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Abstract. We wish to investigate mean ergodic theorems for generaliza-
tions of almost periodic functions on semigroups, as well as for semi-
groups of operators in the framework of locally convex spaces. Specially,
we present functional characterizations of concepts of almost periodicity
for vector-valued functions.

Mathematics Subject Classification. Primary 43A60, 47H25, 47H10, 46A20,
46A03, 47H20.

Keywords. Generalizations of almost periodicity, mean ergodic theorem,
invariant mean, semigroups of operators, locally convex space.

1. Introduction

The theory of almost periodic functions can trace its origins back to the
work of Bohr [10,11] involving reduction to the periodic functions on the
real line. The definition of an almost periodic function on a semitopological
semigroup is due to Bochner [8]. Weakly almost periodic functions were first
defined and investigated by Eberlein [15]. Almost periodic and weakly almost
periodic functions with values in a Banach space, which are of great interest,
were considered by Bochner in [9] and Goldberg and Irwin [16], respectively.
Solutions to the abstract Cauchy problem, under suitable conditions, fall into
this category (see, e.g., [2,6,31]), and of particular importance is the integra-
tion of such functions and convergence in the mean. Ruess and Summers
[32,33] showed that if a function f from R

+ to a Banach space E is contin-
uous and weakly almost periodic, then 1

t

∫ t

0
f(s + h)ds converges strongly as

t → ∞ to a point z in E, uniformly in h ∈ R
+. Let us point out that the first

nonlinear ergodic theorems for nonexpansive mappings and semigroups were
established by Baillon [3,4] and Baillon and Brezis [5].

Nonlinear mean ergodic theorems, together with some generalizations,
have been investigated extensively (see [7,12,14,20–22,26–30,35]).

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-023-01081-9&domain=pdf
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Kada [17,18] extended the mean ergodic result of Ruess and Summers
to the case of a strongly asymptotically invariant net of means on a com-
mutative semigroup with identity and applied it to weakly almost periodic
representations of nonexpansive mappings. Miyake and Takahashi [24] ex-
tended Kada’s results to noncommutative semigroups and they also proved
mean ergodic theorems to the more general case of asymptotically invariant
means, for almost periodic functions with values in a Banach space. These
results were extended to the framework of a locally convex space in [25].
However, there are some gaps in the proofs of [25] since those proofs depend
upon the Krein–Smulian property and Mazur’s theorem, and while they are
true for Banach spaces, they may not be true for a general locally convex
space.

This paper will discuss the mean ergodic theorems for some generalized
almost periodic functions on a semigroup S, the relevant ergodic means of
which include the both left and right translates. We use different tools and
methods to accomplish our aims, as well as to fix some of the gaps in [25]. It
is remarkable that here no Krein–Smulian property is needed. Specially, we
present useful characterizations of notions of almost periodicity with values
in a locally convex space E, and derive the mean ergodic theorems for such
functions, as well as for semigroups of mappings enjoying such properties.
The results presented in the paper are new even in Banach spaces.

2. Preliminaries

Throughout the paper, E will denote a Hausdorff locally convex space (l.c.s.)
and E′ the topological dual of E. The weak topology σ(E,E′) on E with
respect to the dual pair 〈E,E′〉 is defined as the initial topology with respect
to the family (〈., y〉 : y ∈ E′); the weak topology σ(E′, E) on E′ is defined
analogously. For A ⊂ E, the polar A◦ is defined as A◦ = {y ∈ E′ : |〈x, y〉| ≤
1, (x ∈ A)}. Analogously, for B ⊂ E′, B◦ is defined by B◦ := {x ∈ E :
|〈x, y〉| ≤ 1, (y ∈ B)}. The closure of A will be denoted by A. By the bipolar

theorem A◦◦ := (A◦)◦ = acoA
σ(E,E′)

, where acoA is the absolutely convex
hull of A (see, e.g., [36,39]).

In what follows, S denotes a semigroup. Let �∞(S) denote the C*-
algebra of all bounded real valued functions on S. Let f ∈ �∞(S) and let
s ∈ S. The right and left translation operators r(s) and l(s) are defined by

(r(s)f)(t) = f(ts), (l(s)f)(t) = f(st). (2.1)

A function f ∈ �∞(S) is said to be almost periodic (resp. weakly almost
periodic) if the set RSf of right translates of f is norm relatively compact
(resp. weakly relatively compact) in �∞(S), as well as the same is true for
LSf in place of RSf . The set of all almost periodic (resp. weakly almost
periodic) functions on S is denoted by AP (S) (resp. WAP (S)).

Let X be a linear subspace of �∞(S). A mean on X is a linear functional
μ on X with the property

inf
s∈S

f(s) ≤ μ(f) ≤ sup
s∈S

f(s).
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The set of all means on X is denoted by M(X). Sometimes we write μs(f(s))
instead of μ(f). If X is linear subspace of �∞(S) containing the constant
functions then a linear functional μ on X is a mean if and only if μ(1) = ‖μ‖ =
1; see [7]. A subspace X of �∞(S) is said to be right (resp. left) invariant if
r(s)X ⊂ X (resp. l(s)X ⊂ X) for all s ∈ S. X is translation invariant if it is
both right and left invariant. Let X be a left (resp. right) translation-invariant
linear subspace of �∞(S) containing the constant functions. A member μ of
X ′ is said to be left (resp. right) invariant if, for all f ∈ X and s ∈ S,
μ(l(s)f) = μ(f) (resp. μ(r(s)f) = μ(f)). A member μ of X ′ is said to be
invariant if it is both left and right invariant. X is said to be amenable, if
there is an invariant mean on X. A net of means μα on X is said to be
left (resp. right) asymptotically invariant, if for each s ∈ S, l(s)′μα − μα

(resp. r(s)′μα −μα) converges to 0 in the topology σ(X ′,X). A net of means
μα on X is said to be left (resp. right) strongly asymptotically invariant if
l(s)′μα − μα (resp. r(s)′μα − μα) converges to 0 in the norm topology(see
[13]).

3. Characterizations of APw (S,E) and W (S,E)

Here and subsequently, S denotes a semigroup and E is a locally convex space.
Let �∞(S,E) denote the vector space of all vector-valued functions defined
on S that take values in E such that, for each f ∈ �∞(S,E), f(S) is bounded
in E. Let U0 be a neighborhood base of 0 in E. When V runs through U0,
the family M(V ) = {f ∈ �∞(S,E) : f(S) ⊂ V } is a 0-neighborhood base in
�∞(S,E) for a unique translation-invariant topology T , called the topology
of uniform convergence on S, and �∞(S,E) is a locally convex space under
the T -topology; for more details we refer the reader to [36]. For each s ∈ S,
the right and left translation operators r(s) and l(s) on �∞(S,E) are defined
similar to (2.1). Let AP (S,E) be the set of all f ∈ �∞(S,E) such that the set
RSf of right translates of f is relatively compact in (�∞(S,E), T ). Denote
by APw(S,E) the set of all functions f ∈ �∞(S,E) such that x′ ◦ f ∈ AP (S)
for all x′ ∈ E′. Similarly, let WAP (S,E) denote the set of all f ∈ �∞(S,E)
for which RSf is weakly relatively compact in (�∞(S,E), T ), and, following
[16], we denote W (S,E) to be the set of all functions f ∈ �∞(S,E) such that
x′ ◦ f ∈ WAP (S) for all x′ ∈ E′.

If E is a Banach space and S is a semigroup with identity, then the fol-
lowing implications about a function f : S → E with norm relatively compact
range hold: f ∈ AP (S,E) ⇔ f ∈ APw(S,E) and f ∈ WAP (S,E) ⇔ f ∈
W (S,E); see [1,7,23]. Furthermore, it is known that AP (S,E) ⊂ APw(S,E)
and WAP (S,E) ⊂ W (S,E). On the other hand, there are examples in which
the inclusions are strict; for example, AP (R, �2) �= APw(R, �2) (see [16]) as
well as WAP (R, �p) �= W (R, �p), 1 < p < ∞ (see [23]).

It is goal of this section to obtain analogous descriptions of APw(S,E)
and W (S,E) in a locally convex space. It is worth noting that distinctions
between closed totally bounded sets and compact sets may appear in locally
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convex spaces, especially in incomplete spaces. We shall need the following
characterization result, which is also a generalization of [1, Theorem X].

Theorem 3.1. Let f be a bounded function from a semigroup S into a l.c.s.
E. Then, f ∈ APw(S,E) if and only if RSf is totally bounded in the topology
of uniform convergence on S with E endowed with the weak topology, and
hence AP (S,E) ⊆ APw(S,E).

Proof. Let RSf be totally bounded in the topology of uniform convergence
on S with E equipped with the weak topology, and let x′ ∈ E′. We show that
〈f(·), x′〉 ∈ AP (S). It suffices to show that RS〈f(·), x′〉 is totally bounded in
the complete space �∞(S). Fix ε > 0 and take V = {x ∈ E; |〈x, x′〉| < 2ε}.
By totally boundedness of RSf in �∞(S,E), we have

RSf ⊂
n⋃

i=1

r(ti)f + M(S, V ),

for some t1, . . . , tn ∈ S, which is equivalent to

RS〈f(·), x′〉 ⊂
n⋃

i=1

B‖.‖(r(ti)〈f(·), x′〉, ε).

That is, RS〈f(·), x′〉 is totally bounded in �∞(S), for all x′ ∈ E′; thus f ∈
APw(S,E). To prove the necessity, assume that f ∈ APw(S,E) and take W =
{x ∈ E; |〈x, x′

i〉| < ε, x′
i ∈ E′, i = 1, . . . , n}. Then, the set

∏n
i=1 RS〈f(·), x′

i〉
is relatively compact, and so is

K = {(r(t)〈f(·), x′
1〉, . . . , r(t)〈f(·), x′

n〉); t ∈ S}.

Then, there exist t1 . . . , tm ∈ S such that

K ⊂
m⋃

j=1

(r(tj)〈f(·), x′
1〉, . . . , r(tj)〈f(·), x′

n〉) +
n∏

i=1

Bε/2,

where Bε/2 is the ball of radius ε/2 in �∞(S). We see immediately that RSf ⊂⋃m
j=1 r(tj)f + M(S,W ). Therefore, RSf is totally bounded. �

We now present a useful characterizations of W (S,E). For this purpose
we introduce a topology on �∞(S,E) defined as follows. For x′ ∈ E′ and
μ ∈ �∞(S)′, we define ϕx′,μ ∈ �∞(S,E)′ by ϕx′,μ(g) = μ〈g, x′〉. Let Γx′ =
{ϕx′,μ : μ ∈ �∞(S)′} and Γ =

⋃
x′∈E′ Γx′ . The σ(�∞(S,E),Γ) topology is a

locally convex topology on �∞(S,E) which is weaker than the weak topology
on �∞(S,E) since Γ ⊂ �∞(S,E)′.

Theorem 3.2. Let f be a bounded function from a semigroup S into a l.c.s.
E. Then, for any x′ ∈ E′, RSf is relatively compact in the σ(�∞(S,E),Γx′)
topology if and only if x′ ◦ f ∈ WAP (S). In particular, WAP (S,E) ⊆
W (S,E).

Proof. Take some x′ �= 0 in E′ and choose y ∈ E such that 〈y, x′〉 = 1. Let
RSf be relatively compact in the σ(�∞(S,E),Γx′) topology, and suppose that
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RS〈f(·), x′〉w ⊂
⋃

α Vα, where the sets Vα are open in the weak topology. We
may assume that

Vα = {g ∈ �∞(S); |〈g − gα, μαi〉| < 1, gα ∈ �∞(S), μαi ∈ �∞(S)′, i = 1, . . . nα}.

Set

Wα = {h ∈ �∞(S,E); |ϕx′,μαi
(h − gαy)| < 1, i = 1, . . . nα},

where ϕx′,μαi
(h) = μαi

〈h, x′〉.

Claim 1. For any α and h ∈ �∞(S,E), h ∈ Wα if and only if x′ ◦h ∈ Vα, and
consequently RSf

Γx′ ⊆
⋃

α Wα.

The first part of the claim is trivial. In order to prove the latter state-
ment let h ∈ RSf

Γx′
and consider a net {r(sγ)f} converging to h in the

σ(�∞(S,E),Γx′) topology. Then, {r(sγ)〈f(·), x′〉} ⊆ RS〈f(·), x′〉w
converges

weakly to x′ ◦ h. Since RS〈f(·), x′〉w ⊂
⋃

α Vα, there exists some α for which
x′ ◦h ∈ Vα. From the first assertion, we have h ∈ Wα. Hence, we have proved
that RSf

Γx′ ⊆
⋃

α Wα.

Claim 2. x′ ◦ Wα = Vα and x′ ◦ (RSf
Γx′

) = RS〈f(·), x′〉w
.

It is easy to see that x′ ◦ Wα ⊆ Vα. The reverse inclusion follows from the
fact that, for each g ∈ Vα, we have gy ∈ Wα and then g = x′ ◦ gy ∈ x′ ◦
Wα. To verify the second assertion, let g ∈ RS〈f(·), x′〉w

and assume that
{r(sγ)〈f(·), x′〉} converges weakly to g. By definition, {r(sγ)f} converges to
gy in the σ(�∞(S,E),Γx′) topology and thus g = x′ ◦gy ∈ x′ ◦ (RSf

Γx′
). The

reverse inclusion is trivial.
Since RSf is relatively compact in the σ(�∞(S,E),Γx′) topology, we

conclude using Claim 1 that there is a finite covering of RSf , say RSf
Γx′ ⊆

⋃m
j=1 Wβj

. Hence, x′ ◦ (RSf
Γx′

) ⊆
⋃m

j=1 x′ ◦ Wβj
, which implies by Claim 2

that RS〈f(·), x′〉w ⊆
⋃m

j=1 Vβj
, and therefore, RS〈f(·), x′〉 is relatively com-

pact. The proof of the converse is similar. Indeed, let RSf
Γx′ ⊆

⋃
α Wα,

where

Wα = {h ∈ �∞(S,E); |ϕx′,μαi
(h − hα)| < 1, hα ∈ �∞(S,E), i = 1, . . . nα},

and choose open sets Uα in the weak topology by

Uα = {g ∈ �∞(S); |〈g − x′ ◦ hα, μαi
〉| < 1, i = 1, . . . nα}.

It is easy to check that similarly the conclusions of Claims 1 and 2 are valid
in this case. Then, RS〈f(·), x′〉w

= x′ ◦ (RSf
Γx′

) ⊆
⋃

α x′ ◦ Wα =
⋃

α Uα.
We conclude using the assumption of weak compactness on RS〈f(·), x′〉w

that there exists a finite covering RS〈f(·), x′〉w ⊆
⋃m

j=1 Uβj
. In other words,

x′ ◦ (RSf
Γx′

) ⊆
⋃m

j=1 x′ ◦ Wβj
, and by the conclusions of Claims 1 and 2, we

have (RSf
Γx′

) ⊆
⋃m

j=1 Wβj
. This shows that RSf is relatively compact in

the σ(�∞(S,E),Γx′) topology. �
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As a consequence of this, we deduce the following result, extending a
previous result of [23, Corollary 5] (where the range f(S) was assumed to be
relatively norm-compact in a Banach space).

Theorem 3.3. Let f be a function on a semigroup S with a relatively weakly
compact range in a l.c.s. E. Then, f ∈ W (S) if and only if RSf is relatively
compact in the σ(�∞(S,E),Γ) topology.

Proof. Let f ∈ W (S) and choose a net r(sα)f in RSf . We must show that
r(sα)f contains a σ(�∞(S,E),Γ)-convergent subnet. Let RSf

Γx′
denote the

closure of RSf in the σ(�∞(S,E),Γx′) topology, and let Υ =
∏

x′∈E′ RSf
Γx′

.

For each α, we define Zα ∈
∏

x′∈E′ RSf
Γx′

by Zα(x′) = r(sα)f, for all

x′ ∈ E′. In view of Theorem 3.2, RSf
Γx′

is compact in the σ(�∞(S,E),Γx′)
topology, and then, by Tychonoff’s compactness theorem, Υ is compact with
respect to the product topology. It follows that (Zα) has a subnet (Zαβ

)
convergent in Υ to some Z =

∏
x′∈E′ gx′ ∈ Υ. Thus, by definition of the

product topology,

lim
β

ϕx′,μ(r(sαβ
)f) = ϕx′,μ(gx′), ∀x′ ∈ E′, ∀μ ∈ �∞(S)′

. (3.1)

for all x′ ∈ E′ and μ ∈ �∞(S)′. For t ∈ S, let δt ∈ �∞(S)′ be the evaluation
map at t (i.e., δt(g) = g(t), for any g ∈ �∞(S)). Taking μ = δt in (3.1), we
have

lim
β

〈r(sαβ
)f(t), x′〉 = 〈gx′(t), x′〉, ∀x′ ∈ E′. (3.2)

Since f(S) is relatively weakly compact, in view of Tychonoff’s compactness
theorem for

∏
t∈S f(tS)

w
, it is readily seen that there is a subnet (r(sαβγ

)f)γ

of (r(sαβ
)f)β such that (r(sαβγ

)f(t))γ converges weakly to some ξt in f(tS)
w
,

for each t ∈ S. Defining ξ : S → E by ξ(t) = ξt, we see that ξ is bounded
and 〈ξ(t), x′〉 = 〈gx′(t), x′〉, for all t ∈ S and x′ ∈ E′, by (3.2). Consequently,
(3.1) shows that (r(sαβγ

)f) is σ(�∞(S,E),Γ)-convergent to ξ, and the proof
of the necessity is complete. The sufficiency follows from Theorem 3.2. �

4. Mean ergodic theorems for almost convergent functions

This section deals with some classes of functions on a semigroup S that are al-
most convergent. We prove new mean ergodic theorems for almost convergent
functions which will be essential to obtain our main results stated in the next
section. Throughout this section, we assume that X is a translation-invariant
closed linear subspace of l∞(S) containing constant functions.

Definition 4.1. For μ ∈ X ′, the left introversion operator determined by μ is
the mapping Tμ : X → l∞(S) defined by

(Tμf)(s) = μ(l(s)f) (f ∈ X, s ∈ S).
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The right introversion operator determined by μ is the mapping Uμ : X →
l∞(S) defined by

(Uμf)(s) = μ(r(s)f) (f ∈ X, s ∈ S).

The properties of right introversion operators are analogous to those of
left introversion operators. It is a useful fact that if f ∈ X, then {Tμf : μ ∈
M(X)} is the closure in l∞(S) of co(RS(f)) in the topology p of pointwise
convergence on S; that is, {Tμf : μ ∈ M(X)} = cop(RS(f)). See, e.g., [7,
page 73].

Remark 4.2. A net in l∞(S) converges in the weak-star topology of l∞(S),
as the dual of l1(S) (see [13]), if it is norm bounded and converges coordi-
natewise. In other words, in a bounded subset of l∞(S), the weak-star limit
agrees with the pointwise limit (and then a bounded subset of l∞(S) is point-
wise closed if and only if it is weak-star closed); in fact, if (fα) is a net in
�∞(S) converging in the weak-star topology to f , we will have no difficulty
verifying that fα converges pointwise to f . On the other hand, we assume
that (fα)α∈I is a bounded net in �∞(S) converging in the pointwise topology
to f , and prove that it is weak-star convergent. Otherwise, there would exist
a weak-star neighborhood Vf of f such that, for each α ∈ I, there exists
γα ≥ α such that fγα

/∈ Vf . Let

J = {γ ∈ I : fγ /∈ Vf}.

For any γ1, γ2 ∈ J , choosing some α ∈ I with γ1, γ2 ≤ α, we may find
γα ≥ α such that fγα

/∈ Vf . That is, there exists γα ∈ J with γ1, γ2 ≤
γα. Therefore, (fγ)γ∈J is a subnet of (fα)α∈I . Moreover, (fγ)γ∈J has no
subnet converging weak-star to f . Since, by the Banach–Alaoglu theorem and
pointwise convergence assumption on (fα)α∈I , the bounded net (fγ)γ∈J has a
convergent subnet in the weak-star topology to f , we arrive at a contradiction.

Definition 4.3. [7, page 220] A function f ∈ X is called left almost convergent
if the set {μ(f) : μ ∈ LIM(X)} is a singleton. f is called almost convergent
if it is both left and right almost convergent.

It is known that if S is a commutative semitopological semigroup,
WAP (S) has a unique invariant mean [7, page 162], and then each function
in WAP (S) is almost convergent. In the following we are going to present
other classes of almost convergent functions.

Lemma 4.4. If X is amenable and f ∈ X satisfies co(RS(f)) = cop(RS(f)),
then f is almost convergent. In particular, every weakly almost periodic f ∈ X
is almost convergent.

Proof. Let ν ∈ RIM(X). Then, for any g ∈ co(RS(f)) it easily follows ν(g) =
ν(f). Then, giving μ ∈ LIM , we have c := μ(f) = Tμf ∈ cop(RS(f)) =
co(RS(f)) and hence Tμf = ν(c) = ν(f). That is,

{μ(f) : μ ∈ LIM(X)} = {ν(f) : ν ∈ RIM(X)} (4.1)

is a singleton. �
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Remark 4.5. Under the assumptions of Lemma 4.4, it easily follows by (4.1)
that cop(RS(f)) and cop(LS(f)) have the same constant function.

Lemma 4.6. If X is left amenable and right countable amenable, then each f
in X is left almost convergent.

Proof. Let ϑ be a countable right invariant mean on X and let f ∈ X. Then,
ϑ(g) = ϑ(f), for all g ∈ co(RS(f)). We show that f is left almost convergent.
Let μ be a left invariant mean on X. Then, c = Tμf is a constant function
contained in cop(RS(f)) and hence by Remark 4.2, we may choose a net {gβ}
in co(RS(f)) converging weak-star to c. On the other hand, by virtue of [13],
ϑ may be considered as a member of l1(S), the predual of l∞(S). Hence,
c = ϑ(c) = lim ϑ(gβ) = ϑ(f), and therefore f is left almost convergent. �

Let S = {s1, s2, . . . , sn} be a finite left (right) cancellative semigroup.
Then, μ = n−1

∑n
i=1 δ(si) is a countable left (right) invariant mean on l∞(S),

where δ is the evaluation mapping.

Theorem 4.7. Let X be a translation-invariant closed subspace of l∞(S) con-
taining the constant functions and let {μα} be a left (resp. right) asymptot-
ically invariant net of means on X. If f ∈ X is left (resp. right) almost
convergent, then Tμα

f (resp. Uμα
f) converges weakly-star to the unique con-

stant function in cop(RS(f)) (resp. cop(LS(f))).

Proof. Since the properties of right introversion operators are analogous to
those of left introversion operators, we shall prove the result only for the
latter. Let f be left almost convergent. Then, there exists a constant cf such
that {cf} = {Tμf : μ ∈ LIM(X)}, and this is clear from {Tμf : μ ∈
M(X)} = cop(RS(f)) that cf is the unique constant function in cop(RS(f)).
Suppose that a subnet Tμαβ

f of Tμα
f converges pointwise to g in cop(RS(f)).

Let μ be a cluster point of {μαβ
} in the weak-star topology. Since {μα} is

left asymptotically invariant, it easily follows that μ is a mean on X which
is left invariant. Without loss of generality, we may assume that {μαβ

} con-
verges weakly-star to μ. Then, cf = μ(f) = μ(l(s)f) = limβ μαβ

(l(s)f) =
limβ Tμαβ

f(s) = g(s), for each s ∈ S. Thus, Tμα
f converges weakly-star to

the unique constant function cf in cop(RS(f)). �

By Lemma 4.6 and Theorem 4.7, we have the following corollary.

Corollary 4.8. Let {μα} be a left asymptotically invariant net of means on X.
If for some f ∈ X there is a countable mean on l∞(S) that is right invariant
on RS(f), then Tμα

f converges weakly-star to the unique constant function
cf in cop(RS(f)).

The following result is immediate in view of Lemma 4.4, Remark 4.5
and Theorem 4.7.

Corollary 4.9. Let X be an amenable translation-invariant closed subspace of
l∞(S) containing the constant functions and let {μα} be a left (resp. right)
asymptotically invariant net of means on X. If f ∈ X is weakly almost peri-
odic, then Tμα

f (resp. Uμα
f) converges weakly in X to the unique constant
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function in co(RS(f)); when f ∈ X is almost periodic, the convergence is
strong.

As has been observed above, the convergence of Tμα
f relates the left

asymptotically invariance of {μα}; the question arises whether it is true that
Tμα

f converges, when {μα} is right asymptotically invariant. In the following
we are going to answer it and even more.

Theorem 4.10. Let X be an amenable translation-invariant closed subspace of
l∞(S) containing the constant functions and let {μα} be a right asymptotically
invariant net of means on X. If f ∈ X satisfies co(RS(f)) = cop(RS(f)),
then Tμα

f and Uμα
f converge pointwise to the unique constant function cf

in co(RS(f)); moreover, Tμα
f → cf in the sup-norm topology if, in addition,

{μα} is right strongly asymptotically invariant.

Proof. Since {μα} is a right asymptotically invariant, Uμα
f converges point-

wise to the unique constant function cf in co(RS(f)), in view of Lemma 4.4
and Theorem 4.7. We prove that Tμα

f converges pointwise to cf . Fix ε > 0.
There exists a convex combination h =

∑n
i=1 λir(si)f of right translates of

f such that ‖h − cf‖ < ε/2, where λi ≥ 0,
∑n

i=1 λi = 1 and s1, . . . , sn ∈ S.
Thus, for each α and t ∈ S,

|μα(l(t)h − cf )| < ε/2. (4.2)

On the other hand, for each t, s ∈ S,

μα(l(t)f) − μα(l(t)r(s)f) = μα(l(t)f) − μα(r(s)l(t)f)
= (μα − r(s)′μα)(l(t)f) (4.3)
≤ ‖μα − r(s)′μα‖‖f‖. (4.4)

Using the right asymptotically invariance of {μα} in (4.3), it follows that

μα(l(t)f) − μα(l(t)r(s)f) → 0,

for each t, s ∈ S. Thus, for any t ∈ S, there exists an α0 such that, for each
α ≥ α0 and i = 1, . . . , n,

|μα(l(t)f) − μα(l(t)r(si)f)| < ε/2.

Then, we have, for each α ≥ α0,

|μα(l(t)f − cf )|
≤ |μα(l(t)f) − μα(l(t)h)| + |μα(l(t)h − cf )|

<

n∑

i=1

λi|μα(l(t)f) − μα(l(t)r(si)f)| + ε/2 < ε.

This implies that, for each t ∈ S,

(Tμα
f − cf )(t) = μα(l(t)f − cf ) → 0,

which proves the first assertion. Now let {μα} be right strongly asymptotically
invariant; then it follows from (4.4) that

sup
t∈S

|μα(l(t)f) − μα(l(t)r(s)f)| → 0,
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for each s ∈ S. Similarly, there exists some α0 such that, for each α ≥ α0

and i = 1, . . . , n,

sup
t∈S

|μα(l(t)f) − μα(l(t)r(si)f)| < ε/2. (4.5)

Thus, in view of (4.2) and (4.5), we have, for each α ≥ α0,

‖Tμα
f − cf‖ = sup

t∈S
|μα(l(t)f − cf )|

≤ sup
t∈S

|μα(l(t)f) − μα(l(t)h)| + sup
t∈S

|μα(l(t)h) − cf |

≤
n∑

i=1

λi sup
t∈S

|μα(l(t)f) − μα(l(t)r(si)f)| + ε/2 < ε;

that is, limα ‖Tμα
f − cf‖ = 0, and the proof of the second assertion is com-

plete. �

Corollary 4.11. Let X be an amenable translation-invariant closed subspace
of l∞(S) containing the constant functions and let {μα} be a right asymp-
totically invariant net of means on X. If f ∈ X is weakly almost periodic,
then Tμα

f and Uμα
f converge weakly to the unique constant function cf in

co(RS(f)); moreover, Tμα
f → cf in the sup-norm topology if, in addition,

{μα} is right strongly asymptotically invariant.

Question 1. Does Uμα
f , in the above theorem, converge in the sup-norm

topology if {μα} is right strongly asymptotically invariant?

5. Mean ergodic theorems in locally convex spaces

We begin this section by stating the following lemma, which is taken from
[19] in the case of Banach spaces. For the sake of completeness, we include a
proof here.

Lemma 5.1. Let S be a semigroup, E a l.c.s., f a function of S into a weakly
compact convex subset of E and X a subspace of l∞(S) containing constants
and all functions s �→ 〈f(s), x′〉 with x′ ∈ E′. Then, for any μ ∈ X ′, there
exists a unique element τ(μ)f in E such that 〈τ(μ)f, x′〉 = μt〈f(t), x′〉, for
all x′ ∈ E′. If μ is a mean on X, then τ(μ)f ∈ co{f(t) : t ∈ S}. τ(μ)f will
sometimes be denoted by

∫
f(s)dμ(s).

Proof. Set K = co({‖μ‖f(t) : t ∈ S} ∪ {0}) and M = K − K. Then, M is a
balanced weakly compact convex subset of E, since co{f(t) : t ∈ S} ⊂ D is
relatively weak compact. From this, we may thus consider M as a balanced
σ(E′′, E′)-compact convex subset of E′′. Thus, by the bipolar theorem for
the dual system 〈E′′, E′〉 (see, e.g., [36, Theorem 1.5]), we have M◦◦ = M .
Now, defining τ(μ)f on E′ by τ(μ)f : x′ �→ μ〈f(·), x′〉, it easily follows that
τ(μ)f is a continuous linear functional for which

|(τ(μ)f)(y′)| = |μ〈f(·), y′〉| ≤ sup
t∈S

|〈‖μ‖f(t), y′〉| ≤ sup
x∈M

〈x, y′〉 ≤ 1, ∀y′ ∈ M◦.
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Therefore, τ(μ)f ∈ M◦◦ = M , which means that τ(μ)f can be viewed as
an element in E. If μ is a mean on X, there exists a net {λβ}β∈Λ of finite
means on S such that λβ converges to μ in the weak-star topology. It is easy
to check that τ(λβ)f ∈ co{f(t) : t ∈ S}, ∀β. Thus,

〈τ(μ)f, x′〉 = μ〈f(·), x′〉 = lim
β

λβ〈f(·), x′〉 = lim
β

〈τ(λβ)f, x′〉,

for all x′ ∈ E′, which yields τ(μ)f ∈ co{f(t) : t ∈ S}. �
A well-known result that goes back to M. Krein and V. Smulian says the

following: the closed convex hull of a weakly compact subset K of a Banach
space E is also weakly compact. We point out that this result may not be
true for a l.c.s. E even if K is compact: consider E = �1 and the topology
τ on E induced by the coordinate-axis vectors {en} ⊂ �∞. Then, (E, τ) is a
locally convex topological space. Set K = {nen} ∪ {0} ⊂ �1. Obviously, K is
τ -compact, but the τ -closure of co(K) is not τ -compact.

On the other hand, the Krein–Smulian property plays an important
role in generalizations of Baillon’s mean ergodic result. The authors of [25]
attempted to extend some known mean ergodic results regarding AP (S,E)
and WAP (S,E) to locally convex spaces, however, the proofs depend upon
the Krein–Smulian property and Mazur’s theorem, and while they are true for
Banach spaces, they may not be valid for the case of locally convex spaces.
In our mean ergodic results, however, we will not use the above property
explicitly. With our presented tools, we can obtain results that are new even
in the context of Banach spaces.

Theorem 5.2. Let S be a semigroup, E a l.c.s., f a function of S into a weakly
compact convex subset of E and X a translation-invariant amenable subspace
of l∞(S) containing constants and all functions s �→ 〈f(s), x′〉 with x′ ∈ E′.
Let {μα} be a right asymptotically invariant net of means on X. Assume that
f ∈ W (S,E). Then, τμα

(l(·)f) and τμα
(r(·)f) converge in the σ(�∞(S,E),Γ)

topology to a constant function with a value x in ∩s∈Sco{f(ts) : t ∈ S}. If, in
addition, {μα} is strongly right asymptotically invariant, then

∫
f(ts)dμα(s)

converges weakly to x, uniformly in t ∈ S.

Proof. Let μ be an arbitrary cluster point of {μα} in the weak-star topol-
ogy, which is right invariant since {μα} is right asymptotically invariant.
For every x′ ∈ E′, let fx′ = x′ ◦ f , so that fx′ ∈ WAP (S). It follows
from Corollary 4.11 and Remark 4.5 that both of the nets 〈τμα

(l(·)f), x′〉 (=
μα(l(·)fx′)) and 〈τμα

(r(·)f), x′〉 (= μα(r(·)fx′)) converge weakly to the con-
stant function 〈τμ(f), x′〉 = μ(fx′) = cfx′ ∈ co(LS(fx′)) ∩ co(RS(fx′)), for
each x′ ∈ E′. Therefore, we find that, for every x′ ∈ E′ and ν ∈ �∞(S)′,
ϕx′,ν(τμα

(l(·)f)−τμ(f)) → 0 and ϕx′,ν(τμα
(r(·)f)−τμ(f)) → 0. We conclude

(from the definition of Γ and the right invariance of μ) the first assertion, as
well as the second assertion results easily from Theorem 4.10. �

The following result is a direct consequence of Theorem 5.2.

Theorem 5.3. Let S be a semigroup, let E be a l.c.s. and let f a function
of S into a weakly compact convex subset D of E. Let X be a translation-
invariant amenable subspace of l∞(S) containing constants and all functions
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s �→ 〈f(s), x′〉 with x′ ∈ E′, and let {μα} be a right asymptotically invari-
ant net of means on X. Assume that f ∈ APw(S,E). Then,

∫
f(ts)dμα(s)

and
∫

f(st)dμα(s) converge weakly to a point in ∩s∈Sco{f(us) : u ∈ S},
uniformly in t ∈ S.

For the case that X is not assumed to be two-sided amenable, we can
obtain an asymptotic version of the ergodic result obtained in Theorem 5.3.

Theorem 5.4. Let S be a semigroup, let E be a l.c.s., let f be a function of S
into a weakly compact convex subset of E, and let X be a translation-invariant
subspace of l∞(S) containing constants and all functions s �→ 〈f(s), x′〉 with
x′ ∈ E′. Let {μα} be a right asymptotically invariant net of means on X. If
f ∈ APw(S,E), then

∫
f(st)dμα(s) −

∫
f(s)dμα(s) ⇀ 0,

uniformly in t ∈ S.

Proof. Since f ∈ APw(S,E), it follows by Theorem 3.1 that RSf is to-
tally bounded in the topology of uniform convergence on S with E endowed
with the weak topology. Choose x′ ∈ E′ and ε > 0, and take V = {x ∈
E; |〈x′, x〉| < ε}; then there exists a finite subset M of S such that

RSf ⊂
⋃

t∈M

r(t)f + 2−1M(S, V ). (5.1)

On the other hand, since μα is asymptotically invariant, for each t ∈ S, we
have

|〈τ(r(t)′μα)f − τ(μα)f, x′〉| = |(r(t)′μα − μα)〈f, x′〉| → 0.

Thus, there exists α0, such that, for any α ≥ α0 and t in the finite set M ,

|〈τ(r(t)′μα)f − τ(μα)f, x′〉| < 2−1ε. (5.2)

Picking up an arbitrary h ∈ S, we can choose some k ∈ M such that r(h)f −
r(k)f ∈ 2−1M(S, V ), by (5.1). Consequently, we have

|〈τ(r(h)′μα)f − τ(r(k)′μα)f, x′〉| = |μα〈r(h)f − r(k)f, x′〉| ≤ 2−1ε, (5.3)

for each α. Therefore, in view of (5.2) and (5.3), we have

|〈τ(r(h)′μα)f − τ(μα)f, x′〉|
≤ |〈τ(r(h)′μα)f − τ(r(k)′μα)f, x′〉|

+ |〈τ(r(k)′μα)f − τ(μα)f, x′〉| < 2−1ε + 2−1ε = ε,

for all h ∈ S and α ≥ α0; that is, τ(r(h)′μα)f − τ(μα)f ∈ V, for all h ∈ S
and α ≥ α0. �

Question 2. What can be said in the latter result about the convergence of
τ(μα)f?



Vol. 25 (2023) Concepts of almost periodicity and ergodic theorems Page 13 of 16 78

Let S be a semigroup, let E be a l.c.s., let C be a weakly compact
convex subset of E, and let S = {T (t) : t ∈ S} be a representation of S as
mappings of C into itself. Let X be a closed subspace of l∞(S) containing
constants and all functions s �→ 〈T (s)x, x′〉 with x ∈ C and x′ ∈ E′. In
view of Lemma 5.1, for ν ∈ X ′, we can define a mapping T (ν) : C → C
by T (ν)x = τν(T (·)x) =

∫
T (s)xdν(s), for all x ∈ C; moreover, for a right

invariant mean μ on X, we have T (μ)x ∈ ∩s∈Sco{T (ts)x : t ∈ S}. If S is
weak to weak equicontinuous at some point x, T (ν) is immediately weak to
weak continuous at x.

Theorem 5.5. Let S be a semigroup, let E be a l.c.s., let C be a weakly com-
pact convex subset of E, and let S = {T (t) : t ∈ S} be a representation
of S as mappings of C into itself. Let X be a closed, translation invariant
and amenable subspace of l∞(S) which contains constants and all functions
s �→ 〈T (s)x, x′〉 with x ∈ C and x′ ∈ E′. Let {μα} be a right asymptotically
invariant net of means on X. Fix x ∈ C.

(i) If, for each ν ∈ X ′, T (ν) is weak to weak continuous on the weak clo-
sure of S(x), then T (l(·)′μα)x and T (r(·)′μα)x converge in the σ(�∞(S,E),Γ)
topology to a constant function with a value in ∩s∈Sco{T (ts)x : t ∈ S}. If, in
addition, {μα} is strongly right asymptotically invariant, then

∫
T (ts)xdμα(s)

converges weakly to a point p in ∩s∈Sco{T (ts)x : t ∈ S}, uniformly in t ∈ S.
(ii) If S is weak to weak equicontinuous on the weak closure of S(x),

then
∫

T (ts)xdμα(s) and
∫

T (st)xdμα(s) converge weakly to a point in
∩s∈Sco{T (ts)x : t ∈ S}, uniformly in t ∈ S.

Proof. To prove (i), suppose that T (ν) is weak to weak continuous on the
weak closure of S(x), for each ν ∈ X ′. We claim that the function t �→
〈T (t)x, x′〉 belongs to WAP (S), for each x′ ∈ E′. It suffices to prove that
any chosen net of the form r(sα)〈T (·)x, x′〉 has a weak convergent subnet in
X ⊆ �∞(S). Since C is weakly compact, we may choose a subnet {T (sαβ

)x}
in {T (sα)x} converging weakly to some y ∈ C. Then, using the weak to weak
continuity of T (ν) on the weak closure of S(x), we have T (ν)(T (sαβ

)x) ⇀
T (ν)(y), for all ν ∈ X ′. Consequently,

ν
(
r(sαβ

)〈T (·)x, x′〉
)

= 〈T (ν)(T (sαβ
)x), x′〉 → 〈T (ν)(y), x′〉 = ν

(
〈T (·)y, x′〉

)
,

for all x′ ∈ E′ and ν ∈ X ′. Thus, r(sαβ
)〈T (·)x, x′〉 is a weak convergent subnet

of r(sα)〈T (·)x, x′〉 in X and then t �→ 〈T (t)x, x′〉 belongs to WAP (S), as we
claimed. Now, we apply Theorem 5.2.

For (ii), we prove that, for each x′ ∈ E′, the function t �→ 〈T (t)x, x′〉
is in AP (S). For any x′ ∈ E′, define a function ψS,x′ : y �−→ 〈T (·)y, x′〉
of C into �∞(S). Since, for each s ∈ S, r(s)〈T (·)x, x′〉 = 〈T (·s)x, x′〉 =
〈T (·)(T (s)x), x′〉 = ψS,x′(T (s)x), we have RS(〈T (·)x, x′〉) = ψS,x′(S(x)).
From the weak to weak equicontinuity assumption of S, ψS,x′ is weak to
norm continuous on the weak closure of S(x) and thus RS(〈T (·)x, x′〉) is
relatively compact. Now, it suffices to apply Theorem 5.3. �

Let us point out that, even in the case of a commutative semigroup
acting on a Banach space, T (μ)x is not necessarily a common fixed point
for S (see, e.g., [37]); although there are appropriate additional conditions
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under which T (μ)x is a common fixed point for S (see, e.g., [5,12,18,19,21,
34,35,38]). It is worth mentioning here that if S is a representation of S as
continuous linear operators on E, and μ is a left invariant mean, then, for
any x ∈ E in which co{T (t)x : t ∈ S} is weakly compact, T (μ)x is a common
fixed point of S; in fact, for each x′ ∈ E′ and s ∈ S, we have x′ ◦ T (s) ∈ E′

and consequently 〈T (s)T (μ)x, x′〉 = 〈T (μ)x, x′ ◦T (s)〉 = μ〈T (·)x, x′ ◦T (s)〉 =
μ〈T (s·)x, x′〉 = μ〈T (s·)x, x′〉 = 〈T (μ)x, x′〉; that is, T (s)T (μ)x = T (μ)x for
all s ∈ S.
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