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Abstract. Mourre’s commutator theory is a powerful tool to study the con-
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1. Introduction

In the beginning of the eigthies, Mourre’s commutator theory was developed in [20]
to show absolute continuity of the continuous spectrum of N -body Schrödinger
operators and to study their scattering theory (cf. [1,16]). In particular, one wanted
to show their asymptotic completeness and the Mourre estimate (cf. (1.1)) played
a crucial role in the proof (cf. [8, 16]). Now, Mourre’s commutator theory is a
fundamental tool to develop the stationary scattering theory of general self-adjoint
operators. We refer to [1, 8] for details. We point out that the theory is still used
(see [3, 7, 9, 13], for instance) and that there were new developements to apply
it to quantum field theory (cf. [11, 12]). The theory uses a so called differential
inequality technics, that is quite magic and mysterious (to us at least). In this
paper, we propose a new approach and interpretation of the theory. Since the
original method has been developed to a rather sophisticated level (cf. [1,11,22]),
we did not try to optimize our approach and to give new results, but to focus on
an intermediate, interesting situation. However, Theorem 1.4 gives an extension
of results in [6, 7]. We point out that our new approach of Mourre’s commutator
theory is an adaptation of a strategy to get semiclassical resolvent estimates for
Schrödinger operators. This strategy was introduced by the second author in [17]
and further used in [5, 18].
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To enter into the details of our approach, we need some notation and basic
notions (see Subsection 2.1 for details). We consider two self-adjoint (unbounded)
operators H and A acting in some complex Hilbert space H . Let ‖ · ‖ denote the
norm of bounded operators on H . We shall study spectral properties of H with
the help of A. Since the commutator [H, iA] is going to play a central role in the
theory, we need some regularity of H with respect to A to give an appropriate
sense to this commutator. Since H is self-adjoint, its spectrum is included in R.
Given k ∈ N, we say that H ∈ Ck(A) if for some (and thus for all) z �∈ R, for all
f ∈ H , the map R � t �→ eitA(H − z)−1e−itAf ∈ H has the usual Ck regularity.
Let H ∈ C1(A) and I be a bounded interval of R. We say that the Mourre estimate
holds true for H on I if there exist c > 0 and a compact operator K such that

EI(H)[H, iA]EI(H) ≥ cEI(H) +K , (1.1)

in the form sense on H × H . Here EI(H) denotes the spectral measure of H
above I.

Remark 1.1. Let f ∈ H and λ ∈ I with Hf = λf . Then EI(H)f = f . Assume
that H ∈ C1(A). The Virial theorem (cf. [1, Proposition 7.2.10]) implies that
〈f, [H, iA]f〉 = 0. If (1.1) holds true with K = 0 then f must be zero and there
is no eigenvalue of H in I. If (1.1) holds true then the total multiplicity of the
eigenvalues of H in I is finite (cf. [1, Corollary 7.2.11]). A weaker version of this
result is due to Mourre in [20]. For a general discussion on the Virial theorem
see [10].

The main aim of Mourre’s commutator theory is to show the limiting absorp-
tion principle (LAP) on some bounded interval I in R. Given such a I and s ≥ 0,
we say that the LAP, respectively to the triplet (I, s, A), holds true for H if

sup
Rez∈I,Imz �=0

∥
∥〈A〉−s(H − z)−1〈A〉−s

∥
∥ <∞ . (1.2)

Theorem 1.2. Let H ∈ C2(A), I be a bounded, open interval, and s > 1/2. Assume
the strict Mourre estimate, i.e. (1.1) with K = 0, holds true. Then, for any closed
subinterval I ′ of I, the LAP for H respectively to (I ′, s, A) holds true.

Remark 1.3. Assume the Mourre estimate (1.1) holds true on I with K �= 0. Then,
on small enough intervals outside the point spectrum σpp(H) of H , which is finite
by Remark 1.1, the strict Mourre estimate (1.1) with K = 0 holds true (cf. [1])
and Theorem 1.2 applies there. Putting all together, this yields the LAP on any
compact subset of I \ σpp(H).

Compared with previous results, we do not need that the domain D(H) of H
is invariant under the C0-group generated by A (i.e., the propagator of A) or
that H has a spectral gap (cf. [1]). The main reason for this comes from the fact
that we do not work with H itself but with a local version of H , which is a bounded
operator. This explains also why we can replace the global regularity assumption
H ∈ C2(A) by a local one and get a stronger result, namely Theorem 2.7. The latter
is covered by Sahbani’s result in [22] (cf. Remark 2.8). Motivations for Theorem 2.7
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are given in Remarks 2.8 and 2.9. In Subsection 2.5, we give a sketch of the proof of
Theorem 2.7 and present our interpretation of Mourre’s commutator theory, which
is close to the interpretation of Remark 1.1. We do not use the usual differential
inequality technics.

In some sense, Theorem 1.2 (and also Theorem 2.7) is not satisfactory (cf.
Subsection 4.1) and one wishes to replace the resolvent (H − z)−1 in (1.2) by
the reduced resolvent, namely (H − z)−1P⊥, where P⊥ = 1 − P , and P is the
orthogonal projection onto the pure point spectral subspace of H . For s ≥ 0, we
say that the reduced LAP, respectively to the triplet (I, s, A), holds true for H if

sup
Rez∈I,Imz �=0

∥
∥〈A〉−s(H − z)−1P⊥〈A〉−s

∥
∥ <∞ . (1.3)

Theorem 1.4. Let H ∈ C2(A), I be a bounded, open interval and let s > 1/2.
Assume the Mourre estimate (1.1) holds true on I. Assume also that the range
RanPEI of PEI is included in the domain D(A2) of A2. Then, for all closed
interval I ′ included in the interior of I, the reduced LAP (1.3), respectively to
(I ′, s, A), holds true for H.

A similar result appears in [7]. The authors assume a stronger regularity
(essentially like H ∈ C4(A)) that implies RanPEI ⊂ D(A2), by [6], and then
show (1.3). The latter result and Theorem 1.4 actually work with weaker, “local”
assumptions as shown in Proposition 4.1 and Theorem 4.3. As mentioned before,
this local version of the result might be important (cf. Remarks 2.8 and 2.9).
In [7], some Hölder continuity of the boundary values of the reduced resolvent
limε→0+〈A〉−s(H − λ− iε)−1P⊥〈A〉−s is obtained. In Remark 4.6 we explain how
to get this under “local” assumptions, using [22].

We point out that our proofs of Theorems 1.4 and 4.3 is a quite immediate
generalization of our proofs of Theorems 1.2 and 2.7. We also give an alternative
proof of Theorem 4.3 which is close to the corresponding proof in [7]. Notice further
that, Theorems 4.3 works under a projected Mourre estimate (4.28), that is weaker
than (1.1). In Subsection 4.5, we illustrate this difference with an artificial but
interesting example, for which the reduced LAP (1.3) holds true and the usual
Mourre estimate (1.1) is false. This example is however related to the situation
in [9].

Paper’s organisation: In Section 2, we introduce the main tools of our new
approach. Admitting Theorem 2.7, we prove Theorem 1.2 in Subsection 2.2. Sec-
tion 3 is devoted to the proof of Theorem 2.7. In Section 4, we prove Theorems 1.4
and 4.3 on the reduced resolvent. Technical tools are collected in Appendices A,
B, and C.

2. A new approach of the LAP

We explain in this section our strategy to prove Theorem 2.7 below, a stronger
version of Theorem 1.2.
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2.1. Basic facts and notation

In this subsection, we introduce some notation and recall known basic results. We
refer to [1] for details.

In the text, we use the letter I to denote an interval of R. For such a I,
we denote by I (resp. I̊) its closure (resp. its interior). The scalar product 〈·, ·〉
in H is right linear and ‖ · ‖ denotes the corresponding norm and also the norm
of bounded operators on H . If T is a bounded operator on H and k ∈ N, we
say that T ∈ Ck(A) if, for all f ∈ H , the map R � t �→ eitATe−itAf ∈ H
has the usual Ck regularity. It turns out that T ∈ Ck(A) if and only if, for a z
outside the spectrum of T , (T − z)−1 ∈ Ck(A). For such T , T ∈ C1(A) if and
only if the form [T,A] defined on D(A) × D(A) extends to a bounded operator
ad1

A(T ) = [T,A] if and only if T preserves D(A) and the operator TA−AT , defined
on D(A), extends to a bounded operator in H . Furthermore T ∈ Ck(A) if and
only if the iterated commutator adp

A(T ) := [adp−1
A (T ), A] are bounded for p ≤ k. In

particular, for T ∈ C1(A), T ∈ C2(A) if and only if [T,A] ∈ C1(A). For unbounded
self-adjoint operator, we defined the Ck(A) regularity in Section 1. Let H be a
self-adjoint operator and I a bounded interval. Recall that EI(H) denotes the
spectral projection of H above I. If H ∈ C1(A) then the form [H, iA] defined on
(D(H) ∩ D(A)) × (D(H) ∩ D(A)) extend to a bounded operator from D(H) to
its dual for the graph norm. In particular, (1.1) makes sense. A justification of
Remark 1.3 can be found in [1] but we give it in the proof of Theorem 1.4 (for
P = 0). The following propositions and remark will be useful later.

Proposition 2.1. For f, g ∈ D(A), the finite rank operator |f〉〈g| : h �→ 〈g, h〉 · f
belongs to C1(A) and [|f〉〈g|, A] = |f〉〈Ag|−|Af〉〈g|. In particular, if f, g ∈ D(A2),
|f〉〈g| ∈ C2(A). If P is a finite rank projection, the range of which is included in
D(Ak) with k ∈ N, then P ∈ Ck(A).

Proof. Since R := |f〉〈g| preserves D(A), the commutator [|f〉〈g|, A] is well defined
on D(A) and [|f〉〈g|, A] = |f〉〈Ag|−|Af〉〈g|, which extends to a bounded operator.
Thus R ∈ C1(A). Applying the first result to [R,A], |f〉〈g| ∈ C2(A) if f, g ∈ D(A2).
Since P =

∑

1≤n≤N |fn〉〈fn| with N ∈ N, an induction argument gives the last
result. �

Proposition 2.2. Let (Tn)n be a sequence of bounded operators such that, Tn ∈
C1(A), for all n, and such that there exist bounded S, T such that Tn → T and
[Tn, A] → S in the norm topology. Then T ∈ C1(A) and S = [T,A].

Proof. See Lemma 2.5 in [11]. �

Remark 2.3. The LAP, respectively to (I, 0, A), holds true for H if and only if H
has no spectrum in I. The LAP for H , respectively to (I, s, A), implies the LAP
for H , respectively to (I, s′, A), for any s′ ≥ s. For H = −Δ the Laplace operator
in R

d and A the multiplication operator by 〈x〉, it is known that LAP for H ,
respectively to (I, s, A), holds true if and only if s > 1/2 (cf. [15]).
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2.2. Local regularity and main result

In Theorem 1.2, the LAP (1.2) and the Mourre estimate (1.1) are localized in H .
It is quite natural to try to replace H and the global assumption H ∈ C2(A) by
some local version. By [1], we have

Proposition 2.4. Let ϕ ∈ C∞
c (R). Suppose H ∈ Ck(A) for a certain k ∈ N. Then,

ϕ(H) ∈ Ck(A).

For any τ ∈ C∞
c (R), we define the bounded operator

Hτ := Hτ(H) . (2.4)

It turns out that we can deduce the LAP for H respectively to (I, s, A) from the
LAP for Hτ respectively to (I, s, A), if τ = 1 near I, as seen in Proposition 2.13
below. Thus Hτ is a good local (and bounded) version of H . From [22, Proposi-
tion 2.1], we pick the following

Lemma 2.5. Let I be bounded, open interval. Suppose that H ∈ C1(A) and that the
Mourre estimate (1.1) holds true on I. Take θ ∈ C∞

c (I) and τ ∈ C∞
c (R) such that

τθ = θ. Then Hτ ∈ C1(A) and

θ(H)[Hτ , iA]θ(H) ≥ cθ2(H) + θ(H)Kθ(H) . (2.5)

Proof. By Proposition 2.4, Hτ ∈ C1(A). For f ∈ D(Aθ(H)),
〈

Hθ(H)f, iAθ(H)f
〉 − 〈

iAθ(H)f,Hθ(H)f
〉 ≥ c‖θ(H)f‖2 + 〈f,Kf〉 .

Now, use that Hθ(H) = Hτ(H)θ(H). Finally, D(Aθ(H)) is dense in H since
θ(H)A is closed with a dense domain. �

Remark 2.6. In general, one should not expect a “real” Mourre estimate for Hτ

of the form
ϕ(Hτ )[Hτ , iA]ϕ(Hτ ) ≥ cϕ2(Hτ ) +K ,

for a certain function ϕ which satifies the same hypothesis as θ in Lemma 2.5.
Indeed, since 0 ∈ suppθ, there is no such function ϕ such that ϕ(tτ(t)) = θ(t) for
all t ∈ R.

Given an open interval I and k ∈ N, we say that H is locally of class Ck(A)
on I, we write H ∈ Ck

I(A), if, for all ϕ ∈ C∞
c (I), ϕ(H) ∈ Ck(A). This is a local

version of the regularity Ck(A) which was already used in [22].

Proof of Theorem 1.2. Let I ′′ be open such that I ⊂ I′′. By Lemma 2.4, H ∈
C2
I′′(A). Let τ ∈ C∞

c (I ′′) such that τ = 1 near I. Let I1 be closed such that
I ′ ⊂ I̊1 and I1 ⊂ I. Let θ ∈ C∞

c (I) such that θ = 1 on I1. By Lemma 2.5
and (1.1) with K = 0, we derive (2.5), which implies

EI1(H)[Hτ , iA]EI1(H) ≥ cEI1(H) + 0 ,

since θ = 1 on I1. Thus Theorem 2.7 below applies yielding the LAP for H
respectively to (I ′, s, A). �
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So the proof of Theorem 1.2 reduces to the proof of the following stronger
result, which is our main result.

Theorem 2.7. Let I be a bounded, open interval. Let I ′′ be an open interval such
that I ⊂ I′′. Let H ∈ C2

I′′(A) and τ ∈ C∞
c (I ′′) such that τ = 1 near I. Suppose

the strict Mourre estimate

EI(H)[Hτ , iA]EI(H) ≥ cEI(H) , with c > 0 , (2.6)

holds true. Then, for any s > 1/2 and any compact interval I ′ with I ′ ⊂ I̊, the
LAP respectively to (I ′, s, A) holds true for Hτ and H.

Proof. See Subsection 3.1 (and Subsection 2.5 for a sketch). �

Remark 2.8. In [22], the previous result is proved under a weaker local regularity
assumption (slightly stronger than C1

I′′(A)), using Mourre’s differential inequality
technics. Furthermore, an example of multiplication operator H and of conjugate
operator A is given such that H �∈ C1(A) but H ∈ C1

I(A), for some I.

Remark 2.9. Assume that Theorem 1.2 applies to some operators H and A on
some interval I. Let I ′′ be open such that I ⊂ I′′. Let ϕ : R −→ R be a borelian
function such that, for all t ∈ I′′, ϕ(t) = t and ϕ−1(I ′′) = I ′′. Then Theorem 2.7
applies with H replaced by ϕ(H). Since ϕ may be irregular outside I′′, we do not
know if ϕ(H) ∈ C1(A), so if Theorem 1.2 applies to ϕ(H).

2.3. Special sequences and the LAP

In this subsection, we introduce our main tool and its properties. We proceed like
in [17] and use the terminology appearing in this semi-classical setting.

Definition 2.10. A special sequence (fn, zn)n for H associated to (I, s, A), as
in (1.2), is a sequence (fn, zn)n ∈ (D(H) × C)N such that, for certain λ ∈ I and
η ≥ 0, I � Re(zn) → λ, 0 �= Im(zn) → 0, ‖〈A〉−sfn‖ → η, (H − zn)fn ∈ D(〈A〉s),
and ‖〈A〉s(H− zn)fn‖ → 0. The limit η is called the mass of the special sequence.

We give the link between this notion and the LAP in

Proposition 2.11. Given s ≥ 0 and a compact interval I, the LAP for H respec-
tively to (I, s, A) is false if and only if there exists a special sequence (fn, zn)n

for H associated to (I, s, A) with a positive mass.

Proof. Suppose the LAP to be false. There exist a sequence (kn)n of nonnegative
numbers, going to infinity, a sequence (gn)n of non-zero elements of H , and a
sequence (zn)n of complex numbers such that Re(zn) ∈ I, 0 �= Im(zn) → 0, and

∥
∥〈A〉−s(H − zn)−1〈A〉−sgn

∥
∥ = kn ‖gn‖ = 1 . (2.7)

Setting fn = (H−zn)−1〈A〉−sgn, fn ∈ D(H), (H−zn)fn ∈ D(〈A〉s), and, by (2.7),
∥
∥〈A〉−sfn

∥
∥ = 1 and ‖〈A〉s(H − zn)fn‖ = 1/kn −→ 0 .
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Up to a subsequence, we can assume that Re(zn) → λ ∈ I. Now, we assume the
LAP true and consider (fn, zn)n, a special sequence for H associated to (I, s, A).
By (1.2), there exists c > 0 such that

∥
∥〈A〉−sfn

∥
∥ ≤ c‖〈A〉s(H − zn)fn‖ .

This implies η = 0. �
The previous result can be partially localized in energy.

Proposition 2.12. Let (I, s, A) be a triplet as in (1.2) with 0 ≤ s < 1. Let I′′ be
open such that I ⊂ I′′ and H ∈ C1

I′′(A). Let θ ∈ C∞
c (R) such that θ = 1 near I.

Let ϕ : R → R borelian such that, for t ∈ suppθ, ϕ(t) = t. Let (fn, zn)n be a special
sequence for H associated to (I, s, A) with mass η. Then, writing θ̃ = 1 − θ,

1. θ̃(H)fn tends to 0,
2. (θ(H)fn, zn)n is a special sequence for ϕ(H) associated to (I, s, A) with

mass η.

Proof. Since
∥
∥θ̃(H)fn

∥
∥ ≤ ∥

∥θ̃(H)(H − zn)−1〈A〉−s
∥
∥ · ∥

∥〈A〉s(H − zn)fn

∥
∥

and since t �→ θ̃(t)/(t− zn) is uniformly bounded in n, ‖θ̃(H)fn‖ tends to 0. Since
s ≥ 0, ‖〈A〉−sθ̃(H)fn‖ → 0 and therefore ‖〈A〉−sθ(H)fn‖ → η. Since H ∈ C1

I′′(A),
θ(H) ∈ C1(A). Since s < 1, ‖〈A〉sθ(H)〈A〉−s‖ is bounded, by Proposition B.2.
Now,

∥
∥〈A〉s(ϕ(H) − zn

)

θ(H)fn

∥
∥ ≤ ∥

∥〈A〉sθ(H)〈A〉−s
∥
∥ · ∥∥〈A〉s(H − zn)fn

∥
∥

which tends to 0. �
Now we can perform the reduction to some Hτ (cf. (2.4)).

Proposition 2.13. Let (I, s, A) be a triplet as in (1.2) with 0 ≤ s < 1. Let I ′′ be
open such that I ⊂ I′′ and H ∈ C1

I′′(A). Let τ ∈ C∞
c (I ′′) such that τ = 1 near I.

If the LAP respectively to (I, s, A) holds true for Hτ then it holds true for H.

Proof. By contraposition, the result follows from Propositions 2.11 and 2.12. �

Remark 2.14. There is another proof of Proposition 2.13. Let θ ∈ C∞
c (R) with

θ = 1 near I and τθ = θ. Then, using a Neumann serie for |z| large enough and
z �∈ R, we can show that (H − z)−1θ(H) = (Hτ − z)−1θ(H). By analyticity, this
holds true for z �∈ R. Therefore, if the LAP respectively to (I, s, A) is true for Hτ

so is it for H , since 〈A〉sθ(H)〈A〉−s is bounded.

2.4. A Virial-like Theorem

In Remark 1.1, we recalled the Virial Theorem. Our approach is based on the
following Virial-like result.
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Proposition 2.15. Let (fn, zn)n be a special sequence for a bounded, self-adjoint
operator Hb respectively to (I, s, A), as in (1.2) with s ≥ 0. For any bounded
borelian function φ,

lim
n→∞

〈

fn,
[

Hb, φ(A)
]

fn

〉

= 0 .

Proof. Since [Hb, φ(A)] = [Hb − zn, φ(A)],
〈

fn,
[

Hb, φ(A)
]

fn

〉

= 2iIm(zn)
〈

fn, φ(A)fn

〉

+
〈

(Hb − zn)fn, φ(A)fn

〉 − 〈

φ(A)∗fn, (Hb − zn)fn

〉

.

By Definition 2.10, there exists C > 0 such that
∣
∣
〈

(Hb − zn)fn, φ(A)fn

〉∣
∣ ≤ ∣

∣
〈〈A〉s(Hb − zn)fn, 〈A〉−sφ(A)fn

〉∣
∣

≤ C‖φ(A)‖ · ‖〈A〉s(Hb − zn)fn‖ −→
n→∞ 0 .

Similarly, lim〈φ(A)∗fn, (Hb − zn)fn〉 = 0. By Definition 2.10,

Im(zn) · ‖fn‖2 = Im
〈

fn, (Hb − zn)fn

〉

= Im
〈〈A〉−sfn, 〈A〉s(Hb − zn)fn

〉 −→
n→∞ 0 .

Since
∣
∣Im(zn)〈fn, φ(A)fn〉

∣
∣ ≤ |Im(zn)| · ‖fn‖2 · ‖φ(A)‖ ,

we obtain the desired result. �
Remark 2.16. If Hb is not bounded, Proposition 2.15 works, provided the commu-
tator [Hb, φ(A)] is considered as quadratic form.

2.5. Sketch of our proof and interpretation

To prove Theorem 2.7, we only need to show the LAP for Hτ on I ′ by Proposi-
tion 2.13. In view of Proposition 2.11, we consider a special sequence (fn, zn)n

for Hτ associated to the triplet (I, s, A), with s > 1/2, and we show that
η = 0. By Remark 2.3, we may assume that s ∈]1/2; 2/3[. For R > 1, let
χR + χ̃R = 1 be a smooth partition of unity on R with χR localized in {t ∈ R; |t| ≤
2R}. It suffices to show that limR→∞ lim supn→∞ ‖χ̃R(A)〈A〉−sfn‖ = 0 and
limR→∞ lim supn→∞ ‖χR(A)〈A〉−sfn‖ = 0. From the strict Mourre estimate (2.6),
we deduce (2.5) with K = 0. We apply the latter to χ̃R(A)〈A〉−sfn. After several
commutations, the use of Proposition 2.15, and the use of the assumption s > 1/2,
we find some ε > 0 such that, for all R > 1,

lim sup
n→∞

∥
∥χ̃R(A)〈A〉−sfn

∥
∥ = O(R−ε) . (2.8)

Next we apply the Mourre estimate (2.5) to χR(A)fn. After several commutations,
the use of Proposition 2.15, and the use of (2.8), we get

lim
R→∞

lim sup
n→∞

‖χR(A)fn‖ = 0 .

Since s ≥ 0, we obtain the desired results yielding η = 0.
This proof provides the following new interpretation of Theorems 1.2 and 2.7.

The strict Mourre estimate excludes the existence of a special sequence of positive
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mass, yielding the LAP, in a similar way as it excludes the existence of a bound
state in Remark 1.1. Our Virial-like Theorem plays the role of the usual Virial
Theorem.

3. A new proof of the LAP

Here we complete the proof of Theorem 2.7 sketched in Subsection 2.5. We assume
the assumptions of Theorem 2.7 satisfied and take some interval I ′ ⊂ I̊. Let
θ ∈ C∞

c (I) with θ = 1 on I ′. Applying θ(H) on both sides, we deduce from (2.6)
the strict Mourre estimate (2.5) (i.e., with K = 0). We consider a special sequence
(fn, zn)n for Hτ associated to (I, s, A) with s ∈]1/2; 2/3[. By Proposition 2.12, we
may assume that θ(H)fn = fn, for all n. Let us fix some notation. Let χ ∈ C∞

c (R)
such that

χ = 1 on [−1, 1] and χ = 0 on R \ [−2, 2] . (3.9)
We shall require other properties satisfied by χ (see (3.14) below). For R > 1, we
set χR(x) = χ(x/R) for all x ∈ R and χ̃R = 1 − χR. We denote by OR(·) (resp.
oR(·)) the Landau symbol O (resp. o) where the subscript R means that the bound
(resp. the limit) is uniform w.r.t. the other variables.

3.1. Proof of Theorem 2.7

Let χ ∈ C∞
c (R) satisfying (3.9) and (3.14). From Proposition 3.6 and Corollary 3.2

below, we derive that, for all ε > 0,

η = lim
n→∞ ‖〈A〉−sfn‖

≤ lim sup
n→∞

(‖χ̃R(A)〈A〉−sfn‖ + ‖χR(A)〈A〉−sfn‖
)

≤ lim sup
n→∞

(‖χ̃R(A)〈A〉−sfn‖ + ‖χR(A)fn‖
)

= O(R2s−2+ε) .

Letting R go to infinity, we obtain that η = 0. By Proposition 2.11, the LAP holds
true for Hτ respectively to (I ′, s, A). �

3.2. A “large |A|” estimate

We stress that, in this subsection, we suppose that 1/2 < s < 1. The aim of this
part is to show

Proposition 3.1. Let I ′ be closed with I ′ ⊂ I̊ and let (fn, zn)n be a special sequence
for Hτ respectively to (I ′, s, A) with 1 > s > 1/2. Assume that the Mourre esti-
mate (2.5) holds true with θ = 1 on I ′ and K = 0. Let χ ∈ C∞

c (R) satisfying (3.9)
and (3.14) (below). Then, there exist c′ > 0, R1 > 2, and a family (φR)R>1 in
L∞(R), such that, for all R ≥ R1,

〈

fn,
[

Hτ , iφR(A)
]

fn

〉 ≥ c′‖χ̃R(A)〈A〉−sfn‖2

+OR(R−1) · ∥∥χ̃R(A)〈A〉−sfn

∥
∥

+OR(R2s−2) · ∥∥χ̃R/2(A)〈A〉−sfn

∥
∥ .

(3.10)
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Corollary 3.2. Under the hypotheses of Proposition 3.1,

∀α > 2s− 2 , lim sup
n→∞

∥
∥χ̃R(A)〈A〉−sfn

∥
∥ = O(Rα) . (3.11)

Proof. Note first that, for a > 0, ε ≥ 0, and b, c ∈ R,

ε ≥ aX2 + bX + c2 =⇒ |X | ≤
√

ε/a+O
(|b| + |c|) , (3.12)

the latter term being independent of ε. Since (‖〈A〉−sfn‖)n is bounded by Defini-
tion 2.10, it suffices to prove (3.11) for largeR. For fixedR ≥ R1, we combine (3.10)
with (3.12) and Proposition 2.15 to get

lim sup
n→∞

∥
∥χ̃R(A)〈A〉−sfn

∥
∥ ≤ O(R−1)

+ O(Rs−1) · lim sup
n→∞

∥
∥χ̃

R/2(A)〈A〉−sfn

∥
∥

1/2
. (3.13)

We use a bootstrapping argument. Since (‖〈A〉−sfn‖)n is bounded, so is
(‖χ̃R/2(A)〈A〉−sfn‖)n. Then (3.13) gives (3.11) for α = α0 = s − 1. Now we
use this new estimate in (3.13) to get (3.11) for α = α1 = 3(s − 1)/2. By induc-
tion, we get (3.11) for a sequence (αn)n satisfying αn+1 = αn/2 + (s− 1), for all
n ∈ N. By a fixed point argument, αn → 2(s− 1). This yields the result. �

Our strategy to prove Proposition 3.1 is the following. We apply the strict
Mourre estimate (2.5) (with K = 0) to χ̃R(A)〈A〉−sfn. We move the θ(H) to
the fn, which absorb them, since θ(H)fn = fn. We want to pull the weights
χ̃R(A)〈A〉−s into the commutator [Hτ , A], in order to get the term on the l.h.s
of (3.10) with φR(t) = t〈t〉−2sχ̃R(t)2. In view of the proof of Corollary 3.2, we
need 2s ≥ 1. Our manipulation produces of course error terms which should be
small. Using s > 1/2, we actually prove this smallness if we only move the θ(H)
and the 〈A〉−s. Choosing appropriate functions φR, we can move the χ̃R(A) into
the commutator producing an error term which has the good sign, up to small
enough terms. To this end, we choose more carefully the function χ in (3.9). We
demand that χ satisfies (3.9) and that

χ̃ := 1 − χ = χ̃+ + χ̃− , (3.14)

where χ̃1Rσ = χ̃σ for σ ∈ {−,+}, such that χ̃σ and σχ̃
′
σ are square of some smooth

functions (see for instance the appendix in [8] for their existence). Let R > 1. We
set χ̃σ,R = χ̃σ(t/R). Notice that χ̃R = χ̃+,R + χ̃−,R and χ̃

2
R = χ̃2

+,R + χ̃2
−,R.

Proof of Proposition 3.1. Let

h > sup
t∈R

|t|〈t〉−2s . (3.15)

Let R > 1 and φR ∈ C∞(R) defined by

φR(t) =
∑

σ∈{−,+}
χ̃2

σ,R(t)
(

σh− t〈t〉−2s
)

. (3.16)
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For all f ∈ H ,
〈

f,
[

Hτ , iφR(A)
]

f
〉

=
〈

f, χ̃R(A)
[

Hτ ,−iA〈A〉−2s
]
χ̃R(A)f

〉

(3.17)

+ 2
∑

σ∈{−,+}
Re

〈

f,
(

σh−A〈A〉−2s
)
χ̃σ,R(A)

[

Hτ , iχ̃σ,R(A)
]

f
〉

.

We can find some R1 > 2 (see Lemma 3.4 below) such that, for R ≥ R1,
〈
χ̃R(A)fn,

[

Hτ ,−iA〈A〉−2s
]
χ̃R(A)fn

〉 ≥ c′
∥
∥χ̃R(A)〈A〉−sfn

∥
∥

2

+ OR(R−1) · ∥∥χ̃R(A)〈A〉−sfn

∥
∥ (3.18)

with c′ = (2s−1)−1c/2 > 0. Since we are not able to estimate properly the second
term on the r.h.s. of (3.17), we indend to use some positivity argument to get rid of
it. In view of (B.5), we choosed φR in (3.16) such that, the function ψR ∈ C∞

c (R)
defined by

ψR(t) = R
(

φ′R(t) − χ̃2
R(t)(d/dt)

( − t〈t〉−2s
))

=
∑

σ∈{−,+}
(χ̃

′
σ)R(t)

(

σh− t〈t〉−2s
)
χ̃σ,R(t) (3.19)

is the square of a smooth function. We put a factor R in front to ensure that the
family (ψ1/2

R )R is bounded in some symbol space (see Lemma A.4). Notice that
suppψR ⊂ [−2R,−R] ∪ [R, 2R]. We define

CR := ψ
1/2
R (A) and note that CRχ̃R/2(A) = CR . (3.20)

We can show (see Lemma 3.5 below) that
〈

CRfn, [Hτ , iA]CRfn

〉 ≥ OR(R2s−1) · ∥∥χ̃R/2(A)〈A〉−sfn

∥
∥ . (3.21)

By Lemma C.4,

Re
〈

C2
Rfn, [Hτ , iA]fn

〉 ≥ OR(R2s−1) · ∥∥χ̃R/2(A)〈A〉−sfn

∥
∥ ,

since ‖χ̃R/2(A)〈A〉−sfn‖ = OR(R0). Now, by Lemma C.2,

Re
〈

fn,
(

σh−A〈A〉−2s
)
χ̃σ,R(A)

[

Hτ , χ̃σ,R(A)
]

fn

〉 ≥
OR(R2s−1) · ∥∥χ̃R/2(A)〈A〉−sfn

∥
∥ .

This yields, together with (3.17) and (3.18), the result. �

To prove (3.18) and (3.21), we need the following lemmata.

Lemma 3.3. Under the assumptions of Proposition 3.1,
∥
∥
[

θ(H), χR(A)
]

fn

∥
∥ = OR(Rs−1) ,

∥
∥
[

θ(H), CR

]

fn

∥
∥ = OR(Rs−1) ,

∥
∥
[

θ(H), 〈A〉−sχ̃R(A)
]

fn

∥
∥ = OR(R−1) .
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Proof. By Corollary A.3, the families (χ̃R)R>1 and (ψ1/2
R )R>1 are bounded in S0,

while the family (σR : t �→ 〈t〉−sχ̃R(t))R>1 is bounded in S−s. Furthermore,
] −R,R[ does not intersect the supports of χ̃R, ψ1/2

R , and σR. By Lemma B.3,
∥
∥
[

θ(H), χR(A)
]〈A〉s∥∥ =

∥
∥
[

θ(H), χ̃R(A)
]〈A〉s∥∥ = O(Rs−1) ,

∥
∥
[

θ(H), CR

]〈A〉s∥∥ = O(Rs−1) ,
∥
∥
[

θ(H), 〈A〉−sχ̃R(A)
]〈A〉s∥∥ = O(R−1) .

Using the boundness of (‖〈A〉−sfn‖)n (cf. Definition 2.10), this yields the re-
sults. �

Lemma 3.4. The inequality (3.18) holds true.

Proof. Applying (2.5) (with K = 0) to the χ̃R(A)〈A〉−sfn,
〈

θ(H)χ̃R(A)〈A〉−sfn, [Hτ , iA]θ(H)χ̃R(A)〈A〉−sfn

〉 ≥ c
∥
∥θ(H)χ̃R(A)〈A〉−sfn

∥
∥

2
.

Recall that θ(H)fn = fn. By Lemma 3.3,
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∣
∣
〈[

θ(H), χ̃R(A)〈A〉−s
]

fn, [Hτ , iA]χ̃R(A)〈A〉−sfn

〉∣
∣ ,

∣
∣
〈[

θ(H), χ̃R(A)〈A〉−s
]

fn, [Hτ , iA]θ(H)χ̃R(A)〈A〉−sfn

〉∣
∣ ,

∣
∣
〈[

θ(H), χ̃R(A)〈A〉−s
]

fn, χ̃R(A)〈A〉−sfn

〉∣
∣ ,

∣
∣
〈[

θ(H), χ̃R(A)〈A〉−s
]

fn, θ(H)χ̃R(A)〈A〉−sfn

〉∣
∣

are bounded above by OR(R−1) · ‖χ̃R(A)〈A〉−sfn‖. Therefore,
〈
χ̃R(A)〈A〉−sfn, [Hτ , iA]χ̃R(A)〈A〉−sfn

〉 ≥ c
∥
∥χ̃R(A)〈A〉−sfn

∥
∥

2

+OR(R−1) · ∥∥χ̃R(A)〈A〉−sfn

∥
∥

By Lemma C.1, for c′ = (2s− 1)−1c/2, (3.18) holds true for R ≥ R1 > 2, if R1 is
large enough. �

Lemma 3.5. The inequality (3.21) holds true.

Proof. From (2.5) (withK = 0) applied to the CRfn, where CR is defined in (3.20),
we derive that

〈

θ(H)CRfn, [Hτ , iA]θ(H)CRfn

〉 ≥ 0 .

Thanks to (3.20) and to the Lemmata 3.3 and C.3,
{∣

∣
〈[

θ(H), CR

]

fn, [Hτ , iA]CR〈A〉sχ̃R/2(A)〈A〉−sfn

〉∣
∣ ,

∣
∣
〈[

θ(H), CR

]

fn, [Hτ , iA]θ(H)CR〈A〉sχ̃R/2(A)〈A〉−sfn

〉∣
∣

are bounded by OR(R2s−1) · ‖χ̃R/2(A)〈A〉−sfn‖, yielding (3.21). �
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3.3. Absence of mass

The aim of this part is to show

Proposition 3.6. Under the hypotheses of Proposition 3.1 with 1/2 < s < 2/3,

lim
R→∞

lim sup
n→∞

‖χR(A)fn‖ = 0 . (3.22)

Proof. Applying (2.5) (with K = 0) to the χR(A)fn,
〈
χR(A)fn, θ(H)[Hτ , iA]θ(H)χR(A)fn

〉 ≥ c‖θ(H)χR(A)fn‖2 .

By Lemma 3.3,
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

∣
∣
〈[

θ(H), χR(A)
]

fn, [Hτ , iA]χR(A)fn

〉∣
∣ ,

∣
∣
〈[

θ(H), χR(A)
]

fn, [Hτ , iA]θ(H)χR(A)fn

〉∣
∣ ,

∣
∣
〈[

θ(H), χR(A)
]

fn, χR(A)fn

〉∣
∣ ,

∣
∣
〈[

θ(H), χR(A)
]

fn, θ(H)χR(A)fn

〉∣
∣

are bounded by OR(Rs−1) · ‖χR(A)fn‖. Therefore,
〈
χR(A)fn, [Hτ , iA]χR(A)fn

〉 ≥ c‖χR(A)fn‖2 +OR(Rs−1) · ‖χR(A)fn‖ .
Since s < 2/3, we can find β > 0 (see Lemma 3.7 below) such that

∣
∣
〈[

Hτ , χR(A)
]

fn, iAχR(A)fn

〉∣
∣ ≤ OR(R−β)‖χR(A)fn‖ . (3.23)

This yields
〈

fn,
[

Hτ , iAχ
2
R(A)

]

fn

〉 ≥ c‖χR(A)fn‖2 + oR(1) · ‖χR(A)fn‖ .
Now, we combine (3.12) and Proposition 2.15 to arrive at

lim sup
n→∞

‖χR(A)fn‖ = oR(1) . �

To complete the proof of Proposition 3.6, we show

Lemma 3.7. Under the assumptions of Proposition 3.6, there exists β > 0 such
that (3.23) holds true.

Proof. We decompose 〈[Hτ , χR(A)]fn, iAχR(A)fn〉 as
〈[

Hτ , χ̃R(A)
]
χ̃

R/2(A)fn, iAχR(A)fn

〉

(3.24)

+
〈[

Hτ , χ̃R(A)
]
χ

R/2(A)fn, iAχR(A)fn

〉

(3.25)

Since (χ̃R)R is bounded in S0 (cf. Corollary A.3) and since the support of χ̃R

does not intersect ] −R,R[, Lemma B.3 for k = 1 ensures that A[Hτ , χ̃R(A)]〈A〉s
is bounded and its norm is O(Rs). Since s < 2/3, we can find α ∈]2s − 2,−s[.
This implies, using Corollary 3.2, that the absolute value of (3.24) is bounded by
OR(Rs+α) · ‖χR(A)fn‖, with s+ α < 0. By Proposition B.2 with k = 2,

[

Hτ , χ̃R(A)
]
χ

R/2(A) = [Hτ , A]χ̃
′
R(A)χR/2(A) + I2χR/2(A) = I2χR/2(A)
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since suppχ̃
′
R ∩ suppχ̃R/2 = ∅. Lemma B.3 for k = 2 implies that AI2χR/2(A)〈A〉s

is bounded and its norm is O(Rs−1). In particular, the absolute value of (3.25) is
bounded by O(Rs−1) · ‖χR(A)fn‖. �

4. The LAP for the reduced resolvent

4.1. Motivation

An interesting consequence of the LAP (1.2) is the following propagation estimate
(cf. Kato’s local smoothness in [1, 19, 21]): there exists C > 0 such that, for all
f ∈ H ,

∫ ∞

−∞

∥
∥〈A〉−seitHEI(H)f

∥
∥

2
dt ≤ C‖f‖2 . (4.26)

For EI(H)f �= 0, the state eitHEI(H)f must move to “regions where |A| is large”
when t→ −∞ and t→ +∞, since the integral converges. If Hf = λf with λ ∈ I
and f �= 0, then eitHEI(H)f = eitλf , ‖〈A〉−seitHEI(H)f‖ = ‖〈A〉−sf‖, and the
integral in (4.26) diverges. Therefore, the LAP cannot hold true near an eigenvalue
ofH . However it is interesting to find out whether the estimate (4.26) holds true for
nonzero states EI(H)f which are orthogonal to the eigenvectors of H associated
to eigenvalues in I, i.e., nonzero states P⊥EI(H)f . Now the reduced LAP (1.3)
on I ′ with I ⊂ I̊ ′ implies that

sup
Rez∈I,Imz �=0

∥
∥〈A〉−s(H − z)−1P⊥EI′(H)〈A〉−s

∥
∥ <∞

since (H−z)−1ER\I′(H) is uniformly bounded, yielding (4.26) with f replaced by
P⊥f by Kato’s local smoothness (cf. [1,21]). Theorem 1.4 gives a situation where
the latter estimate holds true.

4.2. Eigenvectors’ regularity

Here we extend the result of [6] on the regularity w.r.t. A of eigenvectors of H .

Proposition 4.1. Let I be a bounded, open interval that is included in the continuous
spectrum of H. Let I ′′ be an open interval such I ⊂ I′′. Let H ∈ Ck

I′′(A) with
integer k ≥ 2. Assume that the Mourre estimate (1.1) holds true on I. Then, for
any eigenvector f of H such that EI(H)f = f , f ∈ D(Ak−2).

Proof. Let τ ∈ C∞
c (I ′′) such that τ = 1 near I. Take Hτ as in (2.4). Let f be

an eigenvector of H such that EI(H)f = f . It is also an eigenvector of Hτ with
same eigenvalue. As in the proof of Lemma 2.5, we may replace H par Hτ in the
commutator in (1.1). Now, we can follow the proof in [6], since Hτ ∈ Ck(A). �

Remark 4.2. Proposition 4.1 extends the result in [6] since we only assume the
“local” regularity H ∈ Ck

I′′(A).
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4.3. Proof of Theorem 1.4

As in the proof of Theorem 1.2 in Subsection 2.2, H ∈ C2
I′′(A), for any open

interval I ′′ with I ⊂ I′′. Let θ ∈ C∞
c (I). In particular, θ(H) ∈ C2(A). By Re-

mark 1.1, (1.1) implies that PEI(H) is a finite dimensional projection. By Propo-
sition 2.1, the hypothesis RanPEI(H) ⊂ D(A2) implies that PEI(H) ∈ C2(A).
Since θ(H)P = θ(H)PEI(H), θ(H)P ∈ C2(A). Let τ ∈ C∞

c (I ′′) such that τ = 1
near I. Let I ′ be closed with I ′ ⊂ I̊ and θ ∈ C∞

c (I) with θ = 1 near I ′. By
Lemma 2.5, (2.5) holds true (with Hτ defined in (2.4)). Thus

P⊥θ(H)[Hτ , iA]θ(H)P⊥ ≥ c
(

θ(H)P⊥)2

+ θ(H)P⊥Kθ(H)P⊥ . (4.27)

Let θ1 ∈ C∞
c (I ′). Since P⊥ = 1−P projects onto the continuous spectral subspace

of H , θ1(H)P⊥ converges strongly to 0 as the support of θ1 shrinks to a point.
Since K compact, ‖Kθ1(H)P⊥‖ goes to 0 in the same limit. Multiplying (4.27)
by θ1(H) on both sides and taking the support of θ1 small enough inside I ′, we
obtain

P⊥θ1(H)[Hτ , iA]θ1(H)P⊥ ≥ (c/2)
(

θ1(H)P⊥)2
.

Around any point of I ′, we thus can find some infinite interval I1 ⊂ I such that
the projected Mourre estimate (4.28) below holds true on I1. By Theorem 4.3, the
reduced LAP holds true on any closed I′

1 with I ′
1 ⊂ I̊1. By compacity of I ′, we

get the reduced LAP on it. �
So the proof of Theorem 1.4 reduces to the proof of a local and stronger

version of it, namely

Theorem 4.3. Let I be a bounded, open interval. Let I′′ be an open interval such
I ⊂ I′′. Let H ∈ C2

I′′(A) and assume that, for all θ ∈ C∞
c (I), θ(H)P ∈ C2(A). Let

τ ∈ C∞
c (I ′′) such that τ = 1 near I. Assume the projected Mourre estimate

P⊥EI(H)[Hτ , iA]EI(H)P⊥ ≥ cEI(H)P⊥ , with c > 0 , (4.28)

holds true. Then, for any s > 1/2 and any compact interval I ′ with I ′ ⊂ I̊, the
reduced LAP (1.3), respectively to (I ′, s, A), holds true for Hτ and H.

4.4. Proofs of Theorem 4.3

We shall give two proofs of Theorem 4.3. The first one is a direct generalization
to the present context of our proof of Theorem 2.7. The second proof is close to
the corresponding proof in [7] and shows that Theorem 2.7 actually applies to
HP⊥. In Remark 4.5, we compare the two proofs. In Remark 4.6, we comment on
Sahbani’s result (cf. [22]) in this context.

First proof of Theorem 4.3. By Remark 2.3, we may assume that 1/2 < s < 1.
Assume the reduced LAP for H false on some I ′ ⊂ I̊. Let θ ∈ C∞

c (I) with θ = 1
on I ′. Notice that, since θ(H), θ(H)P ∈ C2(A), θ(H)P⊥ ∈ C2(A). Then, using the
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proof of Proposition 2.11 and 2.12, we can find a special sequence (fn, zn)n for Hτ

with positive mass such that θ(H)fn = fn = P⊥fn, for all n. Since

〈A〉−sfn = 〈A〉−s(Hτ − zn)−1P⊥〈A〉−s〈A〉s(Hτ − zn)fn ,

the reduced LAP for Hτ on I ′ must be false. So it suffices to prove the reduced
LAP for Hτ on I ′. Using Proposition 2.11 and 2.12 in a similar way, we can show
that the reduced LAP for Hτ on I ′ holds true if and only if, for all special sequence
(fn, zn)n for Hτ such that θ(H)fn = fn = P⊥fn, for all n, its mass is 0. Now, we
take such a special sequence (fn, zn)n. Multiplying (4.28) on both sides by θ(H),

P⊥θ(H)[Hτ , iA]θ(H)P⊥ ≥ c
(

θ(H)P⊥)2
. (4.29)

Since θ(H)P⊥ ∈ C2(A), we can follow our proof of Theorem 2.7 in Section 3,
yielding the reduced LAP for Hτ on I ′. �
Second proof of Theorem 4.3. Assume for a while that Theorem 4.3 holds true if
0 �∈ I. Under the assumptions of Theorem 4.3, we can find some real μ such that
0 �∈ μ + I. Notice that H and H + μ have the same eigenvalues and eigenvectors
and that the eigenvalues of H in I are the eigenvalues of H + μ in μ+ I. For any
ϕ : R → R bounded and borelian, ϕ(H) = ϕ((H + μ) − μ), a function of H + μ.
Thus the assumptions of Theorem 4.3 are satisfied if H is replaced by H + μ and
I by μ+ I, and 0 �∈ μ+ I. Thus, it suffices to prove it when 0 �∈ I.

For any θ ∈ C∞(R \ {0}), θ(H)P⊥ = θ(HP⊥) by Lemma 4.4 below. Thus
HP⊥ ∈ C2

I′′(A). Furthermore, using Lemma 2.5, we derive from (4.28) the esti-
mate, for θ ∈ C∞

c (I) with θ = 1 near I ′,

θ(HP⊥)
[

(HP⊥)τ , iA
]

θ(HP⊥) ≥ cθ2(HP⊥) . (4.30)

Now, we can apply Theorem 2.7 to HP⊥ with I = θ−1(1), yielding the LAP for
HP⊥ on I ′. Let z ∈ C with Im(z) �= 0. By Feshbach decomposition (see [2] for
instance), (HP⊥ − z)−1P⊥ = (H − z)−1P⊥. Let Re(z) ∈ I′ and s ∈ [0; 1[. Setting
θ̃ = 1 − θ, we write

〈A〉−s(H − z)−1P⊥〈A〉−s = 〈A〉−s(H − z)−1P⊥θ̃(H)〈A〉−s

+ 〈A〉−s(HP⊥ − z)−1〈A〉−s · 〈A〉sθ(H)P⊥〈A〉−s .

Since θ(H)P⊥ ∈ C1(A), 〈A〉sθ(H)P⊥〈A〉−s is bounded by Proposition B.2. This
yields the reduced LAP (1.3) for H , since (H − z)−1θ̃(H) is uniformly bounded
for Re(z) ∈ I′. �

The second proof of Theorem 4.3 uses the following consequence of the Fes-
hbach decomposition (see [2] for instance).

Lemma 4.4. For all ϕ ∈ C∞
c (R \ {0}), ϕ(HP⊥)P = 0 and ϕ(HP⊥) = ϕ(H)P⊥.

Proof. Let z ∈ C with Im(z) �= 0. By Feshbach decomposition, (HP⊥−z)−1P⊥ =
(H − z)−1P⊥. Using (B.1), ϕ(HP⊥)P⊥ = ϕ(H)P⊥. Since RanP is contained
in the kernel of HP⊥, ϕ(HP⊥)P = ϕ(0)P = 0, by assumption on ϕ. Finally,
ϕ(H)P⊥ = ϕ(HP⊥) − 0. �
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Remark 4.5. In the second proof, the idea is to replace H par HP⊥. Since we
push that way the eigenvectors of H leaving in RanEI(H) in the kernel of HP⊥,
they are no longer an obstacle to the strict Mourre estimate on I, if 0 �∈ I. The
main difference between the two previous proofs is probably the use of energy
translation for H in the second one to avoid the case where 0 ∈ I.

Remark 4.6. In the second proof, HP⊥ ∈ C2
I”(A) and (4.30) is actually a Mourre

estimate for HP⊥. Under the assumptions of Theorem 4.3, Sahbani’s result in [22]
applies and the boundary values of the reduced resolvent have some Hölder conti-
nuity. As shown in the proof of Theorem 1.4, the assumption “θ(H)P ∈ C2(A)” is
satisfied if the Mourre estimate (1.1) holds true on I, included in the continuous
spectrum of H , and if H ∈ C4

I”(A), by Proposition 4.1.

4.5. An artificial but instructive example

In this section, we construct an example of operators H and A, for which Theo-
rems 1.4 and 4.3 apply but the Mourre estimate (1.1) cannot be true. In particular,
Theorems 1.2 and 2.7 do not apply to this example. Our construction is quite arti-
ficial but our operators H and A present some structural similarity with operators
in [9].

Let H0,H1 be infinite dimensional complex Hilbert spaces. Let H0 and A0

be self-adjoint operators in H0 such that H0 is bounded, H0 ∈ C2(A0), and such
that the strict Mourre estimate (1.1) with K = 0 holds true for H0 and A0 on
some bounded, infinite interval I. For instance, we can take suitably a bounded,
infinite interval I included in ]0; +∞[, H0 = L2(Rd), H0 a smooth, increasing,
and bounded function of the Laplacian on R

d, and A0 the generator of dilation
in R

d (cf. [1,20]). Let A1 be self-adjoint operator in H1. Let (gn)n be a bounded se-
quence in D(A2

1) of independent vectors such that it is bounded for the graph norm
of A2

1. Let (αn)n ∈ �1, a sequence of nonzero reals. The serie (
∑

n≥0 αn|gn〉〈gn|)n

converge absolutely in the Banach space of bounded operators on H1. Let C
be its sum. It is a self-adjoint, compact operator of infinite rank. By Proposi-
tion 2.1, each αn|gn〉〈gn| ∈ C2(A1) and (

∑

n≥0 αn[|gn〉〈gn|, A1])n converges abso-
lutely, since (‖gn‖)n and (‖A1gn‖)n are bounded. By Proposition 2.2, C ∈ C1(A1)
and [C,A1] =

∑∞
n=0 αn[|gn〉〈gn|, A1]. Applying this argument again, this implies

that C ∈ C2(A1). Let λ ∈ I̊. We can choose (αn)n such that [λ−‖C‖;λ+‖C‖] ⊂ I.
Let H1 = λ + C. Let H be the bounded self-adjoint operator acting in H :=
H0⊕H1 by H0⊕H1. Let A be the self-adjoint operator acting in H by A0⊕A1.
Since [H, iA] = [H0, iA0]⊕ [C; iA1] as form on D(A)×D(A), the regularity of H0

w.r.t. A0 and the regularity of C w.r.t. A1 imply that H ∈ C2(A). Since RanC
is infinite dimensional and the spectrum of H1 is contained in I, the point spec-
trum of H in I is infinite therefore the Mourre estimate (1.1) cannot hold true
on I by Remark 1.1. Since the strict Mourre estimate for H0 holds true on I,
H0 has no eigenvalue in I by Remark 1.1. Let P be the orthogonal projec-
tion onto the pure point spectral subspace of H . By the previous properties,
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P⊥[H, iA]P⊥ = P⊥([H0, iA0] ⊕ 0)P⊥. Thus the strict Mourre estimate for H0

on I implies the strict, projected Mourre estimate (4.28) for H on I.

Appendix A. Symbolic calculus

In this section, we recall well known facts on symbolic calculus and almost analytic
extensions (see [8][Appendix C]). We also show that some sequences of functions
used in the main text are bounded in some symbol class.

For ρ ∈ R, let Sρ be the class of function ϕ ∈ C∞(R; C) such that

∀k ∈ N , Ck(ϕ) := sup
t∈R

〈t〉−ρ+k
∣
∣∂k

t ϕ(t)
∣
∣ <∞ . (A.1)

We also write ϕ(k) for ∂k
t ϕ. Equipped with the semi-norms defined by (A.1), Sρ is

a Fréchet space. Leibniz’ formula implies the continuous embedding:

Sρ · Sρ′ ⊂ Sρ+ρ′
. (A.2)

For the functional calculus of the operator A (see (B.1)), we shall use the
following result in [8] on almost analytic extension.

Lemma A.1. Let ϕ ∈ Sρ with ρ ∈ R. For all l ∈ N, there is a smooth function
ϕC : C → C, call an almost analytic extension of ϕ, such that:

ϕC|R = ϕ ,

∣
∣
∣
∣

∂ϕC

∂z
(z)

∣
∣
∣
∣
≤ c1〈Re(z)〉ρ−1−l|Im(z)|l (A.3)

suppϕC ⊂ {

x+ iy | |y| ≤ c2〈x〉
}

, (A.4)

ϕC(x+ iy) = 0 , if x �∈ suppϕ . (A.5)

for constants c1, c2 depending on the semi-norms (A.1) of ϕ in Sρ.

The function χR, given by (3.9), belongs to Sρ, for any ρ and any R. But we
need to know that the family (χR)R≥1 is bounded in some Sρ.

Lemma A.2. Let τ ∈ C∞(R; R) such that τ ′ ∈ C∞
c (R∗; R). Then the family (τR)R>1,

with τR(x) := τ(x/R), is bounded in S0.

Proof. Let k ∈ N. The semi-norm Ck(τ) (cf. (A.1)) is bounded above by the
(sup suppτ (k))k times the L∞-norm of τ (k). For R > 1 and t ∈ R,

|t|k · ∣∣(τR)(k)(t)
∣
∣ =

(|t|/R)k · ∣∣τ (k)(t/R)
∣
∣ ≤ Ck(τ) . (A.6)

Thus (τR)R>1 is bounded in S0. �

Concerning the functions defined in (3.9), (3.14) and just after (3.14), we
have the

Corollary A.3. Lemma A.2 applies to τ = χ, χ̃, χ̃σ, (χ̃σ)1/2, (σχ̃
′
σ)1/2, for σ ∈

{−; +}, and also to their derivatives.

We now focus on the functions ψσ,R, defined in (3.19).
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Lemma A.4. The family (ψ1/2
σ,R)R>1 is bounded in S0.

Proof. By (3.19),

ψ
1/2
σ,R(x) = (σχ′

σ)1/2(x/R)
(

h− σx〈x〉−2s
)1/2χ1/2

σ (x/R) ,

for all x ∈ R and all R > 1. By definition of h (cf. (3.15)), x �→ (h− σx〈x〉−2s)1/2

belongs to S0. Now the result follows from Corollary A.3 and (A.2). �

Appendix B. Commutator expansions

In this section, we recall Helffer-Sjöstrand’s functional calculus (cf. [8, 14]) and
commutator expansions (cf. [8]).

Let ρ < 0 and ϕ ∈ Sρ. The bounded operator ϕ(A) can be recovered by
Helffer-Sjöstrand’s formula:

ϕ(A) =
i

2π

∫

C

∂ϕC

∂z
(z −A)−1dz ∧ dz , (B.1)

where the integral exists in the norm topology, by (A.3) with l = 1. This can be
extended as shown in

Lemma B.1. Let ρ ≥ 0 and ϕ ∈ Sρ. For f ∈ D(〈A〉ρ), there exists

lim
R→+∞

i

2π

∫

C

∂(ϕχR)C

∂z
(z −A)−1f dz ∧ dz , (B.2)

where χR is like in (3.9). This defines the r.h.s. of (B.1) on D(〈A〉ρ). On this set,
(B.1) holds true.

Proof. Let f ∈ D(〈A〉ρ) ⊂ D(ϕ(A)) and χR be like in (3.9), then

i

2π

∫

C

∂(ϕχR)C

∂z
(z −A)−1f dz ∧ dz = (ϕχR)(A)f (B.3)

= (ϕρχR)(A) · 〈A〉ρf ,
where ϕρ(t) := ϕ(t)〈t〉−ρ is bounded. Therefore the r.h.s. of (B.3) tends to ϕ(A)f ,
as R → +∞. �

Notice that, for some c > 0 and s ∈ [0; 1[, there exists some C > 0 such that,
for all z = x+ iy ∈ {a+ ib | 0 < |b| ≤ c〈a〉} (like in (A.4)),

∥
∥〈A〉s(A− z)−1

∥
∥ ≤ C〈x〉s · |y|−1 . (B.4)

Next we come to a commutator expansion.
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Proposition B.2. Let k ∈ N
∗ and B be a bounded, self-adjoint operator in Ck(A).

Let ρ < k and ϕ ∈ Sρ. In the sense of forms on D(〈A〉k−1) × D(〈A〉k−1),

[

ϕ(A), B
]

=
k−1∑

j=1

1
j!
ϕ(j)(A)adj

A(B) (B.5)

+
i

2π

∫

C

∂ϕC

∂z
(z −A)−kadk

A(B)(z −A)−1dz ∧ dz . (B.6)

In particular, if ρ < 1, then B ∈ C1(ϕ(A)).

Proof. For ψ = ϕχR, as a form on D(〈A〉k) ×D(〈A〉k),
[

ψ(A), B
]

=
i

2π

∫

C

∂ψC

∂z
(z −A)−1adA(B)(z −A)−1dz ∧ dz

=
k−1∑

j=1

i

2π

∫

C

∂ψC

∂z
(z −A)−j−1adj

A(B)dz ∧ dz (B.7)

+
i

2π

∫

C

∂ψC

∂z
(z −A)−kadk

A(B)(z −A)−1dz ∧ dz . (B.8)

This yields (B.5)(B.6) on D(〈A〉k) ×D(〈A〉k) with ϕ replaced by ϕχR. Since B ∈
Ck(A), the commutators adj

A(B), for 1 ≤ j ≤ k, are bounded. Since χR tends
to 1 and its derivatives to 0, pointwise, (B.7) tends to the r.h.s. of (B.5). The
latter extends to a bounded form on D(〈A〉k−1) × D(〈A〉k−1) since the ϕ(j), for
j ≥ 1, belong to Sρ−1. Let 1S denote the characteristic function of the set S. By
Lemma A.2 and (A.2), (ϕχR)R is bounded in Sρ. Thus the norm of the integrand
in (B.8) is dominated by

c1〈x〉ρ−1−k−1|y|k+1 · |y|−k−1
∥
∥adk

A(B)
∥
∥ 1{0<|·|≤c2〈x〉}(y)

thanks to (A.4) and (B.4) (with s = 0). Since ρ < k, the dominated convergence
theorem implies that (B.8) converges to (B.6) in the operator norm. In particular,
(B.6) also extends to a bounded form on D(〈A〉k−1) ×D(〈A〉k−1). �

The rest of the previous expansion is estimated in

Lemma B.3. Let B ∈ Ck(A) self-adjoint and bounded. Let ϕ ∈ Sρ, with ρ < k. Let
Ik(ϕ) be the rest of the development of order k (B.5) of [ϕ(A), B], namely (B.6).
Let s, s′ ≥ 0 such that s′ < 1, s < k, and ρ + s + s′ < k. Then 〈A〉sIk(ϕ)〈A〉s′

is bounded and it is uniformly bounded when ϕ stays in a bounded subset of Sρ.
In particular, Ik(ϕ) is a bounded operator. Let R > 0. If ϕ stays in a bounded
subset of {ψ ∈ Sρ | [−R;R] ∩ supp(ϕ) = ∅} then 〈R〉k−ρ−s−s′‖〈A〉sIk(ϕ)〈A〉s′‖ is
uniformly bounded.

Proof. We will follow ideas from [8][Lemma C.3.1]. In this proof, all the constants
are denoted by C, independently of their value. Given a complex number z, x
and y will denote its real and imaginary part, respectively. Since B ∈ Ck(A),
adk

A(B) is bounded. We start with the second assertion. Let ϕ ∈ Sρ, R > 0 such
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that [−R;R] ∩ supp(ϕ) = ∅. Notice that, by (A.5), ϕC(x + iy) = 0 for |x| ≤ R.
By definition of Ik, we consider (B.6) and switch to the variable (x, y) by noticing
that dz ∧ dz = −2idx∧ dy. By (B.4),

∥
∥〈A〉sIk(ϕ)〈A〉s′∥

∥ ≤ 1
π

∫ ∣
∣
∣
∣

∂ϕC

∂z

∣
∣
∣
∣
· 〈x〉

s

|y|k · ∥∥adk
A(B)

∥
∥ · 〈x〉

s′

|y| dxdy

≤ C(ϕ)
∫

|x|≥R

∫

|y|≤c2〈x〉
〈x〉ρ+s+s′−1−l|y|l|y|−k−1dxdy ,

for any l, by (A.3). We choose l = k + 1. We have,

∥
∥〈A〉sIk(ϕ)〈A〉s′∥

∥ ≤ C(ϕ)
∫

|x|≥R

〈x〉ρ+s+s′−k−1dx

≤ C(ϕ)〈R〉ρ+s+s′−k .

Since C(ϕ) is bounded when ϕ stays in a bounded subset of Sρ, this yields the
second assertion. For the first one, we can follow the same lines, replacing R by 0
in the integrals, and arrive at the result. �

Appendix C. Technical estimates

Lemma C.1. Let ε ∈]0, 1 − s[ and suppose B ∈ C2(A) bounded and self-adjoint.
Then, for all f ∈ H ,

〈
χ̃R(A)f,

[

B,−A〈A〉−2s
]
χ̃R(A)f

〉 ≥ OR

(

R−ε)
∥
∥χ̃R(A)〈A〉−sf

∥
∥

2

+ (2s− 1)〈χ̃R(A)〈A〉−sf, [B,A]χ̃R(A)〈A〉−sf〉 .
Proof. Let D = [B,−〈A〉−2sA]− (2sA2〈A〉−2s−2 −〈A〉−2s)[B, iA]. By Lemma B.3
for k = 2, as t �→ 〈t〉−2st ∈ S1−2s, one has 〈A〉s+εD〈A〉s bounded for ε < 1. Then,
using the fact that χ̃R/2(t) = 1 for t in the support of χ̃R,

〈
χ̃R(A)f,Dχ̃R(A)f

〉

=
〈〈A〉−εχ̃

R/2(A)χ̃R(A)〈A〉−sf, 〈A〉s+εDχ̃R(A)f〉
≤ O(R−ε) · ∥∥χ̃R(A)〈A〉−s

f
∥
∥

2
.

Since [B,A] ∈ C1(A) and the function t �→ 〈t〉−s belongs to S−s, Lemma B.3 gives
that 〈A〉s+ε[〈A〉−s, [B,A]]〈A〉s is bounded for ε < 1 − s. Using, like above, the
contribution of χ̃R/2(A),

∣
∣
〈
χ̃R(A)f,

(

2sA2〈A〉−2s−2 − 〈A〉−2s
)

[B, iA]χ̃R(A)f
〉

− 〈
χ̃R(A)f,

(

2sA2〈A〉−2 − 1
)〈A〉−s[B, iA]〈A〉−sχ̃R(A)f

〉∣
∣

≤ O(R−ε)‖〈A〉−sχR(A)f‖2 .

To conclude, observe that ‖χ̃R/2(A)(Id −A2〈A〉−2)‖ = O(R−2). �
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Lemma C.2. Let B ∈ C2(A) bounded and self-adjoint. For all f ∈ H ,
∣
∣
〈

f,
(

σh−A〈A〉−2s
)
χ̃σ,R(A)

[

B, χ̃σ,R(A)
]

f
〉−

〈

f, χ̃
′
σ,R(A)

(

σh−A〈A〉−2s
)
χ̃σ,R(A)[B,A]f

〉∣
∣

≤ O(R2s−2)
∥
∥χ̃R(A)〈A〉−sf‖ · ‖〈A〉−sf

∥
∥ .

Proof. By Lemma B.3, we develop the commutator and denote the rest by I2. Its
contribution is

〈
χ̃

R/2(A)〈A〉−sf,
(

σh−A〈A〉−2s
)
χ̃σ,R(A)〈A〉sI2〈A〉s〈A〉−sf

〉

.

Note that χ̃R/2(A)f appears freely thanks to the presence of χ̃σ,R(A). By Corol-
lary A.3, (χ̃σ,R)R is bounded in S0. Note also that [−R,R] is not contained in
the support of χ̃σ,R. Then, from Lemma B.3, used with k = 2, we obtain that
〈A〉sI2〈A〉s = O(R2s−2). �

Lemma C.3. For B ∈ C1(A) bounded and self-adjoint,

1. ‖CR〈A〉α‖ = O(Rα), for α ∈ R,
2. ‖[B,CR]〈A〉α‖ = O(Rα−1), for 0 ≤ α < 1.

Proof. Since ψR(t) = 0 for |t| �∈ [R, 2R], the point (1) follows. Since (ψR)R is
bounded in S0 (cf. Lemma A.4) and since [−R,R] is not contained in the support
of ψR, we get the point (2) by Lemma B.3. �

Lemma C.4. Let B ∈ C2(A) bounded, self-adjoint. For all f ∈ H ,
∣
∣
〈

CRf, [B, iA]CRf
〉−〈

f, C2
R[B, iA]f

〉∣
∣ ≤ OR

(

R2s−1)·‖χ̃R/2(A)〈A〉−sf‖·‖〈A〉−sf‖ .
Proof. Given f ∈ H and using (3.20),

〈

CRf, [B, iA]CRf
〉

=
〈

f, C2
R[B, iA]f

〉

− 〈
χ̃

R/2(A)〈A〉−sf, CR〈A〉s
[

CR, [B, iA]
]〈A〉s · 〈A〉−sf

〉

.

The last term is estimated above by

‖CR〈A〉s‖ ·
∥
∥
[

CR, [B,A]
]〈A〉s∥∥ · ∥∥χ̃R/2(A)〈A〉−sf

∥
∥ · ‖〈A〉−sf‖ .

Now Lemma C.3 gives the result. �
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