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Abstract. We consider a new type of mappings in metric spaces which
can be characterized as mappings contracting perimeters of triangles.
It is shown that such mappings are continuous. The fixed point theo-
rem for such mappings is proved and the classical Banach fixed-point
theorem is obtained like a simple corollary. Examples of mappings con-
tracting perimeters of triangles which are not contraction mappings are
constructed.
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1. Introduction

The Contraction Mapping Principle was established by S. Banach in his dis-
sertation (1920) and published in 1922 [1]. Although the idea of successive
approximations in a number of concrete situations (solution of differential and
integral equations, approximation theory) had appeared earlier in the works
of P. L. Chebyshev, E. Picard, R. Caccioppoli, and others, S. Banach was the
first who formulated this result in a correct abstract form suitable for a wide
range of applications. After a century, the interest of mathematicians around
the world to fixed-point theorems is still very high. This is confirmed by the
appearance in recent decades of numerous articles and monographs devoted
to the fixed point theory and its applications, see, e.g., the monographs [2–4]
for a survey on fixed point results.

The Banach contraction principle has been generalized in many ways
over the years. In Ref. [5] authors noted that except Banach’s fixed point the-
orem there are also three classical fixed point theorems against which metric
extensions are usually checked. These are, respectively, Nadler’s well-known
set-valued extension of Banach’s theorem [6], the extension of Banach’s the-
orem to nonexpansive mappings [7], and Caristi’s theorem [8]. At the same
time it is possible to distinguish at least two types of generalizations of such
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theorems: in the first case the contractive nature of the mapping is weakened,
see, e.g. [9–18]; in the second case the topology is weakened, see, e.g. [19–32].

Let X be a metric spaces. In the present paper, we consider a new type
of mappings T : X → X which can be characterized as mappings contracting
perimeters of triangles and prove the fixed point theorem for such mappings.
Although the proof of the main theorem of this work is based on the ideas
of the proof of Banach’s classical theorem, the essential difference is that the
definition of our mappings is based on the mapping of three points of the space
instead of two. Moreover, we additionally require a condition which prevents
the mapping T from having periodic points of prime period 2. The ordinary
contraction mappings form an important subclass of these mappings which
immediately allows us to obtain the classical Banach’s theorem like a simple
corollary. Examples of a mappings contracting perimeters of triangles which
are not contraction mappings are constructed for spaces X with |X| = ℵ0,
where |X| is the cardinality of the set X.

2. Mappings contracting perimeters of triangles

Definition 2.1. Let (X, d) be a metric space with |X| � 3. We shall say that
T : X → X is a mapping contracting perimeters of triangles on X if there
exists α ∈ [0, 1) such that the inequality

d(Tx, Ty) + d(Ty, Tz) + d(Tx, Tz) � α(d(x, y) + d(y, z) + d(x, z))
(2.1)

holds for all three pairwise distinct points x, y, z ∈ X.

Remark 2.2. Note that the requirement for x, y, z ∈ X to be pairwise distinct
is essential. One can see that otherwise this definition is equivalent to the
definition of contraction mapping.

Proposition 2.3. Mappings contracting perimeters of triangles are continu-
ous.

Proof. Let (X, d) be a metric space with |X| � 3, T : X → X be a mapping
contracting perimeters of triangles on X and let x0 be an isolated point in X.
Then, clearly, T is continuous at x0. Let now x0 be an accumulation point.
Let us show that for every ε > 0, there exists δ > 0 such that d(Tx0, Tx) < ε
whenever d(x0, x) < δ. Since x0 is an accumulation point, for every δ > 0
there exists y ∈ X such that d(x0, y) < δ. By (2.1) we have

d(Tx0, Tx) � d(Tx0, Tx) + d(Tx0, T y) + d(Tx, Ty)
� α(d(x0, x) + d(x0, y) + d(x, y)).

Using the triangle inequality d(x, y) � d(x0, x) + d(x0, y), we have

d(Tx0, Tx) � 2α(d(x0, x) + d(x0, y)) < 2α(δ + δ) = 4αδ.

Setting δ = ε/(4α), we obtain the desired inequality. �
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Let T be a mapping on the metric space X. A point x ∈ X is called a
periodic point of period n if Tn(x) = x. The least positive integer n for which
Tn(x) = x is called the prime period of x, see, e.g., [33, p. 18].

Theorem 2.4. Let (X, d), |X| � 3, be a complete metric space and let T : X →
X be a mapping contracting perimeters of triangles on X. Then T has a fixed
point if and only if T does not possess periodic points of prime period 2. The
number of fixed points is at most two.

Proof. Let T have no periodic points of prime period 2. Let us show that
T has a fixed point. Let x0 ∈ X, Tx0 = x1, Tx1 = x2, . . . , Txn = xn+1,
. . . . Suppose that xi is not a fixed point of the mapping T for every i =
0, 1, . . .. Let us show that all xi are different. Since xi is not fixed, then
xi �= xi+1 = Txi. Since T have no periodic points of prime period 2 we have
xi+2 = T (T (xi)) �= xi and by the supposition that xi+1 is not fixed we have
xi+1 �= xi+2 = Txi+1. Hence, xi, xi+1 and xi+2 are pairwise distinct. Further,
set

p0 = d(x0, x1) + d(x1, x2) + d(x2, x0),
p1 = d(x1, x2) + d(x2, x3) + d(x3, x1),

· · ·
pn = d(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn),

· · · .

Since xi, xi+1 and xi+2 are pairwise distinct by (2.1) we have p1 � αp0,
p2 � αp1, . . . , pn � αpn−1 and

p0 > p1 > · · · > pn > · · · . (2.2)

Suppose that j � 3 is a minimal natural number such that xj = xi for some
i such that 0 � i < j − 2. Then xj+1 = xi+1, xj+2 = xi+2. Hence, pi = pj

which contradicts to (2.2).
Further, let us show that {xi} is a Cauchy sequence. It is clear that

d(x1, x2) � p0,

d(x2, x3) � p1 � αp0,

d(x3, x4) � p2 � αp1 � α2p0,

· · ·
d(xn, xn+1) � pn−1 � αn−1p0,

d(xn+1, xn+2) � pn � αnp0,

· · · .

By the triangle inequality,

d(xn, xn+p) � d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xn+p−1, xn+p)

� αn−1p0 + αnp0 + · · · + αn+p−2p0 = αn−1(1 + α + · · · + αp−1)p0

= αn−1 1 − αp

1 − α
p0.
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Since by the supposition 0 � α < 1, then d(xn, xn+p) < αn−1 1
1−αp0. Hence,

d(xn, xn+p) → 0 as n → ∞ for every p > 0. Thus, {xn} is a Cauchy sequence.
By completeness of (X, d), this sequence has a limit x∗ ∈ X.

Let us prove that Tx∗ = x∗. By the triangle inequality and by inequal-
ity (2.1) we have

d(x∗, Tx∗) � d(x∗, xn) + d(xn, Tx∗) = d(x∗, xn) + d(Txn−1, Tx∗)
� d(x∗, xn) + d(Txn−1, Tx∗) + d(Txn−1, Txn) + d(Txn, Tx∗)
� d(x∗, xn) + α(d(xn−1, x

∗) + d(xn−1, xn) + d(xn, x∗)).

Since all the terms in the previous sum tend to zero as n → ∞, we obtain
d(x∗, Tx∗) = 0.

Suppose that there exists at least three pairwise distinct fixed points x,
y and z. Then Tx = x, Ty = y and Tz = z, which contradicts to (2.1).

Conversely, let T have a fixed point x∗. Suppose that T has a periodic
point x of prime period 2. Set y = Tx. Then

d(Tx, Ty) + d(Ty, Tx∗) + d(Tx, Tx∗) = d(y, x) + d(x, x∗) + d(y, x∗),

which contradicts to (2.1). �
Remark 2.5. Suppose that under the supposition of the theorem the mapping
T has a fixed point x∗ which is a limit of some iteration sequence x0, x1 =
Tx0, x2 = Tx1, . . . such that xn �= x∗ for all n = 1, 2, . . .. Then x∗ is a unique
fixed point. Indeed, suppose that T has another fixed point x∗∗ �= x∗. It is
clear that xn �= x∗∗ for all n = 1, 2, . . .. Hence, we have that the points x∗,
x∗∗ and xn are pairwise distinct for all n = 1, 2, . . .. Consider the ratio

Rn =
d(Tx∗, Tx∗∗) + d(Tx∗, Txn) + d(Tx∗∗, Txn)

d(x∗, x∗∗) + d(x∗, xn) + d(x∗∗, xn)

=
d(x∗, x∗∗) + d(x∗, xn+1) + d(x∗∗, xn+1)

d(x∗, x∗∗) + d(x∗, xn) + d(x∗∗, xn)
.

Taking into consideration that d(x∗, xn+1) → 0, d(x∗, xn) → 0, d(x∗∗, xn+1) →
d(x∗∗, x∗) and d(x∗∗, xn) → d(x∗∗, x∗), we obtain Rn → 1 as n → ∞, which
contradicts to condition (2.1).

Example. Let us construct an example of the mapping T contracting perime-
ters of triangles which has exactly two fixed points. Let X = {x, y, z},
d(x, y) = d(y, z) = d(x, z) = 1, and let T : X → X be such that Tx = x,
Ty = y and Tz = x. One can easily see that (2.1) holds and T does not have
periodic points of prime period 2.

Example. Let us construct an example of the mapping T contracting perime-
ters of triangles which does not have any fixed point. Let X = {x, y, z},
d(x, y) = d(y, z) = d(x, z) = 1, and let T : X → X be such that Tx = y,
Ty = x and Tz = x. In this case the points x and y are periodic points of
prime period 2.

Let (X, d) be a metric space. Then a mapping T : X → X is called a
contraction mapping on X if there exists α ∈ [0, 1) such that

d(Tx, Ty) � αd(x, y) (2.3)
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for all x, y ∈ X.

Corollary 2.6 (Banach fixed-point theorem). Let (X, d) be a nonempty com-
plete metric space with a contraction mapping T : X → X. Then T admits a
unique fixed point.

Proof. For |X| = 1, 2 the proof is trivial. Let |X| � 3. Suppose that there
exists x ∈ X such that T (Tx) = x. Consequently, d(x, Tx) = d(Tx, x) =
d(Tx, T (Tx)), which contradicts to (2.3). Thus, T does not possess periodic
points of prime period 2. Let x, y, z ∈ X be pairwise distinct. By (2.3) we ob-
tain d(T (x), T (y)) � αd(x, y), d(T (y), T (z)) � αd(y, z) and d(T (x), T (z)) �
αd(x, z) which immediately implies that T is a mapping contracting perime-
ters of triangles on X. By Theorem 2.4 the mapping T has a fixed point.

The uniqueness can be shown in a standard way. �

Recall that for a given metric space X, a point x ∈ X is said to be an
accumulation point of X if every open ball centered at x contains infinitely
many points of X.

Proposition 2.7. Let (X, d), |X| � 3, be a metric space and let T : X → X be
a mapping contracting perimeters of triangles. If x is an accumulation point
of X, then inequality (2.3) holds for all points y ∈ X.

Proof. Let x ∈ X be an accumulation point and let y ∈ X. If y = x, then
clearly (2.3) holds. Let now y �= x. Since x is an accumulation point, then
there exists a sequence zn → x such that zn �= x, zn �= y and all zn are
different. Hence, by (2.1) the inequality

d(Tx, Ty) + d(Ty, Tzn) + d(Tx, Tzn) � α(d(x, y) + d(y, zn) + d(x, zn))

holds for every n ∈ N. Since d(x, zn) → 0 and every metric is continuous we
have d(y, zn) → d(x, y). Since T is continuous, we have d(Tx, Tzn) → 0 and,
consequently, d(Ty, Tzn) → d(Tx, Ty). Letting n → ∞, we obtain

d(Tx, Ty) + d(Tx, Ty) � α(d(x, y) + d(x, y)),

which is equivalent to (2.3). �

Corollary 2.8. Let (X, d), |X| � 3, be a metric space and let T : X → X be a
mapping contracting perimeters of triangles. If all points of X are accumu-
lation points, then T is a contraction mapping.

Let (X, d) be a metric space and let x, y, z ∈ X. We shall say that the
point y lies between x and z in the metric space (X, d) if the extremal version
of the triangle inequality

d(x, z) = d(x, y) + d(y, z) (2.4)

holds.

Example. Let us construct an example of a mapping T : X → X contracting
perimeters of triangles that is not a contraction mapping for a metric space
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Figure 1. The points of the space (X, d) with consecutive
distances between them

X with |X| = ℵ0. Let X = {x∗, x0, x1, . . .} and let a be positive real number.
Define a metric d on X as follows:

d(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a/2�i/2�, if x = xi, y = xi+1, i = 0, 1, 2, . . . ,

d(xi, xi+1) + · · · + d(xj−1, xj), if x = xi, y = xj , i + 1 < j,

4a − d(x0, xi), if x = xi, y = x∗,
0, if x = y,

where �·� is the floor function.
The reader can easily verify that for every three different points from

the set X one of them lies between the two others, see Fig. 1. Moreover, the
space is complete with the single accumulation point x∗.

Define a mapping T : X → X as Txi = xi+1 for all i = 0, 1, . . . and
Tx∗ = x∗. Since d(x2n, x2n+1) = d(Tx2n, Tx2n+1), n = 0, 1, 2 . . ., using (2.3)
we see that T is not a contraction mapping.

Let us show that inequality (2.1) holds for every three pairwise distinct
points from the space X. Consider first triplets of points xi, xj , x

∗ ∈ X with
0 � i < j. According to the definition of the metric d we have

d(xi, xj) + d(xj , x
∗) + d(xi, x

∗) = 2d(xi, x
∗) = 8a − 2d(x0, xi)

and

d(Txi, Txj) + d(Txj , Tx∗) + d(Txi, Tx∗) = 2d(Txi, Tx∗) = 8a − 2d(x0, xi+1).

According to the formula for a geometric series that computes the sum of n
terms we have

d(x0, xi) =

{
4a(1 − (1/2)n), if i = 2n,

4a(1 − (1/2)n) − a/2n−1, if i = 2n − 1,

n = 1, 2, . . .. Note also that d(x0, xi+1) = d(x0, xi) + a/(2�i/2�). Consider the
ratio

d(Txi, Txj) + d(Txj , Tx∗) + d(Txi, Tx∗)
d(xi, xj) + d(xj , x∗) + d(xi, x∗)

=
8a − 2d(x0, xi+1)
8a − 2d(x0, xi)

=
4a − d(x0, xi) − a/(2�i/2�)

4a − d(x0, xi)

=

⎧
⎨

⎩

4a−4a(1−(1/2)n)−a/(2�i/2�)
4a−4a(1−(1/2)n) , if i = 2n,

4a−4a(1−(1/2)n)+a/2n−1−a/(2�i/2�)
4a−4a(1−(1/2)n)+a/2n−1 , if i = 2n − 1,

=

{
3
4 , if i = 2n,
2
3 , if i = 2n − 1.
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Let now xi, xj , xk ∈ X be such that 0 � i < j < k. Using Fig. 1, we see
that

d(xi, xj) + d(xj , xk) + d(xi, xk) − (d(Txi, Txj) + d(Txj , Txk) + d(Txi, Txk))

= 2(a/2�i/2� − a/2�k/2�).

Consider the ratio

Ri,k =
d(Txi, Txj) + d(Txj , Txk) + d(Txi, Txk)

d(xi, xj) + d(xj , xk) + d(xi, xk)

=
d(xi, xj) + d(xj , xk) + d(xi, xk) − 2(a/2�i/2� − a/2�k/2�)

d(xi, xj) + d(xj , xk) + d(xi, xk)

= 1 − 2
(a/2�i/2� − a/2�k/2�)

d(xi, xj) + d(xj , xk) + d(xi, xk)
.

Observe that i + 1 < k. Hence,

a/2�k/2� � a/(2 · 2�i/2�). (2.5)

Using the structure of (X, d), one can show that d(xi, x
∗) � 4d(xi, xi+1).

Clearly, d(xi, xk) � d(xi, x
∗). Hence, d(xi, xk) � 4d(xi, xi+1). From equal-

ity (2.4) and the last inequality it follows that

d(xi, xj) + d(xj , xk) + d(xi, xk) = 2d(xi, xk) � 8d(xi, xi+1) = 8a/(2�i/2�).

Using this inequality and inequality (2.5) we obtain

Ri,k � 1 − 2
(a/2�i/2� − a/(2 · 2�i/2�))

8a/2�i/2� =
7
8
.

Hence, inequality (2.1) holds for every three pairwise distinct points from the
space X with the coefficient α = 7

8 = max{ 2
3 , 3

4 , 7
8}.

Example. Note that in the previous example the sequence of iterates of any
two points xi and xj are overlapping sets. Let us construct an example of
a mapping T : X → X contracting perimeters of triangles that is not a
contraction mapping having the property that there exists infinitely many
points such that the sequences of iterates of these points are disjoint sets.
Let X = {x0, x1, . . .} ∪ [0, 1] ⊆ R

1 where x2k = −4/2k, x2k+1 = −3/2k,
k = 0, 1, . . ., and let d be the Euclidean metric on X, see Fig. 2.

Define a mapping T : X → X as Txi = xi+1 for all i = 0, 1, . . . and
Tx = x/2 for all x ∈ [0, 1]. It is clear that the above mentioned property
holds, e.g., for the sequences of iterates of the points from the interval [0, 1]
having the form p/2k, where p � 3 is a prime number and k is the smallest
natural number such that p/2k ∈ [0, 1].

Note that the metric space from the previous example, if we set a = 1,
is isometric to the subspace ({0, x0, x1, . . .}, d) of the space (X, d). For this

−4 −3 −2 − 3
2 −1 − 3

4
− 3

8 0
x0 x1 x2 x3 x4 x5 x6

1

Figure 2. The metric space (X, d)
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subspace the mapping T is defined analogously. Hence, T is not a contraction
mapping.

Let us show that inequality (2.1) holds for every three pairwise dis-
tinct points from the space (X, d). For all three pairwise distinct points from
the subspace ({0, x0, x1, . . .}, d) this property was established in the previ-
ous example. Clearly, the metric d is a contraction on the subspace ([0, 1], d)
and every contraction is a mapping contracting perimeters of triangles. It
is sufficient to prove inequality (2.1) only for three pairwise distinct points
x, y, z ∈ X such that x < y < z, x ∈ {x0, x1, . . .} and z ∈ (0, 1]. Let first
x = x2k = −4/2k. Then

d(x, y) + d(y, z) + d(x, z) = 2d(x, z) = 2(4/2k + z).

Using that Tx = Tx2k = x2k+1 = −3/2k, we have

d(Tx, Ty) + d(Ty, Tz) + d(Tx, Tz) = 2d(Tx, Tz) = 2(3/2k + z/2).

To prove (2.1) consider the ratio

d(Tx, Ty) + d(Ty, Tz) + d(Tx, Tz)
d(x, y) + d(y, z) + d(x, z)

=
2(3/2k + z/2)
2(4/2k + z)

=
6 + z2k

8 + 2z2k
� 3

4
.

Analogously, let x = x2k+1 = −3/2k. Then

d(x, y) + d(y, z) + d(x, z) = 2d(x, z) = 2(3/2k + z).

Using that Tx = Tx2k+1 = x2(k+1) = −4/2k+1, we have

d(Tx, Ty) + d(Ty, Tz) + d(Tx, Tz) = 2d(Tx, Tz) = 2(4/2k+1 + z/2).

To prove (2.1) consider the ratio

d(Tx, Ty) + d(Ty, Tz) + d(Tx, Tz)
d(x, y) + d(y, z) + d(x, z)

=
2(4/2k+1 + z/2)

2(3/2k + z)
=

4 + z2k

6 + 2z2k
� 2

3
.

Hence, using the previous example, we see that inequality (2.1) holds for
every three pairwise distinct points from the space X with the coefficient
α = 7

8 = max{ 2
3 , 3

4 , 7
8}.
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