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1. Introduction

This paper mainly deals with the existence of solutions for one dimensional
Minkowski curvature problem of the form{

− (φ(u′(t)))′ = λh(t)f(t, u(t)), t ∈ (0, 1),
u(0) = u(1) = 0,

(1.1)

where φ(s) = s√
1−s2 , s ∈ (−1, 1), λ > 0 is a parameter, h �≡ 0 on any subin-

terval in (0, 1), and h ∈ H =
{

h ∈ C((0, 1), [0,∞)) | ∫ 1

0
t(1 − t)h(t)dt < ∞

}
.

It is worth noting that h may be singular at t = 0 or t = 1.
Minkowski curvature problem like (1.1) usually plays an important part

in differential geometry and physics. For example, it is closely related to the
theory of classic relativity (see [5,12,26] and the references therein). In the
past decades, lots of researchers have devoted to the study of existence and
multiplicity of solutions for various nonlinear Minkowski curvature problems
and obtained fruitful results (see [6,10,17,28,29] for one-dimensional case
and [7,8,11,19,20,22] for higher-dimensional case).
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For instance, when h(t) ≡ 1 and f : [0, 1] × R → R satisfies the L1-
Carathéodory conditions, Coelho et al. [10] applied variational and topolog-
ical methods to prove the existence and multiplicity of positive solutions for
(1.1). When h ∈ H, f(t, u) is only dependent on u, f : [0, α) → [0,∞) is
continuous with α > 1

2 , and f0 = limu→0+
f(u)

u = 0, Yang et al. [29] used
Krasnoselskii’s fixed point theorem to show the existence of at least one pos-
itive solution for (1.1). Recently, by imposing other assumptions on f , Lee et
al. [17] continued to derive the existence of at least two positive solutions for
(1.1). While, Lee et al. [17] also discussed the existence of at least two nodal
solutions for the case 0 < f0 < ∞. Their proofs rely on bifurcation theories.
In a word, the conclusions in [17,29] are related to existence of one or two
solutions for (1.1). However, as far as we know, the study about the existence
of three solutions for (1.1) has not been announced yet. In recent years, the
topic on existence of three solutions for differential equations has also be-
come one of the most interesting topics (see [4,19,22,30] and the references
therein). Inspired by the above observations, our first interest of this paper
is to establish the existence of at least three solutions for (1.1). This is the
first paper applying the fixed point index arguments to study the existence of
three solutions for (1.1). Specially, the exact existence intervals of solutions
are also derived (see Theorems 1.1 and 1.3 for details).

Besides weight function h may possess singularity at t = 0 or t = 1, our
second interest of this paper is to discuss the case that the nonlinear term
f(t, u) also has strongly singularity at u = 0. One example can be given as

f(t, u) = tα
(

1
uβ

+ uγ

)
,

where α, β, γ are positive constants. In 1979, Taliaferro [25] studied the exis-
tence of solution for a singular boundary value problem of the form

{
−u′′(t) = h(t) 1

uα(t) , t ∈ (0, 1),

u(0) = u(1) = 0,
(1.2)

where α > 0 and h ∈ H. Since then, many researchers have been interested in
the singular boundary value problems of various differential equations (see [1–
3,15,23] and the references therein). However, to the best of our knowledge,
there have been fewer work about the existence of solutions for the one-
dimensional Minkowski curvature problem like (1.1) with singularity which
may appear in both the weight function and the nonlinear term. Different
from the continuous condition imposed on f(u) at u = 0 in [17,29], we aim to
study the existence of positive solutions for (1.1) with singular nonlinear term.
Due to the appearance of strong singularity of f(t, u) at u = 0, the results
in [17,29] are not suitable for (1.1) any longer. To overcome the difficulty
caused by the strong singularity, we combine perturbation technique with
fixed point arguments to establish a new existence result of positive solution
for (1.1) (see Theorem 1.4 for details).
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More precisely, our main results can be presented as follows. For the
sake of narrative convenience, we give the following notations.

F0 = lim sup
u→0+

max
t∈[0,1]

f(t, u)
u

, F 1
2

= lim sup
u→ 1

2
−

max
t∈[0,1]

f(t, u)
u

.

As h ∈ H, we are not sure whether any solution of (1.1) is of C1[0, 1] or
not. Note that 0 ≤ F0 < ∞ can ensure any solution u of (1.1) is of C1[0, 1]
and maxt∈[0,1] |u(t)| < 1

2 . The proof can be easily done by making minor
modification of Theorem 2.1 in [28]. Moreover, by Fubini’s theorem, we see
that if h ∈ H, then

∫ 1
2
0

(∫ 1
2

s
h(τ)dτ

)
ds +

∫ 1
1
2

(∫ s
1
2

h(τ)dτ
)

ds < ∞.

Theorem 1.1. Assume that f ∈ C([0, 1] × [0, 1
2 ), [0,∞)), 0 ≤ F0 < ∞, 0 ≤

F 1
2

< 1 and there exist two constants 0 < d < a < 1
32 satisfying

(C1) f(t, u) ≤ d, for all (t, u) ∈ [0, 1] × [0, d];
(C2) f(t, u) ≥ βφ(32a) for all (t, u) ∈ [14 , 3

4 ] × [a, 4a], where β is a
positive constant such that λ∗ < λ∗,

λ∗ =
1

β min
{∫ 1

2
1
4

h(τ)dτ,
∫ 3

4
1
2

h(τ)dτ
} ,

λ∗ =
1

max
{∫ 1

2
0

(∫ 1
2

s
h(τ)dτ

)
ds,

∫ 1
1
2

(∫ s
1
2

h(τ)dτ
)

ds
} .

Then, for any λ ∈ (λ∗, λ∗), problem (1.1) must have at least one non-
negative solution u1 and two positive solutions u2, u3 satisfying ‖u1‖ < d,
mint∈[ 14 , 34 ]

u2(t) > a, ‖u3‖ > d and mint∈[ 14 , 34 ]
u3(t) < a.

Remark 1.2. Since h may be singular at t = 0 and/or t = 1, we understand
u as a solution of (1.1) if u ∈ C[0, 1] ∩ C1(0, 1), |u′(t)| < 1 for t ∈ (0, 1) with
φ(u′) absolutely continuous which satisfies (1.1). Particularly, if u(t) ≥ 0 for
all t ∈ [0, 1], then u is called a nonnegative solution. While, if u(t) > 0 for all
t ∈ (0, 1), then u is called a positive solution of (1.1).

Moreover, condition 0 ≤ F0 < ∞ implies that u1 may be a trivial
solution in Theorem 1.1. Thus, we continue to establish Theorem 1.3 that
can guarantee the existence of three positive solutions for (1.1).

Theorem 1.3. Assume that f ∈ C([0, 1] × [0, 1
2 ), [0,∞)), 0 ≤ F0 < ∞, 0 ≤

F 1
2

< 1 and there exist three constants 0 < e < d < a < 1
32 satisfying

(C1) f(t, u) ≤ d, for all (t, u) ∈ [0, 1] × [0, d];
(C3) f(t, u) ≥ β1φ(8e) for all (t, u) ∈ [14 , 3

4 ] × [ e
4 , e], f(t, u) ≥ β2φ(32a)

for all (t, u) ∈ [14 , 3
4 ] × [a, 4a], where β1, β2 are two positive constants such

that λ∗ < λ∗,

λ∗ =
1

min{β1, β2}min
{∫ 1

2
1
4

h(τ)dτ,
∫ 3

4
1
2

h(τ)dτ
} ,

λ∗ =
1

max
{∫ 1

2
0

(∫ 1
2

s
h(τ)dτ

)
ds,

∫ 1
1
2

(∫ s
1
2

h(τ)dτ
)

ds
} .
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Then, for any λ ∈ (λ∗, λ∗), problem (1.1) must have at least three positive
solutions u1, u2, u3 satisfying e < ‖u1‖ < d, mint∈[ 14 , 34 ]

u2(t) > a, ‖u3‖ > d

and mint∈[ 14 , 34 ]
u3(t) < a.

Theorem 1.4. Assume that f ∈ C([0, 1] × (0,∞), (0,∞)) and satisfies
(C4) f(t, u) ≤ f1(u) + f2(u) for all (t, u) ∈ [0, 1] × (0,∞), where f1 :

(0,∞) → (0,∞) is continuous and nonincreasing, f2 : [0,∞) → [0,∞) is
continuous, and f2

f1
is nondecreasing on (0,∞);

(C5) for each constant ι > 0, there exists a function ψι ∈ C([0, 1], [0,∞))
satisfying ψι(t) > 0 for t ∈ (0, 1) and f(t, u) ≥ ψι(t) for (t, u) ∈ [0, 1] × (0, ι];

(C6) there exists a constant r > 0 such that λ̄ ∈ (0,∞),

λ̄ =

∫ r

0
dy

f1(y)[
1 + f2(r)

f1(r)

]
max

{∫ 1
2
0

(∫ 1
2

s
h(τ)dτ

)
ds,

∫ 1
1
2

(∫ s
1
2

h(τ)dτ
)

ds
} .

Then, for any λ ∈ (0, λ̄), problem (1.1) must have at least one positive solu-
tion u satisfying 0 < ‖u‖ < r.

The rest of this paper is organized as follows. In Sect. 2, we introduce
some necessary preliminaries. In Sect. 3, we present the detailed proofs of
Theorems 1.1 and 1.3, and give one corresponding example. Finally, the proof
of Theorem 1.4 and corresponding example are given in Sect. 4.

2. Preliminaries

Before proving our main results, let us first present necessary preliminaries.
Let K be a cone of the Banach space (E, ‖ · ‖), α be a continuous functional.
Then, for positive constants r, b, d, we denote

Kr = {u ∈ K | ‖u‖ < r},

∂Kr = {u ∈ K | ‖u‖ = r},

K(α, b, d) = {u ∈ K | b ≤ α(u), ‖u‖ ≤ d},

K̊(α, b, d) = {u ∈ K | b < α(u), ‖u‖ ≤ d}.

Lemma 2.1. (Guo–Krasnoselskii [13,16]) Let E be a Banach space and let K
be a cone in E. Assume that T : Kr → K is completely continuous such that
Tu �= u for u ∈ ∂Kr.

(i) If ‖Tu‖ ≥ ‖u‖ for u ∈ ∂Kr, then i(T,Kr,K) = 0.
(ii) If ‖Tu‖ ≤ ‖u‖ for u ∈ ∂Kr, then i(T,Kr,K) = 1.

Definition 2.2. ([18]) A continuous functional α : K → [0,+∞) is called a
concave positive functional on a cone K if α satisfies

α(κx + (1 − κ)y) ≥ κα(x) + (1 − κ)α(y), for all x, y ∈ K, 0 ≤ κ ≤ 1.

Lemma 2.3. (Leggett–Williams [18]) Let K be a cone in a real Banach space
E and α be a concave positive functional on K such that α(u) ≤ ‖u‖ for
all u ∈ Kc. Suppose T : Kc → Kc is completely continuous and there ex-
ist numbers a, b and d, with 0 < d < a < b ≤ c, satisfying the following
conditions:
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(i) {u ∈ K(α, a, b) : α(u) > a} �= ∅ and α(Tu) > a if u ∈ K(α, a, b);
(ii) ‖Tu‖ < d if u ∈ Kd;
(iii) α(Tu) > a for all u ∈ K(α, a, c) with ‖Tu‖ > b.

Then

i(T,Kd,Kc) = 1,

i(T, K̊(α, a, c),Kc) = 1,

i(T,Kc\(Kd ∪ K(α, a, c)),Kc) = −1.

Furthermore, T has at least three fixed points u1, u2, u3 in Kc such that
‖u1‖ < d, a < α(u2), d < ‖u3‖ with α(u3) < a.

Remark 2.4. From the definition of φ, we have φ−1(s) = s√
1+s2 for s ∈ R

and φ−1(s) ≤ s for s ∈ [0,∞).

Lemma 2.5. ([14]) Assume that u ∈ C0[0, 1]∩C1(0, 1) satisfies (φ(u′(t)))′ ≤ 0
in (0, 1). Then we have (i) u is concave on [0, 1]; (ii) mint∈[ 14 , 34 ]

u(t) ≥ 1
4‖u‖.

Here ‖u‖ denotes the supremum norm of u.

From now on, we always take E = C[0, 1] as Banach space with norm
‖u‖ = maxt∈[0,1] |u(t)| and take a cone K defined by

K = {u ∈ E | u(t) is nonnegative and concave on [0, 1]} .

For the case f ∈ C([0, 1] × [0, 1
2 ), [0,∞)), let us consider the Nemytskii

operator Nf : E → E defined by Nf (u)(t) = f(t, u(t)) for t ∈ [0, 1]. Applying
the similar process of establishing the solution operator in [9], we can define
a nonlinear operator Tλ as follows

Tλ(u)(t) =

⎧⎨
⎩

∫ t

0
φ−1

(
a(λhNf (u)) +

∫ 1
2

s
λh(τ)f(τ, u(τ))dτ

)
ds, t ∈ [0, 1

2 ],∫ 1

t
φ−1

(
−a(λhNf (u)) +

∫ s
1
2

λh(τ)f(τ, u(τ))dτ
)

ds, t ∈ [12 , 1],

where a(λhNf (u)) ∈ R uniquely satisfies∫ 1
2

0

φ−1

(
a(λhNf (u)) +

∫ 1
2

s

λh(τ)f(τ, u(τ))dτ

)
ds

=
∫ 1

1
2

φ−1

(
−a(λhNf (u)) +

∫ s

1
2

λh(τ)f(τ, u(τ))dτ

)
ds.

By the definition of Tλ, we can easily show that Tλ(K) ⊂ K and Tλ is com-
pletely continuous. One can refer to Lemma 3 in [9] for details. Additionally,
u is a solution of (1.1) if and only if u is a fixed point of Tλ on K.

Remark 2.6. Once λ, h and f are fixed, we can regard a(λhNf (u)) as a func-
tion of u. For simplicity, we denote a(λhNf (u)) by au in the following parts.
In particular, by using the similar arguments about the proofs of Lemma 3.1
and Lemma 3.2 in [24], we can easily prove that au : K → R is continuous
and sends any bounded set in K into bounded set in R.
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For the case f ∈ C([0, 1]×(0,∞), (0,∞)), we need consider the following
auxiliary boundary value problem{

− (φ(u′(t)))′ = λh(t)F (t, u(t)), t ∈ (0, 1),
u(0) = u(1) = A,

(2.1)

where φ(s) = s√
1−s2 , s ∈ (−1, 1), λ > 0, h ∈ H, h �≡ 0 on any subinterval in

(0, 1), F ∈ C([0, 1] × R, [0,∞)) and A is a fixed nonnegative constant.

Lemma 2.7. Assume that u is a solution of (2.1). Then u satisfies some
properties as follows:

(i) u(t) is concave and u(t) ≥ A on [0, 1];
(ii) there exists a constant t∗ ∈ (0, 1) satisfying u′(t∗) = 0, u(t∗) = ‖u‖, and

u′(t) ≥ 0 on t ∈ (0, t∗], u′(t) ≤ 0 on t ∈ (t∗, 1);
(iii) u(t) ≥ t(1 − t)‖u‖ on [0, 1].

Proof. The proof of this lemma can be similar to the proof of Lemma 2.3 in
Wang [27]. Here we omit it. �

Finally, we introduce a general existence principle for the special case
λ = 1 of problem (2.1){

− (φ(u′(t)))′ = h(t)F (t, u(t)), t ∈ (0, 1),
u(0) = u(1) = A,

(2.2)

which will play an important role in the proof of Theorem 1.4.

Lemma 2.8. Assume that there exists a constant C > A, C is independent of
ν, and ‖u‖ = maxt∈[0,1] |u(t)| �= C for any solution u ∈ C[0, 1] ∩ C1(0, 1) to
the following problem{

− (φ(u′(t)))′ = νh(t)F (t, u(t)), t ∈ (0, 1), ν ∈ (0, 1),
u(0) = u(1) = A.

(2.3)

Then (2.2) has at least one solution u ∈ C[0, 1] ∩ C1(0, 1) and ‖u‖ ≤ C.

Proof. The proof of this lemma can be completed by applying the homotopy
invariance of degree. One can refer to the proof of Lemma 2.3 in [21] for
details. �

3. Case 1: f ∈ C([0, 1] × [0, 1
2
), [0,∞))

In this section, we present the detailed proofs of Theorems 1.1 and 1.3, and
give one corresponding example.

Proof of Theorem 1.1. It is obvious that (λ∗, λ∗) is not empty because of con-
dition on β. There will be three steps to complete the proof of this theorem.

Step 1: We show that Tλ(Kc) ⊂ Kc for some positive constant c and
‖Tλ(u)‖ < d for u ∈ Kd. Since 0 ≤ F 1

2
< 1, there must exist two constants

ρ, δ such that 0 < ρ < 1, 0 < δ < 1
2 and

f(t, u) ≤ ρu, for (t, u) ∈ [0, 1] ×
(

1
2

− δ,
1
2

)
.
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Then, we can obtain

f(t, u) ≤ ρu + η, for (t, u) ∈ [0, 1] × [0,
1
2
), (3.1)

where η = max(t,u)∈[0,1]×[0, 12−δ] f(t, u). Take c > max{ η
1−ρ , 4a} and let u ∈

Kc. We can easily check that Tλ(u) ∈ K and there exists at least one point
σ ∈ (0, 1) satisfying Tλ(u)(σ) = maxt∈[0,1] Tλ(u)(t) and Tλ(u)′(σ) = 0. If σ ∈
(0, 1

2 ], then we can easily derive au = − ∫ 1
2

σ
λh(τ)f(τ, u(τ))dτ . By Remark

2.4, we have

‖Tλ(u)‖ =
∫ σ

0

φ−1

(
au +

∫ 1
2

s

λh(τ)f(τ, u(τ))dτ

)
ds

=
∫ σ

0

φ−1

(
−

∫ 1
2

σ

λh(τ)f(τ, u(τ))dτ +
∫ 1

2

s

λh(τ)f(τ, u(τ))dτ

)
ds

=
∫ σ

0

φ−1

(∫ σ

s

λh(τ)f(τ, u(τ))dτ

)
ds

≤
∫ 1

2

0

φ−1

(∫ 1
2

s

λh(τ)f(τ, u(τ))dτ

)
ds

≤
∫ 1

2

0

(∫ 1
2

s

λh(τ)f(τ, u(τ))dτ

)
ds. (3.2)

Similarly, if σ ∈ (12 , 1), then we have

‖Tλ(u)‖ =
∫ 1

σ

φ−1

(
−au +

∫ s

1
2

λh(τ)f(τ, u(τ))dτ

)
ds

=
∫ 1

σ

φ−1

(
−

∫ σ

1
2

λh(τ)f(τ, u(τ))dτ +
∫ s

1
2

λh(τ)f(τ, u(τ))dτ

)
ds

=
∫ 1

σ

φ−1

(∫ s

σ

λh(τ)f(τ, u(τ))dτ

)
ds

≤
∫ 1

1
2

φ−1

(∫ s

1
2

λh(τ)f(τ, u(τ))dτ

)
ds

≤
∫ 1

1
2

(∫ s

1
2

λh(τ)f(τ, u(τ))dτ

)
ds. (3.3)

Combining (3.2)(3.3) with (3.1), we get

‖Tλ(u)‖

≤ max

{∫ 1
2

0

(∫ 1
2

s

λh(τ)f(τ, u(τ))dτ

)
ds,

∫ 1

1
2

(∫ s

1
2

λh(τ)f(τ, u(τ))dτ

)
ds

}

≤ max

{∫ 1
2

0

(∫ 1
2

s

λh(τ)(ρu(τ) + η)dτ

)
ds,

∫ 1

1
2

(∫ s

1
2

λh(τ)(ρu(τ) + η)dτ

)
ds

}
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≤ max

{∫ 1
2

0

(∫ 1
2

s

λh(τ)(ρc + η)dτ

)
ds,

∫ 1

1
2

(∫ s

1
2

λh(τ)(ρc + η)dτ

)
ds

}
.

From the choice of c and the range of λ, we see that ρc + η < c and

‖Tλ(u)‖ ≤ λc max

{∫ 1
2

0

(∫ 1
2

s

h(τ)dτ

)
ds,

∫ 1

1
2

(∫ s

1
2

h(τ)dτ

)
ds

}
< c.

Thus, we can obtain Tλ(Kc) ⊂ Kc. Applying the similar process with the aid
of condition (C1), we can show that for u ∈ Kd

‖Tλ(u)‖ ≤ λd max

{∫ 1
2

0

(∫ 1
2

s

h(τ)dτ

)
ds,

∫ 1

1
2

(∫ s

1
2

h(τ)dτ

)
ds

}
< d,

which means that condition (ii) of Lemma 2.3 is satisfied.
Step 2: We show that condition (i) of Lemma 2.3 is also satisfied. For

this, we need define

α(u) = min
t∈[ 14 , 34 ]

u(t), on K.

Clearly, α is a nonnegative continuous concave functional. Taking b = 4a
and u(t) ≡ a+b

4 = 5a
4 for t ∈ [0, 1], we see a < u(t) ≡ 5a

4 < 4a = b. Hence,
{u ∈ K(α, a, b) : α(u) > a} �= ∅.

Next, let u ∈ K(α, a, b), then α(u) = mint∈[ 14 , 34 ]
u(t) ≥ a and ‖u‖ ≤ b =

4a. From condition (C2), we get

f(t, u(t)) ≥ βφ(32a), for t ∈
[
1
4
,
3
4

]
. (3.4)

Considering two cases au ≥ 0, au < 0 and using (3.4), we can derive that

2‖Tλ(u)‖ ≥ 2Tλ(u)

(
1

2

)

=

∫ 1
2

0
φ−1

(
au +

∫ 1
2

s

λh(τ)f(τ, u(τ))dτ

)
ds

+

∫ 1

1
2

φ−1

(
−au +

∫ s

1
2

λh(τ)f(τ, u(τ))dτ

)
ds

≥ min

{∫ 1
2

0
φ−1

(∫ 1
2

s

λh(τ)f(τ, u(τ))dτ

)
ds,

∫ 1

1
2

φ−1

(∫ s

1
2

λh(τ)f(τ, u(τ))dτ

)
ds

}

≥ min

{∫ 1
4

0
φ−1

(∫ 1
2

s

λh(τ)f(τ, u(τ))dτ

)
ds,

∫ 1

3
4

φ−1

(∫ s

1
2

λh(τ)f(τ, u(τ))dτ

)
ds

}

≥ min

{∫ 1
4

0
φ−1

(∫ 1
2

1
4

λh(τ)f(τ, u(τ))dτ

)
ds,

∫ 1

3
4

φ−1

(∫ 3
4

1
2

λh(τ)f(τ, u(τ))dτ

)
ds

}

≥ min

{∫ 1
4

0
φ−1

(∫ 1
2

1
4

λh(τ)βφ(32a)dτ

)
ds,

∫ 1

3
4

φ−1

(∫ 3
4

1
2

λh(τ)βφ(32a)dτ

)
ds

}

≥ 1

4
φ−1

(
λβφ(32a)min

{∫ 1
2

1
4

h(τ)dτ,

∫ 3
4

1
2

h(τ)dτ

})
.
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i.e.

‖Tλ(u)‖ ≥ 1
8
φ−1

(
λβφ(32a)min

{∫ 1
2

1
4

h(τ)dτ,

∫ 3
4

1
2

h(τ)dτ

})
.

Then, for any λ ∈ (λ∗, λ∗), we have

‖Tλ(u)‖ >
1
8
φ−1(φ(32a)) = 4a.

Since Tλ(u) ∈ K for u ∈ K(α, a, b), we see

α(Tλ(u)) = min
t∈[ 14 , 34 ]

Tλ(u)(t) ≥ 1
4
‖Tλ(u)‖.

Hence,

α(Tλ(u)) ≥ 1
4
‖Tλ(u)‖ >

1
4

· 4a = a, for u ∈ K(α, a, b).

Step 3: For all u ∈ K(α, a, c) with ‖Tλ(u)‖ > b, we get

α(Tλ(u)) = min
t∈[ 14 , 34 ]

Tλ(u)(t) ≥ 1
4
‖Tλ(u)‖ >

b

4
= a,

which means that condition (iii) of Lemma 2.3 holds.
Above all, from Lemma 2.3, we see that for any λ ∈ (λ∗, λ∗), Tλ must

have at least three fixed points u1, u2, u3 in Kc such that ‖u1‖ < d, α(u2) > a,
‖u3‖ > d with α(u3) < a. The proof of Theorem 1.1 can be completed. �

Proof of Theorem 1.3. Obviously, the interval (λ∗, λ∗) is not empty because
of condition on β1, β2. Combining the similar arguments in the proof of Theo-
rem 1.1 with the aids of conditions (C1)(C3), we can check that the conditions
(i) (ii) and (iii) of Lemma 2.3 all hold. Hence, there must exist positive con-
stant c such that

i(Tλ,Kd,Kc) = 1, (3.5)

i(Tλ, K̊(α, a, c),Kc) = 1, (3.6)

i(Tλ,Kc\(Kd ∪ K(α, a, c)),Kc) = −1. (3.7)

Meanwhile, let u ∈ K with ‖u‖ = e. By Lemma 2.5, for t ∈ [14 , 3
4 ], we have

e ≥ u(t) ≥ 1
4
‖u‖ =

e

4
, f(t, u(t)) ≥ β1φ(8e). (3.8)

Let u ∈ ∂Ke. Combining the arguments in the second step of the proof of
Theorem 1.1 with the aid of (3.8), we can obtain that for any λ ∈ (λ∗, λ∗)

‖Tλ(u)‖ ≥ 1
8
φ−1

(
λβ1φ(8e)min

{∫ 1
2

1
4

h(τ)dτ,

∫ 3
4

1
2

h(τ)dτ

})

≥ 1
8
φ−1

(
λ min{β1, β2}φ(8e)min

{∫ 1
2

1
4

h(τ)dτ,

∫ 3
4

1
2

h(τ)dτ

})

>
1
8
φ−1(φ(8e)) = e.
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i.e.

‖Tλ(u)‖ > ‖u‖, for u ∈ ∂Ke. (3.9)

By Lemma 2.1 and (3.9), we have

i(Tλ,Ke,Kc) = 0. (3.10)

From (3.5)(3.10) and the additivity of the fixed point index, we deduce

i(Tλ,Kd\Ke,Kc) = 1. (3.11)

Hence, from (3.6)(3.7) and (3.11), we get that for any λ ∈ (λ∗, λ∗), Tλ must
have at least three fixed points u1, u2, u3 in Kc such that e < ‖u1‖ < d,
a < α(u2), d < ‖u3‖ with α(u3) < a. The proof of Theorem 1.3 is done. �

Example 1. Consider a Minkowski curvature problem of the form{−φ(u′)′ = λt−
3
2 f(u), t ∈ (0, 1),

u(0) = u(1) = 0,
(3.12)

where

f(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u, 0 ≤ u < 1
100 ,

239800
3 u2 − 2395

3 u, 1
100 ≤ u < 1

40 ,

1200u, 1
40 ≤ u < 1

10 ,

17995
6 u( 12 − u) + 1

3u, 1
10 ≤ u < 1

2 .

(3.13)

It is easy to check that h(t) = t−
3
2 ∈ H, h �≡ 0 on any subinterval in (0, 1)

and f ∈ C([0, 1
2 ), [0,∞)).

F0 = lim sup
u→0+

u

u
= 1,

F 1
2

= lim sup
u→ 1

2
−

17995
6 u( 12 − u) + 1

3u

u
=

1
3

< 1.

Here, we can take d = 1
100 such that

f(u) = u ≤ 1
100

, for u ∈ [0,
1

100
].

Condition (C1) of Theorem 1.1 is satisfied. Meanwhile, we can take a = 1
40

and β = 20 satisfying f(u) = 1200u ≥ 30 > 80
3 = βφ(32a) for all 1

40 ≤ u ≤ 1
10

and
1

β min

{∫ 1
2
1
4

h(τ)dτ,
∫ 3

4
1
2

h(τ)dτ

} <
1

max

{∫ 1
2
0

(∫ 1
2

s
h(τ)dτ

)
ds,

∫ 1
1
2

(∫ s
1
2

h(τ)dτ
)
ds

} .

Condition (C2) of Theorem 1.1 is also satisfied. Here, we have

λ∗ =
1

β min
{∫ 1

2
1
4

h(τ)dτ,
∫ 3

4
1
2

h(τ)dτ
} .= 0.096,
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λ∗ =
1

max
{∫ 1

2
0

(∫ 1
2

s
h(τ)dτ

)
ds,

∫ 1
1
2

(∫ s
1
2

h(τ)dτ
)

ds
} .= 0.707.

From Theorem 1.1, for any λ ∈ (0.096, 0.707), (3.12) must have at least one
nonnegative solution u1 and two positive solutions u2, u3 satisfying ‖u1‖ <
1

100 , mint∈[ 14 , 34 ]
u2(t) > 1

40 , ‖u3‖ > 1
100 and mint∈[ 14 , 34 ]

u3(t) < 1
40 .

Moreover, replacing f(u) = u for 0 ≤ u < 1
100 in (3.13) with

f(u) =

⎧⎨
⎩

7.996 × 1011u2 + u, 0 ≤ u < 1
4 × 10−8,

1
10u

1
2 , 1

4 × 10−8 ≤ u < 1
100 ,

we can take e = 10−8, d = 1
100 , a = 1

40 , β1 = 30 and β2 = 20. Then conditions
of Theorem 1.3 are all satisfied. Thus, for any λ ∈ (0.096, 0.707), (3.12) must
have at least three positive solutions u1, u2, u3 satisfying 10−8 < ‖u1‖ < 1

100 ,
mint∈[ 14 , 34 ]

u2(t) > 1
40 , ‖u3‖ > 1

100 and mint∈[ 14 , 34 ]
u3(t) < 1

40 .

4. Case 2: f ∈ C([0, 1] × (0,∞), (0,∞))

In this section, let us firstly consider a special case λ = 1 of problem (1.1){
− (φ(u′(t)))′ = h(t)f(t, u(t)), t ∈ (0, 1),
u(0) = u(1) = 0,

(4.1)

and establish an auxiliary existence result of positive solution for (4.1). Then
Theorem 1.4 can be easily deduced as a consequence of the auxiliary result.
As an application, one corresponding example will also be presented.

Theorem 4.1. Assume that f ∈ C([0, 1] × (0,∞), (0,∞)) and satisfies
(C4) f(t, u) ≤ f1(u) + f2(u) for all (t, u) ∈ [0, 1] × (0,∞), where f1 :

(0,∞) → (0,∞) is continuous and nonincreasing, f2 : [0,∞) → [0,∞) is
continuous, and f2

f1
is nondecreasing on (0,∞);

(C5) for each constant ι > 0, there exists a function ψι ∈ C([0, 1], [0,∞))
satisfying ψι(t) > 0 for t ∈ (0, 1) and f(t, u) ≥ ψι(t) for (t, u) ∈ [0, 1] × (0, ι];

(C7) there exists a constant r > 0 such that∫ r

0
dy

f1(y)

1 + f2(r)
f1(r)

> max

{∫ 1
2

0

(∫ 1
2

s

h(τ)dτ

)
ds,

∫ 1

1
2

(∫ s

1
2

h(τ)dτ

)
ds

}
.

Then problem (4.1) has at least one positive solution u with 0 < ‖u‖ < r.

Proof. From (C7), we can choose ε ∈ (0, r) satisfying∫ r

ε
dy

f1(y)

1 + f2(r)
f1(r)

> max

{∫ 1
2

0

(∫ 1
2

s

h(τ)dτ

)
ds,

∫ 1

1
2

(∫ s

1
2

h(τ)dτ

)
ds

}
. (4.2)

Let n0 ∈ {1, 2, · · · } be chosen so that 1
n0

< ε and let N0 = {n0, n0 + 1, · · · }.
In the following parts, we will divide the proof of this theorem into three
steps.
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Step 1: Show that the following boundary value problem{
− (φ(u′(t)))′ = h(t)f(t, u(t)), t ∈ (0, 1),
u(0) = u(1) = 1

n , n ∈ N0,
(4.3)

has at least one positive solution un for each n ∈ N0, and 1
n ≤ un(t) < r for

t ∈ [0, 1]. For this, let us consider the modified problem of the form{
− (φ(u′(t)))′ = h(t)f∗(t, u(t)), t ∈ (0, 1),
u(0) = u(1) = 1

n , n ∈ N0,
(4.4)

where

f∗(t, u) =
{

f(t, u), u ≥ 1
n ,

f(t, 1
n ), u ≤ 1

n ,

and apply Lemma 2.8 to prove the existence of positive solution of (4.4) for
each n ∈ N0. Thus, we need consider the family of problems{

− (φ(u′(t)))′ = νh(t)f∗(t, u(t)), t ∈ (0, 1), ν ∈ (0, 1),
u(0) = u(1) = 1

n , n ∈ N0.
(4.5)

Let u be a solution of (4.5). By Lemma 2.7, we see that u′′(t) ≤ 0 on (0, 1),
u(t) ≥ 1

n for t ∈ [0, 1], there exists one point σn ∈ (0, 1) such that u′(σn) = 0,
‖u‖ = u(σn) and u′(t) ≥ 0 on (0, σn], u′(t) ≤ 0 on (σn, 1).

If σn ∈ (0, 1
2 ], then we integrate on both sides of the first equation in

(4.5) on [s, σn] for s ∈ (0, σn). And from (C4), we get

φ(u′(s)) =
∫ σn

s

νh(τ)f∗(τ, u(τ))dτ

=
∫ σn

s

νh(τ)f(τ, u(τ))dτ

≤
∫ σn

s

h(τ) [f1(u(τ)) + f2(u(τ))] dτ

=
∫ σn

s

h(τ)f1(u(τ))
[
1 +

f2(u(τ))
f1(u(τ))

]
dτ

≤ f1(u(s))
[
1 +

f2(u(σn))
f1(u(σn))

] ∫ σn

s

h(τ)dτ.

Taking φ−1 on both sides of the above inequality and applying Remark 2.4,
we have

u′(s) ≤ φ−1

(
f1(u(s))

[
1 +

f2(u(σn))
f1(u(σn))

] ∫ σn

s

h(τ)dτ

)

≤ f1(u(s))
[
1 +

f2(u(σn))
f1(u(σn))

] ∫ σn

s

h(τ)dτ.

i.e.
u′(s)

f1(u(s))
≤

[
1 +

f2(u(σn))
f1(u(σn))

] ∫ σn

s

h(τ)dτ. (4.6)
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Integrating on both sides of the above inequality from 0 to σn, we obtain∫ u(σn)

1
n

dy

f1(y)
≤

[
1 +

f2(u(σn))
f1(u(σn))

] ∫ σn

0

(∫ σn

s

h(τ)dτ

)
ds

≤
[
1 +

f2(u(σn))
f1(u(σn))

] ∫ 1
2

0

(∫ 1
2

s

h(τ)dτ

)
ds.

It follows from the choice of n that∫ u(σn)

ε

dy

f1(y)
≤

[
1 +

f2(u(σn))
f1(u(σn))

] ∫ 1
2

0

(∫ 1
2

s

h(τ)dτ

)
ds. (4.7)

Similarly, if σn ∈ ( 12 , 1), we can derive∫ u(σn)

ε

dy

f1(y)
≤

[
1 +

f2(u(σn))
f1(u(σn))

] ∫ 1

1
2

(∫ s

1
2

h(τ)dτ

)
ds. (4.8)

Hence, from (4.7) and (4.8), we have∫ u(σn)

ε

dy

f1(y)

≤
[
1 +

f2(u(σn))
f1(u(σn))

]
max

{∫ 1
2

0

(∫ 1
2

s

h(τ)dτ

)
ds,

∫ 1

1
2

(∫ s

1
2

h(τ)dτ

)
ds

}
.

(4.9)

Combining (4.2) with (4.9), we see that ‖u‖ = u(σn) �= r. By Lemma 2.8, we
derive that (4.4) has at least one positive solution un such that 1

n ≤ un(t) < r
for t ∈ [0, 1]. It means that (4.3) has at least one positive solution un such
that

1
n

≤ un(t) < r, for t ∈ [0, 1]. (4.10)

Step 2: Show that there exists a constant k > 0 such that

un(t) ≥ t(1 − t)k, for t ∈ [0, 1],∀ n ∈ N0. (4.11)

In fact, by Lemma 2.7, we see that un ∈ K and un(t) ≥ t(1 − t)‖un‖ for
t ∈ [0, 1] and each n ∈ N0. Fix n ∈ N0, let us define

T1(u)(t) =

⎧⎨
⎩

1
n +

∫ t

0
φ−1

(
a(hNf∗(u))+

∫ 1
2

s
h(τ)f∗(τ, u(τ))dτ

)
ds, t ∈ [0, 1

2 ],

1
n +

∫ 1

t
φ−1

(
−a(hNf∗(u))+

∫ s
1
2

h(τ)f∗(τ, u(τ))dτ
)

ds, t ∈ [12 , 1],

where a(hNf∗(u)) ∈ R uniquely satisfies∫ 1
2

0

φ−1

(
a(hNf∗(u)) +

∫ 1
2

s

h(τ)f∗(τ, u(τ))dτ

)
ds

=
∫ 1

1
2

φ−1

(
−a(hNf∗(u)) +

∫ s

1
2

h(τ)f∗(τ, u(τ))dτ

)
ds.
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Applying the similar analysis about the solution operator of problem (1.1),
we can easily check that T1 : K → K is completely continuous, and un is a
solution of problem (4.4) can be equivalently rewritten as un = T1(un) on K.
By using Lemma 2.7, condition (C5) and the arguments in the second step
of the proof of Theorem 1.1, we can deduce

2‖un‖ = 2‖T1(un)‖ ≥ 2T1(un)

(
1

2

)

=
1

n
+

∫ 1
2

0
φ−1

(
a(hNf∗ (un)) +

∫ 1
2

s
h(τ)f∗(τ, un(τ))dτ

)
ds

+
1

n
+

∫ 1

1
2

φ−1

(
−a(hNf∗ (un)) +

∫ s

1
2

h(τ)f∗(τ, un(τ))dτ

)
ds

≥ min

{∫ 1
2

0
φ−1

(∫ 1
2

s
h(τ)f∗(τ, un(τ))dτ

)
ds,

∫ 1

1
2

φ−1

(∫ s

1
2

h(τ)f∗(τ, un(τ))dτ

)
ds

}

= min

{∫ 1
2

0
φ−1

(∫ 1
2

s
h(τ)f(τ, un(τ))dτ

)
ds,

∫ 1

1
2

φ−1

(∫ s

1
2

h(τ)f(τ, un(τ))dτ

)
ds

}

≥ min

{∫ 1
4

0
φ−1

(∫ 1
2

1
4

h(τ)f(τ, un(τ))dτ

)
ds,

∫ 1

3
4

φ−1

(∫ 3
4

1
2

h(τ)f(τ, un(τ))dτ

)
ds

}

≥ 1

4
min

{
φ−1

(∫ 1
2

1
4

h(τ)ψr(τ)dτ

)
, φ−1

(∫ 3
4

1
2

h(τ)ψr(τ)dτ

)}
.

i.e.

un(t) ≥ t(1 − t)‖un‖ ≥ t(1 − t)k, for t ∈ [0, 1], ∀ n ∈ N0,

where

k =
1
8

min

{
φ−1

(∫ 1
2

1
4

h(τ)ψr(τ)dτ

)
, φ−1

(∫ 3
4

1
2

h(τ)ψr(τ)dτ

)}
.

Step 3: Show that {un}n∈N0 is uniformly bounded and equicontinuous
on [0, 1]. It follows from (4.10) that {un}n∈N0 is uniformly bounded clearly.
Then we only need to show its equicontinuity. Exactly, we firstly prove that
there exist two constants c1, c2 such that

0 < c1 < inf{σn : n ∈ N0} ≤ sup{σn : n ∈ N0} < c2 < 1.

For this, combining the similar deduction process of (4.6) with (4.10), we can
easily get

u′
n(s)

f1(un(s))
≤

[
1 +

f2(r)
f1(r)

] ∫ σn

s

h(τ)dτ, (4.12)

and

− u′
n(s)

f1(un(s))
≤

[
1 +

f2(r)
f1(r)

] ∫ s

σn

h(τ)dτ. (4.13)

We can apply the contradiction method to prove inf{σn : n ∈ N0} > c1 > 0.
Suppose it is not true, then there must exist a subsequence N∗ of N0 satisfying
σn → 0 as n → ∞. Integrating on both sides of (4.12) from 0 to σn, we have∫ un(σn)

0

dy

f1(y)
≤

[
1 +

f2(r)
f1(r)

] ∫ σn

0

τh(τ)dτ +
∫ 1

n

0

dy

f1(y)
.
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Since 1
n → 0 and σn → 0 as n → ∞ in N∗, we get un(σn) → 0 as n → ∞

in N∗. That is to say, un → 0 in C[0, 1] as n → ∞ in N∗, which contradicts
with (4.11). Similarly, we can also show that sup{σn : n ∈ N0} < c2 < 1.
Thus, from (4.12) and (4.13), we have

|u′
n(s)|

f1(un(s))
≤

[
1 +

f2(r)
f1(r)

] ∫ max{s,c2}

min{s,c1}
h(τ)dτ, for s ∈ (0, 1). (4.14)

It follows from h ∈ H that
∫ max{s,c2}
min{s,c1} h(τ)dτ ∈ L1[0, 1]. Let us define a

function J : [0,∞) → [0,∞) given by

J(x) =
∫ x

0

dy

f1(y)
. (4.15)

It is obvious to see that J is continuous and increasing on [0,∞). From (4.14)
and (4.15), we can also easily check that {J(un)}n∈N0 is uniformly bounded
and equicontinuous on [0, 1]. Then, the equicontinuity of {un}n∈N0 can be
guaranteed by the fact that J−1 is uniformly continuous on [0, J(r)] and

|un(t1) − un(t2)| = |J−1(J(un(t1))) − J−1(J(un(t2)))|, for t1, t2 ∈ [0, 1].

Finally, from the Arzela–Ascoli theorem, there must exist a subsequence
N∗ of N0 and a continuous function u such that un converging uniformly to u
on [0, 1] as n → ∞ in N∗, u(0) = u(1) = 0, and u(t) ≥ t(1 − t)k for t ∈ [0, 1].
Specially, u(t) > 0 for t ∈ (0, 1). Since un is the positive solution of (4.3) for
each n ∈ N∗, then for t ∈ (0, 1), we can easily deduce that un satisfies

un(t) = un

(
1
2

)
+

∫ t

1
2

φ−1

(
φ

(
u′

n

(
1
2

))
−

∫ s

1
2

h(τ)f(τ, un(τ))dτ

)
ds.

By (4.10) and (4.11), we see that the sequence {u′
n( 12 )}n∈N∗ is bounded.

Hence {u′
n( 12 )}n∈N∗ must have a convergent subsequence which converges to

ζ ∈ R. For simplicity, we also denote this subsequence as {u′
n( 12 )}n∈N∗ . For

the fixed t ∈ (0, 1), we see that f is uniformly continuous on any compact
subset of [min{t, 1

2},max{t, 1
2}] × (0, r]. Taking n → ∞ in N∗, we have

u(t) = u

(
1
2

)
+

∫ t

1
2

φ−1

(
φ(ζ) −

∫ s

1
2

h(τ)f(τ, u(τ))dτ

)
ds.

Let us apply this argument for each t ∈ (0, 1). Thus, we get − (φ(u′(t)))′ =
h(t)f(t, u(t)) for t ∈ (0, 1). i.e. u is a positive solution of (4.1). Moreover, from
the similar arguments of the first step, we can easily see that
‖u‖ < r. �

Proof of Theorem 1.4. By the choice of λ and (C4)(C5)(C6), we see that
conditions of Theorem 4.1 all hold. Thus, from Theorem 4.1, we can eas-
ily deduce that (1.1) has at least one positive solution u for λ ∈ (0, λ̄) and
0 < ‖u‖ < r. �

Example 2. Consider a Minkowski curvature problem of the form{−φ(u′)′ = λt−
3
2 (u− 1

2 + u3), t ∈ (0, 1),
u(0) = u(1) = 0.

(4.16)
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Obviously, we see h(t) = t−
3
2 ∈ H, h �≡ 0 on any subinterval in (0, 1),

f ∈ C((0,∞), (0,∞)). Take f1(u) = u− 1
2 , f2(u) = u3, ψι(t) = f1(ι) for

t ∈ [0, 1]. It is easy to check that conditions (C4)(C5) of Theorem 1.4 are both
valid. Meanwhile, by choosing r = 1 and applying some simple calculations,
we have

λ̄ =

∫ 1

0
dy

f1(y)[
1 + f2(1)

f1(1)

]
max

{∫ 1
2
0

(∫ 1
2

s
h(τ)dτ

)
ds,

∫ 1
1
2

(∫ s
1
2

h(τ)dτ
)

ds
} .= 0.235.

By Theorem 1.4, we deduce that for any λ ∈ (0, 0.235), (4.16) must have at
least one positive solution u satisfying 0 < ‖u‖ < 1.
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