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1. Introduction and notation

One of the mathematical folklore beliefs is the possibility to interpret the Weyl–
Titchmarsh function known in the theory of Sturm–Liouville equation [42] as a
transfer function of some linear system. Indeed, as follows from the definition, say
for the formally selfadjoint one-dimensional Schrödinger differential expression on
the half line

l[y] := −y′′ + q(x)y , x ∈ [0,∞) (1.1)

in the case of limit point at the infinity [42], the Weyl–Titchmarsh function m(λ),
λ ∈ C relates values of solutions y(x, λ) ∈ L2(0,∞) to the equation l[y] = λy and
values of their derivatives y′(x, λ) at x = 0 by the formula y′(0, λ) = m(λ)y(0, λ).
The resemblance with the setting of system theory becomes clear if one inter-
prets the solution y(x, λ) as the internal state of some system with the state
space L2(0,∞), and values of y(x, λ) at x = 0 as the system’s input. Then y′(0, λ)
are regarded as the system output obtained from the input y(x, λ) by the transfer
function m(λ) : y(0, λ) �→ y′(0, λ). These more or less empiric arguments are justi-
fied by the theory of boundary control systems [20,29,40] and by its counterpart,
the so-called BC-method of the inverse problem theory [8,27]. These theories deal
in particular with linear systems governed by partial differential operators defined
on some domain Ω in the Euclidian space with the control and observation taking
place at the domain’s boundary ∂Ω. Applied to (1.1), the positive half-axis (0,∞)
is treated as the domain Ω, whereas the role of the boundary ∂Ω is played by the
point x = 0. Then the inverse problem for the Schrödinger expression (1.1) con-
sisting in the recovery of potential q given the Weyl–Titchmarsh function m(λ) is
interpreted as reconstruction of a linear system from the knowledge of its transfer
function. The generalization of this concept to the multidimensional setting is quite
obvious, at minimum, for smooth bounded domains [41]. However, an argument
based on the imbedding theorems shows that in contrast with the one-dimensional
situation, values of the Weyl–Titchmarsh function in this case ought to be un-
bounded operators acting in L2(∂Ω). It is known (see, e.g., [1, 24]) that they are
in fact pseudodifferential operators of the first order in L2(∂Ω).

The concept of Weyl–Titchmarsh function is known for the general Sturm–
Liouville problem, difference operators, orthogonal polynomials, Hamiltonian sys-
tems [6,10,26], various classes of extensions of symmetric operators studied within
the theory of boundary and quasi-boundary triplets [7,21], and some elliptic partial
differential operators [17,22,41], where it is conventionally called the Dirichlet-to-
Neumann map. The recent remarkable work [4] by W.O. Amrein and D. B. Pearson
develops the notion of Weyl function for the three dimensional Schrödinger oper-
ator defined in the whole space. Their approach differs from mentioned above in
that there is no boundary given a priori, and the authors have to introduce it
artificially. By doing so they arrive at the Weyl–Titchmarsh function defined as
bounded operator-function acting in L2(S1), where S1 is the unit sphere in R

3.
From the systems theory point of view their construction is equivalent to the intro-
duction of some means of control and observation into the otherwise closed system
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described by the “free” Schrödinger operator. With these control and observation
in place, the Weyl–Titchmarsh function again can be likened to the transfer func-
tion of so created linear system. We elaborate more on this example in the last
section of the paper.

All instances mentioned above share one feature that again hints at the close
relationship between Weyl–Titchmarsh functions and linear systems. They all are
analytic and possess the positive imaginary part in the upper half plane. Functions
with this property are commonly called Herglotz or R-functions and an extensive
theory has been developed that covers not only scalar R-functions, but also their
operator-valued analogues. In the cases cited above all respective Weyl–Titchmarsh
functions are Herglotz functions, either scalar, or matrix-, or operator-valued, de-
pending on the nature of the problem. R-functions are also well known in the
system theory. Namely, any operator-valued R-function is the transfer function of
a certain linear system of special type, the passive conservative resistance systems
studied for example in the theory of electrical circuits [5].

These observations suggest that the relationship between the theory of Weyl–
Titchmarsh functions and the theory of linear systems is of general nature. The
systematic treatment of this topic faces certain difficulties arising from the lack of a
convenient representation of Weyl–Titchmarsh functions. Indeed, neither abstract
forms of Herglotz integral, nor more detailed representations found in works [4,17]
for some special cases of partial differential operators, are explicit enough to
serve as a foundation for the general theory. The present paper links the Weyl–
Titchmarsh functions theory with the theory of linear systems in precise manner.
Our study is based on the given below definition of the class of abstract bound-
ary value problems (BVPs) and their Weyl–Titchmarsh functions. All examples
mentioned above belong to this class and we show that their respective Weyl–
Titchmarsh functions can be identified with characteristic functions of certain
Brodskĭı–Livšic operator colligations [15, 30]. This very fact allows us to pass the
treatment to the setting of systems theory. More precisely, we show that any BVP
from the class studied in the paper corresponds to some linear boundary control
systems such that the Weyl–Titchmarsh fucntion of the former coincides with the
transfer function of the latter.

In order to dispel possible confusion the reader may have at this point with
regard to the paper’s content, a clarification is needed. As mentioned above, the
relationship between boundary value problems and the systems theory has been
known for a long time and was successfully captured in the notion of boundary
control systems, see for instance [20,29,40]. The main premise of the paper, how-
ever, is not based on these results. Instead, the research conducted below makes
use of the open systems theory due to M. S. Livšic [30]. Nevertheless, in the course
of investigation we discover a natural connection between the theory of open sys-
tems [30] and the “standard” linear boundary control system theory [20, 29, 40].
It is not without interest to notice that this connection is the gist of the method
of reciprocals recently suggested in [19,40]. This method allows one to reduce the
study of a system with boundary control, which is described by three typically
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unbounded mappings, the interior, the control and the observation operators, to
the study of another linear system with the same properties, but whose operators
are bounded. To give an illustrative example, let us turn to the Schrödinger ex-
pression (1.1) again. The boundary control system associated with (1.1) consists
of two Hilbert spaces, H = L2(0,∞) and E = C, and three operators L : y �→ l[y],
C : y �→ y(0), O : y �→ y′(0) defined on sufficiently smooth functions y ∈ L2(0,∞),
the interior, the control and the observation operators, respectively. It turns out
that if the restriction of L to the null set N (C) is a selfadjoint boundedly invert-
ible operator L0, and C restricted to N (L) possesses a bounded left inverse C [−1],
then the study of system {L,C,O} can be reduced to the study of four opera-
tors L−1

0 , C [−1], OL−1
0 , and OC [−1] that in turn define another boundary control

system, called “the reciprocal”. These considerations are not limited to the one-
dimensional setting of (1.1). We show that any BVP of the class introduced in the
paper simultaneously defines a linear boundary control system and its reciprocal.
The latter is described as an open system of M. S. Livšic. The transfer functions
of these systems essentially coincide with the Weyl–Titchmarsh function of the
original BVP.

Interconnections among boundary value problems, open systems, and linear
boundary control theory clarify in what sense the Weyl–Titchmarsh function can
be interpreted as a transfer function. At the same time the study provides alter-
native perspective on the individual topics involved in the research. Apart from
the mentioned above method of reciprocals, our considerations link the boundary
control systems theory with the theory of almost solvable extensions of symmetric
operators [21,23], clarify some principles of the inverse spectral theory [9,27], and
demonstrate applicability of the null extensions approach utilized in the paper to
the study of BVPs for partial differential operators traditionally regarded as singu-
lar [2]. In particular, we derive the Weyl–Titchmarsh function of the Schrödinger
operator introduced by W. O. Amrein and D. B. Pearson in [4] by independent
considerations based on obtained results.

Let us give a brief outline of the paper. Section 2 introduces an important
notion of the so-called null extensions of linear operators that appears to be a con-
venient abstraction for our purposes. The null extensions based approach provides
a coherent methodological framework that allows for unifying treatment of various
topics involved in the study. Here we describe a class of boundary value problems
under consideration, define strong and weak solutions, discuss the Green’s identity
and solvability criteria, give a few equivalent definitions of the Weyl–Titchmarsh
function accompanied by a brief discussion of its properties, and briefly consider
the extension theory of symmetric operators [3,12,28,43] within in the paper’s con-
text. Preliminary variant of some results contained in Section 2 appears in [39].

Section 3 is devoted to relationships between the objects of Section 2 and the
theory of Brodskĭı–Livšic operator colligation [15, 30]. Properties of colligations
corresponding to null extensions under consideration are described. Guided by the
works of M. S. Livšic on the theory of open systems [30] we show that the studied
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BVPs can be put into an one-to-one correspondence with a certain class of open
systems. It is shown in Section 4 that this type of open systems is comprised of
reciprocals [19, 40] of linear boundary control systems whose transfer functions
coincide with the Weyl–Titchmarsh functions of the original BPVs. Thus, we es-
tablish connections between null extensions (with their corresponding BVPs), the
open system theory, and with theory of linear systems with boundary control.
With this result in place, the question of interpretation of the Weyl–Titchmarsh
function as the transfer functions of some boundary control system becomes set-
tled on the abstract level. As seen from this explanation and will be elucidated
more in the main text, the theory of open systems due to M. S. Livšic is a crucial
component of the study. It brings together the theory of boundary value problems
and the theory of boundary control systems in a fruitful manner that emphasizes
the unifying role the principal object of the study, the Weyl–Titchmarsh function,
plays in both fields.

The last section is devoted to the Schrödinger operator L = −Δ + q(x) in
the three dimensional space. The Weyl–Titchmarsh function of L under assump-
tion q ∈ L∞(R3) was devised by W.O. Amrein and D. B. Pearson in [4] where it is
called the M -function. We show that the same result can be obtained within the
paper’s framework if the function q is smooth. To that end we introduce the exter-
nal control over the system described by L . The control is realized as single layer
potentials with densities supported on a smooth closed surface. Then we explicitly
calculate all objects of the general theory, including the transfer function of the
obtained linear system. By direct comparison with the research of W. O. Amrein
and D. B. Pearson [4] we show that it coincides with the M -function from their
work. This fact allows one to calculate the Weyl–Titchmarsh function of multidi-
mensional Scrödinger without resorting to the limiting procedure analogous to the
one-dimensional case [42] and constructed in [4]. More precisely, we show that the
M -function from [4] is in fact the operator of single layer potential associated with
the Green’s function of L = −Δ+q(x) acting on the space L2(S1), where S1 is the
unit sphere in R

3. The author is grateful to Prof. R. Froese who pointed out that
this result can be derived directly from the properties of Dirichlet-to-Neumann
maps of boundary value problems for the interior and the exterior of the unit ball.
Irrespective of possible consequences for the linear system theory and the the-
ory of multidimensional Schrödinger operator, this may indicate some relevance of
the approach employed in the paper to the theory of partial differential equations.
A few remarks regarding the relationship between singular perturbations as per [2]
and the linear boundary control systems theory conclude the section.

Results of the paper have common points with other disciplines. One of them
is the extension theory of symmetric operators, particularly based on the theory
of almost solvable extensions and boundary and quasi-boundary triplets [7,21,23].
The framework of the paper furnishes an abstract foundation for the relevant study.
It expands the existing theory to cover more generic situations where assumptions
of works [7, 21, 23] are not fulfilled. They include non-elliptic, non-semibounded
operators with infinite deficiency indices, instances where boundary mappings are
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non-surjective, problems with the spectral parameter in boundary conditions, etc.
Results of the paper make various methods considered the systems theory spe-
cific [20, 35, 40] available to specialists in boundary value problems. For example,
the analysis of BVPs with the spectral parameter in boundary conditions can be
regarded as a problem related to linear systems with non-trivial feedback [20,35].
One more connection of the paper’s topics to other disciplines is due to the for-
mula (2.14) below. It allows one to treat the class BVPs studied in the paper by
equating them with additive bounded perturbations of bounded operators, thereby
greatly simplify their study. In particular, the functional model of nonselfadjoint
perturbations of a selfadjoint operator from the paper [34] is directly applicable in
the context of the paper. It covers situations that are not handled by the model
from [38] limited to the case of almost solvable extensions. The last area, where in
the author’s opinion, the paper’s approach may prove fruitful is the theory of sin-
gular perturbations of differential operators [2] including its relationship with the
theory of generalized optimal control, see [31] and references therein. A detailed
account of these ideas will be given elsewhere.

The author would like to express his sincere gratitude to Prof. S. N. Naboko
for the interest to the work and continual encouragement, and to tender thanks
to Prof. M. I. Belishev for the introduction to the subject and many motivating
discussions. The author is grateful to Dr. A. V. Kiselev and anonymous referee for
the attentive reading of the manuscript and numerous useful remarks.

A few words regarding notation and conventions accepted in the paper are
in order. For two Hilbert spaces H1 and H2 the sign A : H1 → H2 denotes
a bounded linear operator A defined everywhere in H1 with the range in the
space H2. Symbols R, C, Im (z) stand for the real axis, the complex plane, and
the imaginary part of a complex number z ∈ C, respectively. Furthermore, C± :=
{z ∈ C | ± Im (z) > 0}. The domain, the range and the null set of a linear
operator A are denoted D(A), R(A), and N (A); the symbol ρ(A) is used for the
resolvent set of A. For a Hilbert space the term subspace is used for a closed linear
set. All Hilbert spaces below are separable.

2. Boundary value problems and their Weyl–Titchmarsh functions

There exist a few ways to introduce the class of problems studied in the paper.
The most straightforward approach seems to be based on the concept of null ex-
tensions of a linear operator. Apart from its simplicity, it clarifies the construction
of associated boundary value problem and underlines the close relationship be-
tween these problems and the theory of linear open systems. Furthermore, the
notion of null extensions naturally leads to the definition of Weyl–Titchmarsh
functions. Intrinsic relationships among null extensions, boundary value problems,
and Weyl–Titchmarsh functions are in the main focus of this section.

2.1. Null extensions

The formal definition of null extensions is as follows.
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Definition 2.1. Let T be an operator on the Hilbert space H with domain D(T ).
Linear operator S on the space H is called a null extension of T if its domain D(S)
is represented as a direct sum D(S) = D(T )+̇N where N ⊂ H is a linear manifold
such that D(T ) ∩ N = {0} and Sx = Tx if x ∈ D(T ) and Sx = 0 if x ∈ N .

Example. Let Ω be a bounded domain in R
3 with C∞ boundary ∂Ω and T = ΔD

be the Dirichlet Laplacian on Ω. Operator T is selfadjoint in H = L2(Ω) and
all functions from the domain D(T ) vanish on the boundary ∂Ω. Introduce null
extension of T as an operator S with domain D(T )+̇N where N is the set of all
harmonic functions in Ω with boundary values from C∞(∂Ω). This definition is
justified by the uniqueness theorem for harmonic functions, according to which
N ∩ D(T ) = {0}. Since Δh = 0 for any h ∈ N , we have Δ(u + h) = Tu for
u ∈ D(T ) and h ∈ N . Therefore the null extension S coincides with the Laplace
operator Δ considered on the domain D(T )+̇N . Note that S is not closed.

Let H be a Hilbert space. Suppose H ⊂ H is an arbitrary linear manifold of
elements in H, and A0 is a non-bounded linear selfadjoint operator in H defined
on the domain D(A0). Everywhere in the paper we assume that A0 is boundedly
invertible with the inverse A−1

0 : H → H and the pair {A0,H } satisfies the
following assumption.

Assumption 1.

1. Intersection of D(A0) and H is trivial, D(A0) ∩ H = {0}.
2. There exists a linear operator γ that maps H to some auxiliary Hilbert

space E. The linear set γH is dense in E and the only solution to the equa-
tion γh = 0, h ∈ H is the null vector h = 0.

3. The left inverse of γ is bounded. Denote it Π : E → H so that Πγh = h for
any h ∈ H .

Basic objects of the paper are the null extension A of the operator A0 to
the domain D(A) := D(A0)+̇H and the the null extension Γ0 of the operator γ
initially defined on the set H to the linear manifold D(A). In other words, A
and Γ0 are defined on D(A) := D(A0)+̇H by

A : x + h �→ A0x , Γ0 : x + h �→ γh , x ∈ D(A0) , h ∈ H

Since A0 is selfadjoint, its domain D(A0) is dense in H, therefore A and Γ0 are
densely defined. At the same time they are not assumed closed on D(A), or even
closable in H. By the construction, the domain D(A0) is the null set of Γ0, D(A0) =
N (Γ0) where N (Γ0) = {u ∈ D(A) | Γ0u = 0}. Vectors h ∈ H are distinguished
from other elements of D(A) by the equality ΠΓ0h = h or by its equivalent Γ0Πϕ =
ϕ, where ϕ = Γ0h with some h ∈ H . These observations lead to the representation
for D(A) = D(A0)+̇H

D(A) =
{
A−1

0 f + Πϕ | f ∈ H,ϕ ∈ Γ0H
}

accompanied by the following refined definitions of A and Γ0

A : A−1
0 f + Πϕ �→ f , Γ0 : A−1

0 f + Πϕ �→ ϕ , f ∈ H , ϕ ∈ Γ0H
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and equalities

N (Γ0) =
{
A−1

0 f | f ∈ H
}

, A|N (Γ0) = A0 ,

N (A) =
{
Πϕ | ϕ ∈ Γ0H

}
, Γ0|N (A) = γ .

Since A and Γ0 need not be closed, N (Γ0) and N (A) are not necessarily subspaces
in H.

For purposes of the paper we have to introduce one more operator in addition
to A and Γ0. Let us fix an arbitrary symmetric map Λ on the space E with the
dense domain D(Λ) = Γ0H and define the linear operator Γ1 on D(A) by

Γ1 : A−1
0 f + Πϕ �−→ Π∗f + Λϕ , f ∈ H, ϕ ∈ Γ0H . (2.1)

where Π∗ : H → E is the adjoint to Π. From (2.1) with f = 0 follows Γ1Πϕ = Λϕ,
where ϕ ∈ Γ0H . Assuming ϕ = Γ0h with h ∈ H we conclude that Γ1h = ΛΓ0h
for any h ∈ H . Further, Π∗ = Γ1A

−1
0 , as seen from (2.1) with ϕ = 0. Note again

that Γ1 and Λ are not assumed closed nor closable.
The rationale behind the definition (2.1) is the special role operators Γ0 and Γ1

play as “boundary operators” that map D(A) into the “boundary space” E. More
precisely, for the collection {A,Γ0,Γ1,H,E} the following version of the Green’s
formula holds.

Theorem 2.2. For any u, v ∈ D(A)

(Au, v)H − (u,Av)H = (Γ1u,Γ0v)E − (Γ0u,Γ1v)E , u, v ∈ D(A) . (2.2)

Proof. Let u ∈ D(A) be a vector u = A−1
0 f + h, where f ∈ H, h ∈ H . Then

(Au, u) − (u,Au) =
(
A(A−1

0 f + h), A−1
0 f + h

)
−

(
A−1

0 f + h,A(A−1
0 f + h)

)

= (f,A−1
0 f + h) − (A−1

0 f + h, f) = (f, h) − (h, f) .

From the other side, since ΠΓ0h = h, Γ1h = ΛΓ0h, and Λ is symmetric,
(Γ1u,Γ0v)E − (Γ0u,Γ1v)E

=
(
Γ1(A−1

0 f + h),Γ0(A−1
0 f + h)

)
−

(
Γ0(A−1

0 f + h),Γ1(A−1
0 f + h)

)

= (Π∗f + Γ1h,Γ0h) − (Γ0h,Π∗f + Γ1h)

= (f,ΠΓ0h) − (ΠΓ0h, f) + (ΛΓ0h,Γ0h) − (Γ0h,ΛΓ0h) = (f, h) − (h, f) .

The proof is complete. �

2.2. Boundary value problem

Considerations above, the Green’s identity (2.2) in particular, reveal similarity of
the introduced objects to the classical setting of boundary value problems. This
analogy suggests the following definition of abstract spectral value problem for
operator A, {

(A − zI)u = f
Γ0u = ϕ

(2.3)

Here f ∈ H and ϕ ∈ E are given elements of responding spaces, the vector u ∈
D(A) is unknown, and the complex number z ∈ C is the spectral parameter.
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Before we proceed to the main result regarding solvability of (2.3) note that the
condition Γ0u = ϕ imposed on u ∈ D(A) implies the inclusion ϕ ∈ Γ0H . However,
a weak variant of (2.3) that allows one to extend the concept of solutions to (2.3)
to the case of all ϕ ∈ E can be offered.

Definition 2.3. Given f ∈ H, ϕ ∈ E the vector u ∈ H is called the weak solution
to the problem (2.3) if

(
u, (A0 − z̄I)v

)
= (f, v) + (ϕ,Γ1v) , for any v ∈ D(A0) . (2.4)

The definition is justified by the next observation. If the vector u ∈ H
solves (2.3) with some f ∈ H, ϕ ∈ E, then for any v ∈ D(A0) by virtue of
the Green’s formula (2.2),

(
u, (A0 − z̄I)v

)
= (u,A0v) − (zu, v) = (u,A0v) + (f − Au, v)

= (f, v) + (u,Av) − (Au, v) = (f, v) + (Γ0u,Γ1v) − (Γ1u,Γ0v)

= (f, v) + (ϕ,Γ1v) .

Thus, any solution to (2.3) at the same time solves the problem (2.4). According to
the established terminology, sometimes in the sequel the problem (2.4) is referred
to as the variational form of (2.3).

Next result concerns the solvability of (2.3) for f = 0. In this case all solutions
to (2.3) are obtained from vectors h ∈ H by the bounded map h �→ (I−zA−1

0 )−1h.

Lemma 2.4. Suppose z ∈ ρ(A0). The map

h �−→ (I − zA−1
0 )−1h , h ∈ H , z ∈ ρ(A0)

establishes an one-to-one correspondence between H = N (A) and N (A−zI). For
vectors h ∈ H and hz := (I − zA−1

0 )−1h ∈ N (A − zI) the equality Γ0h = Γ0hz

holds. If two arbitrary vectors u1, u2 ∈ N (A−zI) satisfy the condition Γ0u1 = Γ0u2,
then u1 = u2.

Proof. Since A is an extension of A0, we have (A− zI)(A0 − zI)−1 = I where z ∈
ρ(A0). Therefore, for any h ∈ H

(A − zI)(I − zA−1
0 )−1h = (A − zI)

[
I + z(A0 − zI)−1

]
h = (A − zI)h + zh = 0 .

Conversely, if hz ∈ N (A − zI) and h := (I − zA−1
0 )hz, then

Ah = Ahz − zAA−1
0 hz = (A − zI)hz = 0 .

The equality Γ0h = Γ0hz follows from relations h = (I−zA−1
0 )hz and Γ0D(A0) = 0.

Finally, if u1, u2 ∈ N (A−zI) then uj = (I−zA−1
0 )−1hj , j = 1, 2 with some h1, h2 ∈

H . Assumption Γ0u1 = Γ0u2 leads to the equality Γ0h1 − Γ0h2 = 0. Applying
operator Π to both sides of this identity and recalling that ΠΓ0h = h for any
vector h ∈ H , we conclude that h1 = h2, hence u1 = u2.

The proof is complete. �
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Now we can formulate the solvability criteria for the problem (2.3) with f �= 0.
As one may expect by analogy with the classical boundary value problems theory
(see [11, 44] for instance), the solution to (2.3) is a sum of solutions to two semi-
homogeneous problems obtained from (2.3) by assuming f �= 0, ϕ = 0 and f = 0,
ϕ �= 0. These solutions belong correspondingly to the first and second term in the
decomposition D(A) = D(A0)+̇N (A − zI).

Theorem 2.5. Suppose z ∈ ρ(A0), ϕ ∈ Γ0H , f ∈ H. Then the solution u = uf,ϕ
z

to the problem (2.3) exists and is unique. It is represented in the form

uf,ϕ
z = (A0 − zI)−1f + (I − zA−1

0 )−1Πϕ . (2.5)

If ϕ ∈ E is arbitrary, the vector uf,ϕ
z defined by (2.5) is a weak solution to (2.3).

Proof. Uniqueness of the solution (2.5) is easily verified. Assume that for z ∈
ρ(A0), ϕ ∈ Γ0H , and f ∈ H there exist two solutions u1, u2 ∈ D(A) to the
problem (2.3). Then their difference u0 := u1 − u2 satisfies both equations (2.3)
with f = 0, ϕ = 0. Because Γ0u0 = 0, the vector u0 belongs to the domain of
operator A0. Then it follows from (2.3) than (A − zI)u0 = (A0 − zI)u0 = 0.
Therefore, u0 = 0 since z ∈ ρ(A0).

Now consider (2.5) with ϕ ∈ Γ0H . According to Lemma 2.4, the second
summand in (2.5) belongs to N (A − zI). The equalities (A − zI)uf,ϕ

z = (A −
zI)(A0 − zI)−1f = f follow from the definition of A. Further, from Lemma 2.4
with h = Πϕ ∈ H we have

Γ0u
f,ϕ
z = Γ0(I − zA−1

0 )−1Πϕ = Γ0

[
I + z(A0 − zI)−1

]
Πϕ = Γ0Πϕ = ϕ .

Let us now verify the last statement of theorem. Suppose ϕ ∈ E and define
the element uf,ϕ

z ∈ H by the formula (2.5). Then for z ∈ ρ(A0) and v ∈ D(A0),
(
uf,ϕ

z , (A0 − z̄I)v
)

=
(
(A0 − zI)−1f, (A0 − z̄I)v

)
+

(
(I − zA−1

0 )−1Πϕ, (A0 − z̄I)v
)

= (f, v) +
(
ϕ,Π∗(I − z̄A−1

0 )−1(A0 − z̄I)v
)

= (f, v) + (ϕ,Γ1v) ,

since Π∗(I− z̄A−1
0 )−1(A0− z̄I)v = Γ1A

−1
0 (I− z̄A−1

0 )−1(A0− z̄I)v = Γ1v. According
to Definition 2.3, the element uf,ϕ

z is the weak solution to (2.3).
The proof is complete. �

The last result of this section is the direct description of boundary value
problems (2.3) that correspond to null extensions satisfying Assumption 1. It allows
one to quickly verify whether results of the paper are applicable to a given BVP.

Theorem 2.6. Let H, E be two Hilbert spaces and A, Γ0 are two linear operators
with the domain D(A) dense in H and with the ranges R(A) ⊂ H, R(Γ0) ⊂ E.
Operators A, Γ0 define the spectral boundary value problem

{
(A − zI)u = 0
Γ0u = ϕ

(2.6)
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where ϕ ∈ E is given, and u ∈ D(A) is unknown. Assume the next conditions are
fulfilled:

1. Restriction of A to the domain D(A)∩N (Γ0) is a (necessarily unbounded) self-
adjoint operator A0 with the bounded inverse A−1

0 defined everywhere on H.
2. Linear manifold Γ0D(A) is dense in E.
3. The Green’s formula (2.2) is valid for all u, v ∈ D(A)

(Au, v)H − (u,Av)H = (Γ1u,Γ0v)E − (Γ0u,Γ1v)E

with some linear operator Γ1 defined on D(A) with the range R(Γ1) ⊂ E.

Then the domain D(A) is represented as direct sum D(A) = D(A0)+̇H where H
is the null set of A. The operator A is the null extension of A0 to the domain D(A)
satisfying Assumption 1 with γ = Γ0|N (A). Moreover, the mapping Γ1A

−1
0 defined

on H is bounded. Its adjoint Π := (Γ1A
−1
0 )∗ is the left inverse to γ and Λ := Γ1Π

is symmetric on D(Λ) = Γ0H .

Proof. Since N (A0) = {0} and A0 ⊂ A, it follows form the invertibility of A0 that
D(A0) ∩ H = {0} and (A − zI)(A0 − zI)−1f = f for any f ∈ H and z ∈ ρ(A0).
In particular, AA−1

0 f = f . Let u ∈ D(A) be an arbitrary vector. Represent u in
the form of sum u = fu + hu where fu := A−1

0 Au ∈ D(A0) and hu := u − fu =
(I − A−1

0 A)u. Obviously, hu ∈ D(A) and moreover Ahu = (I − AA−1
0 )Au = 0, so

that hu ∈ N (A) = H . Therefore, u is represented as a sum of elements from D(A0)
and H . This representation is unique because the intersection D(A0)∩H is trivial.

Define the operator γ required by Assumption 1 to be the restriction of Γ0

to the set H . If γh = 0 for some h ∈ H , then h ∈ D(A0) ∩ H , therefore
h = 0. Density of γH in E is ensured by the assumption (ii) of the theorem, since
γH = Γ0H = Γ0D(A).

In order to verify existence and boundedness of the left inverse of the op-
erator γ consider the Green’s formula with u = A−1

0 f , f ∈ H and v = h ∈ H .
Since Γ0u = 0 and Av = 0, we obtain the equality (f, h) = (Γ1A

−1
0 f,Γ0h). Ac-

cording to the definition of adjoint operator, this means that Γ0h = γh belongs
to the domain of (Γ1A

−1
0 )∗ and (Γ1A

−1
0 )∗ : γh �→ h. Therefore, Π := (Γ1A

−1
0 )∗ is

the left inverse of γ. Furthermore, Γ1A
−1
0 is defined on the whole space H since

D(Γ1) ⊃ D(A0) and A−1
0 H = D(A0). At the same time, its adjoint (Γ1A

−1
0 )∗ is an

operator with dense domain γH = Γ0H = Γ0D(A) due to condition (ii). Density
of the domain of the adjoint implies closability; thus, Γ1A

−1
0 is closable. From the

other hand, Γ1A
−1
0 is already closed, since its domain is the whole space H. By

virtue of Closed Graph Theorem, the mapping Γ1A
−1
0 is bounded, so is its adjoint,

the operator Π.
The last statement is easily proven by the calculations conducted for h ∈ H ,

(ΛΓ0h,Γ0h)−(Γ0h,ΛΓ0h) = (Γ1ΠΓ0h,Γ0h)−(Γ0h,Γ1ΠΓ0h) = (Ah, h)−(h,Ah) = 0 .

Two last equalities are valid due to the Green’s formula since ΠΓ0h = h.
The proof is complete. �
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2.3. Weyl–Titchmarsh function

We continue to denote uϕ
z the solution (2.5) with f = 0. Obviously, the map

R(z) : ϕ �→ uϕ
z = (I − zA−1

0 )−1Πϕ , ϕ ∈ E , z ∈ ρ(A0) (2.7)

is bounded and R(z)Γ0H = N (A−zI) according to Lemma 2.4. If ϕ ∈ Γ0H , then
the vector R(z)ϕ = uϕ

z belongs to the domain D(A), therefore Γ1u
ϕ
z = Γ1R(z)ϕ is

well defined. Let us calculate this vector. For a given pair of ϕ ∈ Γ0H and z ∈
ρ(A0) we have

Γ1u
ϕ
z = Γ1(I − zA−1

0 )−1Πϕ = Γ1

[
I + z(A0 − zI)−1

]
Πϕ

= Γ1Πϕ + zΓ1(A0 − zI)−1Πϕ = Λϕ + zΓ1A
−1
0 (I − zA−1

0 )−1Πϕ

= Λϕ + zΠ∗(I − zA−1
0 )−1Πϕ =

[
Λ + zΠ∗(I − zA−1

0 )−1Π
]
ϕ

Introduce the operator-function M(z), z ∈ ρ(A0) with values in the set of operators
defined on the dense domain Γ0H in E by

M(z) : ϕ �−→
[
Λ + zΠ∗(I − zA−1

0 )−1Π
]
ϕ , ϕ ∈ Γ0H , z ∈ ρ(A0) (2.8)

Since uϕ
z is the solution to the problem (2.3), the identity ϕ = Γ0u

ϕ
z holds and the

calculations conducted above show that

Γ1u
ϕ
z = M(z)Γ0u

ϕ
z , z ∈ ρ(A0) , ϕ ∈ Γ0H . (2.9)

The definition M(z)ϕ = Γ1R(z)ϕ yields another representation

M(z)ϕ = Γ1(I − zA−1
0 )−1Πϕ , ϕ ∈ Γ0H , z ∈ ρ(A0) , (2.10)

and from Lemma 2.4 and Theorem 2.5 follows one more

M(z)Γ0hz = Γ1hz , hz ∈ N (A − zI) , z ∈ ρ(A0) . (2.11)

Definition 2.7. Function M( · ) is called the Weyl–Titchmarsh function of the prob-
lem (2.3) or of the null extension A satisfying Assumption 1.

A few remarks concerning this definition are in order.
1. Analytic operator function m(z) := M(z) − M(0) = M(z) − Λ defined

for z ∈ ρ(A0) is bounded and has a non-negative imaginary part in the upper
half-plane z ∈ C+. In other words, m(z) is an operator-valued R-function.1 This
statement follows from the equality m(z) = zΠ∗(I − zA−1

0 )−1Π and the formula
for ϕ,ψ ∈ E and z, ζ ∈ ρ(A0)
(
m(z)ϕ,ψ

)
E
−

(
ϕ,m(ζ)ψ

)
E

= (z − ζ)
(
(I − zA−1

0 )−1Πϕ, (I − ζA−1
0 )−1Πψ

)
H

,

obtained by direct calculations. In the special case of ζ = z, z /∈ R and ϕ = ψ
we have the following abstract version of the canonical Weyl identity for Weyl–
Titchmarsh function of the Schrödinger operators [42]

Im
(
m(z)ϕ,ϕ

)
= (Im z) · ‖(I − zA−1

0 )Πϕ‖2 = (Im z) · ‖R(z)ϕ‖2 , ϕ ∈ E , z /∈ R .

1Functions of this class are also known as Herglotz functions, Nevanlinna functions, or
Caratheodory functions.
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Thus imaginary parts of m(z) are non-negative operators for z ∈ C+. Suppose
N (Π) is trivial, which is equivalent to the density of R(Π∗) = Γ1A

−1
0 H = Γ1D(A0)

in E. Then the imaginary part of m(z) is strictly positive for z ∈ C+.
2. As follows from the definition, the function M( · ) depends on the particular

choice of Λ in (2.1). It is clear however, that all functions corresponding to different
values of this parameter differ from one another by additive constant operators
defined on the domain Γ0H .

3. Since [R(z)]∗ = [(I − zA−1
0 )−1Π]∗ = Γ1A

−1
0 (I − z̄A−1

0 )−1 = Γ1(A0 − z̄I)−1,
the function M( · ) can be rewritten in a compact, but somewhat more obscure
form

M(z) = Γ1

[
Γ1(A0 − z̄I)−1

]∗
, z ∈ ρ(A0) . (2.12)

Such representations when the operator A0 is the Dirichlet or Neumann Laplacian
in a region of R

n, n = 2, 3 can be found in the literature (cf. [4,22]). In comparison
with (2.12), the formula (2.7) separates out the singular part of M( · ), that is, the
potentially unbounded term M(0) = Λ. This decomposition of M( · ) allows one to
study properties of M( · )−M(0) by more elementary means of the bounded opera-
tors theory. In addition, the summand M(0) = Λ ultimately is not a characteristic
of the spectral problem (2.3) or the extension A. It is merely an arbitrary param-
eter in the definition of boundary operator Γ1. Therefore, by studying M( · ) − Λ
rather than M( · ) one eliminates this arbitrariness from the analysis.

4. An additive representation similar to (2.8) in a special case of operator A0

was obtained in the work [17], formula (2.6). This paper uses another (unspecified)
form of the bounded mapping from E to H whose role in our considerations is
played by the operator Π.

5. Consider asymptotic behavior of M( · ) along the imaginary axis in the
upper half plane. Since m(z) = M(z) − M(0) is an R-function and M(0) = Λ is
symmetric, we expect M(iy) to possess some kind of limit as y → ∞. Analogy
with the theory of bounded R-functions and bounded operators suggests that this
limit is likely to be the null operator. For ϕ ∈ Γ0H and h = Πϕ represent M(z)ϕ
in the form

M(z)ϕ = Γ1(I − zA−1
0 )−1Πϕ = Γ1

[
I + z(A0 − zI)−1

]
h

By the Spectral Theorem, z(A0 − zI)−1 → −I for z = iy when y → ∞ in the
strong operator topology. Denote F (h, z) := [I + z(A0 − zI)−1]h. Then we have
F (h, iy) → 0 in H as y → ∞ for any h ∈ H (in fact, for any h ∈ H). The
vector function F (h, iy) can be seen as an approximation error of h ∈ H by
vectors −iy(A0 − iyI)−1h from the dense set D(A0). If the operator Γ1 is clos-
able on its domain D(A), then F (h, iy) → 0 implies M(iy)ϕ = Γ1F (h, iy) → 0.
However, if Γ1 is not closable, this implication may be not valid and there may
exist vectors ϕ ∈ Γ0H such that M(iy)ϕ does not converge when y → ∞. From
the other side, the requirement of closability of Γ1 is too generous for the exis-
tence of limy→∞ M(iy)ϕ with ϕ ∈ Γ0H . It is sufficient to request the convergence
of Γ1F (h, iy) for any h ∈ H in order to conclude the existence of limy→∞ M(iy)ϕ
for any ϕ ∈ Γ0H . If, in addition, Γ1F (h, iy) → 0 for each h ∈ H , then the
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Weyl–Titchmarsh function M(z) has the expected behavior along the imaginary
axis. This condition is not as restrictive as the closability of Γ1, since the implica-
tion fn → 0 =⇒ Γ1fn → 0 for n → ∞ and any sequence {fn} ∈ D(Γ1), which is
equivalent to the closabilty of Γ1, is not assumed to be fulfilled for any vectors from
the domain D(Γ1); only vectors of the special form F (h, iy) = h+ iy(A0− iyI)−1h,
h ∈ H are considered. The obtained condition

Γ1

[
h + iy(A0 − iyI)−1h

]
→ 0 , when y → ∞ for any h ∈ H (2.13)

guarantees that M(iy)ϕ → 0 for any ϕ ∈ Γ0H when y → ∞.
6. The last remark is important in applications where Assumption 1 is not

fulffiled. It allows one to define the Weyl–Titchmarsh function in cases when A0

is not boundedly invertible, but ρ(A0) ∩ R �= {∅}.
Remark 2.8. For a number t ∈ R denote At := A + tI the “shifted” operator A.
Then N (A − zI) = N (At − ζI) where ζ = z + t. For hz ∈ N (A − zI) the Weyl–
Titchmarsh function definition Γ1hz = M(z)Γ0hz may be rewritten in the form
Γ1vζ = M(ζ − t)Γ0vζ where vζ = hζ−t ∈ N (At − ζI). Therefore, the operator
function Mt(ζ) := M(ζ − t) for ζ ∈ ρ(A0 + tI) is naturally interpreted as the
Weyl–Titchmarsh function of At = A + tI.

2.4. Minimal symmetric operator and its Krein extension

As is well known, study of a boundary value problem in many cases can be reduced
to analysis of extensions of a certain symmetric operator conventionally called
minimal. In this short section we give a brief account of such a reduction carried
out in the paper’s setting.

Introduce the minimal operator A00 as a restriction of A to the domain
D(A00) := {u ∈ D(A) | Γ0u = Γ1u = 0}. As follows from the Green’s formula (2.2),
the operator A00 is symmetric, but not necessarily densely defined. The opera-
tor A0 can be seen as a selfadjoint extension of A00 to the domain D(A0). Another
important extension of A00 is the operator AK defined as a restriction of A to
the set D(AK), where D(AK) := {u ∈ D(A) | (Γ1 − ΛΓ0)u = 0}. It is remarkable
that neither of operators A00 or AK depends on the particular choice of Λ and
can be expressed solely in terms of the pair {A0,H }. More precisely, the following
theorem is valid.

Theorem 2.9. Domains of A00 and AK are represented by formulae

D(A00) =
{
u ∈ D(A) | Γ1u = Γ0u = 0

}
= A−1

0 H ⊥ ,

D(AK) =
{
u ∈ D(A) | (Γ1 − ΛΓ0)u = 0

}
= A−1

0 H ⊥+̇H .

Proof. Let us begin by noting that N (Π∗) = H ⊥. Indeed, from identity ΠΓ0h = h,
we obtain (f, h) = (f,ΠΓ0h) = (Π∗f,Γ0h) for any h ∈ H and f ∈ H. Since Γ0H
is dense in E, the inclusion f ∈ N (Π∗) is equivalent to the orthogonality f ⊥ H .

Let u = A−1
0 f + h be an arbitrary element of D(A) with some f ∈ H,

h ∈ H . Conditions Γ0u = 0 and Γ1u = 0 result in the equality Γ1A
−1
0 f = 0,

which is equivalent to f ∈ N (Π∗) = H ⊥ since Π∗ = Γ1A
−1
0 . Therefore, the
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inclusion D(A00) ⊂ A−1
0 H ⊥ is valid. The inverse inclusion holds true according

to the equalities Γ0A
−1
0 = 0 and Γ1A

−1
0 H ⊥ = Π∗H ⊥ = 0. Further, for the domain

of D(AK) the identity (Γ1 −ΛΓ0)h = 0 follows directly from the relations Λ = Γ1Π
and ΠΓ0h = h, h ∈ H . Hence, A−1

0 H ⊥+̇H ⊂ D(AK). From the other side, if
the element u = A−1

0 f + h ∈ D(A) belongs to D(AK), then it is necessary that
f ∈ H ⊥, hence D(AK) ⊂ A−1

0 H ⊥+̇H . �

Operator AK is an analogue of the Krein extension of A00 (see [3,28]), which
explains the notation. In this respect, the selfadjoint operator A0 can be interpreted
as the Friedrichs extension of A00. Operator Λ was studied by M. Vishik in the
context of elliptic boundary value problems in [43]. The same paper introduces
the boundary operator Γ1 − ΛΓ0 associated with the Krein extension AK as an
alternative to the more customary map Γ1 equated with the trace of the normal
derivative on the domain’s boundary. Later mapping properties of Λ acting in
the scale of Sobolev spaces on the boundary were obtained by G. Grubb in the
paper [24], where in particular the map Γ1 − ΛΓ0 was rewritten as Γ1(I − ΠΓ0).
Further references regarding boundary conditions for the Krein extension can be
found in [25].

In conclusion of the section we note that it is possible to develop a variant
of extensions theory of symmetric operators for the pair of operators A00 and A.
In particular, consider an extension AB of A00 defined as a restriction of A to
the domain D(AB) := {u ∈ D(A) | (Γ1 − ΛΓ0)u = BΓ0u} with some bounded
and boundedly invertible operator B. Under assumption B−1E ⊂ Γ0H , it can be
shown that AB is also boundedly invertible and

A−1
B = A−1

0 + ΠB−1Π∗ . (2.14)

Formally, B = ∞ in (2.14) describes the operator A0, and the case B = 0 corre-
sponds to the Krein extension AK , cf. [3]. Results regarding other types of exten-
sions will be published elsewhere.

3. Associated operator colligation and corresponding open system

In the previous sections we studied the null extension A of the selfadjoint opera-
tor A0 to the set D(A0)+̇H subject to Assumption 1. The mapping Γ1 in (2.1)
plays the role of the boundary map complementary to Γ0. Its definition involves
one parameter, a symmetric operator Λ with the dense domain Γ0H . It was shown
that the extension A defines the spectral boundary value problem (2.3). In this
section we connect the problem (2.3) with the so called operator d-node, or an op-
erator colligation. In general, an operator colligation is a collection of two Hilbert
spaces and three bounded mappings. Subsequently, there are many ways to in-
corporate objects related to the boundary value problem into a colligation. The
guidance in this regard is provided by the book [30] where an operator colligation
is treated as a mathematical abstraction for an open system. Roughly speaking,
open systems are systems coupled to the external world by means of some kind
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of channels attached to it. Notions of input, output, and internal state are fully
applicable to open systems. In fact, internal states are represented as vectors from
the interior space, one of the Hilbert spaces comprising the colligation, whereas
inputs and outputs are modeled as elements of the second Hilbert space called
external, or coupling space. One of three mappings of a colligation represents the
interior operator of the corresponding system considered in isolation from the
external word, that is, with the coupling channels cut off. The second operator
depicts interactions of the interior of the system with the channels, and the third
operator describes the metric nature of the channels. Usually it is an involution,
i.e. a selfadjoint unitary operator acting in the coupling space. The key element of
open systems theory is the system’s transfer function. As one may expect, it is an
analytic function that maps inputs into outputs.

Our goal in this section therefore can be stated as follows. Given boundary
value problem (2.3) we are looking for a suitable operator colligation that would
correspond to an open system effectively capturing principal characteristics of
this BVP. One of these characteristics is undoubtedly the Weyl–Titchmarsh func-
tion M( · ), and the open system constructed in this section possesses the transfer
function that coincides with the function m(z) := M(z) − M(0), z ∈ ρ(A0). Once
this colligation (or open system) is obtained, other objects such as spaces E, H
and operators Π, A0, and R( · ) become endowed with the clear physical mean-
ing expressed in terms of this system. Connections among the null extension A,
the BVP (2.3), and the open system establish the sought for relationship of the
Weyl–Titchmarsh functions theory to the theory of open system. Linkage of the
open systems theory to the linear systems with boundary control is the main sub-
ject of the next section. It will be shown that the open system associated with
a given BVP essentially is the reciprocal of the boundary control system defined
by this BVP in accordance with the mainstream theory [20, 29, 40]. With this re-
sult in place, we accomplish the paper’s promise by connecting boundary value
problems and their Weyl–Titchmarsh functions to the open systems theory due to
M. S. Livšic, and then by going a bit further, to the linear systems with boundary
control.

3.1. Associated operator colligation

The next definition of operator colligation is taken from [15,30].

Definition 3.1. Operator colligation is the collection of five objects traditionally
written in the form

M =
(

T
√

2 K J
H E

)
(3.1)

where H and E are two Hilbert spaces, and T , K, and J = J∗ = J−1 are bounded
linear operators:

T : H → H , K : E → H , J : E → E

The mapping T : H → H is called the interior operator; the operator K : E → H
and its adjoint K∗ : H → E are called the coupling operators.
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In comparison with [15,30], we single out the multiplier
√

2, which is conve-
nient for our purposes. Following an alternative word usage, sometimes we shall
employ the term operator node for the colligation (3.1), and sometimes shall de-
note the colligation (3.1) as the list of its components:

M =
{
T,K,H,E, J

}

According to this section’s plan, we are going to relate the null extension A to
with a certain operator colligation referred to as its associated colligation.

Definition 3.2. For the pair {A0,H } satisfying Assumption 1 the associated col-
ligation (node) is defined by

M =
{
A−1

0 ,Π,H,E, IE

}
(3.2)

Definition 3.2 is a foundation for the subsequent interpretation of (2.3), or
the null extension A, as a problem of the open systems theory. In order to make
the relationship (3.2) between BPVs and colligations precise, a characterization
of colligations associated with boundary value problems studied in Section 2 is
needed. It is given in the next theorem.

Theorem 3.3. Suppose the pair {A0,H } satisfies Assumption 1, hence defines a
boundary value problem (2.3). The mapping

{A0,H } �→ (M,E )

where E := Γ0H ⊂ E is a linear set and M is defined by (3.2) is an one-to-
one correspondence between the pairs {A0,H } subject to Assumption 1 and the
pairs (M,E ) of colligation M =

{
T,K,H,E, J

}
and linear set E ⊂ E with fol-

lowing properties
1. N (T ) = {0}, R(T ) �= H, R(T ) = H, and T = T ∗, so that there exists the

unbounded (selfadjoint) operator T−1 with the domain D(T−1) = R(T ).
2. The equality R(T ) ∩ KE = {0} holds.
3. The implication Kϕ = 0, ϕ ∈ E =⇒ ϕ = 0 is valid.
4. The set E is dense in E.
5. J = IE.

Proof. Let M = {T,K,H,E, J} be the node (3.2) associated with the null ex-
tension A corresponding to {A0,H } and Λ = 0. Then T = A−1

0 is selfadjoint,
D(A0) = R(T ), K = Π, and J = IE . Define the set E := γH = Γ0H , so that
H = ΠE = KE . Therefore, all four statements about the pair (M,E ) hold true
due to Assumption 1.

In order to prove the inverse let M =
{
T,K,H,E, IE

}
be some colliga-

tion (3.1) with J = IE and let E be a dense linear set in E satisfying all conditions
of the theorem. Then the pair (M,E ) uniquely defines a null extension A of the self-
adjoint operator A0 := T−1 to the set R(T )+̇H with H := KE . Let us show that
Assumption 1 for this extension is valid. Indeed, D(A0)∩H = R(T )∩KE = {0}
and K is the left inverse to the linear mapping Γ0 : Tf+̇Kϕ �→ ϕ, f ∈ H, ϕ ∈ E
restricted to the set KE . Thus, Π = K, H = KE , and Γ0H = E .

The proof is complete. �
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Theorem 3.3 implies that the triplet {A0,H ,Λ} is uniquely determined
by (M,Λ), where Λ is the parameter in (2.1) and M is the colligation (3.2). There-
fore the pair (M,Λ) where M satisfies conditions of Theorem 3.3 and Λ is some
symmetric operator on the domain D(Λ) := E determines the Weyl–Titchmarsh
function of BVP constructed by {A0,H ,Λ} uniquely. The inverse statement is
valid only partially, and under some additional conditions imposed on the opera-
tor A.

Theorem 3.4. In the notation introduced above, let M̃ = {T̃ , K̃, H̃, E, IE} be an
operator colligation and Ẽ ⊂ E be a linear set that satisfy conditions of Theo-
rem 3.3. For z ∈ ρ(Ã0) and Ã0 := T̃−1 denote M̃(z) some Weyl–Titchmarsh func-
tion of the corresponding null extension Ã. Suppose both linear spans

∨
n≥0 A−n

0 E,
∨

n≥0 Ã−n
0 E are dense in H and H̃, respectively. Assume that for some neighbor-

hood of the origin X ⊂ ρ(A0)∩ ρ(Ã0) the identity M(z)−M(0) = M̃(z)− M̃(0),
z ∈ X holds. Then operators A0 and Ã0 are unitarily equivalent, that is UA0 =
Ã0U , where U : H → H̃ is an isometry. Moreover, UK = K̃.

Proof. According to [15], the analytic operator function

S(λ) = I + i
[
M(1/λ) − M(0)

]
= I − iK∗(T − λI)−1K , λ ∈ ρ(T )

coincides with the so called characteristic function of the operator colligation M.
The required result is the known fact of the operator colligations theory (see [15],
Theorem 3.2).

The proof is complete. �
Theorems 3.3 and 3.4 show that the associated node defined by (3.2) has prop-

erties sufficient to recover the boundary value problem associated with it except
for the second boundary operator Γ1. Complemented with a symmetric densely
defined map Λ, the associated node M represents the BVP and the operator Γ1

up to unitary equivalence. It is convenient to summarize the connections of the
triplet {A0,H ,Λ} with the corresponding pair (M,Λ) in a few formulae. Below
we assume f ∈ H, ϕ ∈ E .

A0 = T−1 , Π = K , H = E , D(A) = R(T )+̇KE

A : Tf + Kϕ �→ f

Γ0 : Tf + Kϕ �→ ϕ

Γ1 : Tf + Kϕ �→ K∗f + Λϕ

M(z) : ϕ �→ Λϕ + zK∗(I − zT )−1Kϕ

(3.3)

Clearly, any particular choice of Λ affects the operator Γ1 and the Weyl–Titchmarsh
function M( · ), whereas the associated colligation M does not depend on such
choices. Note as well that one can introduce a null extension and corresponding
spectral boundary value problem (2.3) by presenting the colligation M and the
dense set E ⊂ E that satisfy conditions of Theorem 3.3. Assuming a symmetric
operator Λ, D(Λ) = E is given, two last formulae in (3.3) serve as definitions
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of the boundary operator Γ1 and Weyl–Titchmarsh function M( · ). It is worth
mentioning that the choice Λ = 0, which is equivalent to M(0) = 0, is always
possible.

3.2. M. S. Livšic’s open system

The open systems theory developed by M. S. Livšic in his seminal book [30] states
that any node M =

{
T,K,H,E, J

}
corresponds to a certain open stationary dy-

namic system connected with the external world via so-called coupling channels.
The system’s internal states are represented by vectors from the interior space H
often called the state space, whereas the system’s input and output are repre-
sented by vectors from the coupling (exterior) space E. The stationarity of the
system signifies that its properties do not depend on time. In the case of system
corresponding to the node M =

{
T,K,H,E, J

}
the stationarity means that the

operators T , K, and J are constants, i. e. are independent on the parameter z ∈ C.
Let us set forth relevant definitions derived from [30].

Definition 3.5 (M. S. Livšic). Let H, E be two Hilbert spaces. An open system F
with coupling space E and interior space H is comprised of two linear mappings:
the input–interior transformation R : φ− �→ ψ and input–output transforma-
tion S : φ− �→ φ+, φ± ∈ E, ψ ∈ H. The vectors φ−, φ+ and ψ are called input,
output and internal state of the system F , respectively. An open system is denoted
by the symbol

F

⎛

⎜
⎝

S φ+

φ−
����

���
��

R ψ

⎞

⎟
⎠ (3.4)

The book [30] describes various ways to relate a given operator node to an
open system. One of them is commonly known; it is used when the interior opera-
tor T of the node is nonselfadjoint and operators K and J from the definition (3.1)
satisfy the equation 2iKJK∗ = T − T ∗. Another method is suitable if T is self-
adjoint. Then the mappings K and J can be chosen arbitrary and we are going
to use this fact to define an open system corresponding to the colligation (3.2)
associated with a given BVP. Let us cite the relevant definition from [30].

Definition 3.6 (M. S. Livšic). A node M = {T,K,H,E, J} as in (3.1) is called the
d-node of system F with respect to the number z0 ∈ C if the input–output and
input–interior transformations S : φ− �→ φ+, R : φ− �→ ψ are connected with M

by relations:
[
I − (z − z0)T

]
ψ = Kφ− ,

φ+ = −i(z − z0)JK∗ψ

= −i(z − z0)JK∗[I − (z − z0)T
]−1

Kφ−

⎫
⎪⎪⎬

⎪⎪⎭
(3.5)

If so, it is said that the d-node M belongs to the system F = F [M]. The transfor-
mation S : φ− �→ φ+ is an operator function defined on all input vectors φ− ∈ E
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and analytic for all z such that 1
z−z0

∈ ρ(T ). It is called a transfer function of the
system F [M] or its d-node M. Vectors {Kφ−} are termed channel vectors.

Now we return to the triplet {A0,H ,Λ} and the corresponding pair (M,Λ).
Assuming z ∈ ρ(A0) and putting z0 = 0 in (3.5) we see that the colligation M

defined in (3.2) and (3.3) is a d-node of the system F [M] described by relations

ψ = (I − zA−1
0 )−1Πφ− ,

φ+ = −izΠ∗ψ = −izΠ∗(I − zA−1
0 )−1Πφ−

}

(3.6)

Formulae (3.6) express the input–interior transformation R and the transfer func-
tion S of this system. They are

R(z) = (I − zA−1
0 )−1Π , S(z) = −izΠ∗(I − zA−1

0 )−1Π , z ∈ ρ(A0) (3.7)

The input and output of system F [M] are vectors φ± of the space E. Now we can
make the fundamental observation, namely that the function R(z) : E → H, z ∈
ρ(A0) in fact was introduced earlier by (2.7). It coincides with the mapping ϕ �→
uϕ

z , where uϕ
z is a solution to (2.3) with f = 0. Moreover, the transfer function S

from (3.7) is the z-dependent part of the Weyl–Titchmarsh function multiplied by
−i, in other words, S(z) = −i[M(z)−M(0)], z ∈ ρ(A0). Below we summarize these
and some other observations obtained by direct comparison of results of Section 2
with the established relationship between the BVP (2.3) (or the null extension A)
and the open system F [M].

Proposition 3.7. Following statements hold true:

• The internal state ψ = Rφ− of the system F [M] defined in (3.6) is the
solution uϕ

z to the problem (2.3) with f = 0 as described by Theorem 2.5.
It corresponds to the choice of input φ− = ϕ ∈ Γ0H , in which case Rφ−

belongs to N (A − zI).
• The set H consists of the channel vectors of system F [M] obtained by the

mapping φ− �→ Πφ− from the inputs φ− ∈ Γ0H .
• For an arbitrary input φ− ∈ E the internal state Rφ− is the weak solution to

the problem (2.3) with f = 0 in the sense of Definition 2.3 and Πφ− is the
corresponding channel vector.

• The transfer function S from (3.7) is an analytic bounded operator function.
It does not depend on the particular choice of operator Λ and is related to the
Weyl–Titchmarsh function M of {A0,H ,Λ} by the formula S = −i(M −Λ).

Proposition 3.7 provides the link announced in the beginning of this section
between BVPs studied in Section 2 and some class of open systems, thereby offering
a system-theoretic interpretation for BVPs satisfying Assumption 1.

3.3. Remarks

The established connection between boundary value problems and open systems
can be further clarified by simple observations about their relationships.
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1. Comparison of (2.8) and (3.7) leads to the representation for Weyl–Titch-
marsh function M( · ) in terms of the pair (M,Λ)

M(z) = Λ + iS(z) , z ∈ ρ(A0) , (3.8)

where the domain of M( · ) is equal to D(Λ) = Γ0H . Noting that the output of
system F [M] is given as φ+ = S(z)φ−, we can interpret the Weyl–Titchmarsh
function as transfer function of an open system formally written as

F

⎛

⎜
⎝

Λ + iS φ+

φ−
����

����
�

R ψ

⎞

⎟
⎠ , φ− ∈ D(Λ) (3.9)

This notation is formal because values of Λ+ iS need not be bounded operators on
the coupling space E. Admissible input vectors {φ−} of this system for which the
input-output transformation can be defined, belong to D(Λ) = Γ0H . The interior
states of systems F and F [M] coincide and equal to the set of solutions {uϕ

z } of
the spectral problem (2.3) with f = 0, ϕ ∈ Γ0H , z ∈ ρ(A0). In other words, the
input–interior transformation of system F is the restriction of the input–interior
transformation R of system F [M] to the set Γ0H . Finally, the output vectors
of (3.9) are vectors {Γ1u

ϕ
z }, that is, images of admissible inputs under the mapping

of Weyl–Titchmarsh function M( · ). For φ− ∈ D(Λ) = Γ0H inputs, outputs and
internal states of systems F and F [M] from (3.9) and (3.4) are related as follows

φ− = φ− , φ+ = Sφ− = i(Λφ− − φ+) , ψ = ψ , φ− ∈ D(Λ) .

2. For z ∈ ρ(A0) and input vector ϕ ∈ Γ0H the output φ+ = Γ1u
ϕ
z =

M(z)Γ0u
ϕ
z of system F is represented as a sum of Λϕ and an analytic vector

function iS(z)ϕ of the variable z ∈ ρ(A0). In applications, where the spectral
parameter z ∈ C has the meaning of oscillation frequency, the first summand Λϕ
is interpreted as a “static reaction” of the system, i.e., the reaction at the zero
frequency. Following terminology of the system theory, the map Λ is called a
feedthrough operator. Vector Λϕ is not defined for all inputs ϕ ∈ E unless Λ is
bounded. For z ∈ ρ(A0) in a small vicinity of the origin, the summand iS(z)ϕ
describes low-frequency oscillations of the system F around its static reaction Λϕ.
Obviously, if the static reaction is taken into account by extraction of Λϕ from the
output, the analysis of a such modified system should be greatly simplified. More
accurately, according to (3.8), the equality Γ1u

ϕ
z = M(z)Γ0u

ϕ
z for the input–output

mapping of the system F can be rewritten in the form

(Γ1 − ΛΓ0) uϕ
z = iS(z)Γ0u

ϕ
z , (3.10)

hence the function iS(z) maps the input vector ϕ = Γ0u
ϕ
z into (Γ1 − ΛΓ0) uϕ

z . Thus
we arrive at the system with the input–output transformation φ− �→ φ+−Λφ−, the
null feedback operator, and the transfer function iS(z) describing small oscillations
around the system’s static reaction.

3. According to the systems theory terminology, the system F [M] is called
approximately controllable, if the set of its internal states is dense in the interior
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space. Due to (3.7), this condition means density of the linear span

∨

e∈E, z∈ρ(A0)

(
I − zA−1

0

)−1Πe

in the whole space H. The power series expansion of the resolvent combined with
the Theorem 3.4 now result in the following observation.

Remark 3.8. Let S and S̃ be the transfer functions of two approximately control-
lable systems with the same coupling space E. If S(0) = S̃(0) = 0 and S(z) = S̃(z)
in some neighborhood of the origin, then the d-nodes that belong to these systems
are unitarily equivalent in the sense of Theorem 3.4.

Another important notion of systems theory is the system’s observability. In
application to the system F [M] with the transfer function S(z), z ∈ ρ(A0) it seems
natural to call an internal state uz ∈ N (A− zI) unobservable if its corresponding
output (Γ1−ΛΓ0)uz is equal to zero, cf. (3.10). Note that according to this definition
the set of unobservable vectors depends on the parameter z ∈ ρ(A0) and can
be empty. Since all internal states of F [M] are elements of H represented in
the form uϕ

z = (I − zA−1
0 )−1Πϕ with z ∈ ρ(A0), ϕ ∈ Γ0H , we see that for a

given z ∈ ρ(A0) unobservable vectors of F [M] are in fact the solutions to the
homogeneous BVP

{
(A − zI)u = 0
(Γ1 − ΛΓ0)u = 0 (3.11)

In other words, if for some ϕ ∈ Γ0H , z ∈ ρ(A0) the internal state uϕ
z = (I −

zA−1
0 )−1Πϕ satisfies the “boundary condition” (Γ1−ΛΓ0)uϕ

z = 0, then the state uϕ
z

is unobservable. Another way to describe unobservable vectors can be based di-
rectly on the definition of the transfer function S( · ) of the system F [M]. Indeed,
the state uϕ

z is unobservable if and only if S(z)ϕ = 0. It is easy to see that corre-
sponding unobservable internal states in this case are nothing but weak solutions
to the equation (A−zI)u = 0. Note as well that any vector from H satisfies (3.11)
with z = 0, therefore H consists of unobservable states of the system F [M] at
the zero frequency z = 0 (unobservable static reactions).

4. The condition (2.13) of the “regular” behavior of the function M(z) along
the imaginary axis in the upper half plane can be used as a definition for a class
of “regular” systems (and corresponding boundary value problems). For these
systems the summands in the decomposition M = Λ + iS are not independent.
Equivalently, the components of the pair (M,Λ), independent in general, in this
case are related to each other. Namely, under assumption M(iy)ϕ → 0 when
y → ∞ for any ϕ ∈ Γ0H , the operator Λ is reconstructed from the operator
function S(z), which in turn is uniquely determined by the colligation M, by the
limiting procedure Λϕ = − limy→∞ iS(iy)ϕ with ϕ ∈ Γ0H .
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4. Connection with the linear boundary control systems theory

The preceding sections showed that the null extension A uniquely determines the
open system F [M] and the spectral boundary value problem (2.3). Subsequent
introduction of one more operator Γ1 = Π∗A+ΛΓ0 allowed us to define the Weyl–
Titchmarsh function M(z), z ∈ ρ(A0) of the problem (2.3) and express its various
properties in terms of the open system F [M] whose transfer function is uniquely
determined by M(z). In this section we establish a certain relationship between
the theory developed in the paper and the theory of linear systems with boundary
control. It turns out that the open system (3.2) associated with the BVP (2.3) is
the reciprocal [19,40] of some system with boundary control [20,29,35,40]. It will
be shown that the transfer function of this boundary control systems coincides
with Weyl–Titchmarsh function of the problem (2.3).

The research is based on the obtained in Theorem 2.6 characteristics of BVPs
that correspond to null extensions subject to Assumption 1. The problem (2.6)
gives rise to the linear system described by the main operator A and control intro-
duced by the vector ϕ from the boundary space E. In accordance with common
practice established in the control theory, consider Γ1 as the observation operator
that maps internal states of the system into its output. In other words, define the
output of system as y = Γ1u

ϕ
z where uϕ

z is the internal state corresponding to the
input ϕ ∈ E.

Suppose all conditions of Theorem 2.6 are satisfied for A, Γ0, Γ1, and the
input ϕ belongs to Γ0H . Then we can seek the solution u to the problem (2.6)
in the form u = A−1

0 x + h with some x ∈ H and h ∈ H . Substitution into (2.6)
yields the equation (I − zA−1

0 )x = zh for unknown vector x. From Γ0u = ϕ we
obtain Γ0h = ϕ, therefore h = Πϕ. It follows that for the solution u = A−1

0 x + h
the controllability condition Γ0u = ϕ is fulfilled automatically if we put h = Πϕ.
At the same time the equation for x ∈ H takes the form

(
z−1 − A−1

0

)
x = Πϕ.

The output y = Γ1u now can be rewritten as y = Γ1(A−1
0 x + h) = Π∗x + Λϕ. Let

us sum up these results in a proposition.

Proposition 4.1. For any control ϕ ∈ Γ0H the system with boundary control de-
scribed by the problem (2.6) with unknown u ∈ D(A) and with the observation
mapping defined as u �→ y = Γ1u is equivalent to the system associated with the
problem

z−1x = A−1
0 x + Πϕ

y = Π∗x + Λϕ
(4.1)

where unknown vectors u ∈ D(A) and x ∈ H are related by the formula u =
A−1

0 x + Πϕ.

Equalities (4.1) describe the linear system with the internal state x, the
bounded main operator A−1

0 , and the term Πϕ representing control. The output
of system (4.1) is given by the map x �→ Π∗x+Λϕ. In this light, Π∗ and Λ are the
observation and feedthrough operators, respectively. Thus, the system (2.6) with
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internal states u ∈ D(A) is equivalent to the system described by (4.1). Internal
states of these two systems are related as u = A−1

0 x + Πϕ. Moreover, calcula-
tions carried out in Section 2 show that the transfer function of (2.6) defined as
mapping ϕ �→ Γ1u

ϕ
z , where uϕ

z is the solution to (2.6), is the Weyl–Titchmarsh
function M(z), z ∈ ρ(A0) whose building blocks A−1

0 , Π, and Λ are bounded
operators defined by the system (4.1). The price paid for this reduction from un-
bounded maps A, Γ0 in (2.6) to bounded A−1

0 , Π in (4.1) is the possibly unbounded
feedthrough operator Λ of (4.1) compared to the null feedthrough operator of (2.6).

One remarkable detail about system (4.1) is that the control and observation
maps are mutually adjoint to each other. Consequently, the matrix of this system
written according to the standard notation of linear systems theory (see [5, 40])

(
A−1

0 Π
Π∗ Λ

)

is selfadjoint (assuming the symmetric feedthrough map Λ is in fact selfadjoint).
Such systems are studied in the theory of electrical circuits, where they are com-
monly termed resistance systems. The meaning of their transfer functions is the
electrical impedance that maps “voltage” into “current strength”, see [5].

5. Weyl–Titchmarsh function of the Schrödinger operator

Obtained results are equally applicable to the theory of boundary value prob-
lems and to the theory of linear systems theory; consequently, it is possible to
illustrate the main points of the paper by examples originating in either of these
two disciplines. One such example has been already mentioned in the Introduc-
tion. It consists of the Dirichlet boundary value problem for the Laplacian on the
bounded simply connected domain Ω ⊂ R

3 with the smooth boundary Γ. The
Dirichlet Laplacian A0 defined on functions from the usual Sobolev class H2(Ω)
vanishing on the boundary Γ gives rise to the null extension A of A0 to the
set D(A) := D(A0)+̇H where H denotes the subset of harmonic functions in Ω
with smooth traces on Γ. Assumption 1 is easily verified on the grounds of well-
known properties of harmonic functions in Ω and selfadjointness of A0 proven for
example in [16]. The boundary map Γ0 is the trace operator defined on D(A).
Then the map Π is the operator of harmonic continuation from the boundary Γ to
the interior of domain Ω defined on smooth functions on Γ. The Green’s identity
for the Laplacian suggests the second boundary operator Γ1 chosen as the trace of
normal derivative of functions from D(A) on the boundary Γ. With this choice, the
Weyl–Titchmarsh function M( · ) maps a smooth function ϕ on Γ to the trace of
normal derivative of the solution to the problem (A−zI)u = 0 satisfying boundary
condition u|Γ = ϕ. Representations of M( · ) in the form of a pseudodifferential
operator acting in L2(Γ) could be found for example, in [1]. According to the
established terminology, M( · ) is the Dirichlet-to-Neumann map for the Laplace
operator on domain Ω, see [41] for more details. At the same time, M( · ) is the



Vol. 3 (2009) Weyl–Titchmarsh Function 313

transfer function of the linear system generated by the Laplacian in Ω with the
Dirichlet boundary control on Γ.

Of course, this example can be extended to more general situations of opera-
tors and domains. In particular, the case of strongly elliptic operators and systems
defined on domains of lesser regularity (see [32], for instance) is the first candidate
for such generalizations. However, in this section we will explore another setting
where the operator A0 is not defined in terms of boundary conditions. In fact,
its definition does not involve any notion of “boundary” at all. We continue to
consider the null extensions framework as a convenient method to introduce cou-
pling channels into the open system described by operator A0. However, in this
section we emphasize another interpretation of these channels given in the form
of certain perturbations of A0. This “perturbative” aspect of null extensions and
their relation to the general singular perturbations theory [2] will be treated in
detail elsewhere.

The underlying motive of this section is the reconciliation of the Weyl–
Titchmarsh function M( · ) for the three-dimensional Schrödinger operator studied
by W. O. Amrein and D. B. Pearson in [4] with the theory developed in the paper.
The operator A0 is defined in L2(R3) by the differential expression L = −Δ+q(x)
with the real-valued bounded potential function q(x). The domain of A0 is the
usual Sobolev class H2(R3). As will be shown, the function M( · ) from [4] co-
incides with the Weyl–Titchmarsh function of some null extension of A0. Under
additional smoothness conditions on q(x) we also obtain an expression for M( · )
in the form of single layer potential operator associated with the Green’s function
of L = −Δ + q(x) in L2(R3).

Let us start with heuristic considerations. Assume H := L2(R3) and A0 is
a selfadjoint Schrödinger operator defined on the domain D(A0) = H2(R3) and
corresponding to the expression L = −Δ + q(x) under suitable conditions on
the potential q that guarantee σ(A0) �= R. We will assume that A0 is bound-
edly invertible in H. If not, a real constant can be added to A0 to ensure the
equality N (A0) = {0}, see Remark 2.8. Suppose the physical problem under con-
sideration is formulated as a certain “perturbation” of A0 by a smooth closed
compact surface Γ ⊂ R

3 that divides R
3 into the interior domain Ω bounded by Γ

and the exterior domain R
3 \ Ω. The surface Γ is their common boundary. For

example, the problem in hand could be the scattering process by an obstacle Ω
with boundary Γ. The common way to introduce the “perturbed” operator would
be to consider a restriction of A0 to the set of smooth functions vanishing in the
neighborhood of Γ and then to study various extensions of thus obtained symmet-
ric operator corresponding to different types of boundary conditions on Γ (see,
e.g., [13, 36]). Thus the problem naturally breaks into two independent boundary
subproblems; the first one is for the interior of the scatterer, and the second one
is for the external area that includes the infinity. Thus this approach introduces
two separate Hilbert spaces of functions defined inside and outside of the scatterer
whose relation to the unperturbed operator acting in the whole space is rather
loose. Indeed, by the very nature of scattering process the “free” operator A0 does
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not depend on the scatterer at all, whereas two former operators act in the spaces
defined exclusively in terms of the scatterer.

A plausible alternative could consist in consideration of null extensions A of
the operator A0 to the direct sum D(A) := D(A0)+̇H where H is some linear
set of solutions h ∈ L2(R3) to the equation L h = 0. By this choice of H the
intersection H ∩ D(A0) is trivial, since otherwise A0 would be not boundedly
invertible. Below we explore cases when H is composed of single and double layer
potentials associated with L with densities supported by Γ.

Single layer potentials. First, we need to make some assumptions with regard
to the function q(x) that would allow us to employ methods of layer poten-
tials [18, 32, 33]. Although cases of much less regularity can be considered, we
assume for simplicity that q ∈ C∞(R3) and Ω is C∞-domain. It will become
clear later that in fact the only requirements on q and Ω are the existence of
layer potentials associated with L and Γ that possess usual properties of their
acoustic counterparts corresponding to q = 0, see [18, 32]. Under our smoothness
assumptions the resolvent (A0 − zI)−1, z ∈ ρ(A0) is an integral operator with
the kernel G(x, y, z), x, y ∈ R

3. The function G(x, y, z) is infinitely differentiable
if x �= y and has singularities like |x − y|−1 when |x − y| → 0. It is symmetric
in x and y and real-valued for z ∈ ρ(A0) ∩ R. Traditionally G(x, y, z) is called the
Green’s function of A0. Below we assume z ∈ ρ(A0) = C \ [0,∞). Thus G(x, y, z)
is exponentially decaying as |x| → ∞. (see, e.g., [33].)

For smooth functions w on Γ the single-layer potential Szw is defined by

(Szw)(x) :=
∫

Γ

G(x, y, z)w(y)dσy , x ∈ R
3

where dσy is the Euclidian surface measure on Γ. For q(x) = 0 the operator Sz

is the usual acoustic single layer potential for the Helmholtz equation, cf. [18].
Outside the surface Γ functions Szw are infinitely differentiable and satisfy the
equation (L − zI)Szw = 0. Note that since the Lebesque measure of Γ in R

3

is zero, we can say that the layer potential Szw satisfy this equation almost
everywhere in R

3, hence in H = L2(R3). This makes functions Szw at z = 0 good
candidates to the role of channel vectors H = N (A) within the developed above
theory. Denote ∂ν = ∂

∂ν the normal derivative in the direction of outer normal
to the domain Ω defined everywhere on Γ. Proofs of the following properties of
Sz and ∂νSz when x ∈ R

3 \ Γ tends to some x0 ∈ Γ can be found for instance
in [32, 33]. Denote Ω− := Ω and Ω+ := R

3 \ Ω. For z /∈ R operators Sz map the
space E := L2(Γ) into L2(Ω±). Boundary values (Szw)±, (∂νSzw)± of Szw and
∂νSzw on the surface Γ from Ω± exist as elements of L2(Γ). Almost everywhere
on Γ these values satisfy the so-called “jump relations” (cf. [18]):

(Szw)± = Szw , (∂νSzw)± = Tzw ∓ 1
2
w (5.1)
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Here w is assumed continuous on Γ and for almost all x ∈ Γ

(Szw)(x) :=
∫

Γ

G(x, y, z)w(y)dσy , (Tzw)(x) :=
∫

Γ

[
∂ν(x)G(x, y, z)

]
w(y)dσy

Operators Sz and Tz are bounded in L2(Γ). From (5.1) and usual density argu-
ments we obtain almost everywhere on Γ

(Szw)− − (Szw)+ = 0 , (∂νSzw)− − (∂νSzw)+ = w , for w ∈ L2(Γ) (5.2)

Following our approach, let us define H as the set of single layer poten-
tials {S0ϕ} with densities ϕ from some linear manifold E dense in L2(Γ). We
remind that the set H is not assumed to be closed in H. In particular, we can
consider H to be different sets of single layer potentials with densities from var-
ious classes E of functions on Γ. Without loss of generality we assume that E
consists of smooth functions. Then functions from H are infinitely differentiable
in R

3 \ Γ, and continuous in R
3. On the surface Γ normal derivatives of any func-

tion from H is discontinuous according to (5.2). Introduce A as a null extension
of A0 to the domain D(A) := D(A0)+̇H = H2(R3)+̇S0E and define the coupling
operator Π : E → H as ϕ �→ S0ϕ where ϕ ∈ E . The jump relations (5.2) suggest
the following choice for the boundary map: Γ0 : u �→ (∂νu)−|Γ − (∂νu)+|Γ, where
(∂νu)±|Γ are the traces of normal derivatives of u ∈ D(A) on the surface Γ from Ω±.
Then Γ0Πϕ = Γ0S0ϕ = ϕ for ϕ ∈ E , and ΠΓ0h = h for h ∈ H , as required. Fur-
thermore, jumps of normal derivatives of functions from D(A0) on the surface Γ
are equal to zero due to Sobolev imbedding theorems, therefore Γ0D(A0) = 0. We
see now that the pair {A,H } defines a certain boundary value problem satisfying
Assumption 1, and simultaneously a system with boundary control and an open
system of M. S. Livšic.

According to (2.1), the second boundary operator is Γ1 := Π∗A+ΛΓ0, where Λ
is the feedthrough map of the system. It determines the action of Γ1 on the
set H = S0E and always can be chosen arbitrarily as long as it is symmetric
on the domain D(Λ) := E . In order to make a reasonable choice let us calcu-
late Π∗ and Π∗A. Then we can discuss possibilities for Λ and Γ1 more intelligently
on the grounds of obtained results. For ϕ ∈ E and f ∈ L2(R3) we have

(Πϕ, f)H = (S0ϕ, f)H =
∫

R3

(∫

Γ

G(x, y, 0)ϕ(y)dσy

)
f(x) dx

=
∫

Γ

ϕ(y)
(∫

R3
G(x, y, 0)f(x)dx

)
dσy =

(
ϕ, A−1

0 f
∣
∣
Γ

)
E

by the virtue of Fubini’s theorem. Therefore, Π∗ : f �→ A−1
0 f |Γ and Π∗A : f0 �→

f0|Γ for f0 ∈ D(A0). The restrictions A−1
0 f

∣
∣
Γ

of functions from D(A0) = H2(R3)
to the surface Γ exist due to imbedding theorems. Let us choose Γ1 on D(A)
as an operator that maps elements from D(A) = H2(R3)+̇S0E to their traces
on the surface Γ. This definition is unambiguous, since single layer potentials of
continuous functions are continuous in the whole R

3. Then for Λ = Γ1Π we obtain
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Λϕ = S0ϕ|Γ = S0ϕ, ϕ ∈ E . Note that Λ is bounded in L2(E), hence the Weyl–
Titchmarsh function is also bounded. The input–interior transformation R(z) has
the form R(z) : ϕ �→ Szϕ for Szϕ ∈ N (A − zI) and Γ0Szϕ = ϕ. Finally, for the
Weyl–Titchmarsh function we have M(z)ϕ = Γ1R(z)ϕ = (Szϕ)|Γ = Szϕ, so that
M(z) = Sz, where S( · ) is the operator of single layer potential on the surface Γ.

Let us summarize obtained results. Below we assume E := C∞(Γ)

H = L2(R3) , E := L2(Γ) ,

L := −Δ + q(x) , A0f �→ L f , f ∈ D(A0) := H2(R3) ,

A : u �→ L u , u ∈ D(A) := D(A0)+̇H , where H := {S0ϕ | ϕ ∈ E } ,

Γ0 : u �→ (∂νu)−|Γ − (∂νu)+|Γ , Γ1 : u �→ u|Γ , u ∈ D(A) ,

Π : ϕ �→ S0ϕ , Λ : ϕ �→ S0ϕ|Γ = S0ϕ , ϕ ∈ E ,

R(z) : ϕ �→ Szϕ , M(z) : ϕ �→ Szϕ , ϕ ∈ E
(5.3)

Vectors ϕ in (5.3) belong to E since operators Λ and M(z) are bounded, therefore
can be continuously extended from the dense set E to the whole space E.

Now we can turn to the question as to how the M-operator M( · ) of the Schrö-
dinger operator introduced by W. O. Amrein and D. B. Pearson in [4] relates to the
construction above. We will see that for smooth potentials q(x) the function M( · )
coincides with the Weyl–Titchmarsh function M( · ) from (5.3).

Definition 5.1 ([4]). Let L be the Schrödinger differential expression −Δ + q(x)
with the real-valued potential function q(x) ∈ L∞(R3) acting in L2(R3) and S1

be the unit sphere in R
3. For z ∈ C+, the operator M(z) : L2(S1) → L2(S1) is

defined by
M(z)v = −w

where w = γ±f and f ∈ H2(R3 \ S1) is the unique solution of (L − zI)f = 0
subject to conditions

γ+f = γ−f , γ+ ∂f

∂ν
− γ− ∂f

∂ν
= v . (5.4)

Here γ± are trace operators associated with the exterior and the interior of the unit
ball B1 in R

3. It is assumed that the boundary values in (5.4) exists as functions
from L2(S1).

The equality M = M already can be derived by comparison of Definition 5.1
with the formulae (5.3). However, let us give a more detailed account assuming
that q ∈ C∞(R3). Suppose ϕ is a smooth function on S1. For Γ = S1 the formu-
lae (5.3) and the Weyl–Titchmarsh function definition show that M(z)ϕ can be
calculated as follows. First, one need to solve the problem (L − zI)u = 0 inside
and outside of the unit ball subject to the “transmission” conditions u− = u+,
u−−u+ = ϕ imposed on the boundary values of the solutions u±. Here the signs ±
correspond to the domains Ω± with Ω− = B1 and Ω+ = R

3 \ B1. The solution
to this problem in the whole space R

3 is represented as the sum uz = u+ + u−.
The function uz is continuous in R

3 and its derivatives discontinue on the support
of ϕ. In terms of corresponding open system, uz is the interior state obtained from
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the input ϕ by the operator R(z). The Weyl–Titchmarsh function M(z) maps ϕ
to the trace of uz on the surface S1 defined unambiguously since uz is continuous.
Now it is clear that the functions f , v, and w from Definition 5.1 in this notation
are uz, −ϕ, and u|S1 , respectively. Therefore, M(z)ϕ = M(z)ϕ for continuous ϕ,
hence M(z) = M(z), z /∈ R due to boundedness of M and M.

Double layer potentials. A natural variation of the considerations above is the
case of double layer potentials with densities supported by the surface Γ. Then the
channel vectors from H are discontinuous across the surface Γ, but their normal
derivatives are continuous everywhere in R

3. As above, we assume that q and Ω
are such that double-layer potential Dzw defined by

(Dzw)(x) :=
∫

Γ

[
∂ν(y)G(x, y, z)

]
w(y)dσy , x ∈ R

3 \ Γ ,

possesses all usual properties of its acoustic counterpart. In particular, we assume
that the potential Dzw with smooth w defined on Γ has boundary values (Dzw)±

from inside and outside of Ω and the jump relations are valid:

(Dzw)+ − (Dzw)− = w , (∂νDzw)+ − (∂νDzw)− = 0

We choose H to be the set of double layer potentials {D0ϕ} with smooth den-
sities ϕ that belong to some linear set E dense in E := L2(Γ). Noting that the
jump on the surface Γ for any functions from D(A0) = H2(R3) is always equal
to zero, we define the operator Γ0 on D(A) := D(A0)+̇H = H2(R3)+̇D0E to
be Γ0 : u �→ u+|Γ − u−|Γ, where u±|Γ are limit values on Γ from Ω± of the func-
tion u ∈ D(A). The inverse Π = (Γ0|H )−1 is the mapping Π : ϕ �→ D0ϕ defined
on E = Γ0H . Calculations similar to conducted above for single layer potentials
show that the adjoint Π∗ is given by Π∗ : f �→ ∂νA−1

0 f
∣
∣
Γ
, f ∈ H. This formula

holds for any f ∈ H due to boundedness of Π∗ ensured by imbedding theorems.
Therefore, Π∗A : f0 �→ ∂νf0|Γ, f0 ∈ D(A0). Any function f0 ∈ D(A0) has contin-
uous derivatives, thus the trace ∂νf0|Γ is defined unambiguously. Obtained result
for Π∗A suggests a plausible definition for the operator Γ1 = Π∗A + ΛΓ0 on the
domain D(A) = D(A0)+̇D0E as Γ1 : u �→ ∂νu|Γ, u ∈ D(A). Having made this
particular choice of Γ1, we can calculate action of Λ = Γ1Π on the domain E .
Obviously, Λ = Γ1Π : ϕ �→ ∂νD0ϕ|Γ, ϕ ∈ E . Introduce hypersingular operator Rz

defined on smooth functions w from L2(Γ) by

(Rzw)(x) := ∂ν(x)

∫

Γ

[
∂ν(y)G(x, y, z)

]
w(y)dσy

∣
∣
∣
∣
Γ

Values of Rz are unbounded operators in L2(Γ) and it can be shown that for
q ∈ C∞ and Ω of the C∞ class, operators R(z) are pseudodifferential of order 1,
see [32]. Therefore, Λ = R0 is unbounded. Following the line of reasoning employed
for the case of single layer potentials, we conclude that the Weyl–Titchmarsh
function M(z) corresponding to the problem under consideration is Rz, z /∈ R.
This form of the Weyl–Titchmarsh function for the three dimensional Schrödinger
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operator can be treated equally with the M -function M( · ) of W. O. Amrein and
D. B. Pearson discussed above.

The boundary value problem for A0 with q = 0 perturbed by double layer
potentials with boundary conditions Γ0u = λΓ1u where λ ∈ C is a complex param-
eter is closely related to problems arising in acoustics. For the detailed analysis
that involves methods of pseudodifferential operators theory see § 9.4 in [1] and
references therein.

Layer potentials and Dirichlet-to-Neumann maps. In notation of Definition 5.1
the Dirichlet-to-Neumann maps m±(z), z /∈ R associated with L and the exterior
and interior of the unit ball B1 in R

3 are defined by

m+(z) : w �→ γ+ ∂

∂ν
f , m−(z) : w �→ −γ− ∂

∂ν
f (5.5)

where w = γ±f . Direct substitution into (5.4) gives v = [m+(z) + m−(z)]w.
Therefore, M(z) = −[m+(z) + m−(z)]−1 (cf. [4]), and since M(z) = Sz, we obtain
the following representation of the operator Sz in terms of Dirichlet-to-Neumann
maps m±(z):

Sz = −
[
m+(z) + m−(z)

]−1
, z /∈ R (5.6)

In the case of double layer potentials we have Γ0u = γ+u − γ−u and Γ1u =
γ±∂νu where u ∈ D(A) = H2(R3)+̇D0E . It follows from the definition of m±(z)
that Γ1uz = ±m±(z)γ±uz for uz ∈ N (A − zI). On the other hand, results of [4]
show that the inverse operators (m±(z))−1, z /∈ R exist and are bounded in L2(S1).
Therefore boundary values γ±uz can be rewritten as γ±uz = (±m±(z))−1Γ1uz and
for Γ0uz we obtain

Γ0uz = γ+uz − γ−uz =
[(

m+(z)
)−1 +

(
m−(z)

)−1
]
Γ1uz

Comparison with the definition of the Weyl–Titchmarsh function Rz leads to the
following representation for the hypersingular integral on the surface S1

Rz =
[(

m+(z)
)−1 +

(
m−(z)

)−1
]−1

, z /∈ R (5.7)

It is clear from (5.5) that the operators n±(z) = −(m±(z))−1 are the Neu-
mann-to-Dirichlet maps associated with L and the exterior and interior of the
ball B1. This fact was rigorously proven in [4], where it was shown in particular
that values of n±(z) for z /∈ R are compact operators on L2(S1). Note as well that
n±(z) are operator-valued R-functions along with m±(z). The equality (5.7) can
now be rewritten in the form similar to (5.6)

Rz = −
[
n+(z) + n−(z)

]−1
, z /∈ R (5.8)

This similarity clarifies the earlier remark concerning possible treatment of
the hypersingular operator Rz as the alternative Weyl–Titchmarsh function of
the Schrödinger operator L = −Δ + q(x) on L2(R3). Indeed, starting with the
interior and exterior boundary value problems for L with Dirichlet boundary
conditions on S1, or equivalently, with the Dirichlet-to-Neumann maps m±(z),
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z �= R (cf. [4]), one obtains the Weyl–Titchmarsh function of L in the form
of single layer potential Sz as in (5.6). The choice of Neumann boundary condi-
tions in these exterior and interior boundary value problems results in the Weyl–
Titchmarsh function of L defined as the hypersingular integral Rz and expressed
via Neumann-to-Dirichlet maps n±(z), z /∈ R by the formula (5.8).

It is not without interest to observe that the sum m+(z)+m−(z), z /∈ R is in
fact the transfer function of a linear system obtained by the parallel coupling of the
boundary control systems for L corresponding to the interior and exterior of the
ball B1 with the Dirichlet boundary control on S1. A similar remark holds true for
the sum n+(z) + n−(z), z ∈ R. Finally, the representations (5.6), (5.7), and (5.8)
for the operators Sz and Rz in terms of the boundary maps m±(z) and n±(z)
for suitable z ∈ C are likely to be valid for more generic domains and differential
expressions L .

Remarks on singular perturbations. We conclude this section with the following
observation. Arguments of systems theory indicate that coupling channels defined
as layer potentials and introduced into the system governed by the operator A0

are in fact, some kind of perturbations of A0. Obviously, these perturbations are
not additive. The adequate mathematical object that describes this type of per-
turbations is the operator colligation as explained above. However, if one take into
consideration the relation (2.14), it becomes clear that by adding an additional
boundary condition, in other words by introducing a linear dependency on the in-
puts and outputs of the system, the setting is reduced to the case of an extension
of the minimal symmetric operator.

To clarify this point let Γ0 and Γ1 be the boundary operators defined earlier
for the BVP associated with single layer potentials and γ(x) be a continuous func-
tion on Γ. It was shown in [14] that the BVP for −Δ+ I in L2(R3) with boundary
conditions Γ0u = γ(x)Γ1u can be used as a mathematical model of the quantum
mechanical Schrödinger operator perturbed by the singular potential supported
by the surface Γ. Denote this operator T . Formula (2.14) now describes T in
perturbative terms. It shows that T can not be represented as an additive per-
turbation of A0 = −Δ + I defined on H2(R3), but its inverse T−1 is an additive
perturbation of A−1

0 . More precisely, T−1 = A−1
0 + Π(γ−1 − S0)−1Π∗ assuming

the operator γ−1 − S0 is boundedly invertible. Here Π and S0 are the single layer
potential and its restriction to Γ constructed by the surface Γ and integral ker-
nel of −Δ + I. The connection between extensions of symmetric operators and
the theory of singular perturbations is well known and thoroughly described in
the literature [2, 37]. Its interpretation in terms of the systems theory captured
in the paper may prove beneficial for the analysis of linear systems with singular
control [31].
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