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1. Introduction

In this paper we discuss differential geometric properties of Grassmann manifolds
in a C∗-algebraic setting. Background information for the circle of ideas centered
on such manifolds here can be found in the works [12,16–18,23–25,27,31], and [4,
30]. Our approach to the subject originated in some specific questions concerning
holomorphy, which in a natural way led us to investigate complex structures as
well as complexifications of these manifolds.

Let H be a complex Hilbert space. Recall that the Grassmannian Gr(H)
associated with H, or, alternatively, with the Banach algebra B(H) of bounded
operators on H, is formed by all closed linear subspaces of H and it is a complex
Banach manifold (see [30]). For more general C∗-algebras the definition of the
Grassmann manifold is a bit more involved, and not always standard. For instance,
if A is a unital C∗-algebra, the Grassmannian of A is sometimes assumed to be the
set Psa(A) of selfadjoint idempotents of A, endowed with the relative topology.
This is so considered for example in [27], where such Grassmannians are studied in
connection with Hermitian holomorphic bundles as motivated by certain aspects
of the Cowen–Douglas theory. The manifold Psa(A) is in principle real -analytic,
so that one must be careful in order to deal with holomorphy, see [27], p. 278. In
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other settings it is suitable to deal with explicit complex Grassmann manifolds, as
for example in [25] or [16,17]. This is accomplished in the following way.

Recall that, for a given unital, complex, associative (C∗-) algebra A, two
idempotents p, q ∈ A are said to be equivalent if pq = q and qp = p. The equiva-
lence class of an idempotent p is denoted here by [p], and the quotient set formed
by all the classes [p] is denoted by Gr(A) and called the Grassmannian of A. Let
GA be the group of invertible elements of A and let UA be the subgroup of GA of
unitary elements. Then, see Section 2 below, GA has a natural action on Gr(A).
The isotropy subgroup of GA at [p] for such an action is denoted by GA([p]). Then
the GA-orbits in Gr(A) coincide with the quotients GA/GA([p]), which, endowed
with their respective quotient topologies, are holomorphic Banach manifolds [16].
In analogy, put GA(p) := {u−1pu : u ∈ GA} and UA(p) := {u−1pu : u ∈ UA}. As
above, GA/GA(p) is a complex Banach manifold and UA/UA(p) is, for p ∈ Psa(A),
a real-analytic Banach manifold, in their respective quotient topologies. Let us re-
mark that UA/UA(p) = UA/UA([p]) for every p ∈ Psa(A) (see Remark 2.5) and
that Psa(A) ≡

⋃
p∈Psa(A) UA/UA([p]). The complex structures of the Grassman-

nian Gr(A) ≡
⋃

GA/UG([p]) and of its associated (holomorphic) Stiefel bundle
have been plainly used in [16] and [17] in order to obtain holomorphic parametriza-
tions of framings for projections on a fixed Banach space. It sounds sensible to
analyze the relationship between the differentiable structures of the two types of
Grassmannians UA/UA(p) and GA/GA([p]) when p = p∗.

Another motivation in writing the present paper came from representation
theory. To explain this, recall the classical setting of the Bott–Borel–Weil theorem
of [11] involving the flag manifolds and realizations of representations on holomor-
phic sections spaces of holomorphic bundles. The notion of complexification plays
a central role in this area, inasmuch as one of the ways to describe the complex
structure of the flag manifolds is to view the latter as homogeneous spaces of
complexifications of compact Lie groups.

A similar circle of ideas can be found in infinite dimensions for a class of man-
ifolds which play a central role in many areas of functional analysis and operator
theory. Specifically, let 1 ∈ B ⊆ A be unital C∗-algebras such that there exists a
conditional expectation E : A → B. Let ϕ be a state of A such that ϕ ◦ E = ϕ,
and let πϕ denote the Gelfand–Naimark–Segal (GNS, for short) representation ob-
tained out of ϕ. Then it is possible to realize πϕ as acting on spaces of real-analytic
sections of a certain homogeneous Hermitian vector bundle on UA/UB . Further, in
some cases involving finiteness properties of spectra and traces of elements in A,
one can prove that the homogeneous space UA/UB is a complex manifold as well
and that the realization space is formed by holomorphic sections (see Theorem 5.4
and Theorem 5.8 in [5]).

Apart from the above result, the holomorphic character of the manifolds
UA/UB and associated bundles is far from being clear in general. Since the Grass-
mannians UA/UA(p) and tautological bundles over UA/UA(p) are universal objects
(see for example [2,17] in connection with ideas here), we search for related results
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of holomorphy in this special case. Using a charaterization (and labelling) of in-
variant complex structures on infinite-dimensional homogeneous manifolds (Theo-
rem 6.1 in [4]), we prove in Section 3 below that UA/UA(p) and GA/GA([p]) are lo-
cally biholomorphic complex manifolds. Moreover, it is also shown that GA/GA(p)
is a complexification of UA/UA(p), and then these results are translated in terms
of homogeneous vector bundles, in the spirit of Theorem 5.8 in [5]. (A complemen-
tary perspective on these manifolds can be found in [6].) Section 4 is devoted to
exhibit how the above results look like in the (on the other hand well known) case
of the algebra A = B(H) and corresponding universal, tautological vector bundles.

Finally, the manifold GA/GA(p) being a complexification of the complex
manifold UA/UA(p), we point out the existence of quaternionic structures for the
above complexifications in Section 5. The occurrence of quaternionic structures on
this level is a fairly known phenomenon in finite dimensions; see for instance the
complexifications of Hermitian symmetric spaces of compact type studied in [9]
and [10]. An infinite-dimensional version of this phenomenon was discussed in [29]
in the special case of the restricted Grassmann manifold. The latter manifold is
modeled on a Hilbert space and is endowed with a Riemannian structure which
allows one to construct almost complex structures on the tangent bundle by iden-
tifying it with the cotangent bundle.

Nothing of this kind is available in the case of the C∗-algebraic Grassmann
manifolds investigated in the present paper. Instead, we have to construct the al-
most complex structures in a direct manner inspired by some of the earliest insights
into the geometry of the tangent bundles; see [19] and [14]. This approach leads
to almost hypercomplex structures on the complexifications of the C∗-algebraic
Grassmann manifolds provided by the tangent bundles and is related to the theory
of adapted complex structures developed in finite dimensions in papers like [22,28],
and [8].

2. Grassmann manifolds in an algebraic setting

We begin with several elementary considerations about idempotents in complex
associative algebras.

Notation 2.1. We are going to use the following notation: A is a unital associative
algebra over C with unit 1 and set of idempotents P(A) = {p ∈ A | p2 = p};
for p1, p2 ∈ P(A) the notation p1 ∼ p2 means that we have both p1p2 = p2 and
p2p1 = p1. For each p ∈ P(A) we denote its equivalence class by

[p] :=
{
q ∈ P(A) | q ∼ p

}
.

The quotient set is denoted by Gr(A) = P(A)/ ∼ (the Grassmannian of A) and
the quotient map by π : p �→ [p],P(A) → Gr(A).

The group of invertible elements of A is denoted by GA, and it has a natural
action on P(A) by

α : (u, q) �→ uqu−1 , GA × P(A) → P(A) .
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The corresponding isotropy group at p ∈ P(A) is
{
u ∈ GA | α(u, p) = p

}
= GA ∩ {p}′ = G{p}′ =: G(p) ,

where we denote by {p}′ the commutant subalgebra of p in A (see p. 484 in [17]).

Lemma 2.2. There exists a well-defined action of the group GA upon Gr(A) like
this:

β :
(
u, [p]

)
�→ [upu−1] , GA × Gr(A) → Gr(A) ,

and the diagram
GA × P(A) α−−−−→ P(A)

idG×π

⏐
⏐
�

⏐
⏐
�π

GA × Gr(A)
β−−−−→ Gr(A)

is commutative.

Proof. See for instance the end of Section 3 in [16]. �
Definition 2.3. For every idempotent p ∈ P(A) we denote by GA([p]) the isotropy
group of the action β : GA × Gr(A) → Gr(A) at the point [p] ∈ Gr(A), that is,
GA([p]) = {u ∈ GA | [upu−1] = [p]}.

The following statement concerns the relationship between isotropy groups
for the actions α and β of GA upon P(A) and Gr(A), respectively.

Proposition 2.4. The following assertions hold.
(i) For every p ∈ P(A) we have GA([p]) ∩ GA([1 − p]) = G(p).
(ii) If U is a subgroup of GA and p ∈ P(A) with U ∩ GA([p]) = U ∩ GA([1− p]),

then U ∩ GA([p]) = U ∩ {p}′ =: U(p).

Proof. (i) We have

GA([p]) =
{
u ∈ GA | [upu−1] = [p]

}

and
GA([1 − p]) =

{
u ∈ GA

∣
∣
[
u(1 − p)u−1

]
= [1 − p]

}
,

so that clearly GA([p]) ∩ GA([1 − p]) ⊇ GA ∩ {p}′. For the converse inclusion let
u ∈ GA([p])∩GA([1−p]) arbitrary. In particular u ∈ GA([p]), so upu−1 ∼ p, which
is equivalent to the fact that (upu−1)p = p and p(upu−1) = upu−1. Consequently
we have both

pu−1p = u−1p (2.1)
and

pup = up . (2.2)
On the other hand, since u ∈ GA([1−p]) as well, it follows that (1−p)u−1(1−p) =
u−1(1 − p) and (1 − p)u(1 − p) = u(1 − p). The latter equation is equivalent to
u − up − pu + pup = u − up, that is, pup = pu. Then (2.2) implies that up = pu,
that is, u ∈ G(p).

(ii) This follows at once from part (i). �
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Remark 2.5. For instance, Proposition 2.4 (ii) can be applied if the algebra A is
equipped with an involution a �→ a∗ such that p = p∗, and

U = UA := {u ∈ GA | u−1 = u∗}
is the corresponding unitary group. In this case, it follows by (2.1) and (2.2) that
up = pu whenever u ∈ UA ∩ GA([p]), hence UA ∩ GA([p]) = UA ∩ GA([1 − p]) =
UA ∩ {p}′ =: UA(p).

For q ∈ P(A), put q̂ := 1 − q and Aq := {a ∈ A | q̂aq = 0}. The following
result is partly a counterpart, for algebras, of Proposition 2.4.

Proposition 2.6. Assume that A is equipped with an involution and let p ∈ P(A)
such that p = p∗. Then the following assertions hold:

(i) uApu−1 = Ap, for every u ∈ UA(p);
(ii) Ap ∩ Ap̂ = {p}′;
(iii) Ap + Ap̂ = A;
(iv) (Ap)∗ = Ap̂.

Proof. (i) This is readily seen.
(ii) Firstly, note that, for a ∈ A, we have p̂ap = pap̂ if and only if ap = pa.

Moreover, if ap = pa then p̂ap = ap− pap = ap−ap = 0 and analogously pap̂ = 0.
From this, the equality of the statement follows.

(iii) For every a ∈ A and q ∈ P(A) we have qa ∈ Aq. Hence a = pa + p̂a ∈
Ap + Ap̂, as we wanted to show.

(iv) Take a ∈ Ap. Then pap = ap, that is, pa∗p = pa∗. Hence, p̂a∗p̂ =
(a∗ − pa∗)(1 − p) = a∗ − pa∗ − a∗p + a∗p = a∗ − a∗p = a∗p̂. This means that
a∗ ∈ Ap̂. Conversely, if a ∈ Ap̂ then, as above, pa∗p = a∗p; that is, a = (a∗)∗ with
a∗ ∈ Ap. �

3. Homogeneous complex structures and complexifications

Definition 3.1. Let X be a Banach manifold. A complexification of X is a complex
Banach manifold Y endowed with an anti-holomorphic involutive diffeomorphism
y �→ y−∗ such that the fixed point submanifold Y0 = {y ∈ Y | y = y−∗} is
diffeomorphic to X.

Assume from now on that A is a unital C∗-algebra. Then GA is a Banach–
Lie group whose Lie algebra coincides with A. The GA-orbits in Gr(A), obtained
by the action β and equipped with the topology inherited from Gr(A), are holo-
morphic Banach manifolds diffeomorphic to GA/GA([p]) (endowed with its quo-
tient topology), see Theorem 2.2 in [17]. Also, the Grassmannian Gr(A) can be
described as the discrete union of these GA-orbits, see [16] and Theorem 2.3
in [17]. Moreover, UA is a Banach–Lie subgroup of GA with the Lie algebra
uA := {a ∈ A | a∗ = −a}. As it is well known, the complexification of uA is A, via
the decomposition a = {(a − a∗)/2} + i{(a + a∗)/2i}, (a ∈ A). Thus the conjuga-
tion of A is given by a �→ a := {(a − a∗)/2} − i{(a + a∗)/2i} = −a∗. We seek for
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possible topological and/or differentiable relationships between the GA-orbits and
the UA-orbits UA/UA(p) in Gr(A).

The above observations lead to the following result.

Theorem 3.2. Assume that A is a unital C∗-algebra, p = p∗ ∈ P(A) and uA(p) :=
uA ∩ {p}′. Let AdU denote the adjoint representation of UA. Then the following
assertions hold:

(i) AdU(u)Ap ⊂ Ap, (u ∈ UA(p)); Ap ∩ Ap = uA(p) + iuA(p); Ap + Ap = A.
(ii) The manifold UA/UA(p) has a UA-invariant complex structure and is locally

biholomorphic to GA/GA([p]).
(iii) The manifold GA/GA(p) endowed with the involutive diffeomorphism given

by aGA(p) �→ (a∗)−1GA(p) is a complexification of UA/UA(p).

Proof. It is clear that uA(p) + iuA(p) = {p}′. Now the first part of the statement
follows by Proposition 2.6.

Also, there is a natural identification between uA/uA(p) and the tangent
space T[p](UA/UA(p)). Then assertion (ii) follows from Theorem 6.1 in [4]. In fact,
by assertion (i) it is readily seen that uA/uA(p) � A/Ap whence we obtain that
UA/UA(p) and GA/GA([p]) are locally diffeomorphic, and so UA/UA(p) inherits
the complex structure induced by G(A)/GA([p]).

For assertion (iii), it is easy to see that the mapping aGA(p) �→ (a∗)−1GA(p)
is an anti-holomorphic diffeomorphism (which in terms of orbits corresponds to
the mapping apa−1 �→ (a∗)−1pa∗). Then aGA(p) = (a∗)−1GA(p) if and only if
(a∗a)GA(p) = GA(p), that is, (a∗a)p = p(a∗a). Using the functional calculus for
C∗-algebras, we can pick b :=

√
a∗a in A and obtain bp = pb. Since a∗a = b2 = b∗b

we have (ab−1)∗ = (b−1)∗a∗ = (b∗)−1a∗ = ba−1 = (ab−1)−1 and therefore u :=
ab−1 ∈ UA. Finally, aGA(p) = ubGA(p) = uGA(p) ≡ uUA(p) ∈ UA/UA(p). �

Remark 3.3. Since GA(p) ⊂ GA([p]), there exists the canonical projection mapping
GA/GA(p) → GA/GA([p]). It is clear that its restriction to UA/UA(p) becomes
the identity map UA/UA(p) → UA/UA([p]).

According to Proposition 2.4 (i), idempotents of the form apa−1 ≡ aGA(p)
with a ∈ GA, can be alternatively represented as pairs (a[p]a−1, (a∗)−1[p]a∗) so
that the “orbit” GA/GA(p) can be identified with a subset of the Cartesian product
GA([p])×GA([p]). In this perspective, the preceding projection and diffeomorphism
are given, respectively, by
(
a[p]a−1, (a∗)−1[p]a∗) �→ a[p]a−1 ≡

(
a[p]a−1, a[p]a−1

)
, GA/GA(p) → GA/GA([p])

(
so

(
u[p]u−1, u[p]u−1

)
�→ upu−1 ≡ (u[p]u−1, u[p]u−1), when u ∈ UA

)
and

(
a[p]a−1, (a∗)−1[p]a∗) �→

(
(a∗)−1[p]a∗, a[p]a−1

)
,

for every a ∈ GA.

Remark 3.4. Theorem 3.2 relates to the setting of [5]. Namely, assume that B
is a C∗-subalgebra of A, with 1 ∈ B ⊆ A, for which there exist a conditional



Vol. 3 (2009) On Complex Infinite-Dimensional Grassmann Manifolds 745

expectation E : A → B and a state ϕ : A → C such that ϕ◦E = ϕ. For X ∈ {A,B},
we denote by ϕX the state ϕ restricted to X. Let HX be the Hilbert space,
and let πX : X → B(HX) be the corresponding cyclic representation obtained
by the GNS construction applied to the state ϕX : X → C. Thus, HX is the
completion of X/NX with respect to the norm ‖y + NX‖ϕ := ϕ(y∗y), where
NX := {y ∈ X | ϕ(y∗y) = 0}. The representation πX is then defined as the
extension to HX of the left multiplication of X on X/NX . Let P denote the
orthogonal projection P : HA → HB .

An equivalence relation can be defined in GA × HB by (g1, h1) ∼ (g2, h2)
(with g1, g2 ∈ GA, h1, h2 ∈ HB) if and only if there exists w ∈ GB such that
g2 = g1w and h2 = πB(w−1)h1. The corresponding quotient space will be denoted
by GA ×GB

HB , and the equivalence class in GA ×GB
HB of any (g, h) ∈ GA ×HB

will be denoted by [(g, h)]. Define UA ×UB
HB in an analogous fashion. Then the

mappings
ΠG : [(g, h)] �→ gGB , GA ×GB

HB → GA/GB

and
ΠU : [(u, h)] �→ uUB , UA ×UB

HB → UA/UB

are vector bundles, ΠU being Hermitian, in fact. Moreover, ΠU admits a reproduc-
ing kernel K with the associated Hilbert space HK , formed by continuous sections
of ΠU , such that the restriction of the GNS representation πA to UA can be realized
on HK , see [5].

Let us apply the above theory to the case when, for a given unital C∗-
algebra A, we take B := {p}′ in A, where p = p∗ ∈ P(A). Then Ep : a �→
pap + p̂ap̂, A → B is a conditional expectation from A onto B. Let H be a
Hilbert space such that A ↪→ B(H). Pick x0 ∈ pH such that ‖x0‖ = 1. Then
ϕ0 : A → C, given by ϕ0(a) := (ax0 | x0)H for all a ∈ A, is a state of A such
that ϕ0 ◦ Ep = ϕ0. The GNS representation of A associated with ϕ0 is as fol-
lows. Set (a1 | a2)0 := ϕ0(a∗

2a1) = (a∗
2a1x0 | x0)H = (a1x0 | a2x0)H for every

a1, a2 ∈ A. So ϕ0(a∗a) = ‖a(x0)‖2 for all a ∈ A, whence the null space of ( · | · )0
is N0 := {a ∈ A : (a | a)0 = 0} = {a ∈ A : a(x0) = 0}. The norm ‖ · ‖0 induced by
( · | · )0 on A/N0 is given by ‖h‖0 ≡ ‖a+N0‖0 := ϕ0(a∗a)1/2 = ‖a(x0)‖H = ‖h‖H
for every h ∈ A(x0) ⊂ H, where a(x0) = h ↔ a + N0. Hence HA is a closed
subspace of H such that aHA ⊂ HA for every a ∈ A. Note that HA coincides
with H provided that we can choose x0 in H such that A(x0) is dense in H. This
will be of interest in Remark 4.7 below.

Analogously, we can consider the restriction of ( · | · )0 to B and proceed
in the same way as above. Thus we obtain that the corresponding null space is
B ∩ N0, that the norm in B/(B ∩ N0) is that one of pH (so that one of H), and
that HB is a closed subspace of pH such that bHB ⊂ HB for every b ∈ B. Also,
HB = pH if x0 can be chosen in pH and such that B(x0) is dense in pH.

The representation πA : a �→ π(a), A → B(HA) is the extension to HA of the
left multiplication πA(a) : a′ + N0 �→ (aa′) + N0, A/N0 → A/N0. Thus it satisfies
πA(a′ + N0) = (aa′) + N0 ≡ a(a′x0) = a(h), if (a′ + N0) ↔ a(x0) = h. In other
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words, πA is the inclusion operator (by restriction) from A into B(HA). Also, πB

is in turn the inclusion operator from B into B(HB).
Since Ep(N0) ⊆ N0, the conditional expectation Ep induces a well-defined

projection P : A/N0 → B/(N0∩B). On the other hand, Ep(a∗a)−Ep(a)∗Ep(a) =
pa∗p̂ap + p̂a∗pap ≥ 0 since p, p̂ ≥ 0. Hence P extends once again as a bounded
projection P : HA → HB . Indeed, if h = a(x0) with a ∈ A, we have

P (h) ≡ P (a + N0) = E(a) + (B ∩ N0) = E(a)(x0) = (pa)(x0) = p(h) ,

that is, P = p|HA
.

In the above setting, note that UB = UA(p). Let Γ(UA/UA(p),UA×UA(p)HB)
be the section space of the bundle ΠU . The reproducing kernel associated with ΠU

is given by Kp(u1UA(p), u2UA(p))[(u2, f2)] := [(u1, pu−1
1 u2f2)] for u1, u2 ∈ UA

and f2 ∈ HB. The kernel Kp generates a Hilbert subspace HKp of sections in
Γ(UA/UA(p),UA ×UA(p) HB). Let γp : HA → Γ(UA/UA(p),UA ×UA(p) HB) be the
mapping defined by γp(h)(uUA(p)) := [(u, pu−1h)] for every h ∈ HA and u ∈ UA.
Then γp is injective and it intertwines the representation πA of UA on HA and the
natural action of UA on HKp ; that is, the diagram

HA
u−−−−→ HA

γp

⏐
⏐
�

⏐
⏐
�γp

HKp
μ(u)−−−−→ HKp ,

(3.1)

is commutative for all u ∈ UA, where μ(u)F := uF (u−1 · ) for every cross-section
F ∈ Γ(UA/UA(p),UA ×UA(p) HB). In fact

γ(uh)
(
vUA(p)

)
:= [(v, pv−1uh)] = u[(u−1v, pv−1uh)] =: u

{
γ(h)

(
u−1vUA(p)

)}

for all u, v ∈ UA. See Theorem 5.4 of [5] for details in the general case. We next
show that HKp in fact consists of holomorphic sections.

Proposition 3.5. Let A be a unital C∗-algebra, p = p∗ ∈ P(A), and B := {p}′.
Then the homogeneous Hermitian vector bundle ΠU : UA ×UA(p) HB → UA/UA(p)
is holomorphic, and the image of γp consists of holomorphic sections. Thus HKp

is a Hilbert space of holomorphic sections of ΠU .

Proof. Let u0 ∈ UA. Then ΩG := {u0g | g ∈ GA, ‖1 − g−1‖ < 1} is open in GA

and contains u0, and similarly with ΩU := ΩG ∩ UA in UA.
It is readily seen that the mapping

ψ0 : [(u, f)] �→
(
uUA(p), Ep(u−1u−1

0 )−1f
)
, Π−1

U (ΩU ) → ΩU ×HB

is a diffeomorphism, with inverse map (uUA(p), h) �→ [(uEp(u−1), h)] (this shows
the local triviality of ΠU ). Thus every point in the manifold UA ×UA(p) HB has
an open neighborhood which is diffeomorphic to the manifold product W × HB ,



Vol. 3 (2009) On Complex Infinite-Dimensional Grassmann Manifolds 747

where W is an open subset of UA/UA(p). By Theorem 3.2, UA/UA(p) is a com-
plex homogeneous manifold and therefore the manifold UA ×UA(p) HB is locally
complex, i.e., holomorphic. Also the bundle map ΠU is holomorphic.

On the other hand, for fixed h ∈ HA, the mapping

σ0 : gGA([p]) �→ Ep(g−1u−1
0 )−1pg−1h , ΩG → HB

is holomorphic on ΩG, so it defines a holomorphic function σ̃0 : ΩGGA([p]) → HB .
By Theorem 3.2 the injection j : UA/UA(p) ↪→ GA/GA([p]) is holomorphic, and
so the restriction map r := σ̃0 ◦ j is holomorphic around u0UA(p). Since γ(h) =
ψ−1

0 ◦ (IΩU
× r) around u0UA(p), it follows that γ(h) is (locally) holomorphic.

Finally, by applying Theorem 4.2 in [5] we obtain that Kp is holomorphic. �
The starting point for the holomorphic picture given in Proposition 3.5 has

been the fact that UA/UA(p) enjoys a holomorphic structure induced by the one
of GA/G([p]), see Theorem 3.2. Such a picture can be made even more explicit
if we have a global diffeomorphism UA/UA(p) � GA/GA([p]). The prototypical
example is to be found when A is the algebra of bounded operators on a complex
Hilbert space. We examine this case more closely in the next section.

4. Tautological universal vector bundles

Let us recall the specific definition and some properties of the Grassmannian man-
ifold associated with a complex Hilbert space.

Notation 4.1. We shall use the standard notation B(H) for the C∗-algebra of
bounded linear operators on the complex Hilbert space H with the involution
T �→ T ∗. Let GL(H) be the Banach–Lie group of all invertible elements of B(H),
and U(H) its Banach–Lie subgroup of all unitary operators on H. Also,

• Gr(H) := {S | S closed linear subspace of H};
• T (H) := {(S, x) ∈ Gr(H) ×H | x ∈ S} ⊆ Gr(H) ×H;
• ΠH : (S, x) �→ S, T (H) → Gr(H);
• for every S ∈ Gr(H) we denote by pS : H → S the corresponding orthogonal

projection.

Remark 4.2. The objects introduced in Notation 4.1 have the following well known
properties:
(a) Both Gr(H) and T (H) have structures of complex Banach manifolds, and

Gr(H) carries a natural (non-transitive) action of U(H). (See Examples 3.11
and 6.20 in [30], or Chapter 2 in [15].)

(b) For every S0 ∈ Gr(H) the corresponding connected component of Gr(H) is
the GL(H)-orbit and is also the U(H)-orbit of S0, that is,

GrS0(H) =
{
gS0 | g ∈ GL(H)

}
=

{
uS0 | u ∈ U(H)

}

=
{
S ∈ Gr(H) | dimS = dimS0 and dimS⊥ = dimS⊥

0

}

� U(H)/
(
U(S0) × U(S⊥

0 )
)
.

(See Proposition 23.1 in [30] or Lemma 4.3 below, alternatively.)
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(c) The mapping ΠH : T (H) → Gr(H) is a holomorphic Hermitian vector bundle,
and we call it the universal (tautological) vector bundle associated with the
Hilbert space H. Set TS0(H) := {(S, x) ∈ T (H) | S ∈ GrS0(H)}. The vector
bundle TS0(H) → GrS0(H) obtained by restriction of ΠH to TS0(H) will
be called here the universal vector bundle at S0. It is also Hermitian and
holomorphic.

Property (b) in Remark 4.2 means that UA/UA(pS0) � GA/GA([pS0 ]) for A =
B(H). For the sake of clarification we now connect Notation 2.1 and Notation 4.1
in more detail. For A = B(H) we have Gr(A) = Gr(H), and with this identification
the action β of Lemma 2.2 corresponds to the natural action (so-called collineation
action) of the group of invertible operators on H upon the set of all closed linear
subspaces of H. The following lemma gives us the collineation orbits of Gr(H)
in terms of orbits of projections, and serves in particular to explain the property
stated in Remark 4.2(b).

For short, denote G = GL(H) and U = U(H).

Lemma 4.3. Let S0 ∈ Gr(H). Then the following assertions hold.
(i) G([pS0 ]) = {g ∈ G | gS0 = S0} and U([pS0 ]) = U(pS0) = {u ∈ U | uS0 = S0}.
(ii) For every g ∈ G and S = gS0 we have S⊥ = (g∗)−1(S⊥

0 ).
(iii) We have

GrS0(H) = {gS0 | g ∈ G} �
{
[gpS0g

−1] | g ∈ G
}

= {uS0 | u ∈ U} � {upS0u
−1 | u ∈ U} .

(iv) We have
U/U(pS0) � G/G([pS0 ]) � GrS0(H) ,

where the symbol “ �” means diffeomorphism between the respective differen-
tiable structures, and that the differentiable structure of the quotient spaces
is the one associated with the corresponding quotient topologies.

(v) We have G/G(pS0) � {(aS0, (a∗)−1S0) | a ∈ G}, and the map
(
aS0, (a∗)−1S0

)
�→

(
(a∗)−1S0, aS0

)

is an involutive diffeomorphism on G/G(pS0) whose fixed-point set is
{
(uS0, uS0) | u ∈ U

}
≡ GrS0(H) .

Proof. (i) As shown in Proposition 2.4, an element g of G belongs to G([pS0 ]) if and
only if pS0g

−1pS0 = g−1pS0 and pS0g pS0 = g pS0 . From this, it follows easily that
g(S0) ⊂ S0 and g−1(S0) ⊂ S0, that is, g(S0) = S0. Conversely, if g(S0) ⊂ S0 then
(g pS0)(H) ⊂ pS0(H) whence pS0g pS0 = g pS0 ; similarly, g−1(S0) ⊂ S0 implies
that pS0g

−1pS0 = g−1pS0 . In conclusion, G([pS0 ]) = {g ∈ G | gS0 = S0}.
Now, the above equality and Remark 2.5 imply that U([pS0 ]) = U(pS0) =

{u ∈ U | uS0 = S0}.
(ii) Let x ∈ S⊥

0 , y ∈ S. Then
(
(g∗)−1(x) | y

)
=

(
(g−1)∗(x) | y

)
=

(
x | g−1(y)

)
= 0 ,
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so (g∗)−1(S⊥
0 ) ⊂ S⊥. Take now y ∈ S⊥, x = g∗(y) and z ∈ S0. Then (x | z) =

(g∗(y) | z) = (y | g(z)) = 0, whence x ∈ S⊥
0 and therefore y = (g∗)−1(g∗y) =

(g∗)−1(x) ∈ (g∗)−1(S⊥
0 ). In conclusion, S⊥ = (g∗)−1(S⊥

0 ).
(iii) By (ii), we have u(S⊥

0 ) = u(S0)⊥ for u ∈ U . Thus S = u(S0) if and only
if dimS = dimS0 and dimS⊥ = dimS⊥

0 . Also, if S = u(S0) and S⊥ = u(S⊥
0 ),

then upS0 = pSu, that is, pS = upS0u
−1. Hence

GrS0(H) = {uS0 | u ∈ U}
=

{
S ∈ Gr(H) | dimS = dimS0 and dimS⊥ = dimS⊥

0

}

� {upS0u
−1 | u ∈ U} .

Suppose now that S = gS0 with g ∈ G. Then dimS = dimS0. By (ii) again,
S⊥ = (g∗)−1(S⊥

0 ) and so dimS⊥ = dimS⊥
0 . Hence S ∈ GrS0(H). Finally, the

bijective correspondence between gS0 and g[pS0 ]g
−1 is straightforward.

(iv) This is clearly a consequence of parts (iii) and (i) from above, and The-
orem 2.2 in [17].

(v) For every a ∈ G, the pairs (aS0, (a∗)−1S0) and (a[p]a−1, (a∗)−1[p]a∗) are
in a one-to-one correspondence, by part (iii) from above. Hence, this part (v) is a
consequence of Remark 3.3. �

Parts (iv) and (v) of Lemma 4.3 tell us that the Grassmannian orbit GrS0(H)
is a complex manifold which in turn admits a complexification, namely the orbit
G/G(pS0).

Remark 4.4. As said in Remark 4.2 (b), every GL(H)-orbit (so every U(H)-orbit) is
a connected component of Gr(H). Let us briefly discuss the connected components
of Gr(A) when A is an arbitrary unital C∗-algebra. Every element g ∈ GA has a
unique polar decomposition g = ua with u ∈ UA and 0 ≤ a ∈ GA, hence there
exists a continuous path t �→ u · ((1 − t)1 + ta) in GA that connects u = u ·1
to g = u · a. Thus every connected component of the GA-orbit of [p] ∈ Gr(A)
contains at least one connected component of the UA-orbit of [p] ∈ Gr(A) for any
idempotent p ∈ P(A). (Loosely speaking, the UA-orbit of [p] has more connected
components than the GA-orbit of [p].) Example 7.13 in [25] shows that the C∗-
algebra A of the continuous functions S3 → M2(C) has the property that there
indeed exist GA-orbits of elements [p] ∈ P(A) which are nonconnected.

If the unitary group UA is connected (so that the invertible group GA is
connected), then all the UA-orbits and the GA-orbits in Gr(A) are connected since
continuous images of connected sets are always connected. On the other hand, as
said formerly, the Grassmannian Gr(A) is the discrete union of these GA-orbits.
Thus if the unitary group UA is connected, then the connected components of
Gr(A) are precisely the GA-orbits in Gr(A). One important case of connected
unitary group UA is when A is a W ∗-algebra (since every u ∈ UA can be written
as u = exp(ia) for some a = a∗ ∈ A by the Borel functional calculus, hence the
continuous path t �→ exp(ita) connects 1 to u in UA). For W ∗-algebras such that
Gr(A) is the discrete union of UA-orbits, it is then clear that the GA-orbits and
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the UA-orbits coincide. This is the case if A is the algebra of bounded operators
on a complex Hilbert space, as we have seen before.

The universal bundle TS0(H) → GrS0(H) can be expressed as a vector bun-
dle obtained from the so-called (principal) Stiefel bundle associated to pS0 ↔ S0,
see [17]. A similar result holds, by replacing the Stiefel bundle with certain, suit-
able, of its sub-bundles. To see this, let us now introduce several mappings.

Put p := pS0 . We consider G ×G([p]) S0 and U ×U(p) S0 as in Remark 3.4.
Note that g1S0 = g2S0 and g1(h1) = g2(h2) (g1, g2 ∈ G, h1, h2 ∈ S0) if and
only if (g1, h1) ∼ (g2, h2), via w = g−1

1 g2 ∈ G([p]), in G × S0. Hence, the mapping
υG : G×S0 → TS0(H) defined by υG((g, h)) = (gS0, g(h)) for (g, h) ∈ G×S0, induces
the usual quotient map υ̃G : G×G([p])S0 → TS0(H). We denote by υU the restriction
of υG on G ×S0. As above, the quotient mapping υ̃U : U ×U(p) S0 → TS0(H) is well
defined.

Since U(p) = U ∩ G([p]), the inclusion mapping j : U ×U(p) S0 → G ×G([p]) S0

is well defined. Note that j = (υ̃G)−1 ◦ υ̃U .
Finally, let PG : G×G([p])S0 → G/G([p]) and PU : U×U(p)S0 → U/U(p) denote

the vector bundles built in the standard way from the Stiefel sub-bundles

g �→ gG([p]) � g(S0) , G → G/G([p]) � GrS0(H)

and
u �→ uU(p) � u(S0) , U → U/U(p) � GrS0(H)

respectively.

Proposition 4.5. The following diagram is commutative in both sides, and the hor-
izontal arrows are biholomorphic diffeomorphisms between the corresponding holo-
morphic structures

TS0(H)
(υ̃U )−1

−−−−→ U ×U(p) S0
j−−−−→ G ×G([p]) S0

ΠH

⏐
⏐
�

⏐
⏐
�PU

⏐
⏐
�PG

GrS0(H) �−−−−→ U/U(p) �−−−−→ G/G([p])

Proof. By construction, the mapping υ̃U is clearly one-to-one. Now we show that
it is onto. Let (S, h) ∈ TS0(H). This means that h ∈ S and that S = uS0 for some
u ∈ U . Then f := u−1(h) ∈ S0 and h = u(f), whence υ̃U ([(u, f)]) = (S, h), where
[(u, f)] is the equivalence class of (u, f) in U ×U(p) S0. Hence υ̃U is a bijective map.

Analogously, we have that υ̃G is bijective from G ×G([p]) S0 onto TS0(H) as
well. As a consequence, j = (υ̃G)−1 ◦ υ̃U is also bijective. It is straightforward to
check that all the maps involved in the diagram above are smooth. �
Example. By Proposition 4.5 one can show that the universal, tautological bundle
ΠH : TS0(H) → GrS0(H) enters, as a canonical example, the framework outlined in
Theorem 5.4 and Theorem 5.8 of [5]. To see this in terms of the bundle ΠH itself,
first note that the commutant algebra {pS0}′ of pS0 coincides with the Banach
subalgebra B of A formed by the operators T such that T (S0) ⊂ S0, T (S⊥

0 ) ⊂ S⊥
0 .
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(It is straightforward to check directly on B that it is stable under the adjoint
operation, so that B is a C∗-subalgebra of A, as it had to be.) Put p = pS0 . From
Lemma 4.3, u ∈ U([p]) if and only if uS0 = S0. Hence u ∈ U(p) = U([p])∩U([1−p])
if and only if uS0 = S0 and uS⊥

0 = S⊥
0 , that is, U(p) = UA ∩ B = UB .

Similarly to what has been done in Remark 3.4, let Ep : A → B denote
the canonical expectation associated to the tautological bundle at S0; that is,
Ep(T ) := pTp+ p̂T p̂ for every T ∈ A. Also, for a fixed x0 ∈ S0 such that ‖x0‖ = 1,
let ϕ : A → C be the state of A given by ϕ0(T ) := (Tx0 | x0)H. Then ϕ0 ◦ Ep =
ϕ0. Since the mappings T �→ T (x0), B(H) → H and T �→ T (x0), B → S0

are surjective, we obtain that HA = H and HB = S0 in the GNS construction
associated with A = B(H), B and ϕ0. Moreover, in this case, πA coincides with
the identity operator and the extension P : HA → HB of Ep is P = p. Denote by
p1, p2 : Gr(H) × Gr(H) → Gr(H) the natural projections and define

QH : Gr(H) × Gr(H) → Hom
(
p∗2(ΠH), p∗1(ΠH)

)

by
QH(S1,S2) = (pS1)|S2 : S2 → S1

whenever S1,S2 ∈ Gr(H). This mapping QH is called the universal reproducing
kernel associated with the Hilbert space H. In fact, for S1, . . . ,Sn ∈ Gr(H) and
xj ∈ Sj (j = 1, . . . , n),

n∑

j,l=1

(
QH(Sl,Sj)xj | xl

)
H =

n∑

j,l=1

(pSl
xj | xl)H =

n∑

j,l=1

(xj | xl)H

=

⎛

⎝
n∑

j=1

xj |
n∑

l=1

xl

⎞

⎠

H

≥ 0 ,

so QH is certainly a reproducing kernel in the sense of [5].

Using Proposition 4.5 and Example 4 we get the following special case of
Theorem 5.8 in [5].

Corollary 4.6. For a complex Hilbert space H, the action of U on H can be realized
as the natural action of U on a Hilbert space of holomorphic sections from GrS0(H)
into H, such a realization being implemented by γ(uh) = u γ(h)u−1, for every
h ∈ H, u ∈ U .

Proof. If S ∈ GrS0(H), there exists u ∈ U such that uS0 = S and then pS =
upS0u

−1. Thus for all u1, u2 ∈ U and x1, x2 ∈ S0 we have QH(u1S0, u2S0)(u2x2) =
pu1S0(u2x2) = u1pS0(u

−1
1 u2x2). This formula shows that for every connected com-

ponent GrS0(H) the restriction of QH to GrS0(H) × GrS0(H) is indeed a special
case of the reproducing kernels considered in Remark 3.4. For every h ∈ H, the
mapping γpS0

(h) : GrS0(H) → TS0(H) which corresponds to QH can be identified
to the holomorphic map uS0 �→ upu−1h, GrS0(H) → H. Then the conclusion fol-
lows by using the diffeomorphism U/U(p) � G/G([p]) � GrS0(H) of Lemma 4.3,
together with Proposition 4.5. �
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Remark 4.7. Assume again the situation where A and B are arbitrary C∗-algebras,
B is a C∗-subalgebra of A, with unit 1 ∈ B ⊆ A,E : A → B is a conditional
expectation, and ϕ : A → C is a state such that ϕ ◦ E = ϕ. With the same
notations as in Remark 3.4, take x0 := 1 + NB ∈ B/NB ⊂ A/NA. It is well
known that x0 is a cyclic vector of πX , for X ∈ {A;B}: let h ∈ HX such that
0 = (π(c)x0 | h)HX

≡ (c + NX | h)HX
for all c ∈ X; since X/NX is dense in HX

we get 0 = (h | h)HX
= ‖h‖2, that is, h = 0. Thus πX(X)x0 is dense in HX .

Inspired by [3], we now consider the C∗-subalgebra A of B(HA) generated
by πA(A) and p, where p is the orthogonal projection from HA onto HB . Set
B := A ∩ {p}′. Clearly, the GNS procedure is applicable to B ⊂ A ⊂ B(HA),
for the expectation Ep : A → B and state ϕ0 defined by x0, as we have done in
Remark 3.4. Then πA(A)(x0) ⊂ A(x0) ⊂ HA and πA(B)(x0) ⊂ B(x0) ⊂ HB ,
whence, by the choice of x0, we obtain that A(x0) = HA and B(x0) = HB . Thus
we have that HA = HA and HB = HB .

According to former discussions there are two (composed) commutative dia-
grams, namely

GA ×GB
HB

πA×̃I−−−−→ GA ×GA(p) HB −−−−→ GA ×GA([p]) HB
j×̃I−−−−→ G ×G([p]) HB

ΠG

⏐
⏐
�

⏐
⏐
�ΠGA

⏐
⏐
�

⏐
⏐
�ΠHB

GA/GB
π̃A−−−−→ GA/GA(p) −−−−→ GA/GA([p])

j̃−−−−→ G/G([p])
(4.1)

and

UA ×UB
HB

πA×̃I−−−−→ UA ×UA(p) HB
j×̃I−−−−→ U ×U(p) HB

�−−−−→ THB
(HA)

ΠU

⏐
⏐
�

⏐
⏐
�ΠUA

⏐
⏐
�ΠU

⏐
⏐
�ΠHB

UA/UB
π̃A−−−−→ UA/UA(p)

j̃−−−−→ U/U(p) �−−−−→ GrHB
(HA)

(4.2)
(where the meaning of the arrows is clear). We suggest to call

ΠG : GA ×GB
HB → GA/GB and ΠU : UA ×UB

HB → UA/UB

the GNS vector bundle and the unitary GNS vector bundle, respectively, for data
E : A → B and ϕ : A → C. Following the terminology used in [2, 3] for the maps
GA/GB → GA/GA(p), UA/UB → UA/UA(p), we could refer to the left sub-
diagrams of (4.1) and (4.2) as the basic vector bundle representations of ΠG and
ΠU , respectively. Since HA = HA and HB = HB , the process to construct such
“basic” objects, of Grassmannian type, is stationary. Also, since there is another
way to associate Grassmannians to the GNS and unitary GNS bundles, which
is that one of considering the tautological bundle of HA (see the right diagrams
in (4.1), (4.2)), we might call GA×GA(p)HB → GA/GA(p) the minimal Grassman-
nian vector bundle, and call THB

(HA) → GrHB
(HA) the universal Grassmannian

vector bundle, associated with data E : A → B and ϕ : A → C. In the unitary
case, we should add the adjective “unitary” to both bundles.
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Note that the vector bundles

G ×G([p]) HB → G/G([p]) and THB
(HA) → GrHB

(HA)

are isomorphic. In this sense, both diagrams (4.1) and (4.2) “converge” towards
the tautological bundle for HA. Let us remark that (4.1) is holomorphic, and ev-
erything in (4.2) is holomorphic with the only possible exception of the bundle
ΠU . On the other hand, we have that GA/GA(p) and G/G(p) are complexifications
of UA/UA(p) and U/U(p) respectively, on account of Remark 3.3 and Lemma 4.3.
Note in passing that the fact that GA/GB is such a complexification implies inter-
esting properties of metric nature in the differential geometry of UA/UB , see [2].

The above considerations strongly suggest to investigate the relationships
between (4.1) and (4.2) in terms of holomorphy and geometric realizations. In
this respect, note that the commutativity of (4.2) corresponds, on the level of
reproducing kernels, with the equality

(πA×̃I) ◦ K(u1UB , u2UB) = QHB

(
πA(u1)U(p), πA(u2)U(p)

)
◦ (πA×̃I)

for all u1, u2 ∈ UA (where the holomorphy supplied by QHB
appears explicitly).

From this, a first candidate to reproducing kernel on GA/GB , in order to obtain
a geometric realization of πA on GA, would be defined by

K(g1GB , g2GB)[(g2, f)] :=
[(

g1, p
(
πA(g−1

1 )πA(g2)f
))]

for every g1, g2 ∈ GA and f ∈ HB . Nevertheless, since the elements g1, g2 are not
necessarily unitary, it is readily seen that the kernel K so defined need not be
definite-positive in general. There is also the problem of the existence of a suitable
structure of Hermitian type in ΠG.

It would be interesting to have a theory of bundles GA ×GB
HB → GA/GB

and kernels K taking into account natural involutive diffeomorphisms in GA/GB ,
which would allow to incorporate those bundles to a framework containing as a
special case the one established in [5]. This will be the subject of a forthcoming
paper by the authors.

5. Almost hypercomplex structures associated with Grassmann
manifolds

The following definition provides the infinite-dimensional version of the termi-
nology of quaternionic structures on finite-dimensonal manifolds; see for instance
Subsection 2.5 in [1].

Definition 5.1. Let Y be a Banach manifold. An almost hypercomplex structure
on Y is a pair of almost complex structures J1, J2 : TY → TY satisfying J1J2 =
−J2J1.

Remark 5.2. Let H = R+Ri1+Ri2+Ri3 be the quaternion field with the imaginary
units i1, i2, i3 ∈ H satisfying (i1)2 = (i2)2 = (i3)2 = −1, i1i2 = −i2i1 = i3, i2i3 =
−i3i2 = i1, and i3i1 = −i1i3 = i2. In the setting of Definition 5.1, it is easy to see
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that the hypercomplex structure of Y gives rise to a fiberwise linear action of H

on TY by i1 · v = J1v, i2 · v = J2v and i3 · v = J1J2v for every v ∈ TY . Thus for
every y ∈ Y the tangent space TyY has a natural structure of quaternionic vector
space.

In the following statement we need the notion of spray on Banach manifolds
in the sense of [21].

Theorem 5.3. Assume that X is an almost complex Banach manifold. Then the
following assertions hold:

(i) There exists a natural correspondence from the sprays on X to the almost
hypercomplex structures on TX.

(ii) If there exist a unital C∗-algebra A and a projection p = p2 = p∗ ∈ A
such that X = UA/UA(p), then the almost hypercomplex structure associated
with the natural spray on X induces an almost hypercomplex structure on the
complexification GA/GA(p).

Proof. (i) Denote Y = TX and π : TX → X the natural projection, and consider
the commutative diagram

π∗(TX) −−−−→ TX

π∗(π)

⏐
⏐
�

⏐
⏐
�π

Y
π−−−−→ X

where the left-hand vertical arrow is the pull-back of the right-hand vertical arrow
by π : Y → X. Assume that we have got the covariant derivative associated with
some spray on X. It then follows by the tensorial splitting theorem (Theorem 4.3
in Chapter X of [21]) that there exists an isomorphism

TY � π∗(TX) ⊕TX π∗(TX) (5.1)

of vector bundles over TX. Note that the fiber of π∗(TX) over any y ∈ Y is
(
π∗(TX)

)
y

=
{
(y, z) ∈ Y × TX | π(y) = π(z)

}
� π−1

(
π(y)

)

hence the fiber of the Whitney sum π∗(TX) ⊕TX π∗(TX) over y ∈ Y = TX is
(
π∗(TX) ⊕TX π∗(TX)

)
y

{
(y1, y2) ∈ TX × TX | π(y1) = π(y2) = π(y)

}
,

which is isomorphic to Tπ(y)X × Tπ(y)X. By taking into account the isomor-
phism (5.1) we can now define two almost complex structures on Y by

(y1, y2) �→ (−y2, y1) , TY
J1−→ TY , (5.2)

and
(y1, y2) �→ (iy1,−iy2) , TY

J2−→ TY . (5.3)
For every pair (y1, y2) ∈ π∗(TX) ⊕TX π∗(TX) � TY we have J1J2(y1, y2) =
J1(iy1,−iy2) = (iy2, iy1) and J2J1(y1, y2) = J2(−y2, y1) = (−iy2,−iy1). Hence
J1J2 = −J2J1, and thus the pair of almost complex structures J1, J2 defines an
almost hypercomplex structure on Y = TX.
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(ii) Now assume that X = UA/UA(p) as in the statement. This is a complex
homogeneous space by Theorem 3.2. The natural connection on this Grassmann
manifold is the connection associated with the conditional expectation

E : A → B , E(a) = pap + (1 − p)a(1 − p) ,

where B = {a ∈ A | ap = pa}. Recall that this conditional expectation induces a
connection in the principal bundle UA → UA/UA(p) (see [2] and [18]). On the other
hand, if we denote p = {a ∈ Ker E | a∗ = −a}, then UA(p) acts upon p by means of
the adjoint action and it is well known that there exists an isomorphism of vector
bundles UA ×UA(p) p � TX over UA/UA(p) = X. In particular the tangent bundle
of X is a vector bundle associated with the principal bundle UA → UA/UA(p).
Thus we get a linear connection on the vector bundle TX → X which is associated
with a connection map (or connector) TTX → TX, and the latter map gives rise to
a spray on X by means of the Christoffel symbols. (See [21] and Subsections 37.24–
27 in [20] for more details.) Now assertion (i) shows that there exists an almost
hypercomplex structure on TX associated with the spray we got.

To complete the proof we have to show that there exists a projection

π : GA/GA(p) → X

making GA/GA(p) into a vector bundle which is isomorphic to the tangent bundle
TX → X. Recall from the above reasonings that TX � UA×UA(p)p as vector bun-
dles over UA/UA(p). Now define the mapping (u, a) �→ u exp(ia)GA(p),UA × p →
GA/GA(p). It is straightforward to check that this induces an injective mapping
UA ×UA(p) p → GA/GA(p), which is actually a diffeomorphism as a consequence
of Theorem 8 in [26]. This makes GA/GA(p) into a vector bundle isomorphic to
TX over X, and the proof ends. �

Remark 5.4. The corespondence between affine connections on finite dimensional
manifolds and almost (hyper)complex structures goes back to [19] and [14]. See [9,
10], and [7] for more recent advances.

Remark 5.5. Let us note another general way to construct almost hypercomplex
structures associated with the infinite-dimensional complex Grassmann manifolds.
Quite generally, assume that X is an almost complex Banach manifold. If we denote
by X the complex-conjugate manifold of X, then the direct product X × X is a
complexification of X and has a natural almost hypercomplex structure.

This fact was noted in the paper [13] in the case of finite-dimensional man-
ifolds and can be proved in the general case as follows. Let I : TX → TX be
the almost complex structure of M . Then X is just the underlying real analytic
manifold of X thought of as an almost complex manifold with respect to the al-
most complex structure −I : TX → TX. Let us denote by θ : X → X the identity
mapping, which is an anti-holomorphic mapping. Also denote Z = X × X. Now
consider the direct product almost complex structure of Z,

J1 =
(

I 0
0 −I

)

: TZ → TZ
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and define

J2 =
(

0 Tθ
−(Tθ)−1 0

)

: TZ → TZ .

It is straightforward to check that (J1)2 = (J2)2 = −idTZ and J1J2 = −J2J1,
where the latter equality follows by the fact that θ is antiholomorphic.

Acknowledgements

We wish to thank Professor Karl-Hermann Neeb and Professor Radu Pantilie for
pointing out to us some pertinent references. The present research was begun
during the first-named author’s visit at the Department of Mathematics of the
University of Zaragoza with financial support from Proyecto MTM2004-03036,
DGI-FEDER, of the MCYT, Spain. Our research was further developed during the
visit of the second-named author’s visit at the Institute of Mathematics “Simion
Stoilow” of the Romanian Academy with support from the aforementioned grant
and from the Softwin Group. Partial financial support from Proyecto E-64 of the
DG Aragón, Spain, and from Grant 2-CEx06-11-22/25.07.06 of the Romanian
Government is also acknowledged.

References

[1] D. V. Alekseevsky, S. Marchiafava, Quaternionic structures on a manifold and sub-
ordinated structures. Ann. Mat. Pura Appl. 171 (1996), no. 4, 205–273.

[2] E. Andruchow, A. Larotonda, L. Recht, D. Stojanoff, Infinite dimensional homoge-
neous reductive spaces and finite index conditional expectations. Illinois J. Math. 41
(1997), 54–76.

[3] E. Andruchow, D. Stojanoff, Geometry of conditional expectations and finite index.
Int. J. Math. 5 (1994), no. 2, 169–178.
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Birkhäuser Verlag, Oper. Theory Adv. Appl., 28, Basel 1988, pp. 267–289.
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José E. Galé
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