λν. For such an ω, one has

(μ�λν)({0}) ≥ lim sup
n→∞

SL(Mϕ(n) + Nϕ(n))(ω)({0}) = lim sup
n→∞

d′′ϕ(n)

ϕ(n)
. (4.5)

Note moreover that for all n, dn (resp. d′n) is the number of i’s in {1, . . . , n}
such that Xi = 0 (resp. Yi = 0), hence the law of large numbers implies also that
for almost all ω ∈ Ω

dn(ω)
n

−→
n→∞

μ({0}) ,
d′n(ω)

n
−→

n→∞
ν({0}) . (4.6)

Putting together (4.4), (4.5), (4.6), one gets (μ�λν)({0})≥μ({0})+ν({0})−1.
Let us now prove item 2. First of all, we exclude the case ν = δ0, which is

trivial. The strategy will be to use Lemma 2.21 and the description of atoms given
in 2.3.2 (f) together with the formula (4.1) to prove the equality (μ�λν)({0}) =
μ({0}) + ν({0}) − 1. We shall first prove that limx→−∞ Cμ(x) > −1. Note that
by 2.3.2 (f), our hypothesis implies that limx→−∞ Hμ�λν(x) = −∞. So we will
prove that if limx→−∞ Hμ�λν(x) = −∞, then limx→−∞ Cμ(x) > −1. For future



Vol. 3 (2009) Regularization by Free Additive Convolutions 655

use, we prefer to prove now that limx→−∞ Cμ(x) > −1 under the hypothesis
limx→−∞ Hμ�λν(x) = −∞ than under the stronger one of the proposition.

Assume thus that limx→−∞ Hμ�λν(x) = −∞. Recall first equality (4.1):

∀z ∈ (−∞, 0) , Hμ�λν(z) = Hν

(
Hν�λμ(z)

T
[
Mμ�λν(z) − Cμ(Hμ�λν(z))

]

)

, (4.7)

where Mμ�λν(z) is the analytic extension of U(
Hμ�λν(z)

z − 1) which can be found
in 2.3.2 (a)(and which allows us to claim that limx→−∞ Mμ�λν(x) exists and is
equal to μ�λν({0}) − 1).

Equality (4.7) together with the continuity of Hν on (−∞, 0] and the hy-
pothesis limx→−∞ Hμ�λν(x) = −∞ imply that

lim
x→−∞

Hμ�λν(x)
T
[
Mμ�λν(x) − Cμ(Hμ�λν(x))

] = −∞

(indeed, for any sequence xn of negative numbers which tends to −∞, since

by 2.3.2, for all n, yn :=
Hμ�λν(xn)

T [Mμ�λν(xn)−Cμ(Hμ�λν(xn))] ∈ (−∞, 0), if yn doesn’t tend

to −∞, a subsequence of Hμ�λν(xn) will have a finite limit, which is impossible).
So by 2.3.2 (f) we obtain

T (ν({0}) − 1) = λν({0})2 + (1 − λ)ν({0})

= lim
x→−∞

Hν(x)
x

= lim
x→−∞

T (Mμ�λν(x) − Cμ(Hμ�λν(x)))
Hμ�λν(x)

× Hν

(
Hμ�λν(x)

T (Mμ�λν(x) − Cμ(Hμ�λν(x)))

)

= lim
x→−∞

T (Mμ�λν(x) − Cμ(Hμ�λν(x)))
Hμ�λν(x)

Hμ�λν(x)

= lim
x→−∞

T (Mμ�λν(x) − Cμ(Hμ�λν(x))) .

Thus, limx→−∞ T (Mμ�λν(x) − Cμ(Hμ�λν(x))) ∈ [0, 1]. Note that (2.6) allows us
to claim that limx→−∞ Cμ(x) exists in [−∞, 0], hence by above, Mμ�λν(x) −
Cμ(Hμ�λν(x)) has also a limit l = (μ�λν)({0}) − 1 − limw→−∞ Cμ(w) ≥ −1 as x

goes to −∞. Since T−1([0, 1]) = [− 1
λ − 1,− 1

λ ] ∪ [−1, 0], one has l ∈ [−1, 0], hence
l = ν({0}) − 1. We conclude that

lim
w→−∞

Cμ(w) = lim
x→−∞

Cμ

(
Hμ�λν(x)

)
= (μ�λν)({0})− 1−

(
ν({0})− 1

)
∈ (−1, 0] ,

as claimed. Moreover, this equality together with Lemma 2.21 implies that μ({0})−
1 = (μ�λν)({0}) − ν({0}), which is equivalent to item 2. �

Proposition 4.13. Let μ be �λ-infinitely divisible and ν be arbitrary. Assume that
ν({0}) + μ({0}) < 1. Then supp(μ�λν) has a hole around the origin.
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Proof. Let us denote r := limx→−∞ Hμ�λν(x) (which exists and belongs to [−∞, 0)
by 2.3.2 (f)). The first step in our proof will be to show that under our hypothesis,
r > −∞. Then we will view r as the Denjoy–Wolff point of a certain self-map
of the left half-plane iC+, and use this fact to see Wμ�λν(x) = Hμ�λν(1/x) as
an implicit function which is defined on a neighbourhood of zero and extends
Hμ�λν(1/x) from the left half-line. Finally, we will argue that on a small enough
interval, Hμ�λν(1/x) ∈ [−(1 − λ)2/4λx, 0] for all x > 0 small enough, which is
equivalent to the existence of an open neighborhood of the origin which does
not intersect the support of μ�λν (as can be checked by using Lemma 2.11 and
Remark 2.17).

We shall prove that r is the Denjoy–Wolff point of f1 if

ft(z) = Hν

(
z

T [−t − Cμ(z)]

)

, t ∈ [0, 1] .

First, we claim that ft is defined on the left half-plane iC+, and moreover that
ft(iC+) ⊆ iC+ for all t ∈ [0, 1]. Indeed, from Theorem 2.18 it follows that
Cμ(C+) ⊆ C

+ and arg Cμ(z) > arg z for any z ∈ C
+. Thus, since 0 < λ < 1, and

0 ≤ t ≤ 1, π > arg(Cμ(z)+t−1) ≥ arg Cμ(z) > arg z and π > arg(Cμ(z)+t− 1
λ ) >

arg Cμ(z) > arg z, so that arg T [−t − Cμ(z)] ∈ (2 arg z, 2π) for all z ∈ C
+ ∩ iC+.

We conclude that arg(T [−t−Cμ(z)]
z ) ∈ (arg z, 2π − arg z) ⊂ (π/2, 3π/2) for any

z ∈ C
+ ∩ iC+, so that T [−t−Cμ(z)]

z maps C
+ ∩ iC+ in iC+. Since iC+ is invariant

under the maps z �→ 1/z and z �→ z̄, and (T [−t−Cμ(z)]
z ) = T [−t−Cμ(z̄)]

z̄ , we con-
clude that z �→ z

T [−t−Cμ(z)] maps iC+ into itself. Since, by Subsection 2.3.2 (d),
Hν(iC+) ⊆ iC+, our claim is proved.

By the last remark, we also have that ft(z̄) = ft(z), for all t ∈ [0, 1], and
hence in particular ft((−∞, 0]) ⊂ (−∞, 0].

We next show the existence and uniqueness of the Denjoy–Wolff point of f1

as a consequence of Theorem 2.7. In fact, f1 is not a conformal automorphism
of iC+. Indeed, there are only two conformal automorphisms of iC+ which fix
(−∞, 0] up to multiplication by positive scalar; the identity and z → 1/z. The
case az = Hν( z

T [−1−Cμ(z)] ) can be discarded since as z goes to zero along the
negative half-line, Cμ(z)/z converges to

∫
(1 + t2)dG(t) by monotone convergence

theorem (with G the Lévy measure of μ) and so y(z) := z
T [−1−Cμ(z)] ∈ (−∞, 0]

goes to the constant

lim
x↑0

x

T [−1 − Cμ(x)]
= lim

x↑0

1

λ
Cμ(x)2

x + (λ − 1)Cμ(x)
x

=
(

(λ − 1)
∫

(t2 + 1) dG(t)
)−1

,

(4.8)

which is null only if
∫

(1 + t2)dG(t) is infinite. If this constant does not vanish,
we obtain a contradiction since Hν does not vanish on (−∞, 0). If it vanishes,
we write aT [−1 − Cμ(z)] = Hν(y(z))/y(z) with y(z) negative going to zero as z
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goes to zero. This is in contradition with the fact that Hν(z)/z goes to one (see
Remark 2.17). The case a/z = Hν( z

T [−1−Cμ(z)] ) leads also to a contradiction by
letting z going to zero.

The uniqueness of the Denjoy–Wolff point given by Theorem 2.7 implies that
this point can only belong to [−∞, 0] since ft(z̄) = f̄t(z). We shall first show that
zero cannot be the Denjoy–Wolff point of f1, and secondly we show that infinity
can be the Denjoy–Wolff point of f1 only when μ({0}) + ν({0}) ≥ 1.

For zero to be the Denjoy–Wolff point of f1, we would first need to have
limx↑0 f1(x) = 0. Since Hν vanishes on (−∞, 0] only at the origin, we must have
by (4.8) that the Lévy measure of μ has infinite second moment. The second
requirement for zero to be the Denjoy–Wolff point of f1 is that limx↑0 f1(x)/x ∈
(0, 1]. But

lim
x↑0

f1(x)
x

= lim
x↑0

Hν

(
x

T [−1−Cμ(x)]

)

x
T [−1−Cμ(x)]

· 1
T [−1 − Cμ(x)]

= lim
x↑0

Hν(x)
x

· lim
x↑0

1
T [−1 − Cμ(x)]

= ∞ ,

since limx↑0
Hν(x)

x = 1 and limx↑0 Cμ(x) = 0. We conclude that zero cannot be the
Denjoy–Wolff point of f1.

Now we show under that under our condition ν({0}) + μ({0}) < 1, f1 can-
not have infinity as Denjoy–Wolff point (recall that (μ�λν)({0}) = 0 by Proposi-
tion 4.12 under this assumption.) The two requirements that f1 must verify to have
infinity as Denjoy–Wolff point are limx→−∞ f1(x) = −∞ and limx→−∞ f1(x)/x ∈
[1,+∞). The continuity of Hν on (−∞, 0] translates the first requirement into
limx→−∞

x
T [−1−Cμ(x)] = −∞ and limx→−∞ Hν(x) = −∞. Applying 2.3.2 (f) and

the above, we obtain:

lim
x→−∞

f1(x)
x

= lim
x→−∞

Hν

(
x

T [−1−Cμ(x)]

)

x
T [−1−Cμ(x)]

· 1
T [−1 − Cμ(x)]

= lim
x→−∞

Hν(x)
x

· lim
x→−∞

1
T [−1 − Cμ(x)]

=
(
λν({0})2 + (1 − λ)ν({0})

)
· 1
λc2 + (λ − 1)c

=
T (ν({0}) − 1)

T (−c − 1)
,

where c := limx→−∞ Cμ(x) ∈ [−∞, 0). To have limx→−∞ f1(x)/x ≥ 1, we must
have ν({0}) > 0 and c > −∞. Thus, we may write

T
(
ν({0}) − 1

)
≥ T (−c − 1) ,

which implies, since T is increasing on [−1,+∞), that 1 ≥ ν({0}) ≥ −c. Using
Lemma 2.21 (2) we conclude that ν({0}) + μ({0}) ≥ 1.
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Thus, ν({0}) + μ({0}) < 1 implies that f1 has a Denjoy–Wolff point
s ∈ (−∞, 0). We claim that s = r. Indeed, by taking limit when z → −∞ in
equation (4.1), using Proposition 4.12 and the fact that limx→−∞ Mμ�λν(x) =
(μ�λν)({0}) − 1 = −1, we obtain that

r = Hν

(
r

T [−1 − Cμ(r)]

)

= f1(r) , (4.9)

where, if r = −∞, the second term must be also understood as a limit.
We finally show that r cannot be infinite, which will imply with (4.9) that

r = s. By Theorem 2.7, f ′
1(s) ∈ (−1, 1). By continuity of f ′

1, there exists δ > 0
so that if D = {y : |x − s| < δ}, ρ := supD̄ |f ′

1(x)| < 1 and therefore f1(D̄) ⊂
{y : |y − s| ≤ ρδ} ⊂ D. Since ft converges to f1 as t → 1 uniformly on compact
subsets of iC+, there exists ε > 0 so that ft(D̄) ⊆ D and moreover ft is not an
hyperbolic rotation for all 1 − ε ≤ t ≤ 1. Thus, by Theorem 2.7, ft has a unique
Denjoy–Wolff point and it must be in D̄ (has can be seen by iterating f from a
point in D̄). Thus, the Denjoy–Wolff points of ft converge to s as t → 1.

Now, since limx→−∞ Mμ�λν(x) = −1 as μ�λν({0}) = 0, for x large enough
we have Mμ�λν(x) ∈ (−1, ε − 1). From equation (4.1) it follows that

Hμ�λν(x) = f−Mμ�λν(x)

(
Hμ�λν(x)

)

and therefore Hμ�λν(x) is the Denjoy–Wolff point of f−Mμ�λν(x). Thus we conclude
that r = limx→−∞ Hμ�λν(x) = s, which proves our claim.

Let us define Wμ�λν(z) = Hμ�λν(1/z) and

g(x,w) = Hν

(
w

T [U(xw − 1) − Cμ(w)]

)

− w .

It is easy to observe that for x < 0 close to zero, we have g(x,Wμ�λν(x)) = 0, as
the formula Mμ�λν(z) = U(Hμ�λν(z)/z − 1) must hold for all z ∈ R

−. Moreover,
there obviously exists a small enough interval I centered at zero so that g is
actually defined on I × (I + r), and of course, by equation (4.9), g(0, r) = 0. Let
us differentiate g with respect to w:

∂wg(x,w) = H ′
ν

(
w

T [U(xw − 1) − Cμ(w)]

)

×
T [U(xw − 1)−Cμ(w)]−wT ′[U(xw − 1) − Cμ(w)][xU ′(xw − 1) − C ′

μ(w)]
T [U(xw − 1) − Cμ(w)]2

−1 .

Since U is differentiable in −1, and T [−1 − Cμ(r)] �= 0, we have

∂wg(0, r) = H ′
ν

(
r

T [−1 − Cμ(r)]

)
T [−1 − Cμ(r)] − rT ′[−1 − Cμ(r)][−C ′

μ(r)]
T [−1 − Cμ(r)]2

− 1

= f ′
1(r) − 1.

Since we have shown that |f ′
1(r)| < 1, we conclude that ∂wg(0, r) �= 0, so we

can apply the implicit function theorem to it in the point (0, r) to extend Wμ�λν to
a small neighborhood of the origin. Then, Wμ�λν(x) = Hμ�λν(1/x) takes its values
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in a finite neighborhood of r ∈ (−∞, 0) which is included into [−(1 − λ)2/4λx, 0]
for sufficiently small x, and hence μ�λν put no mass in a open neighborhood of
the origin. �
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