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1. Introduction

Ekeland formulated a variational principle in Ref. [11]. In a series of arti-
cles [11–13] he enriches the results. Later, he presented a more concise proof
[14], the techniques from which we will use. In the same article [14], vari-
ous applications of the variational principle in different fields of mathematics
are presented: Gateaux-differentiability, optimization problems, minimal hy-
persurfaces, and partial differential equations. Ekeland’s variational principle
has many generalizations and applications [1,3,4,8,15,18,21,28,29].

There is a close relationship between fixed point theorems and varia-
tional principles [9]. Actually, Ekeland’s variational principle is equivalent to
Caristi’s fixed point theorem in the sense that Caristi’s fixed point theorem
can be proven with Ekeland’s variational principle and vice versa [16,26].
The same equivalence between Ekeland’s variational principle and Taka-
hashi’s fixed point theorem is obtained in Ref. [26]. Some new connections
between Ekeland’s variational principle and Caristi’s fixed point theorem are
obtained in Ref. [19].

There are a great number of generalizations of Ekeland’s variational
principle by changing the underlying complete metric space. A variant of
Ekeland’s variational principle is presented in weighted graphs [2] and in
weighted digraphs [3]. A generalization in b-metric spaces is obtained in Ref.
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[8]. A version in fuzzy quasi-normed spaces is proved in Ref. [31]. A type of
Ekeland’s variational principle in quasimetric spaces is presented in Ref. [28].
Many other recent generalizations can be found in Refs. [15,18,21,29]

A generalization of the Banach fixed point theorem [5] for coupled fixed
points has been presented in Ref. [17] with applications in solving of systems
of differential equations. Unfortunately, this result remained unseen for a long
time, until the publication of [6], where, instead of a Banach space partially
ordered by a cone, one considers a partially ordered complete metric space.
The idea to consider coupled fixed points for a map F : X × X → X, i.e., to
search for a solution to the system of equations x = F (x, y) and y = F (y, x)
has one drawback. If there is a solution (x, y), then usually it holds x = y.
This drawback has been overcome in Ref. [33] by considering an ordered pair
of maps (F,G), such that F,G : X × X → X and introducing the notion
of a coupled fixed point (x, y) for the ordered pair of maps (F,G) to satisfy
x = F (x, y) and y = G(x, y). If G(x, y) = F (y, x) then the notion of coupled
fixed points from [6,17] is obtained.

Let (x,�) be a partially ordered set. Two kinds of maps F : X×X → X
are usually investigated: maps with the mixed monotone property [6], i.e., F is
increasing on its first variable and decreasing on its second variable (F (u, y) �
F (v, y) for u � v and F (x,w) � F (x, z) for w � z) or without the mixed
monotone property [10], i.e., the values of F are comparable, whenever the
variables are comparable (F (u, y) � F (v, y) for u � v and F (x,w) � F (x, z)
w � z).

A different approach Proposition has been used in Refs. [20,22–24,27] by
considering F -invariant and P -closed sets instead of mixed monotone maps
or maps without the mixed monotone property.

A deep result in Ref. [23] presents the connection between fixed and
coupled fixed points. The results from [23] present a possibility to investigate
coupled fixed points with the help of results about fixed points.

We will try to combine all the above-mentioned results to get a general-
ization of Ekeland’s variational principle on a domain, which is a F -invariant
and P -closed set, to get a fixed point result on such domains and to apply
it in the investigation of coupled fixed points on such sets by using the ideas
from Proposition [23].

2. Preliminaries

Let X be a set, R be the real numbers, N be the naturals, and d : X → [0,+∞)
be a metric space. Following [6,17] an ordered pair (X,�), where X is a set
and � is a partial order on X, is called a partially ordered set. We call two
elements x, y ∈ X comparable if either x � y or y � x. We denote by x � y
if y � x. We say that x ≺ y if � y but x �= y. Let (X, d) be a metric
space with a partial order �, then the ordered triple (X, d, �) is called a
partially ordered metric space. It is fair to note that fixed point theory in
partially ordered metric spaces, in a more sophisticated context, was initiated
by Turinici [30]. However, only after Ran and Reurings published [25] was
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there a surge in research on this subject matter. Following [7] let (X, d) be a
metric space. The function T : X → (−∞,∞] is called lower semicontinuous
(upper semicontinuous) [for short, l.s.c. (u.s.c.)] if at any point x0 ∈ X there
holds lim infx→x0 T (x) ≥ T (x0)(lim supx→x0

T (x) ≤ T (x0)). Additionally, if
T �≡ +∞, it is called a proper function.

Inspired by [24], we give the following definition:

Definition 2.1. Let (X, d) be a metric space, F : X → X and P ⊂ X × X.
The set P is called F -regular provided that (x, F (x)) ∈ P for every sequence
(xn, F (xn)), n ∈ N in P such that limn→∞ xn = x.

3. Main result

Definition 3.1. Let (X, d) be a metric space. F : X → X be a map and
P ⊂ X × X be F -regular. Let V = {x ∈ X : (x, F (x)) ∈ P} we say that
the function T : X → R ∪ {+∞} is lower l.s.c. on V (u.s.c on V ) if at any
x0, xn ∈ V , such that limn→∞ xn = x0, there holds lim infn→∞ T (xn) ≥
T (x0)(lim supn→∞ T (xn) ≤ T (x0)). Additionally, if T (x) �≡ +∞ for x ∈ V ,
it is called a proper function on V .

Theorem 3.2. Let (X, d) be a complete metric space, F : X → X be a map,
P ⊂ X × X and let P be F -regular. Let V = {x ∈ X : (x, F (x)) ∈ P} and
T : X → R ∪ {+∞} be a proper l.s.c. bounded from below function on V .

Let ε > 0 be arbitrary but fixed. Let u0 ∈ V be such that

T (u0) ≤ inf
v∈V

T (v) + ε. (3.1)

Then there exists x ∈ V such that
(i) T (x) ≤ inf

v∈V
T (v) + ε

(ii) d(x, u0) ≤ 1
(iii) for all w ∈ V,w �= x there holds T (w) > T (x) − εd(w, x).

Proof. Let us define inductively a sequence {un}∞
n=0 ⊂ V , starting with u0 ∈

V , that satisfies (3.1).
Suppose that we have already chosen un ∈ V . There holds either of the

following:
1) for every w ∈ V \ {un} there holds the inequality

T (w) > T (un) − εd(w, un)

2) there exists w ∈ V \ {un}, such that the following inequality holds:

T (w) ≤ T (un) − εd(w, un). (3.2)

If case 1) holds, we choose un+1 = un. In case 2), let us denote by
Sn ⊂ V \ {un} the set of all w ∈ V \ {un}, which satisfy (3.2). We choose
un+1 ∈ Sn so that

T (un+1) ≤ T (un)
2

+
inf

v∈Sn

T (v)

2
. (3.3)

We claim that in both cases {un}∞
n=0 is a Cauchy sequence.
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Indeed, if case 1) ever occurs, the sequence is stationary, starting from
some index n. If case 1) does not occur for any index n ∈ N, then it should
be case 2) for all indexes n ∈ N. Therefore, by T (w) ≤ T (un)− εd(w, un), we
have the inequalities

εd(uk, uk+1) ≤ T (uk) − T (uk+1)

for k = 0, 1, 2, . . .. Summing up the above inequalities for k from n to p − 1,
we get

εd(un, up) ≤
p−1∑

k=n

εd(uk, uk+1)

≤
p−1∑

k=n

(T (uk) − T (uk+1)) = T (un) − T (up).

(3.4)

From the inequality

T (un+1) ≤ T (un) − εd(un, un+1) < T (un),

it follows that the sequence {T (un)}∞
n=0 is a decreasing one and bounded from

below. Hence, it is convergent. Therefore, the right-hand side in (3.4) goes to
zero, when n and p go to infinity simultaneously. Consequently, {un}∞

n=0 is a
Cauchy sequence. Since (X, d) is a complete metric space, it follows that the
sequence {un}∞

n=0 converges to some x ∈ X.
We claim that the limit point x ∈ V and satisfies (i), (ii) and (iii).
Indeed, from P being F -regular and (un, F (un) ∈ P, we get that the

inclusion (x, F (x) ∈ P holds. Therefore, x ∈ V .
(i) By construction, the sequence {T (un)}∞

n=0 is monotonously decreas-
ing, and consequently using the l.s.c. of T on the set V we get that the
inequalities T (x) ≤ limn→∞ T (un) ≤ T (u0) ≤ infv∈V T (v) + ε hold true, and
consequently ((i)) holds.

(ii) Let us put n = 0 in (3.4), i.e.

εd(u0, up) ≤ T (u0) − T (up) ≤ T (u0) − inf
v∈V

T (v) ≤ ε.

Letting p to infinity in the last inequality we get

εd(u0, x) = lim
p→∞ εd(u0, up) ≤ ε,

i.e., d(x, u) ≤ 1.
(iii) Let us suppose that (iii) were not true for all w ∈ V . Therefore, we

can choose w �= x, w ∈ V , so that

T (w) ≤ T (x) − εd(w, x) < T (x). (3.5)

Letting p → ∞ in (3.4), we obtain

εd(un, x) ≤ T (un) − T (x). (3.6)

From (3.5) and (3.6), we get the chain of inequalities

T (w) ≤ T (x) − εd(w, x) ≤ T (un) − εd(un, x) − εd(x,w)
= T (un) − ε(d(un, x) + d(x,w)) ≤ T (un) − εd(un, w)
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and thus w ∈ Sn for all n ∈ N. From (3.3), we have

2T (un+1) − T (un) ≤ inf
Sn

T ≤ T (w), (3.7)

because w ∈ ∩∞
n=0Sn. From the existence of lim

n→∞ T (un) = l and (3.7) it
follows that

lim
n→∞(2T (un+1) − T (un)) = lim

n→∞ T (un) = l ≤ T (w). (3.8)

Since T is l.s.c., we have inequality

T (x) ≤ lim
n→∞ T (un) = l (3.9)

and thus (3.8) and (3.9) imply that T (x) ≤ T (w), a contradiction
with (3.5). �

4. Applications

4.1. Finding minima of l.s.c. functions

Example 1. Let us consider (R, | · − · |,≤) with the metric | · − · | induced by
the modulus | · |, the total order ≤, the function T : R → [0,+∞) ∪ {+∞},
defined by

T (x) =

{∣∣ 1
x sin

(
1
x

)∣∣ , x �= 0,

+∞, x = 0.

and the sets P = {(x, y) ∈ R × R : x ≥ y}, V = {x ∈ R : (x, Tx) ∈ P}.
It is easy to observe that T is a proper l.s.c function that is bounded from

below, and thus T is a proper l.s.c function that is bounded from below on V ,
infv∈V T (v) = 0 and that if xn ∈ V for all n ∈ N is a convergent sequence,
then limn→∞ xn = x ∈ V . Let us consider the sequence xn = 1

π + 1
89+n . The

first term x1 ≈ 0.329 > T (x1) ≈ 0.321 is in V and satisfies the inequality
T (x1) < infv∈V T (v)+ ε for ε > T (x1). Then there exists an x ∈ V such that
((i)), ((ii)) and ((iii)) of Theorem 3.2 hold. In fact, x = limn→∞ xn = 1

π .

Example 2. Let us consider the function T : R → R, defined by

T (x) =

⎧
⎪⎨

⎪⎩

e
1
x , x < 0,

e− 1
x + x

1
x , x > 0,

0, x = 0.

Let us denote by Fp,t(x) : R → R a function of two parameters, defined by

Fp,t(x) = H
(
cos

(
2πx
p

)
− cos

(
πt
p

))
, t, p > 0, where H(x) = 1 for x ≥ 0 and

H(x) = 0 for x < 0 is the Heaviside step function, p is the period of F and t
is the length of the interval on which F (x) = 1. Let us define P = {(x, 1) : x ∈
R} and the set V = {x ∈ R : (x, F (x)) ∈ P}, i.e. V = {x ∈ R : F (x) = 1}.

The map T is proper l.s.c., bounded from below on V and inf
v∈V

T (v) = 0.

By the definition of Fp,t if un ∈ V for all n ∈ N and un → u, then u ∈ V .
Therefore, by Theorem 3.2, there exists an x ∈ V so that ((i)),((ii)) and ((iii))
hold. In fact, for all x ∈ [− t

2 , t
2 ] we have F (x) = 1 and so it is enough to select
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a sequence that converges to x = 0 to get T (x) = 0 ≤ infv∈V T (v) + ε = ε
for all ε > 0.

Definition 4.1. [24] Let (X, d) be a metric space, P ⊂ X ×X and F : X → X
be a mapping. P is called F -closed if

(x, y) ∈ P ⇒ (F (x), F (y)) ∈ P.

The next examples are well known [22].

Example 3. Let (X, d, �) be a partially ordered metric space. Let F : X → X
be an increasing function, i.e., F (x) � F (y), provided that x � y. Then the
set P = {(x, y) ∈ X × X : x � y} is F -closed.

Example 4. Let (X, d, �) be a partially ordered metric space. For F : X → X
let F (x) be comparable with F (y), i.e. F (x) � F (y). Then the set P =
{(x, y) ∈ X × X : x � y} is F -closed.

We will first prove a corollary of Theorem 3.2.

Definition 4.2. Let (X, d, �) be a partially ordered metric space. We say that
a map f : X → X is a l.s.c. (u.s.c.) with respect to � if any sequence
xn, such that xn � x0 for all n ∈ N and limn→∞ xn = x0 there holds
lim infn→∞ f(xn) � f(x0)(lim supn→∞ f(xn) � f(x0)).

Corollary 4.3. Let (X, ρ,�) be a partially ordered complete metric space, P =
{(x, y) ∈ X × X : x � y}, F : X → X be a l.s.c. map with respect to � and
V = {x ∈ X : (x, F (x)) ∈ P} �= ∅. Let T : X → R ∪ {+∞} be a proper l.s.c.,
bounded from below function on the set V. Let ε > 0 be arbitrarily chosen
and fixed and let u0 ∈ V be such that the inequality

T (u0) ≤ inf
V

T (v) + ε

holds. Then there exists x ∈ V , such that

(I) T (x) ≤ infv∈V T (v) + ε
(II) d(x, u0) ≤ 1

(III) for all w ∈ V , w �= x there holds T (w) > T (x) − εd(w, x).

Proof. The only requirement of Theorem 3.2 that is not apparent is the F -
regularity of P. Indeed, if we have {un} from Theorem 3.2, then for all n ∈ N

it holds that (un, F (un)) ∈ P. Then we have

u = lim
n→∞ un � lim

n→∞ F (un) � lim inf
n→∞ F (un) � F (u).

Therefore, (u, F (u)) ∈ P, i.e., u ∈ V . �

Remark 4.4. A similar theorem holds if we replace F with a u.s.c. function
and P = {(x, y) ∈ X : x � y}. Furthermore, if instead P = {(x, y) ∈ X : x �
y} and we require that F is continuous, we get another analogous result.

Example 5. Let us consider R with the canonical metric | ·− · | and the usual
ordering ≤, applied only to the rationals. Let F (x) = x be the identity map,



Vol. 26 (2024) A variational principle, fixed points Page 7 of 16 33

and let P = {(x, y) ∈ R : x � y}, that is, P = Q
2. Clearly, V = {x ∈ R :

(x, F (y)) ∈ P} = Q. Let T be defined as

T (x) =

{
arctan(x), x ∈ Q

−2π, x ∈ R \ Q,

Seeing as

lim
xn→x

T (xn) ≥ T (x)

for every xn, x ∈ V such that limn→∞ xn = x, we get that T is a proper
l.s.c. function on V . F is continuous and P is F -regular. Let us fix ε > 0
and pick u0 = q,where q is a rational number, satisfying the inequality
q ≤ tan

(−π
2 + ε

)
. Then u0 satisfies

T (u0) ≤ inf
v∈V

T (v) + ε.

Thus, we can find x ∈ V such that all three conclusions of Theorem 4.3 hold.
Let us note that infv∈V T (v) = −π

2 , while infx∈R T (x) = −2π.

4.2. Fixed point theorems

Theorem 4.5. Let (X, d, �) be a partially ordered metric space, P = {(x, y) ∈
X × X : x � y}, F : X → X be a mapping l.s.c. with respect to � and
V = {x ∈ X : (x, F (x)) ∈ P}. Suppose that P is F -closed, V �= ∅ and the
function x �→ d(x, F (x)) is l.s.c. on V .

If there exists α ∈ [0, 1) such that

d(F (x), F (y)) ≤ αd(x, y)

for all (x, y) ∈ P, then F has a fixed point in X.
Proposition If, additionally, for every pair x, y of fixed points there exists

z ∈ X such that one of the inclusions (x, z), (z, y) ∈ P, (x, z), (y, z) ∈ P or
(z, x), (z, y) ∈ P holds, then the fixed point is unique.

Proof. Let us consider the mapping T : X → R defined by T (u) = d(u, F (u)).
Then T , is a proper l.s.c. function, bounded from below by 0, and V �= ∅.
Therefore, by Corollary 4.3 there exists x ∈ V such that T (x) ≤ T (w) +
εd(x,w) for every w ∈ V . Let us choose ε ∈ (0, k − α], where k ∈ (α, 1).

Let us set w = F (x). Because P is F -closed and x ∈ V , that is,
(x, F (x)) ∈ P, it follows that (F (x), F 2(x)) ∈ P and w ∈ V . Then we observe

d(x, F (x)) = T (x) ≤ T (w) + εd(x,w) = d(F (x), F (F (x))) + εd(x, F (x))
≤ αd(x, F (x)) + εd(x, F (x)) = (α + ε)d(x, F (x)) ≤ kd(x, F (x))

and, by k < 1, we conclude that d(x, F (x)) = 0. Therefore, x = F (x).
Let there be two fixed points x, y ∈ X. Without loss of generality, let

there exist z ∈ X such that (x, z), (z, y) ∈ P. Then, by P being F -closed, we
get that (F (x), F (z)) = (x, F (z)) ∈ P and (F (z), F (y)) = (F (z), y) ∈ P. It
follows that (x, Fn(z)), (Fn(z), y) ∈ P, n ∈ N. Then

d(x, y) ≤ d(x, Fn(z)) + d(Fn(z), y) ≤ αn(d(x, z) + d(z, y)) → 0.

Thus, x = y. �
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Theorem 4.6. Let (X, d, �) be a partially ordered metric space, P = {(x, y) ∈
X × X : x � y}, F : X → X be a mapping l.s.c. with respect to � and
V = {x ∈ X : (x, F (x)) ∈ P}. Suppose that P is F -closed, V �= ∅ and the
function x �→ d(x, F (x)) is l.s.c. on V .

If there exists α ∈ [
0, 1

2

)
such that

d(F (x), F (y)) ≤ αd(x, F (x)) + αd(y, F (y))

for all (x, y) ∈ P, then F has a fixed point in X.
If, additionally, for every pair x, y of fixed points there exists z ∈ X such

that one of the inclusions (x, z), (z, y) ∈ P, (x, z), (y, z) ∈ P or (z, x), (z, y) ∈
P holds, then the fixed point is unique.

Proof. It is easy to show that α
1−α ∈ [0, 1) when α ∈ [

0, 1
2

)
. Let us consider

the mapping T : X → R defined by T (u) = d(u, F (u)). Then T is a proper
l.s.c. function, bounded from below by 0, and V �= ∅. Therefore, by Theorem
4.3 there exists x ∈ V such that T (x) ≤ T (w) + εd(x,w) for every w ∈ V .
Let us choose ε ∈

(
0, k − α

1−α

]
, where k ∈

(
α

1−α , 1
)
.

Let us set w = F (x).Because P is F -closed and x ∈ V , that is, (x, F (x)) ∈
P, it follows that (F (x), F 2(x)) ∈ P and w ∈ V . We also note that

d(F (x), F 2(x)) ≤ αd(x, F (x)) + αd(F (x), F 2(x))
d(F (x), F 2(x)) ≤ α

1−αd(x, F (x)).

From here, we get

d(x, F (x)) = T (x) ≤ T (w) + εd(x,w) = d(F (x), F (F (x))) + εd(x, F (x))
≤ α

1−αd(x, F (x)) + εd(x, F (x)) =
(

α
1−α + ε)d(x, F (x)

)

≤ kd(x, F (x))

and, by k < 1, we conclude that d(x, F (x)) = 0. Therefore, x = F (x).
The uniqueness can be proven in the same fashion as in Theorem 4.5.

Remark 4.7. Due to Remark 4.4, we can get similar results to those from
Theorems 4.5 and 4.6, given that we

1. either replace F with a u.s.c function and P = {(x, y) ∈ X : x � y},
2. or we require that F is continuous and P = {(x, y) ∈ X : x � y}.

We have seen that the lower semicontinuity of the function T (x) =
d(x, F (x)) is crucial. The next proposition presents a sufficient condition for
it to hold.

Proposition 4.8. Let (X, d, �) be a partially ordered metric space and F :
X → X be a mapping l.s.c. with respect to � such that for every x ∈ X there
exists a non-constant sequence {xn}∞

n=0 converging to x such that F (xn) →
F (x). Then the mapping T : X → [0,+∞) given by T (x) = d(x, F (x)) is
l.s.c.

Proof. Let F (x) be a l.s.c. function and {xn}∞
n=0 be a non-constant sequence

such that when xn → x, we have F (xn) → F (x). Then, the following holds:

lim inf
x→x0

d(F (x), F (x0)) = 0.
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Figure 1. Fixed points of F (x)

By the inequality

T (x0) = d(x0, F (x0)) ≤ d(x0, x) + d(x, F (x)) + d(F (x), F (x0))

we get

lim infx→x0 T (x0) = T (x0)
≤ lim infx→x0 d(x0, x) + d(x, F (x)) + d(F (x), F (x0))
= lim infx→x0 d(x, F (x)) = lim infx→x0 T (x)

Thus, T (x) is a l.s.c. function. �

Remark 4.9. By Proposition 4.8, we can see that if F is continuous or if it is
l.s.c. with only jumps, that is, without isolated values, the results of Theorems
4.5 and 4.6 hold.

Example 6. Let us consider F : R → R defined as

F (x) =

{
x
2 + 1, x ∈ Q

1
x + 1, x ∈ R \ Q

and let us use the usual ordering on the reals, applied only to the rationals.
Let us define P = {(x, y) ∈ R

2 : x � y}, that is, x, y ∈ Q. Then, F is a
proper l.s.c. function with respect to ≤ and d(x, F (x)) is l.s.c. on the set
V = {x ∈ X : (x, F (x)) ∈ P}. Also, F maps rationals to rationals. Therefore,
P is F -closed and V is not empty. Finally, for all (x, y) ∈ P the following
inequality holds:

d(F (x), F (y)) ≤ 1
2
d(x, y).

Then, F has a single fixed point in Q - x = 2. However, since we cannot
compare rationals and irrationals, we cannot guarantee the uniqueness of the
fixed point. Indeed, there are two more – x = ϕ, x = − 1

ϕ , where ϕ is the
golden ratio. This can be seen in Fig. 1.
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5. Coupled fixed points

In this section, we provide a method for obtaining proofs for coupled fixed
point theorems in partially ordered metric spaces. The technique consists of
considering the Cartesian product of the underlying metric space with itself
and defining an appropriate partial order on the product. Then, one can prove
a corollary of Theorem 3.2 for the partial order and the type of mapping being
analyzed. Finally, the coupled fixed point theorems are reduced to a corollary
of Theorems 4.5 and 4.6.

Definition 5.1. Let (X,�) be a partially ordered set and let F : X ×X → X.
The function F is said to have the mixed monotone property if

for any x1, x2, y ∈ X such that x1 � x2 there holds F (x1, y) � F (x2, y)
for any x, y1, y2 ∈ X such that y1 � y2 there holds F (x, y1) � F (x, y2).

Let us use the following notation—for any u = (u(1), u(2)) ∈ X × X,
we will denote ū = (u(2), u(1)). In what follows if (X, ρ,�) then the space
(X × X, d, �) will be endowed with d((x, y), (u, v)) = ρ(x, u) + ρ(y, v) and
(x, y) � (u, v) if x � u and y � v.

We have mentioned that a deep observation in Ref. [23] suggests that
coupled fixed points can be obtained with the help of similar fixed point
results. We will show in the next corollary that results connected with maps
with the mixed monotone property can be obtained with the help of similar
results on P sets.

We will now prove an earlier result [32] using Theorem 4.3.

Corollary 5.2. [32] Let (X, ρ,�) be a partially ordered complete metric space,
(X × X, d, �), where (u, v) � (x, y) if u � x and v � y, and F : X × X → X
be a continuous map with the mixed monotone property. Let

V × V = {x = (x(1), x(2)) ∈ X × X : x(1) � F (x) and x(2) � F (x̄)} �= ∅.

Let T : X × X → R ∪ {+∞} be a proper l.s.c., bounded from below function.
Let ε > 0 be arbitrarily chosen and fixed, and let u0 ∈ V × V be an ordered
pair such that the inequality

T (u0) ≤ inf
V ×V

T (v) + ε

holds. Then, there exists an ordered pair x ∈ V × V , such that
(a) T (x) ≤ inf

v∈V ×V
T (v) + ε

(b) d(x, u0) ≤ 1
(c) for all w ∈ V,w �= x there holds T (w) > T (x) − εd(w, x).

We would like to point out that in the statement in Ref. [32] in (a) ′′+ε“
is missing, but in the article, it is actually proven that T (x) ≤ inf

v∈V ×V
T (v)+ε.

Proof. Let us consider the set X = X×X endowed with the metric d and the
partial order � in X×X, F (x) = (F (x), F (x̄)), P = {(x, y) ∈ X ×X , x � y}
and V = {x ∈ X : (x,F (x)) ∈ P}. Let us note that X is complete,
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V = V × V , F is continuous (therefore, l.s.c.) and the l.s.c. function T
remains unchanged, only changing the notation to T : X → R ∪ {+∞}.

We will prove that P is F regular.
Indeed, if we have xn =

(
x
(1)
n , x

(2)
n

)
→ x =

(
x(1), x(2)

)
and (xn,F (xn))

∈ P, where (xn, x ∈ X ), then, due to F being continuous,

x(1) = lim
n→∞ x(1)

n � lim
n→∞ F (xn) = F (x)

x(2) = lim
n→∞ x(2)

n � lim
n→∞ F (x̄n) = F (x̄),

i.e. x =
(
x(1), x(2)

) � F (x) = (F (x), F (x̄)). Therefore, (x,F (x)) ∈ P, that
is, P is F -regular.

We also have u0 ∈ V , such that

T (u0) ≤ inf
V

T (v) + ε.

All of the conditions of Theorem 4.3 are fulfilled. �

The next corollary is proven in Ref. [32] with the help of Corollary 5.2.
We will show that it can be proven with Theorem 4.5, which will justify the
observation in Ref. [23] that fixed points and coupled fixed points are closely
related.

Corollary 5.3. [32] Let (X, ρ,�) be a partially ordered complete metric space,
(X × X, d, �) and F : X × X → X be a continuous map with the mixed
monotone property. Let there exist α ∈ [0, 1), so that the inequality

ρ(F (x, y), F (u, v)) + ρ(F (y, x), F (v, u)) ≤ αρ(x, u) + αρ(y, v)

holds for all x � u and y � v. If there exists at least one ordered pair (x, y)
such that x � F (x, y) and y � F (y, x), then there exists a coupled fixed point
(x, y) of F .

If, in addition, every pair of elements in X ×X has a lower or an upper
bound, then the coupled fixed point is unique.

Proof. Using the same notation as in the proof of Corollary 5.3, we will prove
it with Theorem 4.5. Due to Remark 4.7, we can use the same definition for
P. The fact that P is F closed is proven in Ref. [32](Proposition 3.1). It is
clear that that

d(F (x),F (y)) ≤ αd(x, y)

holds for all (x, y) ∈ P.
Due to Remark 4.9, we have that d(x, y) is a proper l.s.c. function (in

fact, a continuous one) and V �= ∅. Therefore, by Theorem 4.5, there exists
a fixed point of F , i.e. a coupled fixed point of F .

The requirement that every pair of elements in X ×X has an upper or a
lower bound guarantees that for every two fixed points x, y ∈ X of F , there
exists z ∈ X such that (x, z), (y, z) ∈ P or (z, x), (z, y) ∈ P. Therefore, the
fixed point of F is unique, i.e., the coupled fixed point of F is unique. �
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Even though this approach gives us an easy way to prove fixed point
theorems, we will show some of its limitations. For this purpose, we will
examine maps without the mixed monotone property [10].

Definition 5.4. [10] Let (X, d, �) be a partially ordered metric space and
F : X × X → X be a map. We will say that F is a map without the mixed
monotone property when for all ξ, η, s ∈ X, if ξ � F (ξ, η) then F (ξ, η) �
F (F (ξ, η), s).

Corollary 5.5. Let (X, ρ,�) be a partially ordered complete metric space,
(X × X, d, �), where � is induced by � in such a way as to follow that
(x, y) � (u, v), provided that x � u and y � v. Let F : X × X → X be a
continuous map without the mixed monotone property. Let

V × V = {x = (x(1), x(2)) ∈ X × X : x(1) � F (x) and x(2) � F (x̄)} �= ∅.

Let T : X × X → R ∪ {+∞} be a proper l.s.c., bounded from below function.
Let ε > 0 be arbitrarily chosen and fixed, and let u0 ∈ V × V be an ordered
pair such that the inequality

T (u0) ≤ inf
V ×V

T (v) + ε

holds. Then there exists an ordered pair x ∈ V × V , such that
(A) T (x) ≤ inf

v∈V ×V
T (v) + ε

(B) d(x, u0) ≤ 1
(C) for all w ∈ V,w �= x there holds T (w) > T (x) − εd(w, x).

Proof. Much like as in the proof of Corollary 5.2 we define set X = X × X,
the partially ordered metric space (X , d,�), F (x) = (F (x), F (x̄)), P =
{(x, y) ∈ X × X : x � y} and V = {x ∈ X : (x,F (x)) ∈ P}. Let us
note that X is complete, V = V × V , F is continuous (therefore, l.s.c.)
and the l.s.c. function T remains unchanged, only changing the notation to
T : X → R ∪ {+∞}.

We will prove that P is F regular.
Indeed, if we have xn =

(
x
(1)
n , x

(2)
n

)
→ x =

(
x(1), x(2)

)
and (xn,F (xn)) ∈

P, where (xn, x ∈ X ), then, due to F being continuous,

x(1) = lim
n→∞ x(1)

n � lim
n→∞ F (xn) = F (x)

x(2) = lim
n→∞ x(2)

n � lim
n→∞ F (x̄n) = F (x̄),

i.e. x =
(
x(1), x(2)

) � F (x) = (F (x), F (x̄)). Therefore, (x,F (x)) ∈ P, that
is, P is F -regular.

We also have u0 ∈ V , such that

T (u0) ≤ inf
V

T (v) + ε.

All of the conditions of Theorem 4.3 are fulfilled. �
We can achieve a variational principle with such maps. However, the

transitivity of the relation used in P is paramount for the application of the
result. That is why we need to add an additional assumption to the result in
Ref. [10] in order to use the variational principal.
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Corollary 5.6. Let (X, d, �) be a complete partial ordered metric space and
F : X × X → X be a mapping. Suppose that the following conditions hold:
(a) x � y and y � z implies that x � z for all x, y, z ∈ X,
(b) F is a map without the mixed monotone property,
(c) there exist ξ0, η0 ∈ X such that ξ0 � F (ξ0, η0) and η0 � F (η0, ξ0),
(d) there exists k ∈ [0, 1) such that

d(F (ξ, η), F (r, s)) ≤ k max{d(ξ, r), d(η, s)}
for all ξ, η, r, s ∈ X satisfying ξ � r and η � s,

(e) F is continuous or if ξn → ξ when n → ∞ in X, then ξn � ξ for n
sufficiently large.

Then, F has a coupled fixed point.

Proof. We use same notation as in the proof of Corollary 5.5. We redefine
P = {(x, y) ∈ X × X : x � y, x � F (x), y � F (y)}. We will prove this
corollary using Theorem 4.5. Let us prove that P is F closed. If (x, y) ∈ P,
by (a) and the definition of P we get

F (x)(1) � x(1) � y(1) � F (y)(1)

F (x)(2) � x(2) � y(2) � F (y)(2)

Therefore, F (x) � F (y). By (b) we get that F (x) � F (F (x)) and F (y) �
F (Fy). Therefore, we conclude that (F (x),F (y)) ∈ P.

For x, y ∈ X , let us define d∗(x, y) as

d∗(x, y) = max{d(x(1), y(1)), d(x(2), y(2))}.

It is clear that this is also a metric and due to the fact that

d(F (x), F (y)) ≤ k max{d(x(1), y(1)), d(x(2), y(2))}
d(F (x̄), F (ȳ)) ≤ k max{d(x(2), y(2)), d(x(1), y(1))}

= k max{d(x(1), y(1)), d(x(2), y(2))}
we get that

d∗(F (x),F (y)) ≤ kd∗(x, y)

for all (x, y) ∈ P.
If F is continuous, then due to Remark 4.9, we have that d∗(x, y) is a

proper l.s.c. function (in fact, a continuous one) and V �= ∅ by (c). Therefore,
by Theorem 4.5, there exists a fixed point of F , i.e., a coupled fixed point of
F .

If F is not continuous, the variational principle cannot be used. The
classic proof can be found in Ref. [10]. �
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